

1 **Relationship between early body condition, energetic reserves and fitness in an
2 iteroparous insect**

3

4 Zanchi^{1,2}, Caroline*; Moret², Yannick; Gillingham^{2,3}, Mark A. F.*

5

6 ¹ *Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, DE-48149
7 Münster, Germany.*

8

9 ² *UMR CNRS 6282 BioGéosciences, Équipe Écologie Évolutive, Université Bourgogne-Franche
10 Comté, Dijon, France*

11

12 ³*University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein
13 Allee 11, D-89069 Ulm, Germany*

14

15 **Keywords:** Body condition, body condition indices, iteroparity, income breeder, *Tenebrio molitor*,
16 fitness.

17

18 ***Corresponding Authors:**

19

Dr. Mark Gillingham
University of Ulm
Institute of Evolutionary Ecology
and Conservation Genomics
Albert-Einstein Allee 11
D-89081 Ulm
phone: +49 731 50 22641
e-mail: mark.gillingham@uni-ulm.de
mark.alan.gillingham@gmail.com

Dr. Caroline Zanchi
University of Münster
Institute for Evolution and Biodiversity
Animal Evolutionary Ecology group
Hüfferstraße 1
D-48149 Münster
phone: +49 251 83 21023
email: caroline.zanchi@uni-muenster.de

20

21

22 Abstract

- 23 1. Body condition can be defined as the amount of energetic reserves present within an
24 individual after structural size had been accounted for (i.e. relative amounts of energetic
25 reserves), and estimated by Body Condition indices (BCIs)
- 26 2. Several methods have been proposed to calculate BCIs. However, they have traditionally
27 been validated in vertebrate studies and evidence of their power to predict fitness in
28 invertebrates is scarce. Ideally, the use of a particular BCI in an animal population should be
29 validated based on its ability to accurately reflect the relative amount of reserves available to
30 the animal as well as its relationship to fitness.
- 31 3. We aimed at increasing the variance in female body condition of *Tenebrio molitor* beetles
32 by subjecting them to restricted or optimal food conditions at both the larval and/or adult
33 stage. We then explored the predictive power of several BCIs on both the absolute and
34 relative amount of lipids and sugars present in the insect's body, and their link with adult
35 fitness. Using an iteroparous insect breeder allowed us to assess the relative effects of
36 larval vs. adult access to nutritional resources on fecundity along several reproductive
37 events.
- 38 4. Simple measurements of phenotypically plastic traits (i.e. mass and volume) correlated well
39 with absolute, but poorly with relative, measures of body reserves. Conversely, we found
40 that BCIs that corrected for the interdependence between phenotypically plastic traits and
41 structural size strongly correlated with relative amounts of body components.
- 42 5. We found that even though the adult feeding treatment had a stronger effect, body condition
43 at emergence, but not larval feeding treatment, also affected fecundity. Moreover, while the
44 effect of the adult feeding treatment varied along time (i.e. egg laying rank), the effect of
45 body condition at emergence remained constant.

46 6. These results show that by carefully using simple morphometric measures and BCIs, it is
47 possible to distinguish between the effects of structural size and body condition on fitness
48 traits in invertebrates, and to show that an iteroparous income breeder can partially rely on
49 its early energetic state for its later fecundity.

50

51 **Introduction**

52 Body condition is classically defined as the amount reserves present in the body of an animal after
53 maintenance costs have been accounted for (Rowe & Houle, 1996 ; Barnett et al., 2015). Its
54 definition can also take various shapes ranging from the “general health state” to “physiological
55 state” of an animal, and is also sometimes referred to as its “quality” (Jakob, Marshall & Uetz, 1996
56 ; Wilson & Nussey, 2010). The relationship between the latter and the “quality” of an individual is
57 likely to be more complicated than stated in most studies (Hill, 2011 ; Wilder, Raubenheime &
58 Simpson, 2016 ; Barnett et al., 2015), since the resilience or resistance to different stressors is likely
59 to be dependent on a different set of biomarkers (Milot et al., 2014). In an attempt to capture the
60 concept of resilience underlying these definitions, Hill (2011) defined body condition as “the
61 relative capacity to maintain optimal functionality of essential cellular processes”. In some cases,
62 this is assumed to rely strongly on the amount of energetic reserves an individual has at its disposal
63 (Schulte-Hostedde et al. 2005 ; Nandy et al., 2012), which has indeed been found to predict several
64 fitness traits in both vertebrates and invertebrates, such as dispersal (Bargielowski et al., 2012,
65 Evenden, Whitehouse & Sykes, 2014), resistance to diseases or chemicals (Townsend et al., 2010 ;
66 Reid & Purcell, 2011), overwintering success (Sinclair, 2015) and fecundity (Arrese & Soulages,
67 2010). This amount of reserves can be estimated by the direct dosage of several body components
68 from the organism, such as fat, glycogen and protein content, but invasive dosing is problematic
69 when an experiment requires the animals to remain alive along several sampling events. In such
70 cases, a non-invasive approximation of energetic reserves is needed.

71

72 Some studies use body mass or body size, because the larger the individual the more body reserves
73 it is able to store. However, a simple measurement of mass includes the mass of body structures that
74 are used as an energy source only in cases of extreme starvation (such as bones in vertebrates or
75 cuticular structures in invertebrates: van Niekerk, Mitchell & Engelbrecht, 2018 ; Locke, 1991).
76 This is the rationale behind the use of body condition indices (BCIs), which are indices based on
77 several morphological measurements, typically the measurement of a phenotypically plastic
78 morphological trait which varies according to the intake of resources from the environment (e.g.
79 mass or volume), corrected for a measurement of the fixed structural body size (e.g. body length).
80 The interdependence between these two parameters can be mathematically taken into account in
81 different ways which are still a matter of much debate in the literature (Peig & Green 2009, 2010,
82 Moya-Laraño et al., 2008, Labocha, Schutz & Hayes, 2014).

83

84 BCIs have been originally developed for use with vertebrates, in which ethical concerns require
85 non-destructive ways of assessing the quantity of reserves available to animals. Simple
86 measurements of size or mass are more frequently used by invertebrate ecologists since they have
87 been shown to be associated with fitness traits in some studies (Bista & Omkar, 2013 ; Reid &
88 Baruch, 2010 ; Zanchi et al., 2012). Insects have a discontinuous growth marked by the occurrence
89 of moults in between which the structural size is fixed by a rigid exoskeleton, whereas the quantity
90 of resources accumulated increases with the duration of the intermoult, and their adult body size is
91 also fixed. Thus, one could argue that a measurement of structural size would reflect the resources
92 accumulated during the larval development, and not present energy reserves of the insects, and that
93 the use of a BCI at a given growth stage is relevant (Anderson, 1974 ; Reim, Kaufmann &
94 Blamckenhor, 2009 ; Knapp & Knappova, 2013).

95

96 Still, whether BCIs or simple measures of size/mass are more appropriate in predicting fitness in
97 invertebrates remains poorly understood, since to our knowledge no studies comprehensively

98 validate several BCIs based on both energetic reserves and fitness. Moreover, BCIs have been
99 criticized for their lack of predictive power on the absolute quantity of reserves present in
100 individuals (Wilder et al., 2016). However, BCIs have been introduced to take into account the
101 Absolute Energy Demand Hypothesis (Calder, 1984), which pertains that since large animals
102 require more energy to sustain their body function (Blanckenhorn, 2000 ; Reim, Teuschl &
103 Blanckenhorn, 2006), energy reserves relative to size is a better predictor of fitness than absolute
104 measures of reserves. BCIs should therefore not be expected to correlate with absolute values of
105 reserves, but rather with their quantity corrected for structural size (DeBano, 2008 ; Peig & Green,
106 2009 ; 2010).

107

108 The purpose of the present study is to compare the predictive power of several BCIs and
109 simple morphological measurements taken from females of the mealworm beetle, *Tenebrio molitor*
110 (Coleoptera: Tenebrionidae), on the actual quantities of energetic reserves stored in their bodies
111 both in absolute quantity and after correction for structural size. We then compared their predictive
112 power on the fitness of the beetles. *T. molitor* is a relatively long-lived insect and is iteroparous,
113 meaning that it feeds at the adult stage and lays eggs in several reproductive bouts along its lifespan
114 (Hughes, 2017). As such, it is an income breeder (Stearns, 1992, Jönsson, 1997). This feature is
115 predicted to complicate the identification of resource-based changes in life histories which could be
116 due to past as well as present food availability (Kasumovic, Brooks & Andrade, 2009). We use this
117 as an opportunity to explore the effects of early body condition on the long-term fitness of adult *T.*
118 *molitor* females, which we estimated by their fecundity along reproductive events.

119

120 Simple morphometric measurements were taken after metamorphosis, such as the structural size
121 and the mass of the beetles. From these measurements, we calculated several BCIs chosen from the
122 literature, and explore their adequacy in controlling for the interdependence between a
123 phenotypically plastic morphometric measurement and structural size.

- 124 - The traditional and more frequently used BCI in vertebrates (Blem 1990, Brown
125 1996, Schulte-Hostedde et al. 2005) and invertebrates (Jakob et al., 1996 ; Reinhart,
126 2001 ; DeBano, 2008, Kasumovic et al., 2009) consists in the **residuals from**
127 **ordinary least squares (OLS) regressions with log-transformed mass as a**
128 **response variable and log-transformed structural size as an explanatory**
129 **variable** (hereafter referred to as **OLS_{resid}**) (Jakob et al., 1996; Hayes and
130 Shonkwiler, 2001). Their use has been criticized by some authors because despite
131 controlling for the lack of independence between mass and structural size, it fails to
132 control for the lack of independence between structural size and mass (see Green
133 2001, Peig and Green 2009, 2010).
- 134 - To address the latter, it has been suggested that **residuals from standardised major**
135 **axis (SMA) regressions** are better suited to calculate BCIs (Green 2001, Peig and
136 Green 2009, 2010). Indeed, the authors found that in several small vertebrate
137 species, **Scaled Mass Index (SMI)** performed better than OLS_{resid} in predicting the
138 amount of reserves stored in the body relative to body size. However Peig and Green
139 (2009, 2010), did not assess which BCI predicted fitness best, which would be more
140 pertinent in most ecological studies.
- 141 - Moreover, Moya Laraño et al. (2008) proposed that the **abdomen volume** might
142 reflect the amount of reserves stored in this compartment more faithfully than mass.
143 We therefore additionally calculated a **Scaled Volume Index**.
- 144
- 145 We did so on groups of female beetles having experienced food shortage or not at the larval
146 and/or the adult stage, in an attempt to increase the variance in their body condition. This
147 experimental approach sets a context of food imbalance and limitation, in which it makes sense to
148 restrain the definition of body condition to the amount of energetic reserves present in the bodies of
149 *T. molitor* females, and enabling them to maintain a reproductive output in harsh conditions.

150 Several physiological and morphometric measurements were taken after metamorphosis and before
151 measuring the fecundity of the beetle females. Thus, we were able to estimate whether different
152 BCIs were performing better at identifying potential differences between the treatment groups, as
153 well as how differences in early body condition shapes the life history traits of this iteroparous
154 beetle species.

155

156 **Materials and methods.**

157 **Insect rearing and maintenance**

158 Young larvae (~ 1cm) were collected from a mass rearing outbred stock kept in the laboratory in
159 wheat bran (as a substrate, is also used as a source of food) with *ad libitum* access to water, and
160 regularly supplemented with piglet flour (as a source of proteins) and a piece of apple (for
161 carbohydrates and vitamins). Our insects are kept at 25°C and in the dark. After collection, we
162 reared *T. molitor* larvae either in a rich or a poor larval feeding treatment, and subsequently
163 maintained adults in a matching or mismatching environment, i.e. similar or dissimilar to the larval
164 feeding treatment respectively.

165 We later measured the effects of these treatments on female body condition and fecundity.
166 To do so, a subset of the females generated in these treatments was killed in order to assess the
167 quantity of energetic reserves present in their abdomen, whereas we assessed the body condition of
168 the remaining females in a non-invasive way before allowing them to reproduce.

169

170 **Generation of larval feeding treatments (L.F.T.)**

171 After retrieving the larvae from the stock, we maintained them at a density of 250 larvae in a plastic
172 box (L xH x l = 30 x 22 x 25 cm) in 5 L of wheat bran with *ad libitum* access to water. We kept
173 them in 2 separate containers according to the larval feeding treatment we subjected them to while
174 controlling for density:

175 - In “**poor larval feeding**” conditions (hereafter **P.L.**), larvae were simply kept in wheat bran

176 with unlimited access to water and no further addition of piglet flour or apple.

177 - In “**rich larval feeding**” conditions (hereafter **R.L.**), larvae were kept similarly to our stock,

178 that is to say in wheat bran + piglet flour + apple.

179 We checked daily for the presence of pupae in these boxes.

180 The dynamics of pupation in our rearing conditions is such that a few larvae pupated early,

181 preceding a “pupation peak” over 3 days, after which some larvae kept pupating late. Moreover, the

182 growth of *T. molitor* is such that while getting closer to pupation, the food uptake of larvae stops as

183 the insects are undergoing the physiological changes preparing metamorphosis (Connat et al.,

184 1991). We retrieved pupae as soon as they were spotted, but we used in this experiment only the

185 pupae formed during this “pupation peak”. This way, we assumed that we minimized as much as

186 possible the effect of the removal of conspecifics on the accumulation of energetic reserves by each

187 individual larva.

188 We counted the pupae produced until the boxes were empty, in order to check that there was

189 no difference in the number of pupae produced between the 2 boxes. There was less than 10 %

190 difference between both. The resulting pupae were kept separately in a plastic box and checked

191 daily for the presence of emerged adults in the teneral stage.

192 After emergence, adults were kept individually in Petri dishes supplied with wheat bran and

193 a piece of apple for 5 days, time during which they reach sexual maturity. Five days after

194 emergence the beetles were sclerotized enough to allow the determination of their sex by

195 observation of their genitalia. As our study focused on variation in females body condition only,

196 P.L. males were discarded, while R.L. males were transferred from their Petri dish into new plastic

197 boxes where they were kept together according to their emergence date in wheat bran + *ad libitum*

198 water + piglet flour + apple, waiting to be used in the later copulation experiments.

199

200

201 **Generation of adult female treatments (A.F.T.)**

202 Females on the other hand were still maintained individually in Petri dishes and kept differently
203 according to the adult feeding treatment we subjected them to:

204 - In “**poor adult feeding**” conditions (hereafter **P.A.**), females were kept in whole grain thin
205 wheat flour, with *ad libitum* access to water.

206 - In “**rich adult feeding**” conditions (hereafter **R.A.**), females were kept similarly but with
207 addition of piglet flour and apple every second day.

208 In this part of the experiment, wheat bran was replaced by thin flour in order to facilitate the
209 recovery of the eggs by sieving (600 µm).

210

211 Females of the four treatment combinations will be referred to as **P.L.P.A. for poor larval**
212 **rich adult, P.L.R.A. for poor larval rich adult, R.L.P.A. for rich larval poor adult, and**
213 **R.L.R.A. for rich larval rich adult feeding treatments.**

214

215 **Body Condition Indexes**

216 **Measure of morphological parameters**

217 The mass of each female was measured on a Sartorius balance to a precision of 10^{-5} g before
218 the first reproduction. The females used for assessment of the energetic reserves were weighed and
219 measured before being frozen.

220 Three different measures were taken with a digital calliper (Mitutoyo, Absolute) to the
221 nearest 0.01 mm: the length of the elytron, the width of the abdomen at the level of the second
222 abdominal segment, and the thickness of the abdomen being the smallest thickness we can measure
223 after pressing the elytra against the abdomen (which has been shown to correlate with fecundity in
224 a mantid species in Maxwell, Galego & Barry, 2010). Repeatability of these measurements was
225 assessed by taking them twice in a non-consecutive way. From these measurements we calculated
226 the volume of the abdomen of the beetles ($4/3 * 3.14 * (\text{length}/2) * (\text{width}/2) * (\text{thickness}/2)$), as advised

227 by Moya-Laraño et al. (2008). Being the site of storage of most energetic reserves in the fat body,
228 we can indeed expect the abdomen volume to be condition dependent.

229

230 **Dosage of the energetic reserves**

231 We used a dosage by colorimetry to assess the lipid content as well as the glycogen and the
232 circulating carbohydrates present in the abdomen of the beetles, by using a protocol detailed in
233 Rivero and Ferguson (2003). In brief, frozen beetles were dissected to remove their prothorax, head,
234 elytras and legs. The remaining abdomens were homogenized in microcentrifuge tubes containing a
235 2% sodium sulfate solution and incubated in a 2:1 mix of chloroform:methanol solution for 24
236 hours. They were then centrifuged, to separate the pellet (containing glycogen) from the supernatant
237 (containing fat and circulating sugars). The supernatant was divided into 2 equal parts. One part we
238 used to quantify lipids with vanillin-phosphoric acid reagent. After a brief incubation, the optical
239 density of the resulting solution was read in a spectrophotometer (SpectraMax®, Molecular
240 Devices) at 525 nm and compared to a standard curve made of a serial dilution of sunflower seed
241 oil. The other part was used to quantify mono and disaccharides from the supernatant and the pellet
242 (after breaking down of the glycogen of the pellet), by incubating each of these fractions with
243 anthrone reagent. The optical density of the resulting solutions was read at 625 nm and compared to
244 a standard curve made of a serial dilution of glucose. As there was a strong correlation between
245 circulating sugars and glycogen in the beetles (Pearson's correlation of log-transformed sugars and
246 glycogen [95% CI], $r = 0.811$ [0.725, 0.872], **supplementary material S1**), we considered both
247 compounds together in the results.

248 Mono- and disaccharides from the supernatant represent circulating sugars mostly in the
249 form of trehalose, as it is the main sugar present in the hemolymph of insects and serves as a
250 storage for the glucose used in locomotory activity (Candy, 1989, Thompson, 2003), whereas
251 glycogen stored in the fat body helps replenishing consumed trehalose (Candy, 1989).
252 Diacylglycerol is another fuel used in locomotory activity, which is stored in the fat body

253 (Canavoso, 2001 ; Williams & Robertson, 2008).

254

255 **Copulations and fecundity assessment**

256 Dnervich et al. (2001) showed that the mating of *T. molitor* females every second day
257 prevented their sperm depletion. Our preliminary observations showed that females could lay eggs
258 for a week following a single copulation event, and that when mated every second day they barely
259 laid any eggs past 2 weeks after the first copulation. We thus designed our experiment in order to
260 prevent any sperm depletion and capture most of the fitness of the females.

261 Ten days after emergence females were exposed to one male for 4 hours. During copulation,
262 a male from the R.L feeding treatment and a focal female were placed in an empty Petri dish
263 containing only a piece of filter paper. We observed the pairs until we could record at least one
264 copulation for each one of them, and we noticed that several events of copulation can take place in
265 4 hours. At the end of these 4 hours, the males were removed, put back together in a box and fed *ad*
266 *libitum*, waiting to be reused 2 days later. Note that as males were not kept individually, they were
267 randomly chosen from their stock every second day, which controls for any effect of males on
268 female fitness. Females on the other hand were individually placed in a new Petri dish filled with
269 flour supplemented or not with apple and piglet flour, according to their adult feeding treatment,
270 and allowed to oviposit for 2 days until the next copulation event. The eggs of the previous Petri
271 dish resulting from the previous reproduction event were sieved off the flour and counted, as a
272 proxy for female fitness. There were in total 8 copulation sessions per female. Males that reached
273 17 days post emergence were removed from the experiment.

274

275 **BCIs calculations**

276 We decided to use three morphometric measures as indirect indices of energetic reserves:
277 elytron length, body mass and abdomen volume.

278 We then computed the **residuals from ordinary least squares (OLS) regressions with**
279 **log-transformed mass as a response variable and log-transformed structural size (elytron**

280 **length in our study) as an explanatory variable** (hereafter referred to as **OLSresid**) (Jakob *et al.*,
281 1996; Hayes and Shonkwiler, 2001). Both mass and structural size are log-transformed because the
282 relationships between morphological traits are known to follow a power function $Y = \alpha X^\beta$ (Y
283 being a morphological trait (e.g. mass) to be predicted, X being a second morphological trait (e.g.
284 structural size) and α and β being constants. The constant is known as the scaling exponent (Peig
285 and Green 2009). However OLS regressions assume that the dependent variable X is independent of
286 the response variable Y and that X is free of errors. Both assumptions are violated since structural
287 size will tend to be greater in individuals of higher condition and X will suffer from some error. It is
288 also important to note that measurement is not necessarily the main source of error in structural
289 size, a larger source of error may be variation between individuals in how well measures of
290 structural size actually reflect true body size due to variation in body shape (Warton *et al.*, 2006,
291 Green, 2001). The result of these violations in assumptions is that the slope of the OLS regression
292 will be underestimated, resulting in an over-estimation of condition for large individuals and vice-
293 versa for smaller individuals (see results).

294 Unlike OLS regressions, Major Axis (MA) regressions assume that X is not free of errors,
295 that the errors in X and Y are interdependent, and that the ratio in error variance in Y and X is equal
296 to 1 (Green, 2001; Warton *et al.*, 2006). However, the error variance is expected to be greater in
297 measurements of plastic phenotypic traits (such as mass and volume) than in measurements of
298 structural size (Rising and Somers 1989; Green, 2001). In addition, measurements of plastic
299 phenotypic traits and structural size are generally not measured within comparable scales.
300 Therefore, in most cases, the error variance ratio Y/X assumption of MA regression will be violated
301 and will lead to inflated slopes that will approach an OLS regression slope of structural size (i.e. X)
302 on the plastic phenotypic trait (i.e. Y) (Green, 2001, see results).

303 To address the interdependence between mass and size, the use of **the residuals from standardised**
304 **major axis (SMA) regressions** (otherwise known as reduced major axis regression) have been
305 proposed to be a better suited BCI than OLSresid (Green 2001, Peig and Green 2009, 2010). SMA

306 regressions assume that the ratio of error variance Y/X is equal to the ratio of the true variance Y/X .
307 Since SMA regressions standardise data, it can deal with Y and X variables measured on different
308 scales. Its true and error variance assumptions are also more realistic than both OLS and MA
309 regressions in most cases (Warton *et al.*, 2006, Green, 2001, see results).

310 Peig and Green (2009) used the Thope-Lleonar (TL) model of scaling to estimate body
311 condition, **using the slope from an SMA regression of mass and structural size as the scaling**
312 **exponent**. The benefit of Peig and Green's (2009) formula is that it retains the original mass units.
313 We therefore corrected all of our non-fixed morphological measures (i.e. mass and volume), as well
314 body components (i.e. lipids and sugars) for structural size (i.e. elytron length) using Peig and
315 Green's (2009) formula. We refer to size-corrected morphological measures and body components
316 as "**scaled**", i.e. **scaled mass index (SMI)**, **scaled volume index (SVI)**, **scaled lipids and scaled**
317 **sugars**.

318

319 **Statistical analysis**

320 We tested the repeatability of our morphometric measures using the R package "rptR" (Stoffel and
321 Nakagawa, 2017). We investigated Pearson correlations between morphometric measures, BCIs and
322 measures of energetic reserves. Prior to correlations all morphometric measures and energetic
323 reserves were log transformed. We further investigated whether log-transformed measures of
324 energetic reserves, morphometric measures and BCIs differed between feeding treatments using
325 linear models.

326

327 We investigated the effect of each morphological measure and BCI on total fecundity,
328 controlling for each feeding treatment on total fecundity using a general linear model (GLM) with
329 negative binomial distribution and a log link function, with the total number of eggs as a response
330 variable and each morphological measure/BCI, larval feeding treatment, adult feeding treatment and
331 the three way interaction term as explanatory variables. Because of collinearity between the

332 morphological measures and BCI, each measure/BCI was entered in separate models and never
333 together in the same model. Therefore, in order to compare the relative support of each BCI, we
334 constructed candidate models with each BCI and controlling for the effect of the adult food
335 treatment, as well as models with each BCI but without the effect of adult food treatment, a model
336 with only the effect of adult food treatment and the null model. We then combined all of the
337 candidate models to assess the relative support of each morphological measure and BCI in
338 predicting total fecundity. We calculated the sum of AICc weight of all candidate models with each
339 morphological measure and BCI, the average R^2 across models with the measure/BCI, and the effect
340 size, partial r , of the BCI on fecundity when controlling for adult feeding treatment (since the effect
341 of adult feeding treatment was supported by model selection, see results).

342 *T. molitor* females mature eggs several times during their adult lifespan. Moreover, we
343 noticed that some females abstained from laying eggs during some sampling periods. Since the data
344 was zero-inflated, we considered the fecundity dynamics with a zero-inflated generalised mixed
345 model with a negative binomial distribution and log link function. The response variable was the
346 number of eggs laid at each egg laying event. The explanatory variables were larval feeding
347 treatment, adult feeding treatment, egg laying rank, OLS_{resid} and the four way interaction term. The
348 random intercept was female ID. We also present results when using mass and SMI instead of
349 OLS_{resid}.

350

351 For all analyses, we used the information-theoretic (I-T) approach to achieve model
352 selection (Burnham and Anderson, 2002). The relative strength of support of all possible candidate
353 models was assessed via Akaike's Information Criterion adjusted for small sample sizes (AICc) and
354 AICc weights (ω), the adjusted R^2 as defined by the MuMIn R package (Bartón, 2016). We also
355 report the Cohen's D and 95% confidence intervals (Nakagawa and Cuthill, 2007) using the
356 MBESS package (Kelley, 2018) for categorical variables. For continuous variables we report the
357 partial r effect size (Nakagawa and Cuthill, 2007) and estimated the 95% confidence intervals by

358 bootstrap ($n = 10,000$) using the “boot” package (Canty and Ripley, 2019).

359 Cohen (1988) has proposed ‘conventional’ values as benchmarks for what are considered to
360 be ‘small’, ‘medium’, and ‘large’ effects ($r = 0.1, 0.3, 0.5$ and $d = 0.2, 0.5, 0.8$, respectively). We
361 will refer to such terms along the manuscript.

362

363 Results

364 Elytron length is a good indicator of structural size in our insect since it correlates highly
365 with mass (Pearson’s correlation [95% confidence intervals]; $r = 0.776$ [0.729-0.816]; **Figure 1a.**)
366 and its size is fixed after hatching from the pupal stage, since the cuticle gets tanned and sclerotized
367 after emergence.

368 The relationship between log-transformed mass and log-transformed size did not change
369 significantly according to our larval and adult feeding treatments (SMA regressions: larval feeding
370 treatment: LRT = 2.558, *p-value* = 0.110; adult feeding treatment: LRT = 2.080, *p-value* = 0.149).
371 Similarly the relationship between log-transformed volume and log-transformed elytron size, did
372 not change significantly according to our larval and adult feeding treatments (SMA regressions:
373 larval feeding treatment: LRT = 1.824, *p-value* = 0.177; adult feeding treatment: LRT = 2.535, *p-*
374 *value* = 0.111). Furthermore the relationship between all log-transformed energetic reserves (lipids
375 and sugars) and structural size also did not significantly differ between feeding treatments (SMA
376 regressions, all *p*-values > 0.05). Therefore we pooled all data together when calculating BCIs,
377 enabling the comparison of condition between treatment groups.

378 Although by construction OLSresid is not correlated with structural size (**Figures 1c.**), it is
379 positively correlated with mass (**Figures 1f.**). Therefore, as predicted, the slope of the OLS
380 regression between the log of mass and the log of elytron size is underestimated, resulting in an
381 over-estimation of condition for large individuals and vice-versa for smaller individuals (**Figure**
382 **1a.**; equivalent results were found when using volume instead of mass as a response variable: see
383 **supplementary material S2**).

384 Once again as predicted, MA residuals did not correlate with mass (**Figure 1e.**) but strongly
385 negatively correlated with structural size (**Figure 1h.**). Therefore, when applying an MA regression
386 to log-transformed mass to log-transformed elytron size, we found as stated by Green (2001) that
387 the slope was much steeper than the slope of all other regression methods and is overestimated
388 (**Figure 1a.**; equivalent results were also found when using volume instead of mass as an
389 explanatory variable, see **supplementary material S2**).

390 When applying the SMA regression to our data, the slope of the SMA regression was within
391 the slopes of OLS and MA regression methods (**Figure 1a.**). However SMA regression does not
392 completely correct for the dependance between mass and size since when plotting SMA residuals
393 against mass and elytron length, they weakly correlated positively with the former (**Figure 1d.**) and
394 negatively with the latter (**Figure 1c.**). Because the slope of the SMA regression is used as the
395 scaling exponent, it is perfectly correlated with log-transformed SMA residuals (**Figure 1b.**).
396

397 **Correlation between estimates of body condition**

398 Morphometric measures of elytron length, abdomen width and abdomen thickness were
399 significantly repeatable ($p < 0.05$) with an R [95%CI] of 0.921 [0.902, 0.936], 0.572 [0.494, 0.641]
400 and 0.829 [0.790, 0.861] respectively. All morphometric measures (elytron length, mass and
401 volume) were highly correlated with absolute values of body components (lipids and sugars), with
402 correlations tending to be higher for mass and volume than elytron length. As expected, body
403 measures correlated poorly with body components that were scaled for structural size.

404 BCIs (OLS_{resid} , SMI and SVI) significantly correlated with most quantities of energetic
405 reserves which were scaled for body size. Correlation coefficients with scaled lipids or sugars
406 tended to be significantly higher for SVI than for SMI and OLS_{resid} , suggesting that SVI is the best
407 estimator of body condition. Finally, OLS_{resid} and SVI also correlated significantly with absolute
408 values of energetic body reserves (with the exception of SVI with lipids) but not SMI. The latter
409 suggests that OLS_{resid} and SVI do not control adequately for the codependence between structural
410 size and the phenotypically plastic morphological trait, whereas SMI does. The results are shown in

411 **Table 1.**

412

413 **Effect of feeding treatment on body condition**

414 **1. Body components**

415 An additive effect of larval and adult feeding treatments on lipids content was strongly supported by
416 model selection ($\Delta\text{AICc} = 6.19$; **Supplementary Table S3a.**; **Figure 2a.**). The rich larval feeding
417 treatment resulted in lower lipid content than the poor larval feeding treatment ($d = 0.640$ [0.197;
418 1.078]) and the rich adult feeding treatment resulted in lower lipid content than the poor adult
419 feeding treatment ($d = 0.961$ [0.512; 1.405]).

420 An effect of the interaction of larval and adult feeding treatments on sugar content was
421 strongly supported by model selection ($\Delta\text{AICc} = 10.87$; **Table S1b.**; **Figure 2b.**). Sugar content was
422 at its lowest in the rich larval and rich adult feeding treatment (R.L/R.A vs R.L/P.A: $d = 1.843$
423 [1.184; 2.489]; R.L/R.A vs P.L/R.A: $d = 3.254$ [2.386; 4.107]; R.L/R.A vs P.L/P.A: $d = 3.450$
424 [2.567; 4.319]), followed by the rich larval and poor adult feeding treatment (R.L/P.A vs P.L/R.A:
425 $d = 1.412$ [0.656; 2.150]; R.L/P.A vs P.L/P.A: $d = 1.607$ [0.842; 2.356]).

426

427 **2. Scaled body components**

428 There was no evidence that larval and adult feeding treatments had an effect on adult scaled lipid
429 composition since the best supported model was the null model ($\text{AICc } \omega = 0.322$; **Supplementary**
430 **Table S4a.**; **Figure 2c.**). There was, however, strong support that individuals reared in the “poor
431 feeding” treatment at larval stages had higher levels of scaled sugar contents than individuals reared
432 in the “rich food” larval treatment ($\Delta\text{AICc} = 9.58$; $d = 0.768$ [0.321; 1.211]; **Supplementary Table**
433 **S4b.**; **Figure 2d.**). Model selection did not support an effect of adult feeding treatment
434 (**Supplementary Table S4b.**).

435

436 **3. Measures of absolute body condition**

437 Elytron length could not be affected by the adult feeding treatment in our experimental

438 setting, since we had to keep all adults in the same conditions, regardless of their future adult
439 feeding treatment, until the sclerotization of their cuticle. We therefore only analysed the effects of
440 the larval feeding treatment on elytron length. Adults emerging from the rich larval feeding
441 treatment had a smaller elytron size compared to adults emerging from the poor larval feeding
442 treatment ($\Delta\text{AICc} = 7.94$; **Supplementary Table S5a.**; **Figure 3a.**; RL vs. PL: $d = 0.353$ [0.133;
443 0.573]).

444 An effect of larval feeding treatment on mass was strongly supported by model selection
445 ($\Delta\text{AICc} = 5.34$; **Supplementary Table S5b.**; **Figure 3b.**). Adults from the rich larval feeding
446 treatment had a lower mass than adults from the poor larval feeding treatment ($d = 0.287$ [0.067;
447 0.506]). An effect of adult feeding treatment on mass was also marginally supported by model
448 selection ($\Delta\text{AICc} = 2.11$; **Supplementary Table S5b.**; **Figure 3b.**). However, we only found a
449 tendency (95% confidence intervals of the estimate overlap 0) for adults from the rich adult feeding
450 treatment to have a lower mass than adults from the poor larval feeding treatment ($d = 0.193$ [-
451 0.024; 0.411], **Figure 3b.**). An additive effect of larval food ($\Delta\text{AICc} = 85.40$) and adult feeding
452 treatment ($\Delta\text{AICc} = 13.94$) on the abdomen volume of adult females was strongly supported by
453 model selection (**Supplementary Table S5c.**; **Figure 3c.**). Adults originating from the rich larval
454 feeding treatment had a lower volume than adults from the poor larval feeding treatment ($d = 1.108$
455 [0.873; 1.341]). Similarly, adults originating from the rich adult feeding treatment had a lower
456 volume than adults from the poor adult feeding treatment ($d = 0.443$ [0.223; 0.662]).

457

458 **4. Scaled body condition**

459 We detected no effect of both larval and adult feeding treatment on $\text{OLS}_{\text{resid}}$ and SMI, since
460 models with feeding treatments were not better supported than the null model (**Supplementary**
461 **Table S6a. and S6b.**; **Figure 3d. and e.**). However, we found strong support for an effect of the
462 larval feeding treatment on SVI ($\Delta\text{AICc} = 69.66$), with higher estimates for individuals reared in
463 the “poor feeding” treatment at larval stages than in the “rich feeding” treatment ($d = 1.239$

464 [0.931-1.545]; **Supplementary Table S6c.; Figure 3f.**). The latter result further supported that
465 SVI estimated better body component composition than OLS_{resid} and SMI since it concurred with
466 results found with sugar components. Model selection did not support an effect of adult feeding
467 treatment on any of the 3 BCIs.

468

469 **Relationship between feeding treatments, body condition and fitness**

470 **1. Total fecundity**

471 Model selection revealed a strong support for an effect of adult feeding treatment (**Figure 4a.**) and
472 regardless of the BCI used when controlling for body condition at emergence on total fecundity
473 (range of $\Delta\text{AICc} = 17.01\text{-}23.55$ depending on BCI used; see **Supplementary Table S7a.; b. and c.**
474 and **Figure 4c.; d. and e** for results using OLS_{resid}, mass and SMI at emergence respectively).
475 Estimates were higher for individuals kept in the “rich adult feeding” treatment than the “poor adult
476 feeding” treatment (Figure 4a.; when controlling for OLS_{resid} at emergence: $d = 0.671$ [0.399-0.941],
477 when controlling for mass: $d = 0.703$ [0.430-0.974], when controlling for SMI: $d = 0.659$ [0.387-
478 0.929]). This represents a medium effect size according to Cohen (1988). There was however a low
479 support for an effect of larval feeding treatment and all interaction terms on total fecundity (see
480 **Supplementary Table S7a.**).

481 Partial r effect sizes and 95% confidence intervals suggest support for an association
482 between total fecundity and all BCIs (absolute and scaled) except elytron length and, surprisingly,
483 SVI (**Figure 4b.**). OLS_{resid} and mass also had the largest effect size (partial r [95%CI] = 0.230
484 [0.110; 0.341] and 0.229 [0.105; 0.342] respectively), although 95%CI for all BCIs overlapped
485 (**Figure 4b.; Table S8**). This represents a small effect size (Cohen, 1988). OLS_{resid} was by far the
486 predictor of total fecundity with the highest AICc sum of weights with a value of 0.669, compared
487 to 0.330 for the remaining models (**Table S8**). In addition, models with OLS_{resid} predicted a larger
488 part of the variance ($R^2 = 0.138$) than models with any other BCI (next highest value was 0.125 for
489 SMI; **Table S8**).

490 We previously demonstrated that mass is the best predictor absolute body reserves, SMI is
491 the best mass based predictor of body condition, and we demonstrate here that OLS_{resid} and mass are
492 the best predictors of fertility. Therefore, for all subsequent analyses on fecundity, we will compare
493 the predictive power and variance explained of OLS_{resid}, mass and SMI only.

494

495 **2. Egg laying dynamics**

496 Model selection revealed a strong support for an interaction effect of adult feeding treatment and
497 the reproductive event on the number of eggs laid, with the number of eggs laid decreasing more
498 sharply at each successive reproductive event for individuals in the poor adult feeding treatment
499 compared to adults in the rich adult feeding treatment ($\Delta\text{AICc} = 42.47$ when using OLS_{resid} as a BCI;
500 **Figure 5a.**). There was also strong support for a positive effect of body condition at emergence
501 (estimated either as OLS_{resid}, mass or SMI; $\Delta\text{AICc} = 12.98$; $\Delta\text{AICc} = 5.57$ and $\Delta\text{AICc} = 9.94$,
502 respectively) on the number of eggs laid at each reproductive event (**Figure 5b., 5c. and 5d.** for
503 results with OLS_{resid}, mass and SMI respectively). There was low support of larval feeding treatment
504 and all interaction terms on the number of eggs laid at each reproductive event (**Supplementary**
505 **Tables S9, S10 and S11** for results with OLS_{resid}, mass and SMI respectively).

506

507 **Discussion**

508 In our study, we performed an extensive comparison of the ability of several morphometric
509 measurements and body condition indices to explain the variance in body components (lipids and
510 circulating sugars) and fecundity of *T. molitor* females, as well as their effect sizes. This approach
511 allowed us to decipher the effects of structural size, absolute and relative quantity of body reserves
512 on this fitness parameter. We found that volume, followed by mass, had the highest correlation
513 coefficients with lipid and sugar abdomen reserves of *T. molitor* females. Structural size, estimated
514 through elytron length, was the worst performing morphometric measure in predicting lipid and
515 sugar content in the abdomen. However, mass and volume did not correlate with scaled lipids and

516 sugars (i.e. lipids and sugars adjusted for body size). Conversely, scaled volume index (SVI;
517 volume adjusted for body size), followed by scaled mass index (SMI; mass adjusted for body size),
518 had the highest correlation coefficients with scaled lipid and sugar abdomen reserves, but did not or
519 poorly correlated with their absolute measures. OLS_{resid} (i.e. residuals from an ordinary least square
520 (OLS) regression between log mass and log structural size) was the only body condition index
521 (BCI) that correlated equally well with both absolute and scaled measures of body reserves.

522

523 Moreover, we observed in our data that violations in assumptions that variables X (here
524 elytron length) and Y (here mass or abdomen volume) result in an overestimation of body condition
525 for big individuals, and an underestimation of body condition for small individuals when using the
526 residuals of an OLS regression between X and Y as a body condition index. On the contrary,
527 violations in the assumption that the ratio in error variance in X and Y is equal to 1 while
528 performing an MA regression between X and Y would lead to overestimation of body condition for
529 small individuals and an underestimation for big individuals. The use of the residuals or the slope of
530 the SMA regression between elytron size and mass or volume as a BCI offer a compromise between
531 OLS and MA regressions. Taken together, our results confirm results from studies in vertebrates
532 (Peig and Green, 2009, 2010), which state that OLS_{resid} does not control adequately for the
533 interdependence between body size and plastic morphological traits such as mass and volume.
534 However it is important to note that using SMA regressions to calculate a BCI remains imperfect,
535 since residuals correlate weakly with both structural size and the plastic morphological trait.

536

537 **Effect of feeding treatments on morphology, body composition and body condition**

538 We observed, though we did not quantify it, that there was approximately two months of delay
539 between the emergence of adults from the rich compared to the poor larval feeding treatments, the
540 larvae in the rich feeding treatment undergoing metamorphosis earlier, which desynchronized the
541 data collection between the two feeding treatments. *T. molitor* is indeed known to be very plastic in

542 its larval developmental time (Cotton & St. George, 1929). It has been shown in several insect
543 species that restricted access to food at the larval stage can sometimes lead to a delayed maturation
544 at a smaller adult body size (Day & Rowe, 2002, Dmitriew et al., 2009). We observed the contrary,
545 that adult females emerging from the poor larval feeding treatment were slightly bigger (2 %
546 difference in the elytron size) than females emerging from the rich larval feeding treatment.

547 While looking at the body composition of adult beetles originating from both well-fed or
548 poorly-fed larvae, the additive effects of larval and adult feeding treatment on lipid storage suggests
549 that *T. molitor* does not adjust its propensity to store fat according to the environment experienced
550 at the larval stage. The interaction between larval and adult feeding treatments on carbohydrates
551 content of adult beetles however suggests that insects which have experienced adverse feeding
552 conditions at the larval stage increase sugar storage later in life, and that even individuals which
553 were well-fed as larvae will increase carbohydrates storage if food is lacking at the adult stage. This
554 is the inverse pattern of what is found in a grasshopper species, where larval food restriction
555 influenced adult lipid but not carbohydrates storage (Hahn, 2005). In a ladybird species (Dmitriew
556 et al., 2009), food restriction at the larval stage produced adults that were lighter and storing more
557 fat relative to their wing area, which translated into a reduced wing loading. The authors have
558 proposed this to represent a plastic increase of the dispersal abilities of individuals having
559 experienced adverse juvenile conditions. In our study, beetles originating from poorly fed larvae
560 were heavier than their well-fed counterparts. Since *T. molitor* is a flightless burrowing insect, the
561 absence of preferential storage of fat over heavier reserves such as glycogen might reflect a
562 relaxation of the selection pressure imposed by dispersal via flight on lipid storage and mass
563 relative to size.

564 Since adult beetles originating from larvae reared in rich feeding conditions were smaller,
565 lighter and their abdomen less voluminous than beetles originating from larvae reared in poor
566 feeding conditions, mass relative to size was similar between feeding treatments. Therefore, body
567 condition indices OLS_{resid} and SMI were not significantly different between feeding treatments.

568 However, the Scaled Volume Index (SVI), which is the only scaled index that is associated with our
569 larval feeding conditions, did differ between larval feeding treatments, suggesting that early body
570 condition was slightly higher in individuals reared in poor feeding conditions. Interestingly, SVI is
571 also the BCI which shows the highest correlation coefficients with our measurements of both
572 absolute and scaled energetic reserves, mirroring the fact that abdomen volume had the highest
573 correlation coefficients with the absolute amount of body reserves. SMI had the second highest
574 correlation coefficient with scaled body reserves, whereas OLS_{resid} was the BCI with the lowest
575 correlation coefficients.

576 **Predictive power of body condition indices on female fecundity**

577 The effect of both mass and the standardized mass index (SMI) on fecundity were supported by
578 model selection. Interestingly, the effect size of mass is roughly equal to the effect sizes of
579 structural size + standardized mass index on fecundity. This suggests that the effect of mass on
580 fecundity does indeed contain the effects of both structural size and body reserves corrected for it.
581 Following this reasoning, approximately 40 % of the effect size of mass on fecundity is represented
582 by structural size, whereas the other 60 % are represented by the body reserves corrected by
583 structural size. We cannot draw the same conclusions from the volume/standardized volume index
584 (SVI), because volume was a weaker predictor of fecundity than mass, and SVI is an even poorer
585 predictor. This might be due to the fact that the other phenotypically plastic morphological
586 measurements of our study correlate better with components that were not measured in this study
587 but contribute to energy storage (i.e. water, proteins, refs).

588 OLS_{resid} was the best supported BCI predictor of fecundity and explained the highest amount
589 of variance. However, mass, volume and SMI all had similar effect sizes with OLS_{resid} in predicting
590 fecundity. Similarly to mass, the effect size of OLS_{resid} on fecundity is roughly equal to the effect
591 sizes of SMI + size. We hypothesize that OLS_{resid} was the best supported predictor of fecundity not
592 because it is the best predictor of body condition, but rather because it incorporates both absolute
593 and relative quantities of body reserves slightly better than mass does, both of which are associated

594 with fecundity. However, OLS_{resid} have a similar effect size to other BCI because it is body
595 condition, rather than structural size, which has the strongest predictive power on fecundity, as
596 suggested by the low predictive power of elytron length and the higher predictive power of SMI.

597

598 **Effect of feeding treatments and body condition on life history**

599 First, we can note that we found no evidence of adaptive phenotypic plasticity (Monaghan, 2008 ;
600 Dmitriew & Rowe, 2011), in the sense that insects having experienced poor larval feeding
601 conditions did not achieve a higher fecundity output than insects that experienced rich larval
602 feeding conditions when placed in poor adult feeding conditions. This is likely due to the fact that
603 *T. molitor* females, which experienced a food shortage at the larval stage, emerge as adults having a
604 similar quantity of body reserves (in terms of OLS_{resid} and SMI) or even a little higher (absolute
605 body reserves in terms of mass, volume and relative body reserves in terms of SVI) than beetles
606 having been well fed at the larval stage. As a result, we found no evidence for larval feeding
607 treatment to affect body condition at emergence. This shows that *T. molitor* females are able to
608 maintain homeostasis in their physiology to buffer differential availability of resources. This is
609 likely due to the high degree of developmental plasticity of this insect, allowing individuals to
610 compensate for adverse juvenile conditions to produce an optimal phenotype at the adult stage
611 (Beldade et al., 2011). This necessity to achieve an optimal adult phenotype might be a strong
612 selection pressure for developmental plasticity in this insect. There was however variation in body
613 condition at emergence.

614 As expected in an income breeder species, in which individuals rely on resources
615 accumulated during their adult life to produce offspring, the adult feeding treatment of the females
616 had an effect on fecundity. Even though the effect of the adult feeding treatment was stronger, we
617 also found support for a positive effect of body condition at emergence on the total fecundity of *T.*
618 *molitor*. Additionally, we could have expected to find support for an interaction between body
619 condition and egg laying rank while analysing the fecundity dynamics. This would have indicated

620 that early fitness depends more on resources accumulated before metamorphosis, whereas later in
621 life resources accumulated by the adult would play a more important role. Instead, while the
622 decrease in fecundity over time was sharper in females from the poor adult feeding treatment
623 compared to females from the rich adult feeding treatment, we found no evidence of such a
624 dynamic effect of body condition at emergence, i.e. the effect was constant across egg laying ranks.
625 Overall, our data show that it is possible to disentangle the effects of past and present food
626 availability on life-history changes in income breeders (Kasumovic et al., 2009). In our case, *T.*
627 *molitor* relies partly on resources accumulated in their early developmental stages for their lifetime
628 fecundity as income breeders.

629

630 Conclusion

631 We were able to determine that even though OLS_{resid} is not the best predictor of the quantity of fat
632 and sugars stored in the insect's body, it outperforms other BCIs in terms of variance explained of
633 the insect's fitness, but does not outperform a simple measurement of mass in terms of effect size.
634 SMI on the other hand is a good predictor of fecundity and adequately controls for the
635 interdependence between mass and size. Only structural size and SVI do not predict fecundity. In
636 our case, the use of OLS_{resid} , mass or SMI highlighted equally well that food restriction at the larval
637 stage in *T. molitor* females results in adults having a similar early body condition. It is this early
638 body condition as well as the adult feeding treatment, rather than the larval feeding treatment,
639 which influence the lifetime fecundity of this iteroparous insect. The choice of a given BCI or a
640 simple measurement of mass should therefore be dependant on the question asked:

- 641 - An investigator may not be interested in body condition or structural size when
642 predicting fecundity, but may want to control for its effects (e.g. when investigating
643 another unrelated variable). In such cases, OLS_{resid} should be preferred since it is the
644 parameter which explains the highest amount of variance and has the best predictive
645 power. Note here, however, that OLS_{resid} may not be the best predictor for other

646 fitness related traits (e.g. survival), thus should be compared with other BCIs when
647 investigating other fitness related variables.

- 648 - If an investigator is interested in the effects of body condition but not structural size
649 (i.e. relative body reserves) on any given response variable (including fecundity)
650 then SMI or SVI should be preferred.
- 651 - If an investigator is interested in the combined effects of body condition and
652 structural size (i.e. absolute body reserves) on any given response variable (including
653 fecundity) then mass or volume should be preferred.

654

655 **Acknowledgements:** We thank Maria Texeira Brandao for the help with the dosage of sugars and
656 lipids. We thank Coralie Dal & Aude Balourdet for experimental support. We thank Morgan David
657 for initial discussion. This work was funded by ANR-JCJC-0134 & ANR-14-CE02-0009 to YM.

658

659 **Authors contributions:** Conceived the study and designed the experiments: CZ, YM & MG.
660 Conducted the experiments: CZ & MG. Analyzed the data: MG. Wrote the manuscript: CZ & MG
661 with contributions from YM.

662

663 **Supporting information:** Supplementary Material 1, containing figures and tables S1 to S11.

664

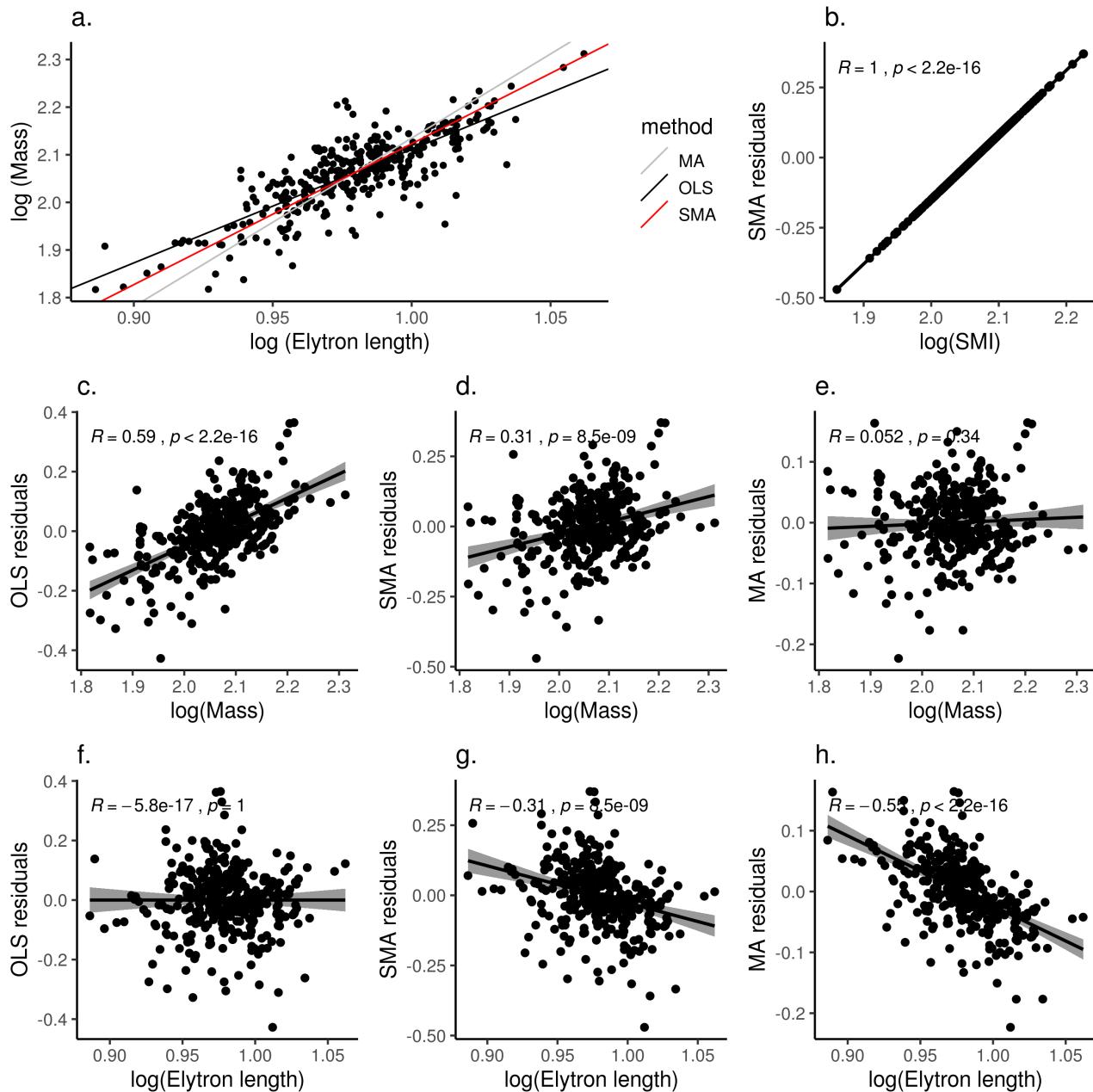
665

666 **References**

- 667 Anderson, J.F. (1974) Responses to starvation in the spiders *Lycosa lenta* (Hentz) and *Filistata*
668 *hibernalis* (Hentz). *Ecology* **55**, 576-585.
- 669
- 670 Arrese, E.L., Soulages, J.L. (2010) Insect fat body: energy, metabolism, and regulation. *Annual*
671 *Review of Entomology* **55**, 207–225.
- 672
- 673 Bargielowski, I., Kaufmann, C., Alphey, L., Reiter, P., Koella, J. (2012) Flight performance and
674 teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever
675 mosquito *Aedes aegypti*. *Vector Borne Zoonotic Diseases* **12**, 1053–1058.
- 676
- 677 Barnett, C.A., Suzuki, T.N., Sakaluk, S.K., Thompson, C.F. (2015) Mass-based condition measures
678 and their relationship with fitness: in what condition is condition? *Journal of Zoology* **296**, 1–5.
- 679
- 680 Beldade, P., Mateus, A.R., Keller, R.A. (2011) Evolution and molecular mechanisms of adaptive
681 developmental plasticity. *Molecular Ecology* **20**, 1347-1363.
- 682
- 683 Bista, M., Omkar. (2013) Effects of body size and prey quality on the reproductive attributes of two
684 aphidophagous Coccinellidae (Coleoptera) species. *The Canadian Entomologist* **145**, 566–576.
- 685
- 686 Blanckenhorn, W.U. (2000) The evolution of body size: what keeps organisms small? *The*
687 *Quarterly Review of Biology* **75**, 385–407.
- 688
- 689 Calder, W.A. (1984) *Size, Function, and Life History*. Harvard University Press, Cambridge, MA.
- 690
- 691 Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., Wells, M.A. (2001) Fat metabolism in

- 692 insects. *Annual Review of Nutrition* **21**, 23-46.
- 693
- 694 Candy DJ. 1989 Utilisation of fuel by the flight muscles. *Insect Flight* (eds G.J. Goldsworthy &
- 695 C.H. Wheller) Ed. CRC Press.
- 696
- 697 Candy, D.J., Becker, A., Wegener, G. (1997) Coordination and integration of metabolism in insect
- 698 flight. *Comparative Biochemistry and Physiology* **97B**, 655-659.
- 699
- 700 Connat, J.L., Delbecque, J.P., Glitho, I., Delachambre, J. (1991) The onset of metamorphosis in
- 701 *Tenebrio molitor* larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions.
- 702 *Journal of Insect Physiology* **37**, 653-662.
- 703
- 704 Cotton RT, and St. George RA. (1929) The mealworms. *Technical Bulletin of the U.S. Department*
- 705 *of Agriculture* No. 95.
- 706
- 707 Day, T., Rowe, L. (2002). Developmental thresholds and the evolution of reaction norms for age
- 708 and size at life-history transition. *American Naturalist* **159**, 338-350.
- 709
- 710 DeBano, S. (2008) Morphometric condition as a measure of energetic content and reproductive
- 711 potential in *Dactylotum variegatum*. *Journal of Orthoptera Research* **17**, 293-300.
- 712
- 713 Dmitriew, C., Rowe, L. (2011) The effects of larval nutrition on reproductive performance in a
- 714 food-limited adult environment. *PLoS ONE* 6(3): e17399.
- 715
- 716 Dnervich, J.M., Papker, R.S., Rauser, C.L., Rutowski, R.L. (2001) Material benefits from multiple
- 717 mating in female mealworm beetles (*Tenebrio molitor* L.) *Journal of Insect Behavior* **14**, 215-230.
- 718

- 719 Evenden, M.L., Whitehouse, C.M., Sykes, J. (2014) Factors influencing flight capacity of the
720 mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). *Environmental Entomology* **43**, 187-
721 96.
- 722
- 723 Hughes, P.W.(2017) Between semelparity and iteroparity: Empirical evidence for a continuum of
724 modes of parity. *Ecology and Evolution*. **7**, 8232–8261.
- 725
- 726 Jakob, E.M., Marshall, S.D., Uetz, G.W. (1996) Estimating fitness: A comparison of body condition
727 indices. *Oikos* **77**, 61-67.
- 728
- 729 Jönsson, K. (1997). Capital and Income Breeding as Alternative Tactics of Resource Use in
730 Reproduction. *Oikos*, **78**, 57-66.
- 731
- 732 Kasumovic, M.M., Brooks, R.C., Andrade, M.C. (2009) Body condition but not dietary restriction
733 prolongs lifespan in a semelparous capital breeder. *Biology Letters* **5**, 636–638.
- 734
- 735 Labocha, M.K., Schutz, H., Hayes, J.P. (2014) Which body condition index is best? *Oikos* **123**, 111-
736 119.
- 737
- 738 Locke, M. (1991). Insect epidermal cells. In Physiology of the Insect Epidermis (ed. K. Binnington
739 and A. Retnakaran), pp. 1-22. Melbourne: CRISCO Publ.
- 740
- 741 Maxwell, M.R., Gallego, K.M., Barry, K.L. (2010) Effects of female feeding regime in a sexually
742 cannibalistic mantid: fecundity, cannibalism, and male response in *Stagmomantis limbata*
743 (Mantodea). *Ecological Entomology* **35**, 775-787.
- 744
- 745 Milot, E., Cohen, A.A., Vézina, F., Buehler, D.M., Matson, K.D., Piersma, T. (2014) A novel
746 integrative method for measuring body condition in ecological studies based on physiological


- 747 dysregulation. *Methods in Ecology and Evolution* **5**, 146-155.
- 748
- 749 Monaghan, P. (2008) Early growth conditions, phenotypic development and environmental change.
- 750 *Philosophical Transactions of the Royal Society B: Biological Sciences* **363**, 1635–1645.
- 751
- 752 Moya-Laraño, J., Macías-Ordóñez, R., Blanckenhorn, W.U., Fernández-Montraveta, C. (2008)
- 753 Analysing body condition: mass, volume or density ? *Journal of Animal Ecology* **77**, 1099-1108.
- 754
- 755 Nandy, B., Joshi, A., Ali, Z.S., Sen, S., Prasad, N.G. (2012) Degree of adaptive male mate choice is
- 756 positively correlated with female quality variance. *Scientific Reports* **2**, 447.
- 757
- 758 van Niekerk, G., Mitchell, M., Engelbrecht, A-M. (2018) Bone resorption: supporting
- 759 immunometabolism. *Biology Letters* **14**, 20170783.
- 760
- 761 Peig, J. and Green, A. J. (2009) New perspectives for estimating body condition from mass/length
- 762 data: the scaled mass index as an alternative method. *Oikos* **118**, 1883-1891.
- 763
- 764 Peig, J., Green, A.J. (2010) The paradigm of body condition: a critical reappraisal of current
- 765 methods based on mass and length. *Functional Ecology* **24**, 1323–1332.
- 766
- 767 Reid, M.L., Baruch, O. (2010) Mutual mate choice by mountain pine beetles: size-dependence but
- 768 not size-asortative mating. *Ecological Entomology* **32**, 162-171.
- 769
- 770 Reid, M.L., Purcell, J.R.C. (2011) Condition-dependent tolerance of monoterpenes in an insect
- 771 herbivore. *Arthropod-Plant Interactions* **5**, 331-337.
- 772

- 773 Reim, C., Kaufmann, C., Blanckenhorn, W.U. (2009) *Size-dependent energetics of metamorphosis*
774 *in the yellow dung fly, Scathophaga stercoraria. Evolutionary Ecology Research* **11**,1111-1130.
- 775
- 776 Reim, C., Teuschl, Y., and Blanckenhorn, W.U. (2006) Size-dependent effects of temperature and
777 food stress on energy reserves and starvation resistance in yellow dung flies. *Evolutionary Ecology*
778 *Research* **8**, 1215–1234.
- 779
- 780 Rivero, A., Ferguson, H.M. (2003) The energetic budget of *Anopheles stephensi* infected with
781 Plasmodium chabaudi: is energy depletion a mechanism for virulence? *Proceedings of the Royal*
782 *Society B: Biological Sciences* **270**, 365-1371.
- 783
- 784 Rowe, L., Houle, D. (1996) The lek paradox and the capture of genetic variance by condition
785 dependent traits. *Proceedings of the Royal Society B: Biological Sciences* **263**,1415-1421.
- 786
- 787 Schulte-Hostedde, A.I., Zinner, B., Millar, J.S., Hickling, G.J. (2005) Restitution of mass-size
788 residuals: validating body condition indices. *Ecology* **86**,155-163.
- 789
- 790 Sinclair, B. J. (2015). Linking energetics and overwintering in temperate insects. *Journal of*
791 *Thermal Biology* **54**, 5-11.
- 792
- 793 Stearns, S.C. (1992) *The Evolution of Life Histories*. Oxford University Press, London xii + 249 pp.
- 794
- 795 Thompson, S.N. (2003) Trehalose – The Insect ‘Blood’ Sugar. *Advances in Insect Physiology* **31**,
796 205-285.
- 797
- 798 Townsend, A.K., Clark, A.B., McGowan, K.J., Miller, A.D., Buckles, E.L. (2010) Condition, innate
799 immunity and disease mortality of inbred crows. *Proceedings of the Royal Society B: Biological*

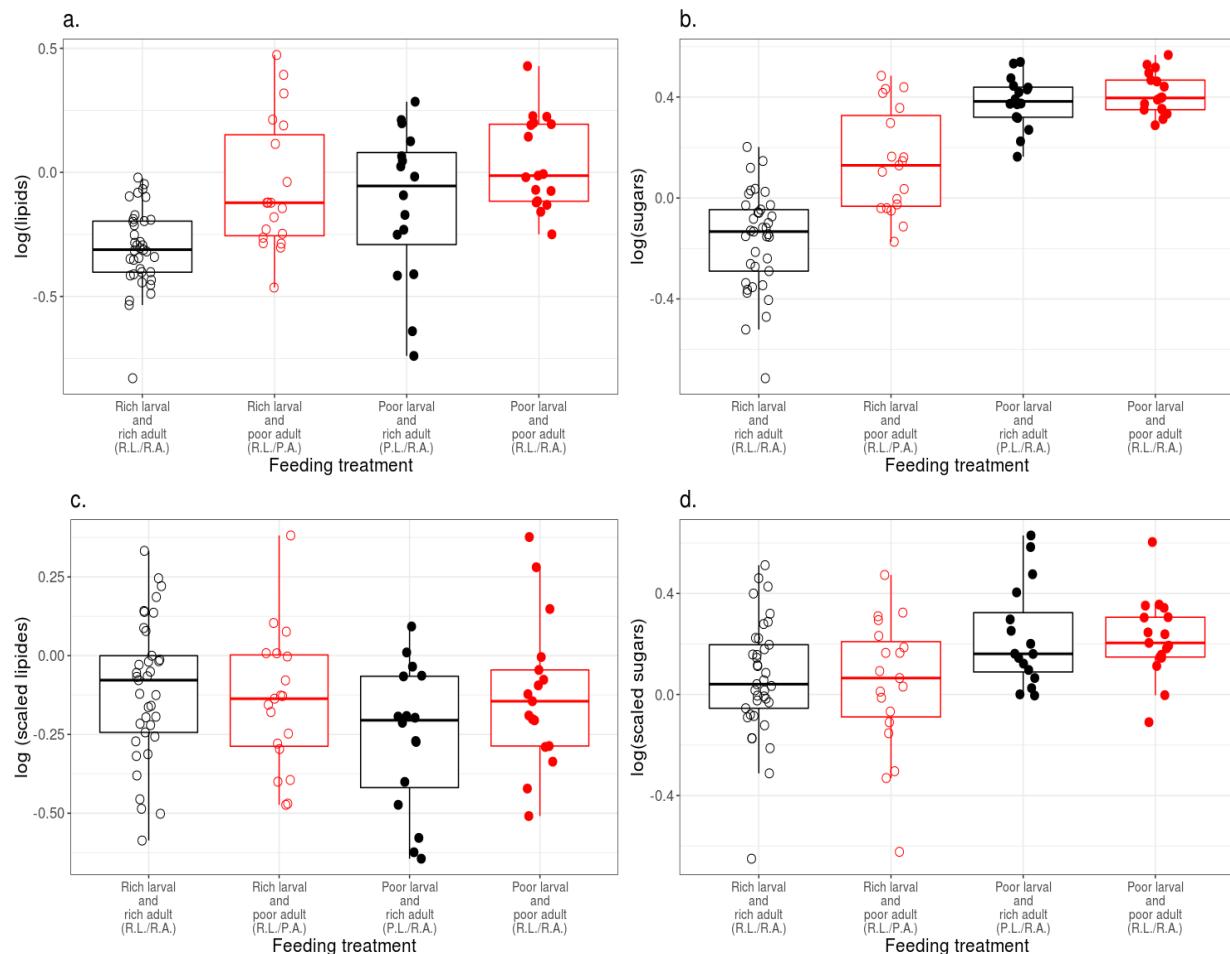
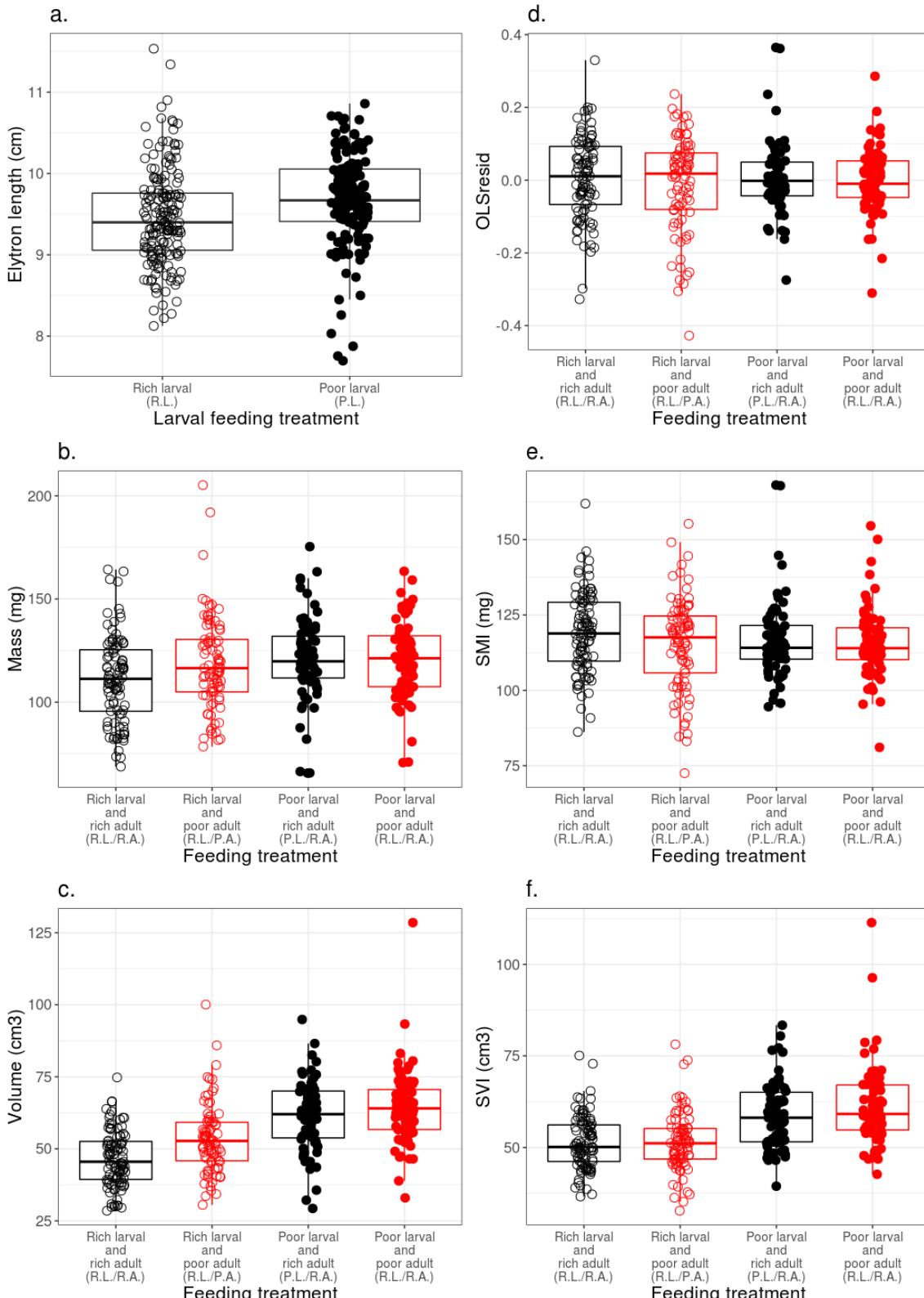
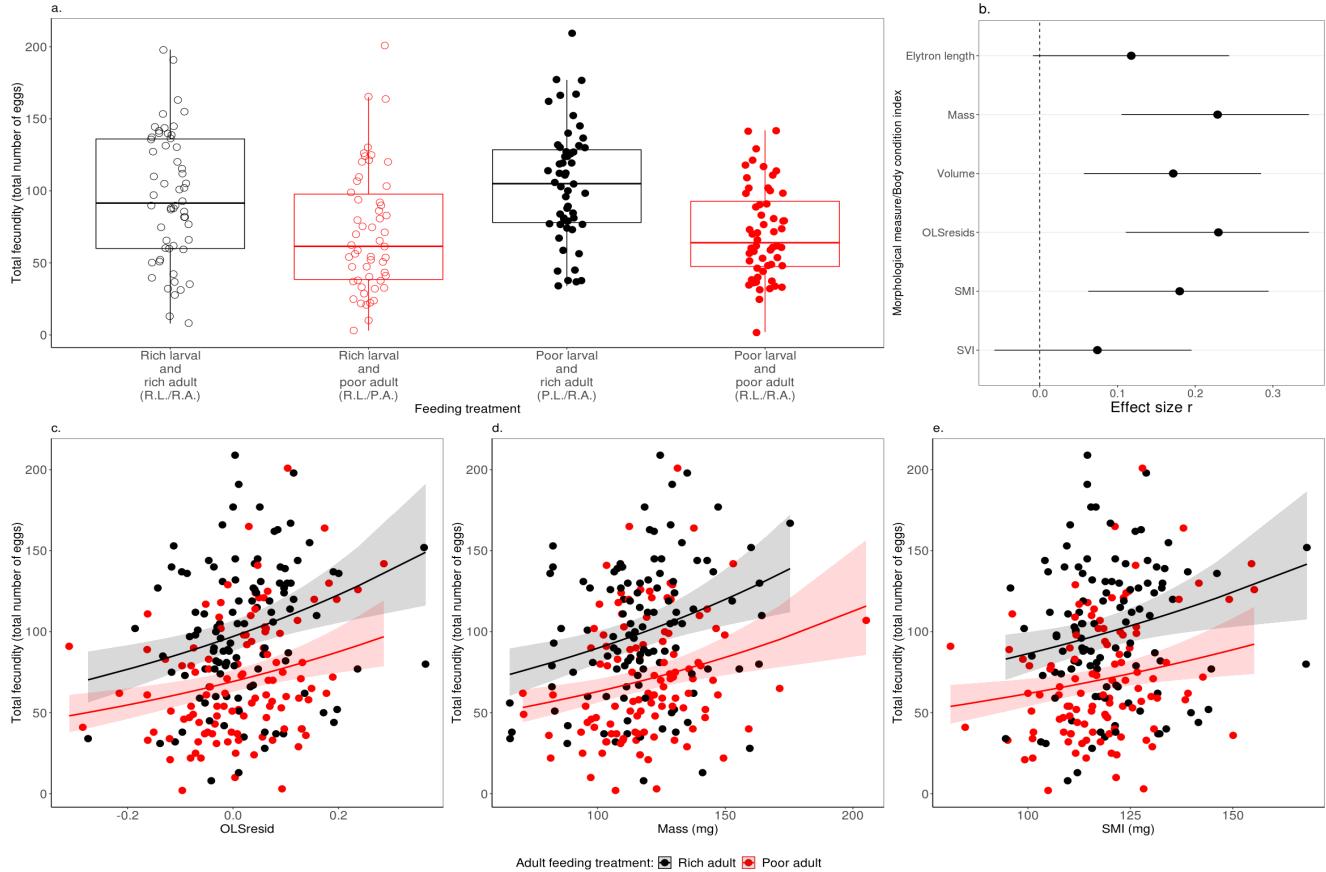

- 800 *Sciences* **277**, 2875–2883.
- 801
- 802 Wilder, S.M., Raubenheimer, D., Simpson, S.J. (2016) Moving beyond body condition indices as an
803 estimate of fitness in ecological and evolutionary studies. *Functional Ecology* **30**, 108-115.
- 804
- 805 Williams, W.I., Robertson, I.C. (2008) Using automated flight mills to manipulate fat reserves in
806 Douglas-fir beetles (Coleoptera: Curculionidae). *Environmental Entomology* **37**, 850-856.
- 807
- 808 Wilson, A.J., Nussey, D.H. (2010) What is individual quality? An evolutionary perspective. *Trends
809 in Ecology and Evolution* **25**, 207–214.
- 810
- 811 Zanchi, C., Troussard, J-P., Moreau, J., Moret Y. (2012) Relationship between maternal transfer of
812 immunity and mother fecundity in an insect. *Proceedings of the Royal Society B: Biological
813 Sciences* **279**, 3223-30.

Figure 1: a. Ordinary Least Squares (OLS, in black), Major Axis (MA in grey), and Standardized Major Axis (SMA, in red) regressions between the logarithm of elytron length and the logarithm of mass of individual *Tenebrio molitor* females. The correlation between the residuals of the OLS regression, mass and elytron length are represented respectively in **c.** and **f.**. The correlation between the residuals of the SMA regression, mass and elytron length are represented in **d.** and **g.**. The correlation between the residuals of the MA regression, mass and elytron length are represented in **e.** and **h.**.


b. Correlation between the residuals of the SMA regression and the logarithm of the Standardized Mass Index (SMI) calculated using the slope of the SMA regression according to the formula of Peig & Green (2009). Each dot represents an experimental individual.


Figure 2: Relationship between the larval feeding treatment (LFT), adult feeding treatment (AFT) and **a.** the logarithm of the lipid quantities **b.** the logarithm of the quantities of sugars (glucose and glycogen) **c.** the logarithm of the lipids scaled for structural size (see methods) and **d.** the logarithm of the sugars scaled for structural size in *T. molitor* females. The boxes show the first to the third quartiles and the median. The bars indicate the 1.5 interquartile of the lower and upper quartiles. Each dot represents a data point. The open dots represent the individuals from the rich larval feeding treatment, whereas the plain dots represent individuals from the poor larval treatment. The black dots represent the rich adult feeding treatment, while the red dots represent the poor adult feeding treatment.

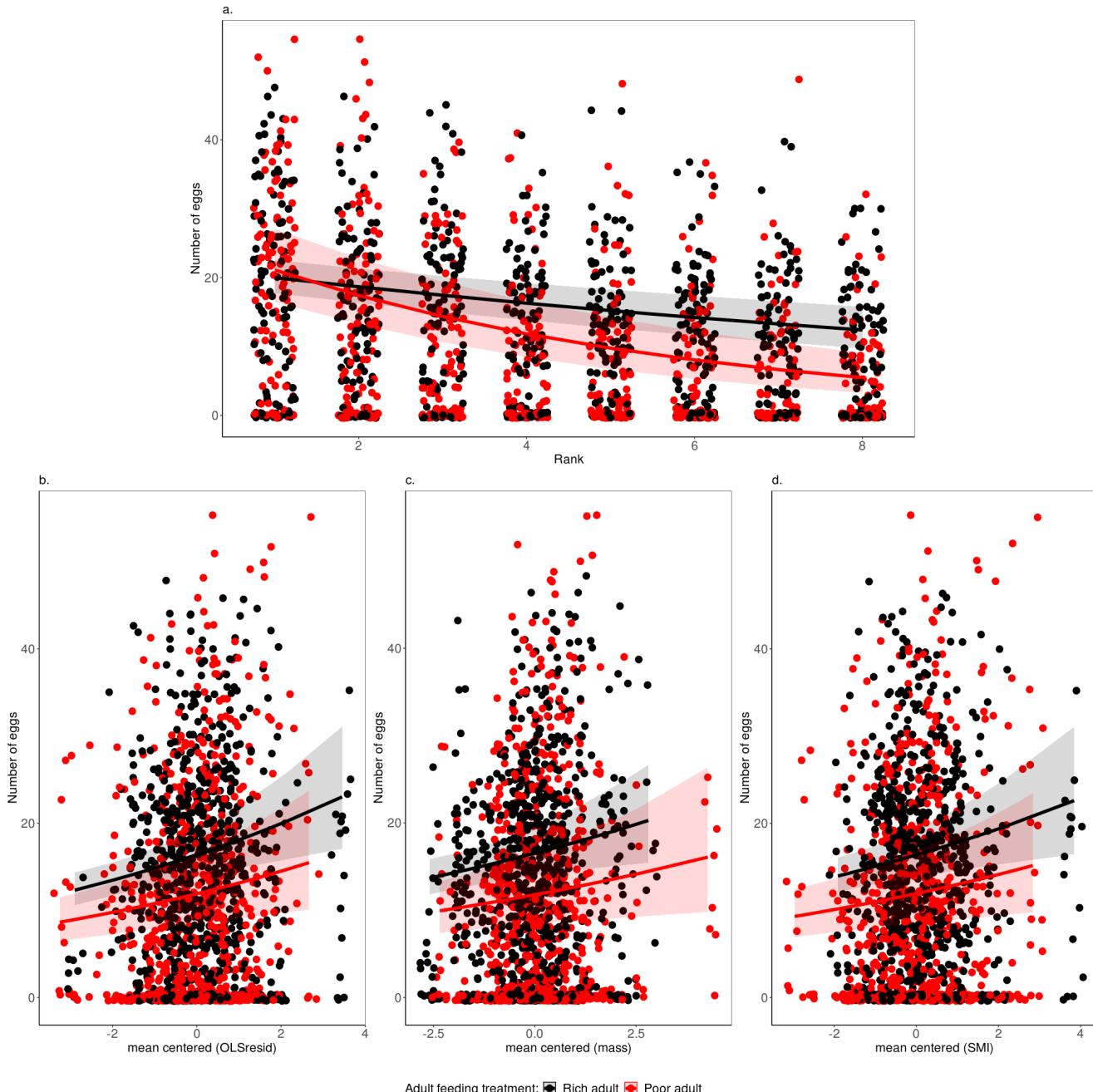

Figure 3: Effect of LFT and AFT on **a.** elytron length in centimeters (only according to LFT only), **b.** mass in milligrams, **c.** volume in cubic centimeters, **d.** OLS_{resid} , **e.** SMI in milligrams, **f.** SVI in cubic centimeters. The boxes show the first to the third quartiles and the median. The bars indicate the 1.5 interquartile of the lower and upper quartiles. Each dot represents an experimental individual. The open dots represent the individuals from the rich larval feeding treatment, whereas the plain dots represent individuals from the poor larval treatment. The black dots represent the rich AFT, while the red dots represent the poor AFT.

Figure 4: a. Total fecundity of *T. molitor* females according to LFT and AFT. **b.** The partial effect size of each morphological measurement and BCI on total fecundity controlling for AFT. The dots represent the estimate of each BCI, the horizontal bars represent the confidence intervals. **c., d. and e.** represent the total fecundity according to respectively the residuals of OLS_{resid}, mass and SMI and the AFT. The black dots represent the rich AFT while the red dots represent the poor AFT, with the corresponding regression line and the 95% confidence intervals around it.

Figure 5: a. Effect of the interaction between rank (egg laying event) and AFT on the number of eggs laid, controlling for body condition at emergence as OLS_{resid} , using a zero-inflated mixed effect model with a negative binomial distribution. Effect of body condition at emergence as **b.** OLS_{resid} , **c.** mass, and **d.** SMI on fecundity controlled for the rank, using a zero-inflated mixed effect model with a negative binomial distribution. The black dots represent the rich AFT, while the red dots represent the poor AFT, with the corresponding regression lines and the 95% confidence intervals around it.

