

1 **Title**

2 **Soil prokaryotes associated with decreasing pathogen density during anaerobic**

3 **soil disinfection**

4

5 **Authors**

6 Chol Gyu Lee^{1,2}, Eriko Kunitomo³, Toshiya Iida², Kazuhiro Nakaho⁴, Moriya Ohkuma²

7

8 **Affiliations**

9 *¹Graduate School of Bio-Applications and Systems Engineering, Tokyo University of*

10 *Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan*

11 *²Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba,*

12 *Ibaraki, 305-0074, Japan*

13 *³Chiba Prefectural Agriculture and Forestry Research Center, Chiba, Chiba 266-0006,*

14 *Japan*

15 *⁴Institute of Vegetable and Floriculture Science, National Agriculture and Food*

16 *Research Organization, Tsu, Mie 514-2392, Japan.*

17 **Abstract**

18 Anaerobic soil disinfestation (ASD) is a chemical-independent method that can reduce
19 pathogens. Although soil microbes play essential roles in ASD, the relationship between
20 the microbial community structure and disinfection efficiency remains unclear. To this
21 end, we investigated changes in the microbial community and pathogen density during a
22 period of ASD under field conditions for 14 days in a greenhouse using three different
23 substrates. Soil samples were collected at 0, 3, 7, and 14 days after ASD treatment. The
24 pathogen densities were analyzed by real-time polymerase chain reactions, prokaryotic
25 community analysis was conducted using unidirectional pyrosequencing, and the factors
26 related to pathogen density were statistically analyzed. The pathogen density rapidly
27 decreased by >90% at 3 days after treatment and then slowly decreased until day 14, but
28 the rate of decrease differed among the substrates. The microbial communities became
29 altered after 3 days and recovered to their original state on day 14. The dipyradyl
30 reaction, microbial diversity, richness, and community structure were not correlated
31 with pathogen density. The most negatively correlated operational taxonomic units with
32 pathogen density were Clostridia and Bacilli, both belonging to Firmicutes. These

33 results suggested that the growth of specific microbes, but not the changes in microbial

34 community structure, might be important for ASD disinfestation efficiency.

35

36 **Keywords**

37 Bacilli, Clostridia, C/N ratio, Fusarium wilt, rank correlation

38 **1. Introduction**

39 Tomato (*Solanum lycopersicum*) is one of the most important vegetables worldwide,
40 with a global yield of approximately 240 million tons in 2017 (FAO, 2019). Soil-borne
41 pathogens cause various plant diseases, including take-all, damping-off, crown rots, and
42 wilting. Fusarium wilt, caused by *Fusarium oxysporum* f. sp. *lycopersici* (FOL) is one
43 of the most serious soil-borne tomato diseases (Larkin and Fravel, 1998). The control
44 methods for this disease, such as soil amendments, crop rotation, biological control, and
45 field sterilization, are often ineffective because they can be affected by environmental
46 factors, such as temperature, precipitation, soil properties, etc. (Campbell, 1994).

47 Although soil disinfestation using chemicals can decrease the pathogen, food safety
48 requirements and the need to reduce environmental pollution have made the
49 development of eco-friendly disinfestation methods crucial (Griffiths et al., 2000; Zhou
50 et al., 2019).

51 Since 2000, the use of anaerobic soil disinfestation (ASD) to generate anaerobic
52 conditions in soil has been studied in Japan (Momma, 2008; Shinmura, 2000), the
53 Netherlands (Blok et al., 2000; Messiha et al., 2007), and the USA (Butler et al., 2012;

54 Rosskopf et al., 2014; Shennan et al., 2014). ASD involves treating the soil with labile
55 organic carbon, irrigation to saturation using water, and covering with polyethylene
56 mulch film for 2–5 weeks. The organic matter increases microbial respiration, and
57 irrigation purges soil air, while the polyethylene film prevents an inflow of oxygen from
58 the atmosphere, which collectively induce reductive soil conditions. This technique is
59 effective for suppressing several soil-borne diseases, including bacterial wilt, Fusarium
60 wilt, and root rot nematode (Butler et al., 2014; Shrestha et al., 2016). However, the
61 exact mechanisms of ASD that lead to disease suppression remain unclear.

62 Soil microbes play an essential role in disinfection by ASD. Momma et al. (2010)
63 showed that sterilized soil loses its disinfection ability. Microbial communities
64 drastically changed following ASD treatment, especially Clostridia, a class of anaerobic
65 bacteria, that increased significantly after ASD treatment (Mowlick et al., 2013a, 2013b;
66 Rosskopf et al., 2014). However, Clostridia often increase in anaerobic soil regardless
67 of ASD treatment. The relationship between the disinfection efficiency and microbial
68 community during ASD treatment is unelucidated. To clarify this relationship,
69 monitoring of the changing microbial communities and pathogen densities during the

70 disinfestation period are required. To our knowledge, the changes in the microbial
71 community during the course of ASD treatment have only been analyzed by Li et al.
72 (2017) under *in vitro* conditions, and the relationship between prokaryotic communities
73 and pathogen density was not established.
74 Ethanol and molasses (as labile organic substrates) and wheat residue, rice husk, and
75 mustard residues (as recalcitrant organic substrates) are often used for ASD, and the
76 substrate type has been found to affect the disinfection efficiency (Strauss and
77 Kluepfel, 2015; Testen and Miller, 2018). In our study, two labile organic substrates
78 (sugar-contained diatoms [SCDs] and dried molasses [DM]) and one recalcitrant
79 organic substrate (wheat bran [WB]) were used as the carbon sources. We aimed to
80 demonstrate 1) the behavior of FOL and microbial communities over time, and 2) the
81 effects of substrate types on FOL density and microbial community structure during the
82 ASD period under field conditions.

83

84 **2. Materials and methods**

85 **2.1 Sampling field and ASD treatment**

86 The experiments were performed with soil samples from a tomato-planted greenhouse
87 located in Chiba Prefectural Agriculture and Forestry Research Center, Chiba prefecture
88 (35° 54' N, 140° 19' E). The soil pH was 5.9, and the carbon and nitrogen
89 concentrations were 47.2 and 3.38 g kg soil⁻¹, respectively. To make FOL-contaminated
90 soil, 10 FOL-infected tomato tubers were packed in a mesh bag and buried in the soil at
91 a depth of 0–15 cm. WB, SCDs (Ajinomoto Coo., Inc., Saga, Japan), and DM (Omalass
92 95; Westway Feed Products, Tomball, TX, USA) were used as substrates for the ASD
93 treatment. SCDs are discharged from food-processing facilities as by-products of the
94 filtration of saccharified liquids. The main components of such by-products are sugars
95 derived from the saccharified solution of tapioca starch and diatoms used as a filtering
96 aid. These by-products, containing 40% sugar by weight, were powdered. DM is a
97 livestock feed containing water-soluble sugar. The material comprises 33% soybean
98 husks and 67% sugarcane molasses, and they were absorbed. The chemical properties of
99 each substrate are shown in Table 1. The treatment was applied at a rate of 15 t ha⁻¹ in
100 each field with a rototiller at a depth of 30 cm. Each treatment was performed in
101 duplicate on 2.5 × 2.2 m plots that were separated by a 50-cm high wave barrier. The

102 field was covered by a 0.1-mm thick transparent polyethylene film and flooded with
103 150 L of water on day 0. Each site was flooded at the time of disinfestation, and no
104 irrigation was conducted thereafter. Disinfestation was conducted from August 3, 2015,
105 for 14 days. Soil samples were collected at a depth of 0–15 cm from each treated field
106 using a core sampler (Gauge Auger DIK-106B; Daiki Rika Kogyo Co., Ltd, Saitama,
107 Japan) on day 0, 3, 7, and 14 after the ASD treatment. The reduction area was
108 visualized by spraying a bipyridyl solution (1.0 g of 2,2'-bipyridyl and 77 g of
109 ammonium acetate dissolved in 1 L of 1% acetic acid) on a freshly exposed soil face.
110 Soil samples were collected from five randomly selected locations in each plot and
111 mixed well to make a composite sample. A total of 24 soil samples (three substrates ×
112 four sampling periods × two replicates) were collected and stored at –20 °C until use.
113

114 **2.2 Quantification of *F. oxysporum* in the field**

115 Soil DNA was extracted from 0.5 g of soil with an ISOIL for Beads Beating kit
116 (Nippon Gene, Tokyo, Japan) following the manufacturer's instructions. DNA
117 quantification and integrity were measured using a Nanodrop spectrophotometer

118 (Thermo Fisher Scientific, Waltham, MA, USA) and gel visualization (0.8% agarose in
119 tris-acetate-EDTA buffer), respectively. Real-time polymerase chain reactions (PCRs)
120 were performed for quantification of *F. oxysporum* density in soil, according to (Inami
121 et al., 2010). The reaction mixture (20 µl) contained 10 µl of TaqMan Universal Master
122 Mix (Thermo Fisher Scientific), 0.5 µM of each primer, 0.25 nM of TaqMan probe, and
123 15 ng of template DNA. Real-time PCR was performed in duplicate for each sample to
124 amplify the rDNA intergenic spacer region of *F. oxysporum* f. sp. *lycopersici* using
125 specific primer sets SIX1f (5'-GTGCCAGCMGCCGCGTAA-3') and SIX1r (5'-
126 GGAC-TACVSGGGTATCTAA-3') and a TaqMan probe carrying a reporter (6'-
127 carboxyfluorescein) and a quencher (minor groove binder) SIX1pr (5'-
128 TTGACCTACACGGAATAT-3'). Standard curves were obtained by serial dilutions of
129 linearized plasmids with cloned fragments of the specific genes and were linear ($R^2 =$
130 0.99) in the range used (data not shown).

131

132 **2.3 Tag-encoded amplicon sequencing targeted by 16S rRNA for prokaryotes**

133 PCR was performed on each sample to amplify the V4 variable region of the 16S
134 rRNA gene using the bacterial and archaeal universal primers 515F (5'-
135 GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGAC-TACVSGGGTATCTAA-3')
136 (Caporaso et al., 2011). Each PCR amplicon was purified twice using the Agencourt
137 AMPure XP system (Beckman Coulter, Inc., Brea, CA, USA) to remove short DNA
138 fragments and was quantified using a Qubit Fluorometer (Invitrogen, Carlsbad, CA,
139 USA). Following successful amplification, the PCR products were adjusted to
140 equimolar concentrations and subjected to unidirectional pyrosequencing at
141 Bioengineering Lab. Co., Ltd. (Kanagawa, Japan) on a MiSeq instrument (Illumina, San
142 Diego, CA, USA). A total of 1,161,378 sequences were obtained from the 24 samples
143 after sequencing (Supplemental Table 1). The sequencing data were deposited in the
144 DNA Data Base of Japan Sequence Read Archive under accession number DRA006673.
145

146 **2.4 Data analysis**

147 Raw FASTQ files were pre-processed using Quantitative Insights Into Microbial
148 Ecology (QIIME) (Caporaso et al., 2010). Data from read sequences, quality, flows, and

149 ancillary metadata were analyzed using the QIIME pipeline. Quality filtering consisted
150 of discarding reads <200 bp or >1000 bp in length, excluding homopolymer runs of
151 >six bp and >six continuous ambiguous bases, and accepting one barcode correction
152 and two primer mismatches. Moreover, reads with a mean quality score <25 were also
153 removed. Finally, singleton operational taxonomic units (OTUs) and chimeric
154 sequences were removed for statistical analysis. Denoising was performed using the
155 built-in Denoiser algorithm, and chimera removal and OTU picking were accomplished
156 with Usearch61 considering a pairwise identity percentage of 0.97. Taxonomy
157 assignment was performed using the Ribosomal Database Project Classifier, a naïve
158 Bayesian classifier, with a minimum confidence of 0.8 against the Greengenes database,
159 October 2012 release. The OTU-based analysis was performed on pyrotag-based
160 datasets to calculate richness and diversity using the phyloseq package of R 3.5.1
161 (McMurdie and Holmes, 2013). The diversity within each sample was estimated using
162 the non-parametric Shannons's diversity index and Simpson's diversity index. The
163 Chao1 estimator was calculated to estimate the species richness of each sample.
164 Multivariate analysis of community structure and diversity was performed on the

165 pyrotag-based datasets using a weighted UniFrac dissimilarity matrix calculated in
166 QIIME, jackknifing (1000 reiterations) read abundance data at the deepest level
167 possible (9601 reads), and unconstrained ordination offered by cluster analysis with
168 Ward's method. The effect of differences between substrates and the disinfestation
169 period on the microbial community were assessed by permutational multivariate
170 analysis of variance using R. The Mantel test was used to evaluate the effect of FOL
171 density on microbial communities (Anderson and Walsh, 2013). Spearman's rank
172 correlation methods were used to determine which OTUs were correlated with FOL
173 density changes common among each substrate-treated soil sample.

174

175 **3. Results**

176 **3.1 Changes of FOL density during ASD**

177 We described each sample with the substrate name and replication number, for
178 example, WB1 indicated the first sample of two replicates in soil receiving WB
179 treatment. The FOL density was 642–1832 copies g soil⁻¹ on day 0, decreasing to
180 0.6%–10.6% on day 3 and then gradually decreasing up to day 7, except for sample

181 DM1 (Table 2). On day 14, the FOL densities of the DM-treated samples were
182 decreased (<1 copy g soil⁻¹), but that of the other treatments were not. A bipyridyl
183 reaction was observed in WB1, SCD1, and DM1 14 days after ASD (Supplemental
184 Table 2).

185

186 **3.2 The succession of prokaryotic soil communities during the disinfection period**

187 The prokaryotic sequences were clustered into 130,331 OTUs at a 97% similarity.
188 Shannon's index changed from 0.78 to 1.1 times when day 0 was compared with day 14
189 (after disinfection) across each treatment. For the SCD-treated samples, a decrease in
190 both OTU numbers (SCD1, 76% decrease; SCD 2, 32% decrease) and Chao1 (SCD1,
191 89% decrease; SCD2, 44% decrease) was observed on day 14 when compared with day
192 0 (Table 3). For the other treatments, the OTU numbers and Chao1 were mildly
193 decreased or increased after disinfection. Our results also indicated that changes in
194 prokaryotic diversity and richness were not correlated with changes in FOL density
195 during the ASD period (Table 4).

196 The dominant classes of Bacilli, Clostridia, Alphaproteobacteria, Betaproteobacteria,
197 Deltaproteobacteria, and Gammaproteobacteria occupied >5% of relative abundance in
198 all fields (Figure 1). Bacilli and Clostridia were increased >1.5 times on day 3 in all
199 treatments. In the WB treatment, several microbes were drastically decreased between
200 days 3–7, and they increased from days 7–14. On the other hand, the microbial
201 communities were relatively stable 7 days after the SCD and DM treatments (Figure 1).
202 Prokaryotic growth stages were classified as either early (0–3 days), intermediate (3–7
203 days) or late (7–14 days), based on the period when each prokaryote increased >two-
204 fold for both duplicates. In the SCD and DM treatments, Bacilli and Clostridia were
205 increased in the early stage, and Planctomycetia were increased in the intermediate
206 stage (Table 5). In the WB-treated samples, Bacilli and Clostridia were also increased in
207 the early stage, while Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria,
208 Planctomycetia, and Saprospirae were increased in the late stage.
209 Weighted UniFrac analysis showed that prokaryotic communities were roughly
210 separated throughout the disinfection period (Figure 2). The initial microbial
211 community was similar in all samples except for SCD1 and became separated as SCD1,

212 WB1, WB2, and DM2 on day 3, as was the case on day 0. The changes in the
213 prokaryotic community in the late stage were not different in DM1, DM2, and SCD2
214 because they were included in the same cluster on day 7 and 14. On the other hand, that
215 of the other treatments were divided into different clusters between day 7 and 14.
216 PERMANOVA analysis revealed that the microbial communities were independently
217 affected by substrates and the disinfection period (Table 6). The Mantel test showed
218 that the microbial communities were not altered by FOL density ($F = 1.82$, $p = 0.06$).
219 These results suggested that factors other than the microbial community affected the
220 decrease in FOL density. Then, OTUs that changed along with FOL density were
221 selected using rank correlation analysis. Eleven OTUs were negatively ($\rho < -0.5$)
222 correlated with changes in FOL density that were common among each substrate-treated
223 field (Table 7). There were 7/11 OTUs belonging to Firmicutes; of which three (19544,
224 122066, and 95490) belonged to Clostridia, 2 (7428 and 109424) to Bacilli, and 1
225 (78089) to Negativicutes. The other OTUs belonged to Acidobacteria (24789),
226 Planctomycetia (9173), and Proteobacteria (69473 and 52717).
227

228 4. Discussion

229 **4.1 Relationships between substrate types, microbial community, and FOL density**

230 The C/N ratio of substrates is one of the indicators of the decomposition rate

231 (Constantinides and Fownes, 1994; Nicolardot et al., 2001). The WB-treated samples

232 showed a lower level of water-soluble organic carbon and a higher C/N ratio than those

233 treated with SCD or DM because WB is composed of recalcitrant carbon fractions, such

234 as cellulose, hemicellulose, and lignin. Following WB treatment, the microbial

235 community was changed, even after 7 days, but this was unrelated to the disinfection

236 effect. During ASD, DM rapidly dissolved in the irrigation water because of a higher

237 water-soluble organic carbon fraction and C/N ratio. Following DM treatment, FOL

238 density decreased during days 7–14, but the structures of the prokaryotic communities

239 were not drastically changed during these periods because of the rapid decomposition of

240 the substrate. Previous studies have shown that organic matter with a lower C/N

241 amended into the soil could induce the highest anaerobic conditions, and the substrate

242 C/N ratio was negatively correlated with the disinfection effects (Blok et al., 2000;

243 Shrestha et al., 2016; Testen and Miller, 2018). In our study, different substrates exerted

244 different effects on the prokaryotic community, but the substrate decomposition rate,
245 especially the variables of substrate C/N ratio and the content of water-soluble organic
246 carbon, was not correlated with the disinfection efficiency.

247

248 **4.2 Relationships between microbial diversity, community structure, and FOL**

249 **density**

250 During ASD treatment, as the microbial community shifts toward facultative and
251 obligate anaerobes, the anaerobic decomposition of labile carbon creates short-chain
252 organic acids (e.g., acetic, n-butyric, and propionic acid). The volatile fatty acids
253 (VFAs) are likely toxic to soil-borne plant pathogens, plant-parasitic nematodes, and
254 weeds (Momma, 2008; Momma et al., 2006). (Momma et al., 2013) showed that
255 bipyridyl testing (an indicator of reduction) of disinfested soil was a useful method to
256 evaluate whether ASD treatment was conducted appropriately. Liu et al. (2016)
257 showed that although Shannon's diversity index was decreased on day 4 and did not
258 change significantly thereafter, the FOL population decreased after day 4. Messih et al.
259 (2007) indicated that microbial diversity was not different between substrate amended

260 and non-amended soil following ASD treatment, but their community structure was
261 different. On the other hand, Shennan et al. (2014) showed that ASD conducted with
262 molasses did not alter community structure. These studies suggest that microbial
263 diversity, community structure, and soil redox potential (Eh) are not correlated with
264 disease incidence, corresponding with our findings. Hence, different mechanisms
265 could be critical for suppressing specific organisms, but the production of organic acids
266 via the anaerobic decomposition of added carbon, release of VFAs, and biocontrol by
267 microorganisms that flourish during the process are all potentially important (Momma
268 et al., 2007; Shrestha et al., 2016). Yonemoto et al. (2006) indicated that a decreasing
269 Eh value and FOL density were not directly correlated and concluded that it was
270 important for the concentration of VFAs or microbial community change. Li et al.
271 (2017) revealed the changes in the microbial community during the disinfection period,
272 and the presence of some anaerobic bacteria correlated with soil organic acid content.
273 Unfortunately, we did not analyze the soil chemical properties, such as pH, VFA
274 concentrations, and soil organic carbon concentration, in our study. Recent studies have
275 shown that specific microbes, like *Clostridia* and *Zopfiella*, isolated from ASD-treated

276 soil could suppress disease incidence (Liu et al., 2019; Momma, 2008; Ueki et al.,
277 2017). Therefore, specific microbes may be necessary for disease suppression by ASD.

278

279 **4.3 Microbes associated with FOL dynamics**

280 Studies have shown that Clostridia and Bacilli belonging to Firmicutes increased in
281 number and became the dominant bacteria following ASD treatment regardless of soil
282 and substrate types (Huang et al., 2016, 2015; Mowlick et al., 2012; Poret-Peterson et
283 al., 2019, Testen and Miller, 2018). During ASD, decreased oxygen promotes the
284 increased prevalence of anaerobic microbes (Momma et al., 2006; Mowlick et al., 2014,
285 2013a; Runia et al., 2014). In our study, the conditions induced by ASD, regardless of
286 the carbon source, may have functioned as a habitat filter, allowing the proliferation of
287 closely related taxa with shared physiological adaptations. Clostridia and Bacilli
288 drastically increased and FOL decreased in the early stage of ASD. Increasing
289 clostridial populations in ASD-treated soils might correlate with the elevated production
290 of VFAs and is likely toxic to soil-borne plant pathogens (Momma et al., 2006;
291 Mowlick et al., 2012). Some Clostridia can directly kill FOL (Momma, 2008; Ueki et

292 al., 2017). Bacilli, including *Bacillus* and *Paenibacillus*, are well-known biocontrol
293 agents for FOL. Some Bacilli might contribute to the rapid decrease of soil Eh at the
294 initial stage of ASD treatment via oxygen consumption (Mowlick et al., 2012).
295 Therefore, increased Clostridia and Bacilli may induce a decrease in FOL density in the
296 early stage of ASD treatment by decreasing oxygen, producing VFA, and directly
297 killing FOL. We have yet to obtain direct evidence for the suppression of FOL by
298 Clostridia and Bacilli, but these biocontrol agents may play essential roles in
299 disinfection.

300

301 **5. Conclusion**

302 Soil microbes play important roles in ASD efficiency. In this study, we analyzed the
303 changes of FOL density and microbial community during ASD among three substrates
304 to elucidate the relationship between FOL density and the microbial community. FOL
305 density was drastically decreased for the first 3 days following ASD and slowly
306 continued decreasing until day 14. The microbial community was significantly changed
307 on day 3, but some microbes were increased until day 14 following WB treatment. The

308 microbial diversity, richness, and community structure as well as the C/N ratio of
309 substrates were not correlated with FOL density in all treatments. Notably, Clostridia
310 and Bacilli were negatively correlated with a decrease in FOL density. These results
311 suggested that specific microbes might be involved in disinfection efficiency and not
312 changes in the entire community structure itself. Future studies will investigate the
313 usefulness of these microbes as indicators of ASD efficiency and their roles in disease
314 suppression.

315

316 **Acknowledgments**

317 This work was supported by the Cabinet Office, Government of Japan, Cross-
318 ministerial Strategic Innovation Promotion Program (SIP), and the “Technologies for
319 creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-
320 oriented Technology Research Advancement Institution, NARO).

321 This work was also partially supported by the RIKEN Competitive Program for
322 Creative Science and Technology, Grants-in-Aid for Scientific Research from the Japan
323 Society for Promotion of Science, Nos. 17K01447 and 19H05689 (to M.O.). The part of

324 prokaryotic community analysis was supported by Dr. Kozue Sawada and Ms. Hana

325 Kobayashi at Tokyo University of Agriculture and Technology.

326 **References**

327 Anderson, M.J., Walsh, D.C., 2013. PERMANOVA, ANOSIM, and the Mantel test in
328 the face of heterogeneous dispersions: what null hypothesis are you testing? *Ecol.*
329 *Monogr.* 83, 557–574. <https://esajournals.onlinelibrary.wiley.com/doi/10.1890/12->
330 2010.1

331 Blok, W.J., Lamers, J.G., Termorshuizen, A.J., Bollen, G.J., 2000. Control of soilborne
332 plant pathogens by incorporating fresh organic amendments followed by tarping.
333 *Phytopathol.* 90, 253–259.
334 <https://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.2000.90.3.253>

335 Butler, D.M., Kokalis-Burelle, N., Muramoto, J., Shennan, C., McCollum, T.G.,
336 Rosskopf, E.N., 2012. Impact of anaerobic soil disinfestation combined with soil
337 solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant
338 pathogens in raised-bed vegetable production. *Crop Prot.* 39, 33–40.
339 <https://doi.org/10.1016/j.cropro.2012.03.019>

340 Butler, D.M., Ownley, B.H., Dee, M.E., Eichler Inwood, S.E., McCarty, D.G., Shrestha,
341 U., Kokalis-Burelle, N., Rosskopf, E.N., 2014. Low carbon amendment rates during

342 anaerobic soil disinfection (ASD) at moderate soil temperature do not decrease
343 viability of *Sclerotinia sclerotiorum* sclerotia or *Fusarium* root rot of common bean.
344 *Acta Hortic.* 203–208. <https://doi.org/10.17660/ActaHortic.2014.1044.23>
345 Campbell, R., 1994. Biological control of soil-borne diseases: some present problems
346 and different approaches. *Crop Prot.* 13, 4–13.
347 <https://www.sciencedirect.com/science/article/pii/0261219494901295>
348 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello,
349 E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., 2010. QIIME allows
350 analysis of high-throughput community sequencing data. *Nature Methods* 7, 335.
351 <https://www.nature.com/articles/nmeth.f.303>
352 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A.,
353 Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity
354 at a depth of millions of sequences per sample. *Proc. Natl. Acad. Sci. USA* 108,
355 4516–4522. https://www.pnas.org/content/108/Supplement_1/4516
356 Constantinides, M., Fownes, J.H., 1994. Nitrogen mineralization from leaves and litter
357 of tropical plants: relationship to nitrogen, lignin and soluble polyphenol

358 concentrations. *Soil Biol. Biochem.* 26, 49–55.

359 <https://www.sciencedirect.com/science/article/abs/pii/0038071794901945>

360 Griffiths, B.S., Ritz, K., Bardgett, R.D., Cook, R., Christensen, S., Ekelund, F.,

361 Sørensen, S.J., Bååth, E., Bloem, J., De Ruiter, P.C., 2000. Ecosystem response of

362 pasture soil communities to fumigation-induced microbial diversity reductions: an

363 examination of the biodiversity–ecosystem function relationship. *Oikos* 90, 279–294.

364 <https://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2000.900208.x>

365 Huang, X., Liu, L., Wen, T., Zhang, J., Wang, F., Cai, Z., 2016. Changes in the soil

366 microbial community after reductive soil disinfestation and cucumber seedling

367 cultivation. *Appl. Microbiol. Biotechnol.* 100, 5581–5593.

368 <https://doi.org/10.1007/s00253-016-7362-6>

369 Huang, X., Liu, L., Wen, T., Zhu, R., Zhang, J., Cai, Z., 2015. Illumina MiSeq

370 investigations on the changes of microbial community in the *Fusarium oxysporum*

371 f.sp. *cubense* infected soil during and after reductive soil disinfestation. *Microbiol.*

372 *Res.* 181, 33–42. <https://doi.org/10.1016/j.micres.2015.08.004>

373 Inami, K., Yoshioka, C., Hirano, Y., Kawabe, M., Tsushima, S., Teraoka, T., Arie, T.,

374 2010. Real-time PCR for differential determination of the tomato wilt fungus,

375 *Fusarium oxysporum* f. sp. *lycopersici*, and its races. J. Gen. Plant Pathol. 76, 116–

376 121. <https://doi.org/10.1007/s10327-010-0224-7>

377 Larkin, R.P., Fravel, D.R., 1998. Efficacy of various fungal and bacterial biocontrol

378 organisms for control of *Fusarium* wilt of tomato. Plant Disease 82, 1022–1028.

379 <https://apsjournals.apsnet.org/doi/abs/10.1094/PDIS.1998.82.9.1022>

380 Li, T., Liu, T., Zheng, C., Kang, C., Yang, Z., Yao, X., Song, F., Zhang, R., Wang, X.,

381 Xu, N., Zhang, C., Li, W., Li, S., 2017. Changes in soil bacterial community

382 structure as a result of incorporation of *Brassica* plants compared with continuous

383 planting eggplant and chemical disinfection in greenhouses. PLoS One 12, e0173923.

384 <https://doi.org/10.1371/journal.pone.0173923>

385 Liu, L., Huang, X., Zhao, J., Zhang, J., Cai, Z., 2019. Characterizing the key agents in a

386 disease-suppressed soil managed by reductive soil disinfestation. Appl. Environ.

387 Microbiol. 85, e02992-18, /aem/85/7/AEM.02992-18.atom.

388 <https://doi.org/10.1128/AEM.02992-18>

389 Liu, L., Kong, J., Cui, H., Zhang, J., Wang, F., Cai, Z., Huang, X., 2016. Relationships
390 of decomposability and C/N ratio in different types of organic matter with
391 suppression of *Fusarium oxysporum* and microbial communities during reductive
392 soil disinfection. Biol. Control 101, 103–113.

393 <https://doi.org/10.1016/j.biocontrol.2016.06.011>

394 McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive
395 analysis and graphics of microbiome census data. PLoS One 8, e61217.

396 Messiha, N.A.S., van Diepeningen, A.D., Wenneker, M., van Beuningen, A.R., Janse,
397 J.D., Coenen, T.G.C., Termorshuizen, A.J., van Bruggen, A.H.C., Blok, W.J., 2007.
398 Biological soil disinfection (BSD), a new control method for potato brown rot,
399 caused by *Ralstonia solanacearum* race 3 biovar 2. Eur. J. Plant Pathol. 117, 403–
400 415. <https://doi.org/10.1007/s10658-007-9109-9>

401 Momma, N., 2008. Biological soil disinfection (BSD) of soilborne pathogens and its
402 possible mechanisms. JARQ 42, 7–12. <https://doi.org/10.6090/jarq.42.7>

403 Momma, N., Kobara, Y., Uematsu, S., Kita, N., Shinmura, A., 2013. Development of
404 biological soil disinfestations in Japan. *Appl. Microbiol. Biotechnol.* 97, 3801–3809.

405 <https://doi.org/10.1007/s00253-013-4826-9>

406 Momma, N., Momma, M., Kobara, Y., 2010. Biological soil disinestation using
407 ethanol: effect on *Fusarium oxysporum* f. sp. *lycopersici* and soil microorganisms. *J.*
408 *Gen. Plant Pathol.* 76, 336–344. <https://doi.org/10.1007/s10327-010-0252-3>

409 Momma, N., Usami, T., Shishido, M., 2007. Detection of *Clostridium* sp. inducing
410 biological soil disinestation (BSD) and suppression of pathogens causing fusarium
411 wilt and bacterial wilt of tomato [*Lycopersicon esculentum*] by gases evolved during
412 BSD. *Soil Microorg. (Japan)*.

413 Momma, N., Yamamoto, K., Simandi, P., Shishido, M., 2006. Role of organic acids in
414 the mechanisms of biological soil disinestation (BSD). *J. Gen. Plant Pathol.* 72,
415 247–252. <https://link.springer.com/article/10.1007/s10327-006-0274-z>

416 Mowlick, S., Hirota, K., Takehara, T., Kaku, N., Ueki, K., Ueki, A., 2012. Development
417 of anaerobic bacterial community consisted of diverse clostridial species during

418 biological soil disinfestation amended with plant biomass. *Soil Sci. Plant Nutr.* 58,

419 273–287. <https://doi.org/10.1080/00380768.2012.682045>

420 Mowlick, S., Inoue, T., Takehara, T., Tonouchi, A., Kaku, N., Ueki, K., Ueki, A., 2014.

421 Usefulness of Japanese-radish residue in biological soil disinfestation to suppress

422 spinach wilt disease accompanying with proliferation of soil bacteria in the

423 Firmicutes. *Crop Prot.* 61, 64–73. <https://doi.org/10.1016/j.cropro.2014.03.010>

424 Mowlick, S., Takehara, T., Kaku, N., Ueki, K., Ueki, A., 2013a. Proliferation of

425 diversified clostridial species during biological soil disinfestation incorporated with

426 plant biomass under various conditions. *Appl. Microbiol. Biotechnol.* 97, 8365–8379.

427 <https://doi.org/10.1007/s00253-012-4532-z>

428 Mowlick, S., Yasukawa, H., Inoue, T., Takehara, T., Kaku, N., Ueki, K., Ueki, A.,

429 2013b. Suppression of spinach wilt disease by biological soil disinfestation

430 incorporated with *Brassica juncea* plants in association with changes in soil bacterial

431 communities. *Crop Protect.* 54, 185–193.

432 <https://doi.org/10.1016/j.cropro.2013.08.012>

433 Nicolardot, B., Recous, S., Mary, B., 2001. Simulation of C and N mineralisation

434 during crop residue decomposition: a simple dynamic model based on the C: N ratio

435 of the residues. *Plant Soil* 228, 83–103.

436 <https://link.springer.com/article/10.1023/A:1004813801728>

437 Poret-Peterson, A.T., Albu, S., McClean, A.E., Kluepfel, D.A., 2019. Shifts in soil

438 bacterial communities as a function of carbon source used during anaerobic soil

439 disinfestation. *Front. Environ. Sci.* 6, 160. <https://doi.org/10.3389/fenvs.2018.00160>

440 Rosskopf, E.N., Burelle, N., Hong, J., Butler, D.M., Noling, J.W., He, Z., Booker, B.,

441 Sances, F., 2014. Comparison of anaerobic soil disinfestation and drip-applied

442 organic acids for raised-bed speciality crop production in Florida. *Acta Hortic.* 221–

443 228. <https://doi.org/10.17660/ActaHortic.2014.1044.26>

444 Runia, W.T., Thoden, T.C., Molendijk, L.P.G., van den Berg, W., Termorshuizen, A.J.,

445 Streminska, M.A., van der Wurff, A.W.G., Feil, H., Meints, H., 2014. Unravelling

446 the mechanism of pathogen inactivation during anaerobic soil disinfestation. *Acta*

447 *Hortic.* 177–193. <https://doi.org/10.17660/ActaHortic.2014.1044.21>

448 Shennan, C., Muramoto, J., Lamers, J., Mazzola, M., Rosskopf, E.N., Kokalis-Burelle,
449 N., Momma, N., Butler, D.M., Kobara, Y., 2014. Anaerobic soil disinfestation for
450 soil borne disease control in strawberry and vegetable systems: current knowledge
451 and future directions. *Acta Hortic.* 165–175.
452 <https://doi.org/10.17660/ActaHortic.2014.1044.20>
453 Shinmura, A., 2000. Causal agent and control of root rot of welsh onion, in: PSJ Soil-
454 Borne Disease Workshop Report. pp. 133–143.
455 Shrestha, U., Augé, R.M., Butler, D.M., 2016. A meta-analysis of the impact of
456 anaerobic soil disinfestation on pest suppression and yield of horticultural crops.
457 *Front. Plant Sci.* 7. <https://doi.org/10.3389/fpls.2016.01254>
458 Strauss, S.L., Kluepfel, D.A., 2015. Anaerobic soil disinfestation: A chemical-
459 independent approach to pre-plant control of plant pathogens. *J. Int. Agric.* 14, 2309–
460 2318. [https://doi.org/10.1016/S2095-3119\(15\)61118-2](https://doi.org/10.1016/S2095-3119(15)61118-2)
461 Testen, A.L., Miller, S.A., 2018. Carbon source and soil origin shape soil microbiomes
462 and tomato soilborne pathogen populations during anaerobic soil disinfestation.

463 Phytobiomes 2, 138–150. <https://apsjournals.apsnet.org/doi/10.1094/PBIOMES-02-18-0007-R>

464 18-0007-R

465 Ueki, A., Takehara, T., Ishioka, G., Kaku, N., Ueki, K., 2017. Degradation of the fungal

466 cell wall by clostridial strains isolated from soil subjected to biological soil

467 disinfection and biocontrol of Fusarium wilt disease of spinach. *Appl. Microbiol.*

468 *Biotechnol.* 101, 8267–8277. <https://doi.org/10.1007/s00253-017-8543-7>

469 Yonemoto, K., Hirota, K., Muzuguchi, S., Sakaguchi, K., 2006. Utilization of the

470 sterilization by soil reduction in an open air field and its efficiency against Fusarium

471 wilt of strawberry. *Proc. Assoc. Plant Prot. Kyushu* 41, 15–24.

472 Zhou, X., Li, C., Liu, L., Zhao, J., Zhang, J., Cai, Z., Huang, X., 2019. Control of

473 Fusarium wilt of lisianthus by reassembling the microbial community in infested soil

474 through reductive soil disinfection. *Microbiol. Res.* 220, 1–11.

475 <https://doi.org/10.1016/j.micres.2018.12.001>

476

477

Table 1. Chemical properties of each substrate used for the ASD treatment

478

Organic matter	TC (g kg ⁻¹)	TN (g kg ⁻¹)	C/N ratio (g kg ⁻¹)	WSOC (g kg ⁻¹)
WB	400	24.0	16.4	132
SCD	250	10.3	24.2	181
DM	419	13.8	30.4	357

479

TC: total carbon, TN: total nitrogen, C/N ratio: the ratio of total carbon per total

480

nitrogen, WSOC: water-soluble organic carbon, WB: wheat bran, SCD: sugar-contained

481

diatoms, DM: dried molasses.

482 **Table 2. Changes of *F. oxysporum* density (copies g soil⁻¹) during disinfection**

483 **period**

484

Soil treatment	Replication number				
		Day 0	Day 3	Day 7	Day 14
WB	1	1381	15.0	11.6	45.6
	2	642	68.1	13.4	27.4
SCD	1	696	39.1	25.9	23.0
	2	798	12.0	3.10	13.1
DM	1	1545	94.2	120	0.30
	2	1832	11.8	9.97	0.61

485 WB: wheat bran, SCD: sugar-contained diatoms, DM: dried molasses

486 **Table 3. Changes of prokaryotic diversity and richness during the disinfection**

487 **period**

488

		Replication number	Day 0	Day 3	Day 7	Day 14
Shannon index	WB	1	7.04	6.27	2.34	6.98
		2	6.98	5.99	6.58	6.93
	SCD	1	7.35	3.88	6.94	5.73
		2	6.81	6.93	6.40	7.47
	DM	1	7.61	6.67	6.83	7.03
		2	6.72	6.36	6.79	7.03
OTU number	WB	1	7894	6667	1663	9453
		2	5185	5776	6067	9543
	SCD	1	7374	1143	7618	1794
		2	5020	5405	2969	3401
	DM	1	10389	4193	8509	9051
		2	5419	11196	5665	9594
Chao1	WB	1	23586	18187	3239	32294
		2	10557	16486	24630	31668
	SCD	1	28449	4901	21225	3028
		2	10361	21282	6321	5766
	DM	1	25111	29846	26122	30441
		2	12531	8092	14581	30164

489

490 WB: wheat bran, SCD: sugar-contained diatoms, DM: dried molasses.

491 The number after substrate indicated that the sample number of two replicates

492 **Table 4. Pearson's and Spearman's correlation coefficients between FOL density**

493 **and prokaryotic diversity or richness**

494

Parameter	Pearson's correlation	Spearman's correlation
Shannon's index	0.279	0.212
OTU number	0.038	0.116
Chao1	0.164	0.048

495

497

Table 5. Responses of bacterial classes during ASD

498

Bacterial class	WB	SCD	DM
Bacilli	Early	Early	Early
Clostridia	Early	Early	Early
Betaproteobacteria	Late	Early	
Alphaproteobacteria	Late		
Gammaproteobacteria	Late	Intermediate	
Planctomycetia	Late	Intermediate	Intermediate
Saprospirae	Late		

499

500 The bacteria that increased >2-fold times in both duplicates were selected.

501 Early: day 0–3; intermediate: day 3–7 day; late: day 7–14.

502 WB: wheat bran, SCD: sugar-contained diatoms, DM: dried molasses.

503 **Table 6. PERMANOVA results for prokaryotic communities**

504

Variable	F. model	R ²	Pr(>F)
Substrates	1.806	0.136	0.020*
Time	1.724	0.195	0.014*
Substrates and time	0.957	0.217	0.566

505

506 *Indicates statistical significance (p < 0.05).

507 **Table 7. OTUs negatively correlated with FOL density**

508

OTU number	Rho value	Closest relatives	Phylum
OTU19544	-0.585	Clostridiales	Firmicutes
OTU122066	-0.563	<i>Clostridium</i>	Firmicutes
OTU7428	-0.558	Bacillales	Firmicutes
OTU109424	-0.558	<i>Paenibacillus</i>	Firmicutes
OTU78089	-0.556	Veillonellaceae	Firmicutes
OTU23993	-0.536	<i>Unidentified Firmicutes</i>	Firmicutes
OTU95490	-0.528	Peptococcaceae	Firmicutes
OTU24789	-0.527	<i>Candidatus Solibacter</i>	Acidobacteria
OTU9173	-0.508	Planctomycetaceae	Planctomycetia
OTU69473	-0.507	Unidentified	
		Proteobacteria	Proteobacteria
OTU52717	-0.502	Comamonadaceae	Proteobacteria

509 Rho value indicates the correlation coefficient between FOL density and each OTU as

510 per Spearman's rank correlation method.

511 **Figure legends**

512 **Figure 1.** Relative abundance of prokaryotic communities at the class level during the

513 disinestation period. (a) WB1, (b) WB2, (c) SCD1, (d) SCD2, (e) DM1, (f) DM2

514

515 **Figure 2.** Changes in prokaryotic communities during ASD treatment. WB: wheat bran,

516 SCD: sugar-contained diatoms, DM: dried molasses. The numbers at each plot show the

517 date of sampling and the sample number connected with a hyphen. The line indicates

518 the separation of each cluster based on *k*-means analysis.

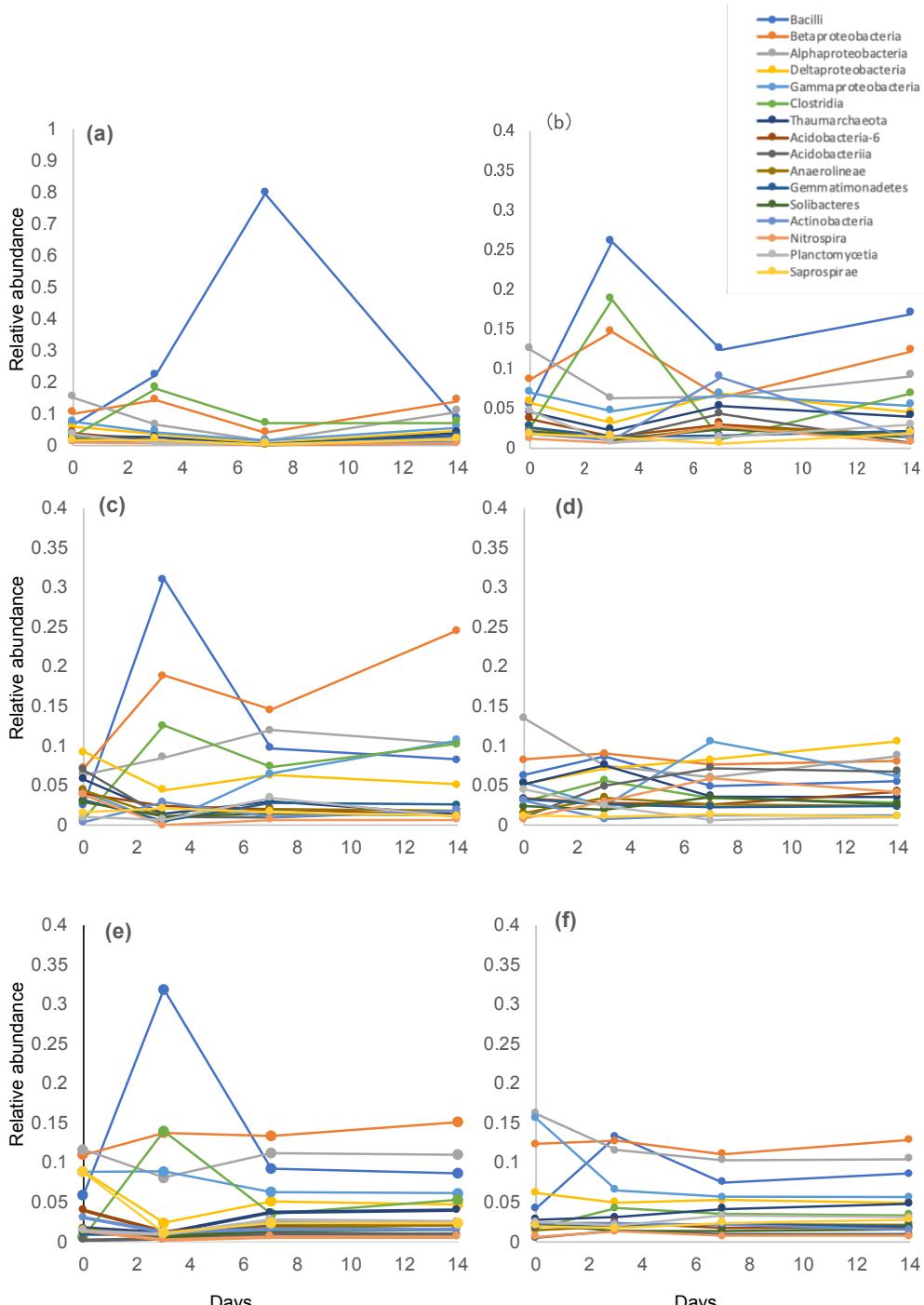
519

520

521

522

523


524

525

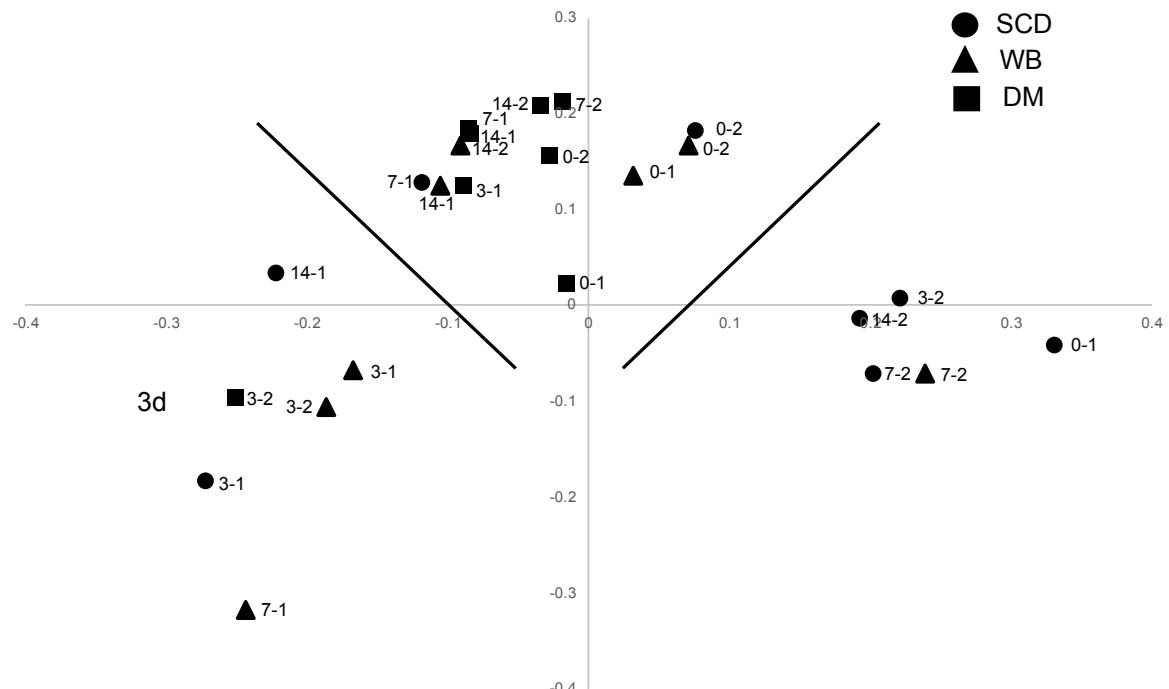
526

527

Figure 1

528

529


530

531

532

Figure 2

533

534

535

536

Supplemental Table 1. Sequencing read numbers of each sample

537

Replication		Day 0	Day 3	Day 7	Day 14
	number				
WB	1	67,737	53,661	32,042	57,352
	2	47,167	45,457	53,315	53,786
SCD	1	59,144	54,281	54,852	16,094
	2	44,798	45,825	52,338	9,601
DM	1	61,651	24,593	38,626	50,307
	2	40,350	89,546	56,514	55,341

538

WB: wheat bran, SCD: sugar-contained diatoms, DM: dried molasses.

539 Supplemental Table 2. The dipyridyl reaction of each soil sample during disinfection

540 period

	Replication number	Day 0 Day 3 Day 7 Day 14			
		1	–	–	+
WB	1	–	–	–	+
WB	2	–	–	–	–
SCD	1	–	–	–	+
SCD	2	–	–	–	–
DM	1	–	–	+	+
DM	2	–	–	–	–

541 –, no bipyramidal reaction was observed; +, bipyramidal reaction was observed

542 WB: wheat bran, SCD: sugar-contained diatoms, DM: dried molasses.