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Abstract

Background:

Evidence from meta-analyses of MRI-based brain morphometry suggested a common
neurobiological substrate (CS) for psychiatric disorders in the dorsal anterior cingulate
(dACC) and the anterior insular cortices (AIC).

Methods:

We analyzed the first principal component of voxel-based morphometric volumes
forming the CS (hereafter abbreviated as CCS). We conducted genome-wide
association studies (GWAS) of the CCS in four cohorts (discovery, n=2,271), followed
by meta-analysis, and replication in a fifth cohort (n=865). Secondary genetic and
clinical imaging analyses were performed in two major depressive disorder
case/control cohorts (n=967 cases and n=508 controls).

Results:

The single-nucleotide polymorphism (SNP) rs17076061 on chromosome 5q35.2 was
associated with the CCS at genome-wide significance and replicated. Psychiatric
cross-disorder polygenic risk scores were associated with the CCS at nominal
significance. However, no significant genome-wide overlap between genetic variants
influencing the CCS and genetic risk for different disorders was found after correction
for multiple testing. Further secondary analyses revealed a dependence of the
association of the identified variant on interactions with age.

Conclusions:

We identified a significant association between a genetic variant and a transdiagnostic
psychiatric marker. The SNP maps to a locus harboring genes involved in neuronal
development and regeneration. Dependence of this association on age and the
absence of direct associations with major psychiatric disorders suggest an indirect
relationship between the CCS and disease risk, contingent on environmental and
additional, unknown genetic factors. Overall, our study indicates a complex interplay
between common genetic variation and the function of brain regions affected in
psychiatric patients.
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Introduction

Numerous studies have identified
regional differences in the brain structure
of psychiatric patients and described both
transdiagnostic and disorder-specific
processes of gray matter (GM) reduction
in patients (1-9). However, the biological
mechanisms contributing to such clinically
relevant regional GM differences are
mostly unclear. One possibility is that GM
loss occurs as a consequence of disease
manifestation. Alternatively, as a genetic
influence on cortical and subcortical brain
regions is well documented (10-16), GM
changes may precede the onset of
psychopathology and directly increase
disease risk. A third explanation is that
reduced GM volume in patients
constitutes a regional vulnerability. In this
model, the susceptibility to develop
psychiatric symptoms would increase if
genetic risk factors and unfavorable
environmental factors or aging processes
jointly affect specific brain regions.

In a large meta-analysis of 193 imaging
studies, Goodkind and colleagues found
that GM volumes obtained from structural
magnetic resonance imaging (MRI) using
voxel-based morphometry (VBM) were
reduced across six psychiatric diagnoses
in parts of the bilateral anterior insular
cortex (AIC) and the dorsal anterior
cingulate cortex (dACC)(1). Structural
and functional connectivity analyses
supported that these regions are tightly
connected and represent hubs of the
salience  network (1).  Functional
differences in salience processing in
these brain regions are associated with

diagnostic status and progression of
psychiatric disorders (17). The authors
hypothesized that the regions jointly form
a common neurobiological substrate (CS)
of major psychiatric disorders (1).

Many studies analyzed genetic risk
factors for major psychiatric disorders like
schizophrenia, bipolar disorder (BD), and
major depressive disorder (MDD). These
disorders show substantial heritability
(18) and are genetically correlated with
each other (19). Genome-wide
association studies (GWAS) identified
single-nucleotide polymorphisms (SNPs)
contributing risk for several psychiatric
disorders, suggesting pleiotropy and
partially overlapping etiologies (20, 21).
While some studies reported partial
overlaps  between brain  volume-
associated and disease-associated
SNPs, others did not (2, 10, 22—-24).

The present study aimed to identify
genetic variants influencing the CS in the
general population. To this end, a
combined VBM measure of the three CS
regions (hereafter referred to as the first
principal component of the CS, CCS),
was computed in five population-based
cohorts. Meta-analyses of GWAS
conducted in these cohorts identified a
novel locus significantly associated with
the CCS. In secondary analyses, genetic
relationships between the CCS and risk
for psychiatric disorders were
characterized in detail, emphasizing a
potentially modulating role of age on the
CCsS.
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Methods and Materials

Sample description

For the GWAS, n=3,136 individuals from
five population-based cohorts were
investigated. Four cohorts were used in
the discovery (1000BRAINS(25), n=539;
CONNECT100 (26), n=93; BiDirect (27),
n=589; SHIP-2 (28), n=1,050; pooled
n=2,271) and the second-largest cohort
available in the replication stage (SHIP-
Trend (28), n=865). For follow-up
analyses, two MDD cohorts with 967
cases and 508 controls were used,
BiDirect (29) (n=582 MDD cases; n=311
controls) and MPIP (30, 31) (n=385 MDD
cases; n=197 controls). Basic
demographic  characteristics of the
cohorts are described in Tables S1 and
S2. The studies were approved by the
local ethics committees; all participants
provided written informed consent.

VBM preprocessing and extraction of
regional and total GM volumes

VBM preprocessing (32, 33) was applied
to high-resolution T1-weighted images
from all participants to create GM maps
with non-linear only (NLO) Jacobian
modulation. Three spatially disjunct
regional GM volumes, based on binarized
versions of the joint result areas from the
study by Goodkind et al. (1), and total GM
volume were extracted.

All GM volumes were corrected for age,
agexage, and sex in multiple linear
regression models. Handedness was
used as an additional covariate for
1000BRAINS, @ CONNECT100, and
BiDirect, and coil type for the MPIP
sample. Residuals of these regional
volume regression models  were
combined wusing principal component
analysis (PCA) to create a single measure
referred to as the Component of the
Common Substrate (CCS; Fig. 1).

Genotyping, quality control, and
imputation

DNA extraction and genome-wide
genotyping were conducted as described

before (31, 34-36). Genotyping was
carried out on different lllumina and
Affymetrix microarrays (see  the

Supplemental Methods and Table S3).
Quality control (QC) and imputation were
conducted separately for each genotyping
batch, using the same protocols, in PLINK
(37), R, and XWAS (38); genotype data
were imputed to the 1000 Genomes
phase 1 reference panel using SHAPEIT
and IMPUTE2 (39—41), as described in
the Supplement and previously (42). The
population substructure of all five cohorts
is shown in Fig. S1.

Heritability estimation and GWAS

The SNP-based heritability of the CCS
was estimated using GCTA on a
combined sample of the imputed data
from all five cohorts (43, 44) (see the
Supplemental Methods). GWAS was
conducted separately per cohort using
PLINK with ancestry components as
covariates. Variants on the X
chromosome were analyzed separately
by sex, followed by p value-based meta-
analysis to allow for different effect sizes
per sex. A two-stage design was
implemented for the GWAS, using four
cohorts as the discovery sample and
SHIP-Trend as an independent
replication sample. Cohorts were
combined by fixed-effects meta-analysis
using  METAL (45). There was no
indication for genomic inflation of the
GWAS test statistics in the single cohorts
or the meta-analysis (A1000=1.01, see
Table S4 and Fig. S2).

Linkage disequilibrium (LD) was analyzed
using the 1000 Genomes CEU population
in LDmatrix (46). We carried the two
SNPs forward to the replication stage that
showed the most robust genome-wide
support (p<56x108) for an association in
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the discovery stage and were partially
independent of each other (LD r’<0.5 with
more strongly associated variants). Here,
a one-sided p-value <a=0.05/2
(correcting for two LD-independent
variants) was considered as successful
replication. See the Supplement for
additional details.

Gene-set analyses

Gene-set analyses were conducted on
the meta-analysis of the discovery- and
replication-stage GWAS, using 674
REACTOME gene sets containing 10—
200 genes curated from MsigDB 6.2 (47).
Only SNPs within gene boundaries were
mapped to RefSeq genes (0 bp window).
Analyses were conducted in MAGMA
v1.07 using both mean- and top-SNP
gene models (48) and in MAGENTA v2
using a top-SNP approach (49). Here,
false discovery rates were calculated to
correct for multiple testing.

Comparison to published GWAS of
psychiatric disorders

For genome-wide comparisons between
our GWAS meta-analysis and published
GWAS of psychiatric disorders, summary
statistics from the following PGC GWAS
were used: cross-disorder 2013 (50), BD
2019 (51), MDD 2018 (with 23andMe)

(52), and schizophrenia 2014 (53). For
additional comparisons, the following
GWAS were used: IFGC behavioral
frontotemporal dementia (bvFTD) 2014
(54), longevity 85/90 2014 (55), and three
different GWAS from 2017 on epigenetic
accelerated aging (EAA) (56): EAA in all
examined brain regions, EAA in prefrontal
cortex (PC), and neuronal proportion in
PC.

Polygenic risk scores (PRS) were
calculated and analyzed in R using
imputed genetic data (57). We ran LD
score regression (LDSC) comparing the
genetic correlation of published GWAS to
the CCS GWAS summary statistics with
standard settings (58, 59). We analyzed
whether the order of SNPs ranked by their
association  strength was random
between studies using rank-rank
hypergeometric overlap (RRHO) tests
(60). For this analysis, variants were LD-
pruned in the 1000 Genomes phase 3
EUR subset (61). Binomial sign tests
were conducted in R (binom.test) to
analyze whether SNPs associated with
the CCS at either p<0.05 or p<1x10-°
showed the opposite direction of effects in
other GWAS more often than expected by
chance. For additional details, see the
Supplemental Methods.
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Figure 1: Generation of the CCS and GWAS analysis workflow.

A-B: Comparison between the CCS and the three individual volumes (A) and the
residuals of the three volumes after correction for covariates (B). AIC = anterior insula
cortex; dACC = dorsal anterior cingulate cortex C: Histograms of the three extracted
volumes and the CCS. Note that A-C show combined data from all five GWAS cohorts.
Correlations were left and right AIC: r=0.65, left AIC and dACC: r=0.52, right AIC and
dACC: r=0.46. D: GWAS analysis workflow. All measures were extracted using NLO-
based Jacobian modulation. All GM volumes were corrected for age, age?, and sex as
covariates; handedness was used as an additional covariate for the three samples
1000BRAINS, CONNECT100, and BiDirect. PCA = principal component analysis; LD
= linkage disequilibrium.
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Results

Heritability of the imaging CCS these, variant  rs17076061 was
After correction for covariates, the CCS significantly associated in the replication
showed a SNP heritability estimate of cohort (discovery: p=1.51x108;

h?4=0.50 (standard error,
value=0.0033).

SE=0.18; p-

GWAS of the CCS

In the discovery-stage GWAS, twelve
SNPs on chromosome 5g35.2 showed
genome-wide significant associations
with the CCS (p<5x10%; Fig. 2A and
Table S5). Most of these SNPs were
highly correlated with each other (Table
S6). The two partially LD-independent
SNPs (pairwise LD r’=0.267 in CEU
samples) with the most robust support for

replication: one-sided p=9.91x103) and
also the top-associated variant in the
genome-wide meta-analysis of discovery
and replication samples (p=1.46x109;
Table 1, Fig. 2B-D; Table S5 and Fig. S2-
S4). This SNP was associated at
genome-wide significance only for the
CCS but not when examining either
whole-brain GM volume or the three GM
regions forming the CS separately (Table
1). The minor allele T of SNP rs17076061
(frequency = 0.36) is thus associated with
smaller CS volumes.

an association were analyzed further. Of
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Figure 2: Presentation of GWAS results.

A: Manhattan plot showing the strength of evidence for an association (p-value) in the
discovery stage CCS GWAS. Each variant is shown as a dot, with alternating shades
of blue according to chromosome; the top-associated locus 5932.2 is labeled with a
red diamond. The red line marks the genome-wide significance level. B: Matrix of the
pairwise LD pattern (1000 Genomes population CEU) between the twelve variants that

7


https://doi.org/10.1101/774463
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/774463; this version posted September 30, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Andlauer, Mihleisen et al. — Genetic factors influencing a neurobiological substrate for psychiatric disorders

reached genome-wide significance in the discovery GWAS. The two variants
rs17076061 and rs72088023 (r’=0.267) showed the strongest support for an
association in their respective LD blocks and were analyzed in the replication stage.
All other variants had pairwise LD>0.5 with either of these two variants, their
association strengths are provided for comparison only. poisc.: discovery stage GWAS
p-value; prepl. (1s): One-sided p-value in the replication cohort; Mbp: mega base pair. C:
Regional association plot of the top-associated locus after pooled analysis of the
discovery stage GWAS and the replication sample. The color of dots indicates LD with
the lead variant (rs17076061; pink). Gray dots represent signals with missing LD r?
values. cM: centimorgan. D: Forest plot of the pooled analysis of the replicated variant
rs17076061 in discovery and replication cohorts. D. P.: pooled analysis of discovery
stage cohorts; Repl.: replication; Pool.: pooled analysis of the discovery GWAS and
the replication cohort SHIP-Trend.

rs17076061 Effect size SE p-value

CCS -0.21 0.03 1.46x10°
Left AIC -17.96 3.36 8.79x108
Right AIC -17.78 3.87 4.34x10°6
dACC -5.48 1.74 1.64x103
Total gray matter -4.17 1.09 1.36x10*

Table 1: Association results from the genome-wide meta-analysis of discovery
and replication samples.

The effect size refers to the minor allele T. All measures were extracted using non-
linear only (NLO)-based Jacobian modulation. AIC = anterior insula cortex; dACC =
dorsal anterior cingulate cortex; SE = standard error.

Gene-set analyses

In two separate gene-set analyses using
GWAS meta-analysis results, the top-
associated pathway, significant after
correction for multiple testing, was
“SEMA3A-Plexin repulsion signaling by
inhibiting Integrin adhesion” (Tables S7-
S8,
https://www.reactome.org/content/detail/
R-HSA-399955).

Comparisons of the CCS and the CCS
genetic architecture with psychiatric
disorders

To characterize the relationship between
the CCS and risk for psychiatric disorders,
we tested whether results from our CCS
GWAS overlapped with results from four
published GWAS of psychiatric disorders
(PGC cross-disorder (50), BD (51), MDD
(52), and schizophrenia (53)). SNP
rs17076061 was not significantly

associated with disorders in any of these
GWAS (p>0.26, Table S9).

We ran four separate systematic
comparisons with the psychiatric GWAS,
following a published workflow (22): First,
we calculated PRS using the four GWAS
as training data and analyzed
associations of these PRS with the CCS.
Although the cross-disorder PRS showed
a nominally significant association with a
smaller CCS at a single PRS threshold
(one-sided p=0.01), none of the PRS
were significantly associated after
correction for multiple testing (Table 2;
Table S10 and Fig. S5). We also
calculated a CCS PRS in an independent
MDD case/control sample (MPIP).
However, the CSS PRS was not
significantly higher in MDD cases at any
threshold (one-sided p=0.55, Table S11).
Second, no significant genetic correlation
was found between the CCS GWAS and
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any of the psychiatric GWAS using LDSC
(Table 2, Table S12). Third, no significant
overlap of SNPs ranked by association
strength was found with RRHO tests
(Table 2; Table S13, and Fig. S6). Fourth,
we carried out binomial sign tests and

found that CCS-associated variants did
not show the opposite effect direction in
the psychiatric disorder GWAS more
often than expected by chance (Table 2
and Table S14).

Polygenic risk scores (PRS)

Training GWAS Effect size p-value pr
Psychiatric Cross-Disorder -2.24 0.01 1x104
Bipolar Disorder -0.64 0.05 1x107
Major Depression -5.01 0.31 1x1072
Schizophrenia -0.58 0.24 1x107
LD score regression (LDSC)

GWAS comparison rg p-value
Psychiatric Cross-Disorder 0.18 0.15

Bipolar Disorder 0.17 0.08

Major Depression -0.03 0.75
Schizophrenia 0.08 0.38

Rank-rank hypergeometric overlap (RRHO)

GWAS comparison Overlap p-value
Psychiatric Cross-Disorder 0.06 0.57
Bipolar Disorder 0.21 0.06
Major Depression 0.04 0.18
Schizophrenia 0.02 0.15
Binomial sign tests (p<0.05)

GWAS comparison Probability p-value
Psychiatric Cross-Disorder 0.50 0.68
Bipolar Disorder 0.50 0.67
Major Depression 0.50 0.82
Schizophrenia 0.50 0.64
Binomial sign tests (p<1x10-5)

GWAS comparison Probability p-value
Psychiatric Cross-Disorder 0.50 0.75
Bipolar Disorder 0.54 0.50
Major Depression 0.33 0.93
Schizophrenia 0.54 0.50

Table 2: Comparisons of the CCS and the CCS genetic architecture with

psychiatric disorders.

For detailed results see Tables S10-S13. Details on the four training GWAS datasets
are provided in the Methods section. PRS: Association of polygenic risk scores with
the CCS; pT = training GWAS data p-value threshold; effect size = linear regression
effect size at the pT showing the strongest support for an association (see Table S10
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for results of all ten thresholds); p-value: one-sided p-value not corrected for multiple
testing. The significance level adjusted for multiple testing was a=0.05/(10x4)
=0.00125. LDSC: LD score regression using genome-wide summary statistics; rg =
genetic correlation. RRHO: Rank-rank hypergeometric overlap test showing the
relative overlap of genome-wide summary statistics. Sign tests: One-sided binomial
sign tests for CCS GWAS p-value thresholds p<0.05 and p<1x10®° and the

corresponding probability of success.

Analyses of age-dependent effects
We confirmed in two MDD case/control
cohorts that the CSS was reduced in
cases (p=3x10-6, Fig. 3A, Table S15). We
did not observe a significant age-by-
diagnosis interaction in this analysis
(p=0.07). However, when including such
an interaction term, the main effect of
MDD diagnosis did not remain significant
either (p=0.10, Fig. 3B; Fig. S7, and Table
S15). To test for a non-linear age
dependency, we stratified the cohorts into
four age groups (see Fig. 3C). Effect sizes
differed between age groups but without
showing significant heterogeneity in a
meta-analysis across the groups
(Q=8.55, p=0.31; Fig. 3C, Table S16).
The association of the CCS with MDD
may thus, potentially, be age-dependent.
When adding an age-by-SNP
interaction term to the GWAS model, this
term was not significant in the meta-
analysis of all five cohorts (p=0.96, Fig.
S8, and Table S17) but the main effect of
variant rs17076061 also did not remain
significant  (p=0.27, compared to
p=1.46x10" without the interaction in the
model). When we stratified the analysis
by age groups, the effect size varied, yet
without significant heterogeneity (Q=2.25,
p=0.69; Fig. 3D, Table S16).

We investigated whether the global
brain volume correction intrinsically
contained in NLO Jacobian modulation
may have caused these effects. However,
results were highly similar when using full
Jacobian modulation with total intracranial
volume added as a covariate to the
regression model for explicit correction of
global volume (Supplemental Methods
and Table S17).

Compatrison of the genetic architecture of
the CCS and aging-related traits

Due to a potential effect of aging on the
CCS, we compared our CCS GWAS with
GWAS for EAA (56) and longevity (55).
Furthermore, since the CS regions are
central to the salience network, we also
analyzed the overlap with GWAS results
for bvFTD (54). SNP rs17076061 did not
show a significant association in any of
these GWAS (Table S9). No significant
genetic overlap with any of these GWAS
was found after correction for multiple
testing, using PRS analyses, LDSC,
RRHO, or sign tests (Figs. S5 and S9 and
Tables S10 and S12-S14). However, here
we observed several nominally significant
associations and genetic overlaps,
indicating that a weak genetic relationship
between the CCS and aging-associated
traits might exist.
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Figure 3: MDD-specific and age-dependent analyses of the CCS.

A: MDD cases had a significantly smaller CSS in two MDD cohorts (pooled p=3x10).
B: When a diagnosis-by-age interaction term was added to the regression model, the
association of MDD diagnosis with CCS was not significant anymore; the interaction
term was also not significant. C: Association of diagnosis with CCS across four age
groups (combined sample of both MDD cohorts, the cohort was a covariate in the
regression models). D: Association of SNP rs17076061 with CCS across five age
groups (combined sample of all five GWAS cohorts, the cohort was a covariate).

Discussion

The CCS is a volumetric MRI-based
marker associated with several
psychiatric disorders (1). We conducted a
GWAS and follow-up analyses to
characterize genetic factors influencing
the CCS and their relationship to
psychiatric disorders. These analyses
produced three main findings:

First, the minor allele T of the intergenic
variant rs17076061 was associated with a
decreased CCS at genome-wide
significance and replicated. The SNP
locates in between two predicted,
uncharacterized long intergenic non-
coding RNAs (lincRNA). The closest
protein-coding genes to this SNP are
“pbiorientation of chromosomes in cell
division 1” (BODT) and “stanniocalcin 2”

(STC2), 75 kbp downstream and 202 kbp

upstream of SNP rs17076061,
respectively.
BOD1 is a regulator of protein

phosphatase 2A during cell division and,
post-mitotically, a modulator of neuronal
function (62): During the cell cycle, BOD1-
mutant cells showed an accelerated
progression through mitosis. BOD1
localized to presynapses in murine
neurons and, in Drosophila, neuron-
specific knockdown of BOD1 using RNAI
caused non-associative learning deficits
and abnormal morphology of
neuromuscular junctions. Furthermore,
alterations at the BOD1 locus might be
associated with psychiatric disorders (62,
63): A mutation in BOD1 co-segregated
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with  intellectual disability in a
consanguineous family and somatic
deletions in BOD1 have been identified in
neuronal samples from a schizophrenia
patient, including tissue from the
prefrontal cortex.

STC2 is a secreted glycoprotein with a
possible auto- or paracrine function. In the
regulation of apoptosis, the unfolded
protein response promotes the
expression of potentially neuroprotective
STC2 in neuronal cells (64-66). Its
homolog STC1, a regulator of neuronal,
intracellular calcium homeostasis, has
been suggested as a biomarker for
neurodegenerative disorders (67). SNP
rs17076061 is part of a significant
expression quantitative trait locus with
STC2in the pancreas (p=2.2x10; GTEx
v7 (68)). For the CS regions, the most
relevant result from GTEx was for the
anterior cingulate cortex (BA24, p=0.03).
This finding was not significant after
correction for multiple testing, yet the
sample size for this tissue was about half
the one for pancreas.

SNP rs17076061 likely affects the
alternative binding of two transcription
factors: the CCS-associated minor allele
T supports the binding of E2F, the major
allele supports binding of EBF. Moreover,
rs17076061 is located within an element
that is evolutionarily constrained in
mammals (69). In summary, the
associated locus 5g35.2 harbors two
protein-coding genes expressed in the
brain  with  either  psychiatric  or
neuroprotective functions.

Second, the neurodevelopmental
pathway “SEMASA-Plexin  repulsion
signaling by inhibiting Integrin adhesion”
was significantly associated with the
CCS. Semaphorin-3A (SEMASA) is a
chemorepellent mediating axon guidance
and a chemoattractant for dendrite
growth, and plexins are the signal-
transducing subunits of the SEMASA
receptor. The pathway is important during
neuronal regeneration after brain trauma

(70) and SEMASA and its receptor are

associated  with  impaired  tissue
regeneration in chronic white matter
multiple sclerosis lesions (71). Both

Semaphorin-3A and Plexin A2 are
relevant for different psychiatric disorders
(72-75), supporting a broader,
transdiagnostic function of the pathway:
SEMA3A may contribute to
neurodegeneration in Alzheimer’s
disease (73). It is upregulated in the brain
of schizophrenia patients and has been
suggested to contribute to the synaptic
pathology of the disorder (72). Plexin A2
(PLXNA2), one of the 13 gene-set
members, is associated with
schizophrenia, anxiety, and depression
(74, 75) and is relevant for associate
learning; PlIxna2-deficient mice showed
impaired neurogenesis and altered
synaptic morphology (76). Of note, the
SEMA3A homolog SEMA5A has been
implicated in autism and intellectual
diability (77, 78).

Third, we did not find evidence for
a systematic overlap between the genetic
architecture of the CCS and major
psychiatric disorders. Neither was the top-
associated variant rs17076061 directly
associated with risk for psychiatric
disorders in any of the examined GWAS
nor were CCS PRS significantly higher in
MDD cases. Moreover, PRS for
psychiatric disorders were not
significantly associated with the CCS after
correction for multiple testing. However,
the PRS for cross-disorder psychiatric risk
was positively correlated with the CCS at
nominal significance.
This lack of a genetic overlap with
psychiatric  disorders might seem
contradictory at first sight, but this finding
is in line with previous studies that found
either no or only a weak, nominally
significant genetic correlation between
either subcortical volumes and
schizophrenia or hippocampal volume
and MDD, respectively (22, 23). A meta-
analysis of genetic factors influencing
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subcortical  volumes  with 40,000
individuals identified a significant genetic
correlation between BD and the nucleus
accumbens and the caudate nucleus, but
no such correlation for schizophrenia
(10). Interestingly, a recent study
described an age-dependent association
of schizophrenia PRS with cortical
thickness of the salience network, a
similar brain phenotype (79). Importantly,
the analysis of a genetic overlap, as
conducted by us and others (22, 23),
investigated genome-wide similarities
between GWAS. If only some variants
showed a joint association or different loci
exhibited mixed effect directions, the
methods used here could be failing to
detect similarities.

Several explanations are
compatible with the finding that
individuals at high polygenic risk for
disease did not show a significantly
reduced CCS. First, genetic factors
shaping the CCS might contribute to
disease risk without exhibiting strong
univariate, additive effects, as tested for in
our GWAS. This explanation is plausible
because both the CCS variance
explained by diagnostic status (R?=1.9%
in BiDirect and 3.7% in MPIP) and by
rs17076061 (R°’=1.2%, sample size-
weighted mean across cohorts) were
small. Thus, any direct -correlation
between the SNP and MDD or other
diagnoses would be expected to be low.
Second, the CS regions might constitute
a vulnerable brain network for psychiatric
disorders. In this case, CCS-associated
variants could increase the risk for GM
loss in these regions, likely in interaction
with other risk constellations, e.g., age or
prolonged psychosocial stress. Thereby,
smaller CS volumes might lead to brain
dysfunction in susceptible individuals and
specifically influence clinical
presentations, e.g., cognitive functions.
Interestingly, the CS regions represent
nodes of the salience network, and CCS-
associated SNPs might indirectly

influence the structural integrity of this
network, leading to deficits in achieving
flexible cognitive control (80).

The model in which CS regions
represent  regional vulnerability is
supported by our observation of a
possible non-linear influence of age on
the association of the CCS with MDD.
Non-linear aging trajectories of volumetric
measures are a known phenomenon,
e.g., for subcortical brain structures (81,
82). Importantly, the studies analyzed in
Goodkind et al. (1) assumed a common
aging model between MDD cases and
controls. Hence, latent group-by-age
effects may have influenced their result,
and their proposed neurobiological
substrate could contain effects of
accelerated aging in psychiatric patients

(7). This might explain why the
association of rs17076061 with the CCS
varied by age, despite correction of the
GM volumes for age effects.

The CS brain regions could thus be
subject to accelerated brain aging in

psychiatric patients, and rs17076061
could increase the risk for this
phenomenon. Such an interaction

between age and disorder is conceivable
since we detected no genetic overlap
between CCS-associated SNPs and
genetic factors influencing EAA or
longevity. Interestingly, the salience
network is critically involved in
accelerated cognitive decline during
aging (83). Cognitive correlates of the CS
have also been demonstrated in the
original study by Goodkind et al. (1).
Although the salience network is
specifically prone to degeneration in
bvFTD (84, 85), no overlap between
CCS- and bvFTD-associated genetic
variants was found. This observation
once more suggests that a translation of
the rs17076061 effects into an
accelerated aging phenotype either
occurs in interaction with other genetic
risk factors or in the context of established
psychiatric disease.
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Our overall results pattern also
indicate that transdiagnostic markers may
adhere to the endophenotype concept
even less clearly than imaging markers
with higher clinical specificity. Whether
rs17076061 is associated with brain
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