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Abstract 

A major challenge in the field of neurodegenerative diseases is the poor translation of pre-clinical models 

to clinical applications.  The human brain is an immensely complex structure, which makes it difficult to 

recapitulate its development, function and disorders. In the recent years, brain organoids derived from 

human induced pluripotent stem cells have risen as novel tools to study neurodegenerative diseases such 

as Parkinson’s disease (PD). PD is a multifactorial disorder, with aging, genetics and environmental 

factors as key etiological elements. The majority of the PD cases are idiopathic and proposed to result 

from a complex interaction between genetic predisposition and environmental exposure. Consequently, 

the identification of potentially disease causing environmental factors is of critical importance. Organoids, 

as complex multi-cellular tissue proxies, are an ideal tool to study cellular response to environmental 

changes. However, with increasing complexity of the system, usage of quantitative tools becomes 

challenging. This led us to develop an automated high-content image analysis pipeline for image-based 

cell profiling in the organoid system. Here, we introduce a midbrain organoid system that recapitulates 

features of neurotoxin-induced PD, representing a platform for machine-learning-assisted prediction of 

neurotoxicity in high-content imaging data. This model is a valuable tool for advanced in vitro PD 

modeling and for the screening of putative neurotoxic compounds. 

Keywords: Midbrain organoids | Parkinson's disease | Neurotoxicity | Dopaminergic 

neurons | Machine learning 
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Introduction 

Parkinson’s disease (PD) is the second most-common neurodegenerative disorder with an estimated 

global prevalence of ∼6 million people that is expected to double by the year 2040 (Dorsey and Bloem, 

2018; GBD, 2017). The disease is clinically diagnosed after the onset of primary motor symptoms 

including resting tremor, bradykinesia, rigidity and postural instability, when most of the dopaminergic 

neurons are degenerated. The subsequent depletion of dopamine in the striatum is the fundamental 

mechanism causing the motor features in PD. The etiology of PD is multifactorial, with endogenous 

(genetic) and exogenous (environmental) contributors to development and onset. While a minority 

(~10%) of the cases can be explained by well-defined genetic causes (Klein and Westenberger, 2012), in 

the majority of PD the cause is unknown. Accumulating evidence suggests that the etiology is only 

partially explained by the patient’s genetic background. It is proposed that the combination and 

interaction of hundreds of genetic risk variants, ageing, and environment leads to development and onset 

of PD, suggesting that "multiple hits" are necessary for the disease to develop (Bellou et al., 2016; 

Schwamborn, 2018; Sulzer, 2007). This highlights the necessity to expand the research to identify 

potential neurotoxic compounds and their harmful effects on the human brain.  

One of the major challenges for PD is the development of reliable disease models that can capture the 

complex nature of the human brain and related disorders. Animal models with toxin-induced 

neurodegeneration or genetically modified organisms are still the gold standard in brain research. 

However, rodents cannot reproduce the complexity of the human brain because brain development, 

anatomy and physiology differs greatly between animals and humans (Hodge et al., 2019). Hence, 

findings are not always transferable to the human condition and the success rate of preclinical trials is 

very low. In addition, in vivo animal toxicity testing is constrained by ethical considerations, time and 

financial burdens. On the other hand classical two-dimensional in vitro cell culture models with isolated 

cell types are too uniform and homogeneous to model a complex organ such as the human brain. To 

bridge the gap between classical 2D in vitro and complex in vivo models, stem cell-derived 3D cell 

culture systems such as brain organoids have risen in the recent years. These complex in vitro systems 

effectively mimic the organ architecture and function, and have been shown to model 

neurodevelopmental and neurodegenerative disorders (reviewed in (Wang, 2018)). Notably, these models 

can be derived from human induced pluripotent stem cells, which makes them an ideal platform for 

personalized medicine. 
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However, with increasing complexity of the system, the availability of tools is limited due to enormous 

processing of the data. So far powerful techniques such as high-throughput screening have a limited 

relevance in the organoid system, because generating organoids is highly laborious and requires manual 

handling. Due to architecturally complex heterotypic organization, comprehensive image analysis in 

organoids is challenging. Building on this, we developed methods to automatically acquire and process 

data from high-content imaging in organoids, which has been successfully demonstrated in brain 

organoids (Smits et al., 2019) and 3D microfluidic cultures (Bolognin et al., 2019). In this study, we 

further refined this pipeline with optimized high-content image data analysis tools in a neurotoxin-

induced PD organoid model. Furthermore, we used machine learning (ML) tools to complement the in 

vitro toxicity assay. ML is gaining popularity in toxicity prediction because computational methods can 

combine a variety of different measurements and information sources to predict an outcome of interest 

(Scheeder et al., 2018). In high content imaging data, the various sources can originate from cell type 

abundance, cellular morphology or degenerative features and cell death. With high-content imaging tools, 

we obtain high-resolution data on the single cell level and assessed the neurotoxic effect of the 

catecholaminergic neurotoxin 6-OHDA on human midbrain organoids using random forest classification. 

This pipeline, from treatment to prediction, is valuable and useful for the exploration of potential 

neurotoxic compounds in complex human brain organoids.  
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Results 

Generation and 6-OHDA-treatment of midbrain organoids from hNESCs 

To generate human midbrain organoids, we used a previously published method (Monzel et al., 2017) 

starting from human neuroepithelial stem cells (hNESCs). hNESCs were derived from human induced 

pluripotent stem cells (hiPSCs) from three healthy individuals (Table S1). To specifically target the 

dopaminergic system, organoids were exposed to the catecholaminergic neurotoxin 6-hydroxydopamine 

(6-OHDA) (Fig. 1). In dopaminergic neurons, 6-OHDA, due to its structural similarity with endogenous 

dopamine, exerts its toxic effects by crossing the dopamine transporter, leading to an accumulation of the 

toxin in the neuron (Emborg, 2007; Jonsson and Sachs, 1975; Thoenen and Tranzer, 1968; Ungerstedt, 

1968) .  

6-OHDA induces concentration-dependent cell death in midbrain organoids 

We investigated 6-OHDA-induced neurotoxicity by treating organoids with various concentrations of 6-

 OHDA, ranging from 50µM to 500µM for 48h, followed by one additional week under normal culture 

conditions. Cell quantification by flow cytometry revealed that exposure to the toxin caused a 

concentration-dependent reduction in the amount of living dopaminergic neurons, identified by the rate-

limiting enzyme of the dopamine synthesis, Tyrosine hydroxylase (TH) (Fig. 2a, b, Fig. S1a). We fitted a 

non-linear regression curve for each cell line and determined a mean LD50 at 147µM 6-OHDA (Fig. 2c). 

Since LDs varied among the cell lines, we used a concentration of 175µM in further experiments, which 

led to a significant reduction in the amount of dopaminergic neurons in all three cell lines (Fig. 2d). 

Consistent with the FACS data, we observed an overall concentration-dependent reduction in the TH 

protein in immunofluorescence staining (Fig. S1b) and Western Blot, resulting in an average 2.3 fold 

decrease of the protein after 175µM 6-OHDA treatment (Fig. 2e, f). 

High-content imaging platform 

We next examined the effect of 6-OHDA on the neuronal network within midbrain organoids using 

image-based cell profiling. We developed a high-content imaging platform to automatically acquire, 

process and analyze images from organoid sections stained for neuron-specific Class III β-tubulin (TUJ1), 

microtubule-associated protein 2 (MAP2) and dopaminergic neuronal marker TH. We subdivided 

organoid sections into center (5-6 80µm sections of the organoid core) and border (non-center) sections 

(Fig. 3a, Fig. S2a) prior to immunostaining. This step is essential to correct for spatial asymmetry in 

architecturally complex organoids, with a dense core and neurites reaching out in the periphery. We 
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acquired 12-16 area scans and 30 planes per organoid section using an automated confocal microscope 

(Fig. 3b). The acquired images were stitched in MATLAB (Fig. 3c) and the amount of neurons and 

dopaminergic neurons was quantified by normalizing to Hoechst positive nuclei. As expected, in 

untreated organoids we saw a significant difference between border and center sections after 

normalization (Fig. S2b) due to the nuclear density in the center of the organoid (Fig. S2c). Hence, we 

analyzed border and center sections separately or corrected for the variation of the section by 

normalization.  

Dopaminergic neurons within midbrain organoids show typical signs of degeneration 

Upon 6-OHDA treatment, the overall amount of neurons, positive for the neuronal markers TUJ1 and 

MAP2 remained unaltered (Fig. 4a, b). On the contrary, the amount of TH+ dopaminergic neurons 

decreased significantly (Fig. 4c). We next computed a 3D mask for TH+ cells using edge-detection 

methods of image processing. Further, we generated a 3D skeleton of the dopaminergic neuronal network 

in order to extract features such as nodes (dendritic and axonal points of branching) and links (total 

number of branches), as well as neurite fragmentation using erosion operations (Fig. 3c, d, Table S2). 6-

 OHDA treatment leads to a significant decrease in the complexity of dopaminergic neurons and an 

increase in the amount of fragmented neurites (Fig. 4d-f, Fig. S1c, Fig. S3-5).  

Random forest prediction of neurotoxicity 

We next used a ML approach to build a classifier able to discriminate between CTRL and 6-OHDA-

treated organoids; and consequently identify the measurements that describe the largest difference 

between the two conditions. We trained a random forest (RF) algorithm with a ten-time 5-fold cross-

validation procedure in order to ensure an unbiased estimation of the model performance. We first applied 

our strategy to the raw/unprocessed data. The generated model achieved on average a classification 

accuracy of 75%. The prediction was mainly influenced by dopaminergic features, with the amount of 

TH+ cells / live cells, TH skeleton, and TH fragmentation as most important measurements (Table 1, 

Figure S6ai,-bi). 

Knowing that prediction power of ML models highly depends on data quality, we attempted to remove 

highly variable and for the biological effect irrelevant experimental factors (organoid batch, cell line and 

section). We first assessed the contribution of those factors along with the treatment (sample condition) to 

the variability observed in the data. We used a principal variance component analysis (PVCA) (Bushel, 

2013) and observed significant contribution of each factor (Fig. S6ci). Building on this, we investigated 

whether we could improve classification accuracy by normalizing the data. We performed a z-score 
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transformation across the entire dataset for (within each combination of) experiment (4 independent 

organoid batches and treatments), cell line (hMO1, hMO2, hMO3) and section (border, center). 

Normalization strongly improved the classification accuracy of the RF model to 86%, while lowering the 

variance described by experimental conditions (Table 1, Fig. S6aii-cii). Consistent with this, we observed a 

clear separation between control and 6-OHDA treatment using hierarchical cluster analysis (Fig. 5a), as 

well as principal component analysis (Fig. 5b). This result suggests that by optimizing data processing 

strategies, we can robustly predict neurotoxicity using a ML approach on complex high-content image 

analysis data from human brain organoids.    
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Discussion 

In recent years, advanced 3D in vitro brain models, termed brain organoids, have been extensively 

developed to study neurological disorders (Bershteyn et al., 2017; Lancaster et al., 2013; Li et al., 2017; 

Mariani et al., 2015; Qian et al., 2016), suggesting that brain organoids could also be relevant for  

modeling of neurodegenerative diseases. 3D culture conditions have been shown to provide the complex 

environment necessary for extracellular protein aggregation to model Aβ and Tau pathologies (Choi et al., 

2014; Lee et al., 2016). The development of regionally restricted midbrain-specific organoids suggests 

their potential to model Parkinson's disease (Jo et al., 2016; Monzel et al., 2017). Two recent studies show 

that genetically modified and patient-derived midbrain organoids harboring the PD-associated LRRK2-

G2019S mutation manifest degenerative phenotypes and decreased complexity of dopaminergic neurons 

(Kim et al., 2019; Smits et al., 2019).  

In this study, we have used the catecholaminergic neurotoxin 6-OHDA to target specifically the 

dopaminergic system. Due to its structural similarity with endogenous dopamine, 6-OHDA enters the 

dopaminergic neuron via the dopamine transporter, leading to an accumulation of the toxin in the neuron. 

Because of its selectivity for dopaminergic neurons, 6-OHDA is the drug most frequently used to induce 

neurodegeneration of the nigrostriatal system in animal models. To date, three mechanisms of action have 

been proposed for the neurotoxic effect of 6-OHDA. 1) Auto-oxidation of 6-OHDA generating cytotoxic 

H2O2, reactive oxygen species (ROS) and catecholamine quinones, causing severe oxidative stress , 2) 

enzymatic conversion of 6-OHDA to hydrogen peroxide via monoamine oxidase (Simola et al., 2007), 

and 3) direct inhibition of mitochondrial respiratory chain complex I (Glinka and Youdim, 1995). The 

resulting oxidative stress is followed by the alteration of cellular homeostasis and neuronal damage, 

leading to cell death. 6-OHDA has been suggested as a putative neurotoxic environmental factor in the 

pathogenesis of PD (Jellinger et al., 1995), based on the occurrence of 6-OHDA in human brain (Curtius 

et al., 1974), as well as in urine of PD patients (Andrew et al., 1993).  

To assess neuronal damage in the human midbrain organoid system, among other methods we used 

microscopy-based phenotyping. However, compared to 2D monolayer cultures, organoids exhibit an 

architecturally complex heterotypic spatial organization. Typically, multiple cell types like astrocytes, 

oligodendrocytes, stem cells and neurons are arranged in close proximity in the 3D space, the latter one 

expanding long neurites in the surrogate matrix. This complexity makes it utterly difficult to measure 

neuronal complexity, such as branching and thickness of neurites and to quantify these measurements. 

Hence, the use of powerful image processing algorithms is necessary to extract morphometric features 
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accurately on the single cell level. However, high-content microscopy generates large amounts of multi-

parametric data. The technological advances of high imaging throughput, precise analytical frameworks 

with high-performance computation opens new avenues for phenotypic profiling on the single-cell level 

in brain organoids. In combination with a powerful machine learning approach for the analysis of 

multivariate profiling data, we were able to predict neurotoxin-induced perturbations in the human 

midbrain organoid system. Random forest by design is a well-established technique for reducing 

predictive variability, preventing overfitting and achieving high classification accuracy (Parmar et al., 

2019). Importantly, random forest gives estimates of which variables are most important in the 

classification (Breiman, 2001). Moreover, using PVCA, we were able to identify the contribution of 

experimental factors to the total variance and design optimized data normalization approaches to improve 

predictability. This supports the concept of using image-based profiling studies in organoid models to 

identify drugs that modulate phenotypes. We suggest that organoids have the potential to be used as a 

platform from target identification to toxicity prediction using machine learning-assisted high-content 

image-based cell profiling.  
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Experimental Procedures 

Cell Culture 

Human NESC lines from three female healthy individuals were derived as described in (Reinhardt et al., 

2013) from human iPSCs (Table S1). Human NESCs were cultured on Matrigel-coated plates in N2B27 

media supplemented with 3 µM CHIR-99021 (Axon Medchem), 0.75 µM purmorphamine (Enzo Life 

Science) and 150 µM ascorbic acid (Sigma) (referred to as N2B27 maintenance media) as previously 

described (Reinhardt et al., 2013). N2B27 medium consists of DMEM-F12 (Invitrogen)/Neurobasal 

(Invitrogen) 50:50 with 1:200 N2 supplement (Invitrogen), 1:100 B27 supplement lacking Vitamin A 

(Invitrogen), 1 % L-glutamine and 1 % penicillin/streptomycin (Invitrogen). Midbrain organoids were 

generated with 9000 cells exactly as described previously (Monzel et al., 2017) with the exeption that 

Geltrex was used instead of Matrigel as extracellular matrix. hNESCs were plated from single cell 

suspension following accutase treatment and cultured for 6 days in ultralow attachment 96 well plates 

(CORNING) in N2B27 maintenance media. At day 8, the NESC spheroids were embedded into droplets 

of Geltrex, and cultured in non-treated tissue culture 24 well plates (CELTREAT). One organoid was kept 

per well. At day 10, the differentiation into midbrain dopaminergic neurons was initiated with N2B27 

media supplemented with 10 ng/ml hBDNF (Peprotech), 10 ng/ml hGDNF (Peprotech), 500 µM dbcAMP 

(Peprotech), 200 µM ascorbic acid (Sigma), and 1 ng/ml TGF-β3 (Peprotech). 1 µM purmorphamine 

(Enzo Life Science) was added to this medium for an additional 6 days. At day 14, organoids were place 

on an orbital shaker (IKA) rotating at 80 rpm, and media was changed every 3 to 4 days until the 

treatment.  

Cytotoxicity  

In order to identify, which 6-OHDA concentration leads to a significant reduction in the amount of 

dopaminergic neurons, organoids were treated with 50 μM, 100 μM, 175 μM, 250 μM and 500 μM 

6OHDA (Sigma) after five weeks of organoid culture. Organoids were cultured in N2 Medium 

(DMEM/F12 with 1% N2 supplement and 1% penicillin/streptomycin/glutamine), supplemented with 

1:500 DMSO only, or with 6-OHDA with 1:500 DMSO. DMSO was always added to the medium in case 

a compound treatment requires the use of DMSO, which in our experiments diminished the effect of 6-

OHDA due to its antioxidant properties. Due to the instability and rapid auto-oxidation of 6-OHDA, we 

performed a double-treatment on two sequential days. Two days later, medium was changed against 

N2B27 differentiation and organoids were kept under usual culture conditions on an orbital shaker. Six 

days later, organoids were fixed (IF staining), frozen at -80°C (Western blot) or dissociated (Flow 
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cyotmetry). During the treatment, the matrix around the organoids blackened due to the spontaneous 

oxidation of the compound. 

Flow cytometry 

For flow cytometry analysis, six organoids for each cell line and treatment condition were dissociated to 

single cells by incubation in 0.18% Papain (Sigma), 0.04% EDTA (Sigma) and 0.04% L-Cystein (Sigma) 

dissolved in DMEM-F12 (Invitrogen) at 37 °C under dynamic conditions until the Geltrex was 

completely removed (2-3 h). Afterwards, organoids were treated with Accutase (Sigma) for another 1-2 h 

at 37 °C under dynamic conditions. During Accutase treatment, organoids were carefully dissociated by 

pipetting, first with a 1000 μl pipette and then with a 200 μl pipette. Prior to fixation, the single cells were 

washed in cold 1x PBS and stained for live/dead cells using eBioscience™ Fixable Viability Dye 

eFluor™ 450 for 30 min at 4 °C on a rotor. For intracellular staining, transcription factor buffer set (BD 

Bioscience) was used according to the manufacturer´s instructions. After fixation, cells were filtered 

through a 5 ml polystyrene round-bottom tube with cell-strainer cap (Corning). 100,000 cells were used 

per sample and antibodies were used at the following dilutions: chicken anti-TH (1:50, Abcam) and rabbit 

anti-TUJ1 (1:500, Covance). Threshold gates were set with the same samples that were stained with the 

following isotype control antibodies: Normal chicken IgY Control (R&D Systems), and normal rabbit 

IgG control (Santa Cruz Biotechnology). Isotype control antibodies were used at the same concentration 

as the detection antibody. All secondary antibodies (Invitrogen) were conjugated to Alexa Fluor 

fluorochromes. Flow cytometry was performed by using BD LSRFortessa Cell Analyzer and data were 

analyzed and represented by FlowJo software. 

Western Blot 

For Western Blot, one organoid per condition was lysed with Urea Buffer (7M Urea, 2M Thiourea, 2% 

CHAPS, 1% DTT (w/v) and Complete protease inhibitor cocktail (Roche) in MilliQ water). The cell 

lysates were centrifuged for 10 min at the highest speed at 4°C. The supernatant was mixed with sample 

buffer and boiled at 95°C for 5 min. The protein concentration of the boiled samples was determined 

using a protein quantification assay kit (Macherey Nagel). After adjustment to equal protein 

concentrations, the samples were subjected to sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blotting. The lysates were size-separated by electrophoresis and 

transferred to nitrocellulose membranes using iBlot™ 2 Gel Transfer Device (Thermo Fischer). The equal 

loading of the blotted protein was verified by Ponceau S (Sigma) staining. Subsequently, membranes 

were blocked for 1 h at RT in 5% skimmed milk powder and 0.2% Tween in PBS before incubating 

overnight at 4◦C with the primary antibodies mouse anti-TH (1:1000, Millipore) and rabbit anti-GAPDH 
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(1:1000, Abcam). Horseradish peroxidase conjugated secondary antibodies and enhanced 

chemiluminescence reagents (ECL kit) (GE Healthcare) were used for detection. Western blots were 

analyzed using ImageJ software.  

Immunofluorescence stainings 

At day 42, organoids were fixed with 4 % paraformaldehyde overnight at RT and washed 3x with PBS for 

15 min. Two organoids per cell line, condition and experiment were embedded in 3% low-melting point 

agarose in PBS and incubated for 20 min at 40 °C, followed by 30 min incubation at RT. 80 µm sections 

were cut using a vibratome (Leica VT1000s), and sections were separated into “border” and “center” 

sections. The sections were permeabilized and blocked with 0.5 % Triton X-100, 2.5 % normal goat or 

donkey serum, 2.5 % BSA, and 0.1 % sodium azide. Sections were incubated on a shaker for 48 h at 4 °C 

with primary antibodies in the blocking buffer containing 0.1% Triton X-100 at the following dilutions: 

rabbit anti-TH (1:1000, Abcam), chicken anti TUJ1 (1:1000, Millipore) and mouse anti-MAP2 (1:200, 

Millipore). After incubation with the primary antibodies, sections were washed three times in 0.01 % 

Triton X-100 and incubated with the secondary antibodies (1:1000) including a Hoechst 33342 

counterstaining for nuclei in blocking buffer with 0.01 % Triton X-100. All secondary antibodies 

(Invitrogen) were conjugated to Alexa Fluor fluorochromes. Fluorescence images were acquired on 

Operetta confocal microscope (Perkin Elmer) with a 20x Objective (16-20 area scans, 25 z-planes).  

Image processing and analysis 

Immunofluorescence 3D images of each organoid section in four channels were processed and analyzed 

in Matlab (2017a, Mathworks) using a custom image-analysis algorithm. 

First, mosaic stitching was performed for each channel by computing normalized cross correlations 

between overlapping image sections. Positions of the local maxima were used to return x and y offsets for 

the positioning of image tiles in the stitched mosaic image. 

In the stitched image, nuclei were segmented via difference of Gaussians. In brief, a foreground image 

was computed by convolving the raw Hoechst channel with a Gaussian filter of size 21 and standard 

deviation 1. The background image defined as the raw Hoechst channel convolved with a Gaussian filter 

of size 21 and standard deviation 3 was subtracted from the foreground image.  The nuclei mask was 

defined by pixels with gray tone values larger than 20. Furthermore, only connected components with at 

least 20 pixels were kept. For the quantification of dead nuclei, the raw Hoechst channel was convolved 

with a Gaussian filter of size 11 and standard deviation 1. All pixels with a gray tone value larger than 
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1800, were considered as pyknotic nuclei pixels, which show an increased fluorescence intensity in 

Hoechst. Relative quantification of live cells was calculated by subtracting the pyknotic nuclei pixels 

from the total number of nuclei pixels.  

Dopaminergic neurons in the TH channel were segmented using Fourier transform. For high pass 

frequency filtering, a butterworth filter with cutoff frequency 7 and order 1 was applied to each image 

plane  and the mask was defined by pixels with gray tone values larger than 0.003. Connected 

components with at least 1000 pixels were kept and the mask was further refined by applying a 3D 

median filter (3x3x3). Similarly, neurons in the TUJ1 and MAP2 channel were segmented using Fourier 

transform with cutoff thresholds of 0.0015 and 500 pixels (Marques, 2011).  

To extract morphometric features from dopaminergic neurons, a 3D skeleton was generated from the TH 

mask. The algorithm used for skeletonization is based on homotopic thinning with parallel topology 

consistency checking (Kerschnitzki et al., 2013; Lee et al., 1994). The resulting skeleton was converted 

into a network graph describing nodes (branching points) and links (branches). To analyze neuronal 

fragmentation, the mask in the TH channels was eroded. The underlying theory is that the surface of 

fragmented objects is larger than the surface of non-fragmented objects as compared to their cumulated 

volumes. The erosion was performed using a 3D spherical structuring element with a radius of 1 pixel.  

Additionally, the amount of TH+ cells was quantified by identifying separated nuclei that have adjacent 

TH+ pixels, as opposed to a pixel count. First, big interconnected objects were removed from the nucleus 

mask (> 10000 pixels). This step removes the nuclei from the dense inner core of the organoid, where 

nuclei cannot be separated. The resulting nuclei were dilated with a disk-shaped structuring element of 4 

pixels, and an additional spherical structuring element of size 1. For single cell analysis, an overlap of a 

dilated nucleus with TH+ pixels was then counted as one TH positive cell.  

The extracted features are summarized and described in detail in Table 2. 

Data analysis 

We assigned additional metadata to the obtained high-content image analysis data. The metadata 

described the origin of every organoid section (Cellline (hMO1, 2, 3), Experiment (organoid batch/-

treatment), Replicate (1, 2), Condition (CTRL, 6-OHDA), and Section (border/center). The data was 

imported into R software (R version 3.5.1 -- "Feather Spray") and further processed. First, data from 

Cellline, Replicate, Experiment, Condition and Section was grouped and the mean of the measurements 
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was calculated. This step was performed in order to combine data from neighboring sections. We used 

data-analysis strategies as suggested in (Caicedo et al., 2017).   
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Classification model based on RF 

We used random forest (Breiman, 2001) to model the treatment condition of the organoids. RF is an 

ensemble method based on classification and regression tree (CART). It is very popular since derived 

models usually reach high performances (Touw et al., 2013). RF aims at creating several trees that will be 

used to predict the class of a new sample. The final decision is made through a voting system. For 

classification, each tree is built by iteratively selecting a set of features and choose among them the 

candidate that maximizes the separation between samples of different conditions. This process is repeated 

until either the separation is perfect or the maximum number of iteration is reached or no improvement is 

possible. Note that CARTs are non-parametric. Features are discretized according to the value that gives 

the best sample splitting. CART therefore generates binary tree. To perform RF, we used the 

randomForest function of  randomForest R package (Liaw and Wiener, 2002). To assess the prediction 

accuracy of RF models, we implemented a standard 5-fold cross-validation procedure. A key advantage 

of RF resides in its automatic evaluation of the importance of each feature. For a given feature, we 

estimated its global feature importance by averaging the importance measures obtained from 50 runs of 

RF models. 

Data Availability 

The data that was used to build up the model is openly available at DOI: 10.17881/lcsb.20191309.02.  

Code Availability 

The Matlab and R scripts for the image and data analysis are available on github. The R scripts for RF 

classification are available on gitlab. 
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Figure Captions 

Fig. 1: Experimental setup and mechanism of action of 6-OHDA. 

Human iPSC-derived neuroepithelial stem cells (hNESCs) were cultured under 3D conditions, embedded 

in droplets of Geltrex and differentiated into midbrain dopaminergic neurons after 10 days. Organoids 

were cultured on an orbital shaker (as described in (Monzel et al., 2017)). After 5 weeks of organoid 

culture, organoids were treated with different concentrations of 6-OHDA, leading to the formation of 

cytotoxic species, which is followed by neuronal death. (Adapted from (Monzel et al., 2017)) 

Fig. 2: 6-OHDA-induced degeneration of dopaminergic neurons. 

a) Representative flow-cytometry gating setup for TH 

b) Representative flow-cytometry analysis showing a decrease in TH+ live cells at different concentration 

of 6-OHDA ranging from 50 to 500µM.  

c) 6-OHDA dose-response curves fitted to the data of B.  

d) Barplot showing a robust decrease in the amount of TH+ cells at a 6-OHDA concentration of 175µM. 

Data obtained for each cell line from seven independent organoid batches and 6-OHDA treatments. Error 

bars represent mean + SEM. *p< 0.05 

e) Western Blot revealing a concentration-dependent decrease of TH protein upon 6-OHDA treatment.  

f) Quantification of d, normalized to the mean of the untreated controls of nine organoids derived from 

three independent lines. Error bars represent mean + SEM. *p< 0.05, **p<0.005 

 

Fig. 3: High-Content Image Analysis Workflow. 

a) Sample preparation. Organoids were sectioned and prior to immnuofluorescence staining separated into 

border and center sections. Organoid sections were mounted on an object slide containing a grid for 

automated image acquisition. 

b) Image acquisition. 12-16 area scans in 30 planes were acquired using an automated confocal 

microscope. 

c) Images were exported in MATLAB and area scans were stitched. On the obtained 3D image, masks 

were generated for dopaminergic neurons in order to quantify cell type abundance and morphometric 

features. 

d) Feature extraction. Dopaminergic neuronal complexity was quantified by extracting cellular features 

such as neurite nodes, links, and fragmentation. i) Mask generation, ii) Schematic view of the extracted 

features, iii) Example of neurite fragmentation and decreased cellular complexity after 6-OHDA 

treatment.  
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e) High-content data analysis in R. The obtained data from MATLAB was exported into R and further 

processed for machine learning-based prediciton of neurotoxicity and neuroprotection. 

Fig. 4: Specific degeneration of dopaminergic neurons after 6-OHDA treatment. 

a) The overall amount of TUJ1+ neurons is unaffected from the treatment. 

b) The overall amount of MAP2+ neurons is unaffected from the treatment. 

c) Dopaminergic neurons degenerate after 6-OHDA treatment. %TH: Total count of TH+ cells.  

d-f) 6-OHDA treatment leads to impaired neuronal complexity as indicated by increased neurite 

fragmentation, decreased number of nodes (branch origin and end-point) and increased numbers of links 

(neurite branches). Data obtained from four independent organoid batches and 6-OHDA treatments from 

three cell lines. Wilcoxon rank sum test, *p<0.05, **p<0.01, ***p<0.001 

 

Fig. 5: Hierarchical cluster analysis and dimensionality reduction 

a) Hierarchical clustering using Ward’s minimum variance method without (i) and with data 

normalization (ii).  

b) Principal component analysis before (i) and after data normalization (ii).  
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Table 1: Feature-based classification results before and after data normalization 

Classification 

Algorithm 

Data 

processing 
Normalized to 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

RF Raw - 75 77 ± 3 72 ± 2 

RF Z-score  E, C, S 86 87 ± 3 85 ± 3 
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