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Abstract

A major challenge in the field of neurodegenerative diseases is the poor tranglation of pre-clinical models
to clinical applications. The human brain is an immensely complex structure, which makes it difficult to
recapitulate its development, function and disorders. In the recent years, brain organoids derived from
human induced pluripotent stem cells have risen as novel tools to study neurodegenerative diseases such
as Parkinson's disease (PD). PD is a multifactorial disorder, with aging, genetics and environmental
factors as key etiological elements. The majority of the PD cases are idiopathic and proposed to result
from a complex interaction between genetic predisposition and environmental exposure. Consequently,
the identification of potentially disease causing environmental factorsis of critical importance. Organoids,
as complex multi-cellular tissue proxies, are an ideal tool to study cellular response to environmental
changes. However, with increasing complexity of the system, usage of quantitative tools becomes
challenging. This led us to develop an automated high-content image analysis pipeline for image-based
cell profiling in the organoid system. Here, we introduce a midbrain organoid system that recapitul ates
features of neurctoxin-induced PD, representing a platform for machine-learning-assisted prediction of
neurotoxicity in high-content imaging data. This model is a valuable tool for advanced in vitro PD

modeling and for the screening of putative neurotoxic compounds.
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I ntroduction

Parkinson’s disease (PD) is the second most-common neurodegenerative disorder with an estimated
global prevalence of ~6 million people that is expected to double by the year 2040 (Dorsey and Bloem,
2018; GBD, 2017). The disease is clinically diagnosed after the onset of primary motor symptoms
including resting tremor, bradykinesia, rigidity and postural instability, when most of the dopaminergic
neurons are degenerated. The subsequent depletion of dopamine in the striatum is the fundamental
mechanism causing the motor features in PD. The etiology of PD is multifactorial, with endogenous
(genetic) and exogenous (environmental) contributors to development and onset. While a minority
(~10%) of the cases can be explained by well-defined genetic causes (Klein and Westenberger, 2012), in
the mgjority of PD the cause is unknown. Accumulating evidence suggests that the etiology is only
partially explained by the patient’s genetic background. It is proposed that the combination and
interaction of hundreds of genetic risk variants, ageing, and environment leads to development and onset
of PD, suggesting that "multiple hits' are necessary for the disease to develop (Bellou et al., 2016;
Schwamborn, 2018; Sulzer, 2007). This highlights the necessity to expand the research to identify

potential neurotoxic compounds and their harmful effects on the human brain.

One of the major challenges for PD is the development of reliable disease models that can capture the
complex nature of the human brain and related disorders. Animal models with toxin-induced
neurodegeneration or genetically modified organisms are dtill the gold standard in brain research.
However, rodents cannot reproduce the complexity of the human brain because brain development,
anatomy and physiology differs greatly between animals and humans (Hodge et al., 2019). Hence,
findings are not aways transferable to the human condition and the success rate of preclinical trials is
very low. In addition, in vivo animal toxicity testing is constrained by ethical considerations, time and
financia burdens. On the other hand classical two-dimensional in vitro cell culture models with isolated
cell types are too uniform and homogeneous to model a complex organ such as the human brain. To
bridge the gap between classical 2D in vitro and complex in vivo models, stem cell-derived 3D cell
culture systems such as brain organoids have risen in the recent years. These complex in vitro systems
effectively mimic the organ architecture and function, and have been shown to model
neurodevel opmental and neurodegenerative disorders (reviewed in (Wang, 2018)). Notably, these models
can be derived from human induced pluripotent stem cells, which makes them an ideal platform for

personalized medicine.
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However, with increasing complexity of the system, the availability of tools is limited due to enormous
processing of the data. So far powerful techniques such as high-throughput screening have a limited
relevance in the organoid system, because generating organoids is highly laborious and requires manual
handling. Due to architecturally complex heterotypic organization, comprehensive image analysis in
organoids is challenging. Building on this, we devel oped methods to automatically acquire and process
data from high-content imaging in organoids, which has been successfully demonstrated in brain
organoids (Smits et al., 2019) and 3D microfluidic cultures (Bolognin et a., 2019). In this study, we
further refined this pipeline with optimized high-content image data analysis tools in a neurotoxin-
induced PD organoid model. Furthermore, we used machine learning (ML) tools to complement the in
vitro toxicity assay. ML is gaining popularity in toxicity prediction because computational methods can
combine a variety of different measurements and information sources to predict an outcome of interest
(Scheeder et a., 2018). In high content imaging data, the various sources can originate from cell type
abundance, cellular morphology or degenerative features and cell death. With high-content imaging tools,
we obtain high-resolution data on the single cell level and assessed the neurotoxic effect of the
catecholaminergic neurotoxin 6-OHDA on human midbrain organoids using random forest classification.
This pipeline, from treatment to prediction, is valuable and useful for the exploration of potential

neurotoxic compounds in complex human brain organoids.
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Results

Generation and 6-OHDA-treatment of midbrain organoids from hNESCs

To generate human midbrain organoids, we used a previously published method (Monzel et a., 2017)
starting from human neuroepithelial stem cells (hNESCs). hNESCs were derived from human induced
pluripotent stem cells (hiPSCs) from three healthy individuals (Table S1). To specificaly target the
dopaminergic system, organoids were exposed to the catecholaminergic neurotoxin 6-hydroxydopamine
(6-OHDA) (Fig. 1). In dopaminergic neurons, 6-OHDA, due to its structural similarity with endogenous
dopamine, exerts its toxic effects by crossing the dopamine transporter, leading to an accumulation of the
toxin in the neuron (Emborg, 2007; Jonsson and Sachs, 1975; Thoenen and Tranzer, 1968; Ungerstedt,
1968) .

6-OHDA induces concentration-dependent cell death in midbrain organoids

We investigated 6-OHDA-induced neurotoxicity by treating organoids with various concentrations of 6-
OHDA, ranging from 50uM to 500uM for 48h, followed by one additional week under normal culture
conditions. Cell quantification by flow cytometry revealed that exposure to the toxin caused a
concentration-dependent reduction in the amount of living dopaminergic neurons, identified by the rate-
limiting enzyme of the dopamine synthesis, Tyrosine hydroxylase (TH) (Fig. 2a, b, Fig. S1a). Wefitted a
non-linear regression curve for each cell line and determined a mean LDsp a 147uM 6-OHDA (Fig. 2¢).
Since LDs varied among the cell lines, we used a concentration of 175uM in further experiments, which
led to a significant reduction in the amount of dopaminergic neurons in al three cell lines (Fig. 2d).
Consistent with the FACS data, we observed an overall concentration-dependent reduction in the TH
protein in immunofluorescence staining (Fig. S1b) and Western Blot, resulting in an average 2.3 fold
decrease of the protein after 175uM 6-OHDA treatment (Fig. 2e, f).

High-content imaging platform

We next examined the effect of 6-OHDA on the neurona network within midbrain organoids using
image-based cell profiling. We developed a high-content imaging platform to automatically acquire,
process and analyze images from organoid sections stained for neuron-specific Class 111 f-tubulin (TUJ1),
microtubule-associated protein 2 (MAP2) and dopaminergic neuronal marker TH. We subdivided
organoid sections into center (5-6 80um sections of the organoid core) and border (non-center) sections
(Fig. 3a, Fig. S2a) prior to immunostaining. This step is essentia to correct for spatial asymmetry in

architecturally complex organoids, with a dense core and neurites reaching out in the periphery. We
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acquired 12-16 area scans and 30 planes per organoid section using an automated confocal microscope
(Fig. 3b). The acquired images were stitched in MATLAB (Fig. 3c) and the amount of neurons and
dopaminergic neurons was quantified by normalizing to Hoechst positive nuclei. As expected, in
untreated organoids we saw a significant difference between border and center sections after
normalization (Fig. S2b) due to the nuclear density in the center of the organoid (Fig. S2c). Hence, we
analyzed border and center sections separately or corrected for the variation of the section by

normalization.

Dopaminergic neuronswithin midbrain organoids show typical signs of degeneration

Upon 6-OHDA treatment, the overall amount of neurons, positive for the neuronal markers TUJ1 and
MAP2 remained unaltered (Fig. 4a, b). On the contrary, the amount of TH+ dopaminergic neurons
decreased significantly (Fig. 4c). We next computed a 3D mask for TH+ cells using edge-detection
methods of image processing. Further, we generated a 3D skeleton of the dopaminergic neuronal network
in order to extract features such as nodes (dendritic and axonal points of branching) and links (total
number of branches), as well as neurite fragmentation using erosion operations (Fig. 3c, d, Table S2). 6-
OHDA treatment leads to a significant decrease in the complexity of dopaminergic neurons and an

increase in the amount of fragmented neurites (Fig. 4d-f, Fig. S1c, Fig. S3-5).

Random for est prediction of neurotoxicity

We next used a ML approach to build a classifier able to discriminate between CTRL and 6-OHDA-
treated organoids;, and consequently identify the measurements that describe the largest difference
between the two conditions. We trained a random forest (RF) algorithm with a ten-time 5-fold cross-
validation procedure in order to ensure an unbiased estimation of the model performance. We first applied
our strategy to the raw/unprocessed data. The generated model achieved on average a classification
accuracy of 75%. The prediction was mainly influenced by dopaminergic features, with the amount of
TH+ cells / live cells, TH skeleton, and TH fragmentation as most important measurements (Table 1,
Figure S6a,-b;).

Knowing that prediction power of ML models highly depends on data quality, we attempted to remove
highly variable and for the biological effect irrelevant experimental factors (organoid batch, cell line and
section). We first assessed the contribution of those factors along with the treatment (sample condition) to
the variability observed in the data. We used a principal variance component analysis (PVCA) (Bushel,
2013) and observed significant contribution of each factor (Fig. S6¢;). Building on this, we investigated

whether we could improve classification accuracy by normalizing the data. We performed a z-score
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transformation across the entire dataset for (within each combination of) experiment (4 independent
organoid batches and treatments), cell line ((MO1, hMO2, hMO3) and section (border, center).
Normalization strongly improved the classification accuracy of the RF model to 86%, while lowering the
variance described by experimental conditions (Table 1, Fig. S6a;-C;;). Consistent with this, we observed a
clear separation between control and 6-OHDA treatment using hierarchical cluster anaysis (Fig. 5a), as
well as principal component analysis (Fig. 5b). This result suggests that by optimizing data processing
strategies, we can robustly predict neurotoxicity using a ML approach on complex high-content image

analysis data from human brain organoids.
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Discussion

In recent years, advanced 3D in vitro brain models, termed brain organoids, have been extensively
developed to study neurological disorders (Bershteyn et a., 2017; Lancaster et a., 2013; Li et a., 2017,
Mariani et al., 2015; Qian et a., 2016), suggesting that brain organoids could also be relevant for
modeling of neurodegenerative diseases. 3D culture conditions have been shown to provide the complex
environment necessary for extracellular protein aggregation to model A and Tau pathologies (Choi et d.,
2014; Lee et d., 2016). The development of regionally restricted midbrain-specific organoids suggests
their potential to model Parkinson's disease (Jo et al., 2016; Monzel et al., 2017). Two recent studies show
that genetically modified and patient-derived midbrain organoids harboring the PD-associated LRRK2-
(G2019S mutation manifest degenerative phenotypes and decreased complexity of dopaminergic neurons
(Kimet al., 2019; Smits et al., 2019).

In this study, we have used the catecholaminergic neurotoxin 6-OHDA to target specificaly the
dopaminergic system. Due to its structural similarity with endogenous dopamine, 6-OHDA enters the
dopaminergic neuron via the dopamine transporter, leading to an accumulation of the toxin in the neuron.
Because of its selectivity for dopaminergic neurons, 6-OHDA is the drug most frequently used to induce
neurodegeneration of the nigrostriatal system in anima models. To date, three mechanisms of action have
been proposed for the neurotoxic effect of 6-OHDA. 1) Auto-oxidation of 6-OHDA generating cytotoxic
H.O,, reactive oxygen species (ROS) and catecholamine quinones, causing severe oxidative stress , 2)
enzymatic conversion of 6-OHDA to hydrogen peroxide via monoamine oxidase (Simola et a., 2007),
and 3) direct inhibition of mitochondrial respiratory chain complex | (Glinka and Y oudim, 1995). The
resulting oxidative stress is followed by the alteration of cellular homeostasis and neuronal damage,
leading to cell death. 6-OHDA has been suggested as a putative neurotoxic environmental factor in the
pathogenesis of PD (Jellinger et al., 1995), based on the occurrence of 6-OHDA in human brain (Curtius
et al., 1974), aswell asin urine of PD patients (Andrew et al., 1993).

To assess neuronal damage in the human midbrain organoid system, among other methods we used
microscopy-based phenotyping. However, compared to 2D monolayer cultures, organoids exhibit an
architecturally complex heterotypic spatial organization. Typicaly, multiple cell types like astrocytes,
oligodendrocytes, stem cells and neurons are arranged in close proximity in the 3D space, the latter one
expanding long neurites in the surrogate matrix. This complexity makes it utterly difficult to measure
neuronal complexity, such as branching and thickness of neurites and to quantify these measurements.

Hence, the use of powerful image processing algorithms is necessary to extract morphometric features
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accurately on the single cell level. However, high-content microscopy generates large amounts of multi-
parametric data. The technological advances of high imaging throughput, precise analytical frameworks
with high-performance computation opens new avenues for phenotypic profiling on the single-cell level
in brain organoids. In combination with a powerful machine learning approach for the analysis of
multivariate profiling data, we were able to predict neurotoxin-induced perturbations in the human
midbrain organoid system. Random forest by design is a well-established technique for reducing
predictive variability, preventing overfitting and achieving high classification accuracy (Parmar et al.,
2019). Importantly, random forest gives estimates of which variables are most important in the
classification (Breiman, 2001). Moreover, using PVCA, we were able to identify the contribution of
experimental factors to the total variance and design optimized data normalization approaches to improve
predictability. This supports the concept of using image-based profiling studies in organoid models to
identify drugs that modulate phenotypes. We suggest that organoids have the potential to be used as a
platform from target identification to toxicity prediction using machine learning-assisted high-content
image-based cell profiling.
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Experimental Procedures

Cedll Culture

Human NESC lines from three female healthy individuals were derived as described in (Reinhardt et al.,
2013) from human iPSCs (Table S1). Human NESCs were cultured on Matrigel-coated plates in N2B27
media supplemented with 3 uM CHIR-99021 (Axon Medchem), 0.75 pM purmorphamine (Enzo Life
Science) and 150 uM ascorbic acid (Sigma) (referred to as N2B27 maintenance media) as previously
described (Reinhardt et al., 2013). N2B27 medium consists of DMEM-F12 (Invitrogen)/Neurobasal
(Invitrogen) 50:50 with 1:200 N2 supplement (Invitrogen), 1:100 B27 supplement lacking Vitamin A
(Invitrogen), 1% L-glutamine and 1 % penicillin/streptomycin (Invitrogen). Midbrain organoids were
generated with 9000 cells exactly as described previously (Monzel et a., 2017) with the exeption that
Geltrex was used instead of Matrigel as extracellular matrix. hNESCs were plated from single cell
suspension following accutase treatment and cultured for 6 days in ultralow attachment 96 well plates
(CORNING) in N2B27 maintenance media. At day 8, the NESC spheroids were embedded into droplets
of Geltrex, and cultured in non-treated tissue culture 24 well plates (CELTREAT). One organoid was kept
per well. At day 10, the differentiation into midbrain dopaminergic neurons was initiated with N2B27
media supplemented with 10 ng/ml hBDNF (Peprotech), 10 ng/ml hGDNF (Peprotech), 500 uM dbcAMP
(Peprotech), 200 uM ascorbic acid (Sigma), and 1 ng/ml TGF-33 (Peprotech). 1 uM purmorphamine
(Enzo Life Science) was added to this medium for an additional 6 days. At day 14, organoids were place
on an orbital shaker (IKA) rotating at 80 rpm, and media was changed every 3 to 4 days until the
treatment.

Cytotoxicity

In order to identify, which 6-OHDA concentration leads to a significant reduction in the amount of
dopaminergic neurons, organoids were treated with 50 uM, 100 uM, 175 uM, 250 uM and 500 puM
60HDA (Sigma) after five weeks of organoid culture. Organoids were cultured in N2 Medium
(DMEM/F12 with 1% N2 supplement and 1% penicillin/streptomycin/glutamine), supplemented with
1:500 DM SO only, or with 6-OHDA with 1:500 DM SO. DM SO was always added to the medium in case
a compound treatment requires the use of DM SO, which in our experiments diminished the effect of 6-
OHDA due to its antioxidant properties. Due to the instability and rapid auto-oxidation of 6-OHDA, we
performed a double-treatment on two sequential days. Two days later, medium was changed against
N2B27 differentiation and organoids were kept under usual culture conditions on an orbital shaker. Six
days later, organoids were fixed (IF staining), frozen at -80°C (Western blot) or dissociated (Flow
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cyotmetry). During the treatment, the matrix around the organoids blackened due to the spontaneous

oxidation of the compound.

Flow cytometry

For flow cytometry analysis, six organoids for each cell line and treatment condition were dissociated to
single cells by incubation in 0.18% Papain (Sigma), 0.04% EDTA (Sigma) and 0.04% L-Cystein (Sigma)
dissolved in DMEM-F12 (Invitrogen) a 37 °C under dynamic conditions until the Geltrex was
completely removed (2-3 h). Afterwards, organoids were treated with Accutase (Sigma) for another 1-2 h
at 37 °C under dynamic conditions. During Accutase treatment, organoids were carefully dissociated by
pipetting, first with 21000 pl pipette and then with a 200 pl pipette. Prior to fixation, the single cells were
washed in cold 1x PBS and stained for live/dead cells using eBioscience™ Fixable Viability Dye
eHuor™ 450 for 30 min at 4 °C on arotor. For intracellular staining, transcription factor buffer set (BD
Bioscience) was used according to the manufacturer’s instructions. After fixation, cells were filtered
through a 5 ml polystyrene round-bottom tube with cell-strainer cap (Corning). 100,000 cells were used
per sample and antibodies were used at the following dilutions: chicken anti-TH (1:50, Abcam) and rabbit
anti-TUJ1 (1:500, Covance). Threshold gates were set with the same samples that were stained with the
following isotype control antibodies: Normal chicken IgY Control (R&D Systems), and normal rabbit
IgG control (Santa Cruz Biotechnology). Isotype control antibodies were used at the same concentration
as the detection antibody. All secondary antibodies (Invitrogen) were conjugated to Alexa Fluor
fluorochromes. Flow cytometry was performed by using BD LSRFortessa Cell Anayzer and data were

analyzed and represented by FlowJo software.

Western Blot

For Western Blot, one organoid per condition was lysed with Urea Buffer (7M Urea, 2M Thiourea, 2%
CHAPS, 1% DTT (w/v) and Complete protease inhibitor cocktail (Roche) in MilliQ water). The cell
lysates were centrifuged for 10 min at the highest speed at 4°C. The supernatant was mixed with sample
buffer and boiled at 95°C for 5 min. The protein concentration of the boiled samples was determined
using a protein quantification assay kit (Macherey Nagel). After adjustment to equal protein
concentrations, the samples were subjected to sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) and western blotting. The lysates were size-separated by electrophoresis and
transferred to nitrocellulose membranes using iBlot™ 2 Gel Transfer Device (Thermo Fischer). The equal
loading of the blotted protein was verified by Ponceau S (Sigma) staining. Subsequently, membranes
were blocked for 1 h at RT in 5% skimmed milk powder and 0.2% Tween in PBS before incubating
overnight at 4-C with the primary antibodies mouse anti-TH (1:1000, Millipore) and rabbit anti-GAPDH

12
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(1:1000, Abcam). Horseradish peroxidase conjugated secondary antibodies and enhanced
chemiluminescence reagents (ECL kit) (GE Healthcare) were used for detection. Western blots were
analyzed using |mageJ software.

I mmunofluor escence stainings

At day 42, organoids were fixed with 4 % paraformal dehyde overnight at RT and washed 3x with PBS for
15 min. Two organoids per cell line, condition and experiment were embedded in 3% low-melting point
agarose in PBS and incubated for 20 min at 40 °C, followed by 30 min incubation at RT. 80 um sections
were cut using a vibratome (Leica VT1000s), and sections were separated into “border” and “center”
sections. The sections were permeabilized and blocked with 0.5 % Triton X-100, 2.5 % normal goat or
donkey serum, 2.5 % BSA, and 0.1 % sodium azide. Sections were incubated on a shaker for 48 hat 4 °C
with primary antibodies in the blocking buffer containing 0.1% Triton X-100 at the following dilutions:
rabbit anti-TH (1:1000, Abcam), chicken anti TUJL (1:1000, Millipore) and mouse anti-MAP2 (1:200,
Millipore). After incubation with the primary antibodies, sections were washed three times in 0.01 %
Triton X-100 and incubated with the secondary antibodies (1:1000) including a Hoechst 33342
counterstaining for nuclei in blocking buffer with 0.01 % Triton X-100. All secondary antibodies
(Invitrogen) were conjugated to Alexa Fluor fluorochromes. Fluorescence images were acquired on

Operetta confocal microscope (Perkin Elmer) with a 20x Objective (16-20 area scans, 25 z-planes).

I mage processing and analysis

Immunofluorescence 3D images of each organoid section in four channels were processed and analyzed

in Matlab (2017a, Mathworks) using a custom image-analysis algorithm.

First, mosaic stitching was performed for each channel by computing normalized cross correlations
between overlapping image sections. Positions of the local maximawere used to return x and y offsets for

the positioning of image tilesin the stitched mosaic image.

In the stitched image, nuclel were segmented via difference of Gaussians. In brief, a foreground image
was computed by convolving the raw Hoechst channel with a Gaussian filter of size 21 and standard
deviation 1. The background image defined as the raw Hoechst channel convolved with a Gaussian filter
of size 21 and standard deviation 3 was subtracted from the foreground image. The nuclei mask was
defined by pixels with gray tone values larger than 20. Furthermore, only connected components with at
least 20 pixels were kept. For the quantification of dead nuclei, the raw Hoechst channel was convolved

with a Gaussian filter of size 11 and standard deviation 1. All pixels with a gray tone value larger than
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1800, were considered as pyknotic nuclei pixels, which show an increased fluorescence intensity in
Hoechst. Relative quantification of live cells was calculated by subtracting the pyknotic nuclei pixels

from the total number of nuclei pixels.

Dopaminergic neurons in the TH channel were segmented using Fourier transform. For high pass
frequency filtering, a butterworth filter with cutoff frequency 7 and order 1 was applied to each image
plane and the mask was defined by pixels with gray tone values larger than 0.003. Connected
components with at least 1000 pixels were kept and the mask was further refined by applying a 3D
median filter (3x3x3). Similarly, neurons in the TUJ1 and MAP2 channel were segmented using Fourier
transform with cutoff thresholds of 0.0015 and 500 pixels (Marques, 2011).

To extract morphometric features from dopaminergic neurons, a 3D skeleton was generated from the TH
mask. The agorithm used for skeletonization is based on homotopic thinning with parallel topology
consistency checking (Kerschnitzki et al., 2013; Lee et a., 1994). The resulting skeleton was converted
into a network graph describing nodes (branching points) and links (branches). To analyze neurona
fragmentation, the mask in the TH channels was eroded. The underlying theory is that the surface of
fragmented objects is larger than the surface of non-fragmented aobjects as compared to their cumulated

volumes. The erosion was performed using a 3D spherical structuring element with aradius of 1 pixel.

Additionally, the amount of TH+ cells was quantified by identifying separated nuclei that have adjacent
TH+ pixels, as opposed to a pixel count. First, big interconnected objects were removed from the nucleus
mask (> 10000 pixels). This step removes the nuclei from the dense inner core of the organoid, where
nuclei cannot be separated. The resulting nuclei were dilated with a disk-shaped structuring element of 4
pixels, and an additional spherical structuring element of size 1. For single cell analysis, an overlap of a

dilated nucleus with TH+ pixels was then counted as one TH positive cell.

The extracted features are summarized and described in detail in Table 2.

Data analysis

We assigned additional metadata to the obtained high-content image anaysis data. The metadata
described the origin of every organoid section (Cellline (hMO1, 2, 3), Experiment (organoid batch/-
treatment), Replicate (1, 2), Condition (CTRL, 6-OHDA), and Section (border/center). The data was
imported into R software (R version 3.5.1 -- "Feather Spray") and further processed. First, data from

Cdlline, Replicate, Experiment, Condition and Section was grouped and the mean of the measurements
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was calculated. This step was performed in order to combine data from neighboring sections. We used
data-analysis strategies as suggested in (Caicedo et al., 2017).
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Classification model based on RF

We used random forest (Breiman, 2001) to model the treatment condition of the organoids. RF is an
ensemble method based on classification and regression tree (CART). It is very popular since derived
models usually reach high performances (Touw et al., 2013). RF aims at creating several trees that will be
used to predict the class of a new sample. The final decision is made through a voting system. For
classification, each tree is built by iteratively selecting a set of features and choose among them the
candidate that maximizes the separation between samples of different conditions. This process is repeated
until either the separation is perfect or the maximum number of iteration is reached or no improvement is
possible. Note that CARTSs are non-parametric. Features are discretized according to the value that gives
the best sample splitting. CART therefore generates binary tree. To perform RF, we used the
randomForest function of randomForest R package (Liaw and Wiener, 2002). To assess the prediction
accuracy of RF models, we implemented a standard 5-fold cross-validation procedure. A key advantage
of RF resides in its automatic evaluation of the importance of each feature. For a given feature, we
estimated its global feature importance by averaging the importance measures obtained from 50 runs of
RF models.

Data Availability

The data that was used to build up the model is openly available at DOI: 10.17881/Icsb.20191309.02.

Code Availability

The Matlab and R scripts for the image and data analysis are available on github. The R scripts for RF

classification are available on gitlab.
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Figure Captions

Fig. 1. Experimental setup and mechanism of action of 6-OHDA.

Human iPSC-derived neuroepithelial stem cells (hnNESCs) were cultured under 3D conditions, embedded
in droplets of Geltrex and differentiated into midbrain dopaminergic neurons after 10 days. Organoids
were cultured on an orbital shaker (as described in (Monzel et a., 2017)). After 5 weeks of organoid
culture, organoids were treated with different concentrations of 6-OHDA, leading to the formation of
cytotoxic species, which is followed by neuronal death. (Adapted from (Monzel et a., 2017))

Fig. 2: 6-OHDA-induced degener ation of dopaminergic neur ons.

a) Representative flow-cytometry gating setup for TH

b) Representative flow-cytometry analysis showing a decrease in TH+ live cells at different concentration
of 6-OHDA ranging from 50 to 500uM.

¢) 6-OHDA dose-response curves fitted to the data of B.

d) Barplot showing a robust decrease in the amount of TH+ cells at a 6-OHDA concentration of 175uM.
Data obtained for each cell line from seven independent organoid batches and 6-OHDA treatments. Error
bars represent mean + SEM. *p< 0.05

€) Western Blot revealing a concentration-dependent decrease of TH protein upon 6-OHDA treatment.

f) Quantification of d, normalized to the mean of the untreated controls of nine organoids derived from

three independent lines. Error bars represent mean + SEM. *p< 0.05, **p<0.005

Fig. 3: High-Content Image Analysis Wor kflow.

a) Sample preparation. Organoids were sectioned and prior to immnuofluorescence staining separated into
border and center sections. Organoid sections were mounted on an object slide containing a grid for
automated image acquisition.

b) Image acquisition. 12-16 area scans in 30 planes were acquired using an automated confocal
Mi Croscope.

¢) Images were exported in MATLAB and area scans were stitched. On the obtained 3D image, masks
were generated for dopaminergic neurons in order to quantify cell type abundance and morphometric
features.

d) Feature extraction. Dopaminergic neuronal complexity was quantified by extracting cellular features
such as neurite nodes, links, and fragmentation. i) Mask generation, ii) Schematic view of the extracted
features, iii) Example of neurite fragmentation and decreased cellular complexity after 6-OHDA
treatment.
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€) High-content data analysis in R. The obtained data from MATLAB was exported into R and further

processed for machine learning-based prediciton of neurotoxicity and neuroprotection.

Fig. 4: Specific degeneration of dopaminergic neurons after 6-OHDA treatment.

a) The overall amount of TUJ1+ neurons is unaffected from the treatment.

b) The overall amount of MAP2+ neurons is unaffected from the treatment.

¢) Dopaminergic neurons degenerate after 6-OHDA treatment. %TH: Total count of TH+ cells.

d-f) 6-OHDA treatment leads to impaired neuronal complexity as indicated by increased neurite
fragmentation, decreased number of nodes (branch origin and end-point) and increased numbers of links
(neurite branches). Data obtained from four independent organoid batches and 6-OHDA treatments from
three cell lines. Wilcoxon rank sum test, *p<0.05, **p<0.01, ***p<0.001

Fig. 5: Hierarchical cluster analysis and dimensionality reduction

a) Hierarchical clustering using Ward’'s minimum variance method without (i) and with data
normalization (ii).

b) Principal component analysis before (i) and after data normalization (ii).
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Table 1: Feature-based classification results before and after data normalization

Classification Data Normalized to Accuracy  Sensitivity Specificity
Algorithm processing (%) (%) (%)
RF Raw - 75 77+3 72+2

RF Z-score E,C,S 86 87+3 85+3
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