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Highlights

e Data resource connected extremely diverse set of cancer data sets

e Graph query engine that can be easily deployed and used on new datasets
e Easily installed python client

e Server online at bmeg.io

Abstract

The analysis of cancer biology data involves extremely heterogeneous datasets including information
from RNA sequencing, genome-wide copy number, DNA methylation data reporting on epigenomic
regulation, somatic mutations from whole-exome or whole-genome analyses, pathology estimates
from imaging sections or subtyping, drug response or other treatment outcomes, and various other
clinical and phenotypic measurements. Bringing these different resources into a common framework,
with a data model that allows for complex relationships as well as dense vectors of features, will
unlock integrative analysis. We introduce a graph database and query engine for discovery and
analysis of cancer biology, called the BioMedical Evidence Graph (BMEG). The BMEG is unique from
other biological data graphs in that sample level molecular information is connected to reference
knowledge bases. It combines gene expression and mutation data, with drug response experiments,
pathway information databases and literature derived associations. The construction of the BMEG
has resulted in a graph containing over 36M vertices and 29M edges. The BMEG system provides a
graph query based API to enable analysis, with client code available for Python, Javascript and R,
and a server online at bmeg.io. Using this system we have developed several forms of integrated
analysis to demonstrate the utility of the system. The BMEG is an evolving resource dedicated to
enabling integrative analysis. We have demonstrated queries on the system that illustrate mutation
significance analysis, drug response machine learning, patient level knowledge base queries and
pathway level analysis. We have compared the resulting graph to other available integrated graph
systems, and demonstrated that it is unique in the scale of the graph and the type of data it makes
available.

Summary

The analysis of cancer biology data involves extremely heterogeneous datasets including information.
Bringing these different resources into a common framework, with a data model that allows for
complex relationships as well as dense vectors of features, will unlock integrative analysis. We
introduce a graph database and query engine for discovery and analysis of cancer biology, called the
BioMedical Evidence Graph (BMEG). The construction of the BMEG has resulted in a graph
containing over 36M vertices and 29M edges. The BMEG system provides a graph query based API
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to enable analysis, with client code available for Python, Javascript and R, and a server online at
bmeg.io. Using this system we have developed several forms of integrated analysis to demonstrate
the utility of the system.

Key Words

Cancer, Graph Database, API, Query Engine, Data Integration, Drug Response, Knowledge Base

Introduction

Biological data produced by large-scale projects now routinely reaches petabyte levels thanks to
major advances in sequencing and imaging. This exponential growth in size is well-documented and
is being addressed by multiple big-data initiatives. However, the parallel increase in data
heterogeneity is still a major unaddressed issue. With multiple profiling methods, platforms, versions,
formats and pipelines, biological data is far from monolithic. The immense and expansive amount of
heterogeneous data make it difficult to normalize and integrate data as well as perform integrative
analysis across disparate experiments. When faced with these challenges as well as the substantial
labor and computation costs, researchers may use only a fraction of publicly available data for their
analysis, and will not update their data or analysis as new data becomes available.

Graph databases are useful tools for systems biology analysis where integration of complex data is
required’™. In the commercial sector, several major data aggregators have been successfully using
graph databases for integration of heterogeneous data. Facebook uses the 'Social Graph* to
represent the connections between people and their information, while Google’s search engine uses
a 'Knowledge Graph' to connect various facts about different subjects. This approach is especially
powerful when entities in the graph are connected via multiple types of complex, chained interactions.
Based on these observations, we have built the BioMedical Evidence Graph (BMEG) to allow for
complex integration and analysis of heterogeneous biological data.

The BMEG was created by importing several cancer related resources and transforming them into a
coherent graph representation. These resources include patient and sample information, mutations,
gene expression, drug response data, genomic annotations and literature based analysis (see Table
1). This Graph contains 15K patients, 54K samples, 4M alleles, 640K drug response experiments and
50K literature derived genotype to phenotype associations.

To enable analysis and machine learning, our team concentrated on utilizing high quality feature
extraction methods applied consistently to all samples. This included identifying the best methods of
somatic variant calling and RNA-seq analysis. We utilized open challenges to create leaderboards of
the best methods submitted by the community. We then participated in the development of open
standards to enable the exchange of genomic associations from cancer knowledge bases.

Methods

Graph Schema

Gen3d is a data commons management system developed by the Center for Translational Data
Science based on their work for the NCl's GDC. The BMEG graph schema is described using a
JSON schema derived from Gen3 architecture. JSON Schema is a data definition language for
describing rules about data structuring. These rules include required fields, data types and field value
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ranges. The Gen3 system extends JSON schema to add concepts to constructing graph data
including database ID alias mapping and edge creation.

At the core of Geng3's description of TCGA’s metadata, is a tree representing the organization of all
the different data elements that make up the program. The tree starts at a top level 'Program' node,
representing the entire TCGA program, below that are separate projects for each of the different
tumor types. Each tumor type is then populated by a number of Cases, which in term have multiple
Samples, which can then be subdivided into a number of Aliquots. The BMEG schema builds on this
base structure to include data from a number of areas including: 1) Genome Reference, 2) Gene and
Pathway Annotations, 3) Somatic Variants, 4) Gene Expression data, 5) Knowledge Bases.

Data Sources

Initial data sources (see Table 1) for the BMEG were centered on large cohorts of patient-derived
samples, with DNA and RNA profiling, cell lines with drug response data and literature-derived
drug-phenotype associations. The goal was to provide uniform input data for analysis and machine
learning.

RNA Seq Data

To identify the best methods for RNA analysis, we launched the SMC-RNA challenge, which
benchmarked isoform quantification methods to prioritize the methods used for processing data that
would be ingested into BMEG. For example, as far as RNA-Seq transcript abundances, we used
Kallisto to process the TCGA and CCLE?® datasets. Additionally the GTEx project® provided gene-level
transcript-per-million mapped reads (TPM) estimates for normal tissues that could be contrasted with
tumors. Combinations of these resources provide 36K vertices to the BMEG graph.

TCGA Metadata

The Genomic Data Commons (GDC) created a data system to track the clinical and administrative
meta-data of the TCGA samples and files. We utilized their web API to obtain TCGA patient and
sample metadata for the evidence graph.

TCGA Genomic Data

To determine the best methods for Somatic mutation calling, we partnered with the DREAM
consortium, Sage BioNetworks and OICR to launched the ICGC-TCGA Somatic Mutation Calling
challenge’. Many of the methods evaluated by this effort were incorporated into pipelines that would
then be deployed on the TCGA's 10K exomes as part of the Multi-Center Mutation Calling in Multiple
Cancers (MC3) project®. The MC3 adds 10K vertices and connects to 3 million alleles (2.6 million
distinct) in the graph. For the set of copy number alteration events, we utilized the Gistic2® data from
the Broad Institute’s Firehose system.

Cell Line Drug Response Data

Drug response data has been collated by the DepMap project'. This includes response curves, IC50
and EC50 scores from CCLE", CTRP'> ¥ and GDSC™. Additionally, the DepMap meta-data files
provided cell line clinical attributes and cross project ID mapping.

Variant Drug Associations

The Genotype To Phenotype (G2P) schema'® was designed to enable a number of different cancer
knowledge base resources to be aggregated into a coherent resource. With this resource, the BMEG
has aggregated associations from six prominent cancer knowledge bases, including 50K associations
vertices.
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Pathway Data

Pathway Commons'® aggregates, normalizes and integrates data from 22 public pathway databases.
At 1.5 million interactions and 400K detailed biochemical reactions, it is the largest curated pathway
databases available. It aggregates pathway relationships from Reactome’’, NCI Pathway Interaction
Database', PhosphoSitePlus', HumanCyc?, PANTHER Pathway?', MSigDB*, Recon X%,
Comparative Toxicogenomics Database*, KEGG Pathway?®, Integrating Network Objects with
Hierarchies®®, NetPath?’, and WikiPathways?. All of these resources provided 1.9 million vertices to
the graph.

Reference Data

Biological reference data and existing experimental results form a majority of the data stored in the
BMEG. These concepts need to be modeled into the graph, and various transformers written to
properly translate these concepts. Part of the import pipeline includes Gene, Transcript and Exon
annotations, protein and PFAM% assignments as well as Gene Ontology® functional annotations. For
this reason, the BMEG standardizes on Ensembl IDs®! as the global identifier for various genomic
components.

Graph Databases and Query Languages

To enable various analytical queries, and provide a framework for building new functionality, we
developed the GRaph Integration Platform (GRIP) to power queries against the BMEG web resource.
GRIP stores multiple forms of data, with the ability to hold thousands of data elements per vertex and
per edge of the graph. As applications need, GRIP allows efficient conversion to various data frames
for downstream algorithms. This makes the system not only capable of storing sparse relationship
data, such as pathways and ontologies, but also dense matrix formatted data, such as gene
expression levels for thousands of genes across hundreds of samples.

The query language implements most operations needed for subgraph selection, as well as
aggregation features. A general purpose endpoint places more emphasis on the client side building
smart queries to obtain the data they need, rather than having custom server side components
provide specialized facets to the users. Because of this, clients can easily create new queries,
unanticipated by the server developers, and have them still work. We have made the API available
via Python, Javascript and R clients. GRIP is written in the GO programming language, and compiles
to a single static binary, which means that it can be installed onto a system with little to no
dependencies.

Results

Every different example use case demonstrates the utility of the BMEG dataset and its query engine.
GripQL is a traversal based graph selection language based on Gremlin®?. The user describes a
series of steps that will be undertaken by a 'traveler'. An example traversal would start on a vertex
with label ‘project’, go out to edges labeled 'samples’, then go out along edges labeled ‘aliquots’. The
engine then scans the graph for all valid paths that can be completed given the instructions. Each of
the traversal descriptions is based on the graph schema seen in Figure 1. The commands are written
using the Python version of the client, but could be executed similarly in R or Javascript. The API
provides a getSchema method which describes the different types of vertices, their properties and
the edges that connect them.

Our analysis begins with counting the mutations per gene in a cancer cohort. As seen in (1), this
query starts on a node of a project, in this case TCGA-BRCA, and then follows the path to the cases
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that belong to the project, then to the samples and finally to the aliquots. As it passes the Sample
node, it filters for tumor samples. Once on the aliquot node, it continues to the SomaticCallset, which
represents sets of variants produced by a single mutation calling analysis. The traversal then
identifies the edges that connect the SomaticCallet to different alleles, this time using the outE
command to land on the edge, rather than the destination vertex. With the gene ID in hand, we then
uses the aggregate method to count up the various terms that occur in the enembl_gene field.

(1)

G.query().V("Project:TCGA-BRCA")

.out("cases").out("samples")
.has(gripqgl.eq("gdc_attributes.sample_type", "Primary Tumor"))
.out("aliquots").out("somatic_callsets").outE("alleles")
.has(gripqgl.contains("methods", "MUTECT"))
.aggregate(gripgl.term("geneCount”, "ensembl_gene"))

Which returns
ENSG00000155657 416
ENSG00000121879 401
ENSG00000141510 300
ENSG00000181143 193

ENSG00000198626 113

listing the number of variant alleles found for each gene.

We can then inspect the most frequently impacted pathways. First by identifying which pathways
each of the mutated genes belong to in (2) and then by normalizing by the number of genes per
pathway in (3). To identify the pathways involved in mutations, we provide a list of all mutated genes,
find their associated pathways and retrieve the tuples of every gene-pathway pair, using the as_
command (the underscore is added to avoid clashing with the python reserved word as) to store the
gene and then using the render function to display only the data we require.

(2)
G.query().V(genes).as_("gene")
.out("pathways").render(["$gene._gid", "$._gid"])

Which returns
ENSG00000000419 pathwaycommons.org/pc11/Pathway_6bf6d39c0284b6...
ENSG00000000938 identifiers.org/reactome/R-HSA-432142
ENSG00000000971 identifiers.org/reactome/R-HSA-977606

ENSG00000001036 pathwaycommons.org/pc11/Pathway_4b5817426aa06d...
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listing all of the pathways for which each gene is a member.

This information can be combined with the previous table to calculate the mutations per pathway. To
normalize these values we count the number of genes per pathway. The traversal first starts on the
Pathway vertex marks for later retrieval using the as_ command. Once the travel has split and moved
out to the multiple child Gene vertices, the select command recalls the stored pathway vertex and
moves the traveler back. As this point, an aggregation is called to count the number of travelers on
each Pathway vertex.

3)
G.query().V().hasLabel("Pathway").as_("pathway")

.out("genes").select("pathway")
.aggregate(gripqgl.term("pathwayGeneCount", "_gid"))

Which returns

identifiers.org/reactome/R-HSA-191273 439
identifiers.org/reactome/R-HSA-381753 393
identifiers.org/reactome/R-HSA-212436 341

pathwaycommons.org/pc11/Pathway_4b5817426aa06d... 340

listing the number of mutations for each pathway found.

We can also connect the sets of mutations in the BRCA cohort to the most connected papers, as
linked by the G2P associations in (4). In this use case, the aggregate method is called on the special
_gid variable which represents a unique Global ID for each vertex.

(4)

G.query().V("Project:TCGA-BRCA")

.out("cases").out("samples")
.has(gripqgl.eq("gdc_attributes.sample_type"”, "Primary Tumor"))
.out("aliquots").out("somatic_callsets").out("alleles")
.out("g2p_associations").out("publications")
.aggregate(gripgl.term("pub", "_gid"))

Which returns

Publication:ncbi.nlm.nih.gov/pubmed/27269946 1033
Publication:ncbi.nlm.nih.gov/pubmed/27174596 1029
Publication:ncbi.nlm.nih.gov/pubmed/19223544 858

Publication:ncbi.nlm.nih.gov/pubmed/20619739 664

That lists the number of mutations for all genes connected in each of the returned papers.


https://doi.org/10.1101/773911
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/773911; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

The G2P associations also connect to compounds that are linked to phenotypes based on specific
alleles in (5). This traversal is much like (4), however it also includes a distinct operation to identify
unique pairs of cases and compounds. If there are multiple known association records from different
publications and these publications link one allele to the same drug response phenotype, then only
one relationship will be noted per patient.

(5)

G.query().V("Project:TCGA-BRCA")
.out("cases").as_("case").out("samples™)
.has(gripqgl.eq("gdc_attributes.sample_type"”, "Primary Tumor"))
.out("aliquots").out("somatic_callsets").out("alleles")
.out("g2p_associations").out("compounds")
.distinct(["$case._gid", "_gid"])
.aggregate(gripqgl.term("compound”, "_gid"))

Which returns

Compound:CID104741 345
Compound:CID11717001 340
Compound:CID56649450 327

Compound:NO_ONTOLOGY:CID24989044 313

listing the number of times compounds where associated to mutations in patients.

We can now take the most commonly linked drugs, in a list named compounds, that we found in (5)
and identify the ones that have also been part of cell line drug response testing in (6). We limit our
query to cell lines that were studied as part of the CTRP set of breast cancer cell lines.

(6)
G.query().V(compounds).as_("compound").out("projects")
.has(gripqgl.eq("project_id", "CTRP_Breast_Cancer"))
.select("compound").render(["_gid", "synonym"])

Which returns
Compound:CID104741 FULVESTRANT
Compound:CID11717001 CHEMBL525191
Compound:CID17755052 PICTILISIB
Compound:CID24964624 CHEMBL1079175
Compound:CID42611257 VEMURAFENIB

Compound:CID56649450 ALPELISIB
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listing those drugs that were profiled in the CTRP effort.

At this point, we find that Compound:CID104741 (Fulvestrant) was on our list of referenced drugs and
was studied as part of CTRP. In (7) we look for the EC50 values for the samples in the breast cancer
cell lines that were tested against Fulvestrant. This also includes a call to the render method which
shapes the output into a custom JSON structure. In this case, it forms a tuple with the stored sample
ID and EC50 value. The listed of tuples returned by the client can then be passed directly into a
Pandas DataFrame®:.

(7)

G.query().V("Program:CTRP").out("projects")
.out("cases").out("samples").as_("sample")
.out("aliquots").out("drug_response").as_("response")
.out("compounds").hasId("Compound:CID104741")
.render(["$sample._gid","$response.submitter_compound_id", "$response.ec50"])

Which returns

Sample:CTRP:ACH-000937 fulvestrant 3.075000e-01
Sample:CTRP:ACH-000076 fulvestrant 2.317000e-02
Sample:CTRP:ACH-000983 fulvestrant 3.114000e-05
Sample:CTRP:ACH-000045 fulvestrant 3.055000e-01

listing the EC50 values for each of the BRCA cell lines to the Fulvestrant agent.

With the drug response values in hand, we can then look for associated transcriptomic data. There is
no direct RNA sequencing available from the CTRP project, however many of the cell lines used in
the CTRP project were assayed as part of the CCLE project. To identify these samples, in (8) we
follow the edge connecting the list named samples found in (7) to their parent cases. We then follow
the same_as edge to identify Case vertices in other projects that are the same as the ones we started
on, and then follow the tree down to the GeneExpression node to obtain the expression values and
then link them to our sample IDs. Again, we can use the render function to return properly formatted
data structures that can be passed directly into Pandas.

(8)

G.query().V(samples).as_("sample™)

.out("case").out("same_as")
.out("samples").out("aliquots").out("gene_expressions").as_("exp")
.render( ["$sample._gid", "$exp._data.values"])

Which returns

Sample:CTRP:A  Sample:CTRP:AC Sample:CTRP:AC  Sample:CTRP:AC  Sample:CTRP:AC
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CH-000004 H-000007 H-000012 H-000013 H-000015
ENSG00000000003 2.615887 4.066089 5.820945 5.533875 4.821200
ENSG00000000005 0.000000 0.000000 0.000000 0.056584 0.000000
ENSG00000000419 5.323370 5.889960 6.006522 7.532161 6.948484

listing the expression values of each gene across cell lines with variants in CTRP and RNA in CCLE.
The resulting matrix can be used to develop transcriptome based drug response models.

Data Releases

The BMEG resource was designed with portability and openness in mind. The graph query engine
that runs the system is open source and easy to install, while all of the compiled source files are
made available for bulk download. This allows other researchers to build on our existing system, and
reuse the data we've collected. Because graph data can be represented by a number of different
query engines, we also developed translations of the BMEG resource. Part of the BMEG toolkit is a
set of scripts to translate the data set and load it into other graph database systems including Neo4J
and Dgraph.

Discussion

Recently, a number of graph-based data integration projects have appeared, including biograkn®,
Biograph®, Bio4j*®, Bio2RDF*", Hetionet®. Many of these systems were built to aggregate pathway
and genotype/phenotype linkages. BMEG is unique from these efforts, in that its primary use case is
to drive analysis and machine-learning from actual samples. The BMEG holds genomic,
transcriptomic and phenotypic data from cancer cases as well as cell line samples. This data is meant
to provide a starting point for discovery, and generation of new models, rather than simply a
repository of existing models. The core of the BMEG idea is to define a coherent input data set to
enable various downstream analysis possibilities.

With the primary layer of data in place, the next step is to enable online machine learning methods
and do a comparative analysis of the patterns learned. The next steps, which are currently being
developed, will see machine learning based predictions join the graph. These derived associations
will connect samples to phenotypes similar to the way that the G2P edges connect samples to drug
sensitivity. With these novel phenotypic annotations available, we will be able to observe predicted
trends across cohorts and identify new patterns.
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Figure Legends

Figure 1. Graph Schema. The vertex types and connections of the BMEG. The numbers represent
the count for each vertex type, and the counts on the edges represent the total number of
connections between those two vertex types.

Figure 2: BMEG Architecture. High Level architecture diagram of the BMEG. A) represents the
Extract Transform Load (ETL) processes that are used to build the graph, B) the database and query
engine used to power the bmeg.io site, C) the different client site options for communicating with the
system, D) Other graph engines that can be used with the BMEGexport code to move the BMEG data
to other graph databases.

Figure 3: Example Queries. A diagram showing how each of the different queries described in this
paper traverse the graph. Each separate query is labeled by the equation number in the text.

Table 1: BMEG Data Sources. The different data sources, and their license, that are used to build the
BMEG.
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Table 1)

Contains
Resource Description Resource License References

TCGA The Cancer Genome Atlas (TCGA)
profiles the DNA, RNA, protein, and
epigenetic levels of over 10,000
individuals across 33 cancer types. --

MC3 The Cancer Genome Atlas (TCGA)
cancer genomics dataset includes
over 10,000 tumor-normal exome
pairs across 33 different cancer
types, in total >400 TB of raw data
files requiring analysis. -

GTEx The Genotype-Tissue Expression
(GTEX) project. - 6

CCLE The Cancer Cell Line
Encyclopedia(CCLE): gene
expression, chromosomal copy
number and massively parallel

sequencing data from 947 human hitps://depmap.org/portal/ccle/terms_and_conditi

cancer cell lines. - ons "

CTRP Cancer Therapeutics Response
Portal (CTRP) catalogues response
profiles of 481 compounds against https://ocg.cancer.gov/programs/ctd2/using-ctd2-

860 cancer cell lines. -- data 12

GDSC The Genomics of Drug Sensitivity in
Cancer (GDSC) database contains
drug sensitivity data for almost 75
000 experiments, describing
response to 138 anticancer drugs
across almost 700 cancer cell lines.

CC BY-NC-ND 2.5 14

Ensembl  The Ensembl project has been
aggregating, processing, integrating
and redistributing genomic datasets
since the initial release of the draft
human genome, with the aim of
accelerating genomics research
through rapid open distribution of https://uswest.ensembl.org/info/about/legal/disclai
public data. - mer.html %

GO Gene Ontology Consortium is a
controlled vocabulary describing
knowledge of gene and protein
roles in cells. - CCBY 4.0 40

MonDO The Monarch Disease Ontology
merges in multiple disease
resources to yield a coherent
ontology. - CCBY 3.0 41

MSigDB The Molecular Signatures Database
is a collection of annotated gene
sets. - CCBY 4.0 42

PFAM Pfam is a database of protein - CCo 4
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PubChem

PubMed

VICC G2P

Pathway
Commons

DGIDB

families and annotations.

PubChem is a public repository
containing information about
chemical substances and their
biological activities.

PubMed is an archive of biomedical
and life sciencesjournal literature.

The VICC G2P is a framework for
aggregating and harmonizing
variant interpretations to produce a
meta-knowledgebase of 12,856
aggregate interpretations covering
3,437 unique variants in 415 genes,
357 diseases, and 791 drugs.

Pathway Commons integrates
public pathway and interaction
databases.

The Drug Gene Interaction
Database integrates public
interaction databases.

CaGl
ClviC
JaxCKB

MolecularMat
ch

OnkoKB
PMKB

CTD

HumanCyc
INOH

KEGG
Pathway

NetPath
Panther

PhosphositeP
lus

Protein
Interaction
Database

Reactome
Recon X

WikiPathways

CancerComm
ons

ChEMBL
Interactions

Clearity
Foundation:
Biomarkers

Clearity
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