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clustering has become a key computational technique for grouping cells based on
their transcriptome profiles, enabling subsequent cell type identification from
each cluster of cells. Due to the high feature-dimensionality of the transcriptome
(i.e. the large number of measured genes in each cell) and because only a small
fraction of genes are cell type-specific and therefore informative for generating cell
type-specific clusters, clustering directly on the original feature/gene dimension
may lead to uninformative clusters and hinder correct cell type identification.

Results: Here, we propose an autoencoder-based cluster ensemble framework in
which we first take random subspace projections from the data, then compress
each random projection to a low-dimensional space using an autoencoder
artificial neural network, and finally apply ensemble clustering across all encoded
datasets for generating clusters of cells. We employ four evaluation metrics to
benchmark clustering performance and our experiments demonstrate that the
proposed autoencoder-based cluster ensemble can lead to substantially improved
cell type-specific clusters when applied with both the standard k-means clustering
algorithm and a state-of-the-art kernel-based clustering algorithm (SIMLR)
designed specifically for scRNA-seq data. Compared to directly using these
clustering algorithms on the original datasets, the performance improvement in
some cases is up to 100%, depending on the evaluation metrics used.

Conclusions: Our results suggest that the proposed framework can facilitate
more accurate cell type identification as well as other downstream analyses. The
code for creating the proposed autoencoder-based cluster ensemble framework is
freely available from
https://github.com/gedcom/autoencoder_cluster_ensemble

Keywords: Autoencoder; Cluster ensemble; Single cells; scRNA-seq; Single-cell
transcriptome; Cell type identification

Background

Transcriptome profiling by single-cell RNA-sequencing (scRNA-seq) is a fast-
emerging technology for studying complex tissues and biological systems at the
single-cell level [1]. Identification of cell types present in a biological sample or sys-
tem is a vital part of scRNA-seq data analysis workflow [2]. The key computational

technique for unbiased cell type identification from scRNA-seq data is unsupervised
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clustering [3]. Typically, this is achieved by using a clustering algorithm to parti-
tion cells in a scRNA-seq dataset into distinct groups and subsequently annotate
each group to a type of cell based on cell type marker genes and/or other biological
knowledge of cell type characteristics [4].

Due to the critical role played by cell type identification for downstream analy-
ses, significant amount of effort has been devoted to tailoring standard clustering
algorithms or developing new ones for scRNA-seq data clustering and cell type iden-
tification [5]. These include standard k-means clustering, hierarchical clustering, and
variants that are specifically designed for scRNA-seq data (i.e. RaceID/RaceID2 [6],
CIDR [7]) as well as more advanced methods that utilise likelihood-based mixture
modelling (countClust) [8], density-based spatial clustering [9] and kernel-based
single-cell clustering (SIMLR) [10]. Several studies have compared and summarised
various clustering algorithms used for scRNA-seq data analysis [11, 12, 13].

One of the key challenges in scRNA-seq data clustering is handling specific
characteristics of the data including high feature-dimensionality and high feature-
redundancy. This is because that typically a large number of genes are profiled
in the experiment but only a small proportion of them are cell type-specific and
therefore informative for cell type identification. Hence, clustering directly on the
original high-dimensional feature space may result in suboptimal partitioning of
the cells due to low signal-to-noise ratio. To reduce the high feature-dimensionality
in scRNA-seq data for visualisation and downstream analyses, various dimension
reduction techniques, including traditional approaches as well as newly developed
ones, have been applied to scRNA-seq data. These include generic methods such
as principal component analysis (PCA), independent component analysis (ICA),
non-negative matrix factorization [14], and t-distributed stochastic neighbour em-
bedding (tSNE) [15], as well as other methods developed for scRNA-seq data, such
as zero inflated factor analysis (ZIFA) [16]. Recently, deep learning techniques such
as scvis, a deep generative model [17], and a scNN [18], a neural network model, were
developed specifically for scRNA-seq data dimension-reduction. While these new de-
velopments are primarily focused on scRNA-seq data visualisation, they represent
the first applications of deep learning techniques for scRNA-seq data analysis.

Ensemble learning is an established field in machine learning and has a wide
application in bioinformatics [19]. Ensemble clustering via random initialisation is
a popular ensemble learning method for clustering [20]. While this approach was
found to improve stability of the k-means clustering algorithm, it appeared to have
a less consistent effect on clustering accuracy [21]. Ensemble clustering via random
projection is an alternative ensemble learning method for clustering. This approach
was applied to DNA microarray data analysis and resulted in improved clustering
accuracy [22]. Weighted ensemble clustering combines multiple clustering outputs
based on their respective quality [23]. Recently, cluster ensembles have been gener-
ated by combining outputs from different upstream processing and similarity metrics
[24] or different clustering algorithms for cell type identification from scRNA-seq
data [25, 26]. While these heuristic methods were found to be effective for improv-
ing clustering accuracy in cell type identification, they are ad-hoc in nature and
may not fully explore characteristics and biological signals in scRNA-seq data when
clustering.
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To extract biological signal from scRNA-seq data while at the same time address-
ing the issues of high feature-dimensionality and high feature-redundancy, here we
propose an autoencoder-based cluster ensemble framework for the robust clustering
of cells for cell type identification from scRNA-seq data. The proposed framework
first randomly projects the original sScRNA-seq datasets into sub-spaces to create
‘diversity’ [27] and then trains autoencoder networks to compress each such ran-
dom projection to a low-dimensional feature space. Subsequently, clusterings are
generated on all encoded datasets and consolidated into a final ensemble output.
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Figure 1 A schematic illustration of the proposed autoencoder-based cluster ensemble framework.
The first step is the sampling of multiple random projections from the original input scRNA-seq
data set. A separate autoencoder artificial neural network is trained on each of these random
projections and used to encode the data to a smaller-dimensional space. Subsequently, clustering
of each encoded dataset is conducted using an arbitrary clustering method; the final clustering
output is produced by integrating individual clustering results using a fixed-point algorithm [28].

The proposed framework of cluster ensemble via autoencoder-based dimension-
reduction and its application to scRNA-seq is a principled approach and the first
of its kind. We demonstrate that (1) the autoencoder-reduced ensemble clustering
of scRNA-seq data significantly improves clustering accuracy of cell types, whereas
simple ensemble clustering without autoencoder-based dimension reduction showed
no clear improvement; (2) improvement of clustering accuracy in general increases
with the ensemble size; and (3) the proposed framework can improve cell type-
specific clustering when applied using either the standard k-means clustering algo-
rithm or a state-of-the-art kernel-based clustering algorithm (SIMLR) [10] specifi-
cally designed for scRNA-seq data analysis. This demonstrates that the proposed
framework can be coupled with different clustering algorithms to facilitate accurate
cell type identification and other downstream analyses.

Results

Hyperparameter optimisation for autoencoders

We undertook a grid search to optimise three hyperparameters including random
projection size, encoded feature space size and autoencoder learning rate during
backpropagation; this was performed across four datasets (Table 2) using the ARI,
NMI, FM and Jaccard index metrics discussed above. Together, the four metrics
across four datasets made a total of sixteen dimensions (i.e. (})) across which to
optimise. We used Pareto analysis [29] to select an appropriate combination of
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parameters from across all four optimisation datasets without giving priority to any
single dataset or metric. A Pareto rank of 1 indicates an optimal clustering results
on a selection of optimisation datasets using a combination of hyperparameters.

As the Pareto front becomes larger and more ambiguous as more datasets are
included, we tested the robustness of each parameter set by obtaining the Pareto
front for all possible combinations of 1, 2, 3 or all 4 datasets and counting the number
of such combinations for which the given parameter set appears in the Pareto front
(Figure 2). We determined that the most robust high-accuracy results were obtained
by selecting 2048 genes during random projection; producing an encoded feature
space of 16 dimensions; and training the autoencoder using a learning rate of 0.001.
All evaluation benchmarks were undertaken using this parameter combination and
a hidden layer width of 128.
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Figure 2 Hyperparameter optimisation for autoencoders using Pareto analysis. Left panel: PCA
visualisation of the four evaluation metrics (i.e. ARI, NMI, FM and Jaccard) on each of the four
optimisation datasets. Each point corresponds to a single combination of hyperparameter values
including random projection size, encoded feature space size, and autoencoder learning rate
during backpropagation; each combination/point is colour-coded by the number of times it was
assigned Pareto rank 1 (i.e. the combination that gives best clustering performance) across all
possible combinations of the four optimisation datasets. Right panel: Autoencoder architecture as
determined by the hyperparameter optimisation procedure.

Ensemble of k-means clustering
We first asked if the ensemble of autoencoder-based clustering can improve upon
the performance of a single clustering run on a single encoded dataset. To test this,
we first used a standard k-means clustering algorithm (section ) to create base clus-
tering results and tested the performance of different ensemble sizes based on ARI,
NMI, FM and Jaccard. Note that we repeatedly run the entire procedure multiple
times to account for the variability in the clustering results. We found that in gen-
eral the overall ensemble clustering performance improves as the number of base
clustering runs increases (Figure 3, light blue boxes) according to all four evaluation
metrics and in all four datasets used for evaluation. These results demonstrate that
the ensemble of autoencoder-based clustering framework indeed can improve cell
type identification for the k-means clustering algorithm.

We wondered if such an improvement of cluster ensemble is independent of the
random projection and autoencoder framework. Hence, we compared the perfor-

mance of k-means clustering on the raw input expression matrix without using


https://doi.org/10.1101/773903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/773903; this version posted September 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Geddes et al. Page 5 of 15

the autoencoder framework (that is, without applying the random projection and
autoencoder steps) with different ensemble sizes. We found that the improvement
in clustering performance is diminished in most cases (Figure 3, red boxes), sug-
gesting that the improved clustering performance is due to the random projection
and autoencoder steps implemented in the proposed framework in addition to the
ensemble step. Notably, the autoencoder framework also enhance the data signal-
to-noise ratio in most cases as can been seem from the improved performance of
autoencoder-based k-means cluster compared to direct k-means clustering on the
raw input at the ensemble size of 1.

Another interesting observation is that the variance of the clustering outputs in
general decrease with the increasing number of base clustering (Figure 3). While
the ensemble of k-means clustering without random projection and autoencoder
does not improve cell type identification accuracy, it does reduce the clustering
variability, and therefore, result in more stable and reproducible clustering outputs
compared to a single run of k-means clustering. These results are consistent with
previous findings [21]. In comparison, the ensemble of autoencoder-based clustering
lead to both more accurate cell type identification and a reduction of variability,
both of which are desirable characteristics for scRNA-seq data analysis.
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Figure 3 Ensemble of k-means clustering results on the four scRNA-seq datasets. Red boxes
represent ensemble of k-means clustering on the raw input expression matrix without using the
autoencoder framework. Light blue boxes represent autoencoder-based k-means cluster ensemble.

Autoencoder-based SIMLR ensemble

While the autoencoder-based cluster ensemble framework is able to improve the
performance of a standard k-means clustering algorithm in both accuracy and re-
producibility of cell type clustering, we wondered if such an ensemble framework
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could also improve the performance of the latest clustering algorithm. To this end,
we applied the proposed framework to a state-of-the-art kernel-based clustering
algorithm, SIMLR, designed specifically for cell type identification on scRNA-seq
data. Because the computational complexity of SIMLR grows exponentially with
the number of cells in a dataset, we focused our evaluation on the two smaller
datasets (i.e. GSE84371 and GSE82187). Similar to k-means clustering, we found
in these cases that the performance of the autoencoder-based SIMLR ensemble im-
proved with increased ensemble size (Figure 5). Clustering variability also generally
decreased with larger ensemble sizes. These results demonstrate that the proposed
autoencoder-based cluster ensemble framework also leads to more accurate cell type
identification and clustering reproducibility from scRNA-seq data for SIMLR.
While cell type clustering accuracy improves with the larger ensemble sizes for
both k-means clustering algorithm and SIMLR (Figure 3 and 5), we observed that
this improvement plateaus at an ensemble size of 50 (Figure 5). We therefore recom-
mend an ensemble size of 50 as a good trade-off between clustering output quality
and computational time. Note that the computational complexity of the proposed
cluster ensemble framework increases linearly with respect to the ensemble size.
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Figure 4 Evaluation of autoencoder-based SIMLR ensemble. Ensemble sizes range from 1 to 100
were tested using four evaluation metrics in two scRNA-seq datasets.

Performance comparison of autoencoder-based cluster ensemble

Typically, a single run of a clustering algorithm is used to identify cell types from
a given scRNA-seq dataset. An interesting question is how much improvement the
proposed autoencoder-based cluster ensemble offers compared to the common clus-
tering procedure where a clustering algorithm is directly applied to raw gene expres-
sion data (that is, without random projection and autoencoder steps). To address
this, we next quantified cell type clustering accuracy from the direct application
of k-means and SIMLR clustering to the raw gene expression input and compared
these with the autoencoder-based cluster ensemble of k-means and SIMLR, re-
spectively. Note that an ensemble size of 50 was used for the cluster ensemble.
k-means clustering and the random projection step in ensemble clustering are non-
deterministic; while SIMLR, contains technically non-deterministic steps (including
a k-means step), we found that repeated runs on the same raw dataset with different
random seeds produced identical clustering partitions. Consequently, SIMLR may
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be thought of as functionally deterministic. To account for variability in the cluster-
ing results for stochastic methods, we repeated clustering ten times and calculated
the standard deviation across multiple runs. Table 1 summaries these results.
Table 1 Comparison of direct application of k-means and SIMLR clustering on raw gene expression

data with autoencoder-based k-means and SIMLR ensemble. Cell type identification accuracy were
quantified by the four evaluation metrics.

k-means
Raw Autoencoder
ARI NMI FM Jaccard ARI NMI FM Jaccard
Mouse neurons 0.22+0.02  0.36+0.03  0.3940.02  0.22+0.01 0.38+£0.02 0.564+0.01  0.53£0.02  0.34+0.02
Mouse striatum 0.36+0.07  0.69+£0.06 0.51+0.06 0.31+0.05 | 0.45+0.01 0.75+£0.01 0.58+0.01  0.37+0.01

Human archived brain 0.294+0.01  0.49+0.01  0.35+0.01  0.21+£0.01 0.37£0.01 0.56+0 0.43£0.01  0.27£0.01
Mouse archived brain 0.32+0.01 0.49+0 0.35+0.01  0.21£0.01 0.43£0.01 0.58+0 0.46+0.01 0.3£0.01

SIMLR
Raw Autoencoder
ARI NMI FM Jaccard ARI NMI FM Jaccard
Mouse neurons 0.44+0 0.65+0 0.58+0 0.39+0 0.71+0 0.7+0 0.81+0 0.67+0
Mouse striatum 0.55+0 0.81+0 0.67+0 0.34+0 0.84+0.02 0.87+0.01 0.854+0.02  0.74+£0.03

Specifically, the autoencoder-based k-means ensemble improved cell type cluster-
ing for an average of about 30% in the four evaluation datasets according to all four
evaluation metrics (Table 1). Clustering variability was also typically smaller us-
ing the autoencoder-based k-means ensemble. Perhaps more strikingly, the cell type
clustering accuracy as measured by ARI and Jaccard metrics for autoencoder-based
SIMLR ensemble improved about 50% to 100% compared to using SIMLR alone on
the raw expression matrix for the mouse neurons and striatum datasets. Moreover,
we found that the cell type clustering accuracy of SIMLR is substantially better than
the standard k-means clustering algorithm, suggesting SIMLR is indeed an effec-
tive clustering algorithm for scRNA-seq data analysis. Therefore, the further gain in
clustering accuracy by coupling SIMLR with the proposed autoencoder-based clus-
ter ensemble is of practical importance and will add to the state-of-the-art methods
for scRNA-seq data analysis.

Comparison of autoencoder-based cluster ensemble with PCA-based clustering

We next compared the performance of autoencoder-based cluster ensemble with
PCA-based clustering. PCA is a commonly used dimension reduction method and
has been widely used for reducing the high-dimensionality of scRNA-seq data prior
to clustering cell types. By benchmarking the performance of cell type clustering
across the evaluation datasets, we found that in almost all cases autoencoder-based
clustering ensemble outperformed PCA-based approach for both k-means clustering
and SIMLR according to all four evaluation metrics (Figure 5). We confirmed the
statistical significance of these performance improvements using the Wilcoxon Rank
Sum test. These results further demonstrate the utility of the autoencoder-based
cluster ensemble for more accurate clustering of cell types in scRNA-seq datasets.

Discussions
There may be further opportunities to build on the proposed method:

Firstly, we performed hyperparameter optimization over four datasets searching
for the most robust configuration. While our chosen configuration was the most
consistently accurate over all possible combinations of these four datasets, we saw
that it was not among the most accurate configurations for two of the optimization
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Figure 5 Comparison of autoencoder-based clustering framework with PCA-based dimension
reduction and clustering using the four evaluation metrics. Statistical significance (p <0.001;
denoted by *) of either autoencoder with k-means clustering against the rest for human and
mouse archived brain datasets, or autoencoder with SIMLR clustering against the rest for mouse
neurons and striatum datasets were performed using Wilcoxon Rank Sum test (two-sided).

datasets individually. Additionally, there is no guarantee that this combination falls
into a global or near-global optimum across scRNA-seq datasets in general, or that
such an optimum exists. Devising a way to produce parameter configurations based
on individual dataset characteristics without ground-truth labels may be an avenue
for further exploration.

Secondly, the current iteration of our proposed method uses random subspace
projection to reduce the dimension of datasets prior to autoencoder training. An
additional direction for future research may include exploring other methods of
basic dimension reduction, such as weighted gene selection based on variability or
other metrics; this may be more useful in capturing cell type-specific characteristics
by retaining genes containing more biological signal related to cell type.

Lastly, while the clustering algorithms k-means and SIMLR were used as inde-
pendent components in our current proposed framework, an interesting direction
for future work might be the development of an artificial neural network architec-
ture and training method which performs simultaneous dimension reduction and
clustering. An integrated approach such as this may facilitate the exploration of
clustering output in the reduced feature space.

Conclusions

High throughput scRNA-seq technology is transforming biological and medical re-
search by allowing the global transcriptome profiles of individual cells from hetero-
geneous samples and tissues to be quantified with high precision. Cell type identi-
fication has become essential in scRNA-seq data analysis, and clustering has been
the key computational approach used for this task. In this study, we have pro-
posed an autoencoder-based ensemble clustering approach by incorporating several
state-of-the-art techniques in a computational framework.
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We evaluated the proposed clustering framework on its impact on the level and ro-
bustness of cell type identification accuracy using a collection of scRNA-seq datasets
with pre-defined cell type annotations. Based on previously defined gold standards
for each scRNA-seq dataset, we demonstrate that the proposed framework is highly
effective for cell type identification. The application of the proposed framework to
both a standard k-means clustering algorithm and a state-of-the-art kernel-based
clustering algorithms, SIMLR, illustrates its generalisability and applicability to
other clustering algorithms. We therefore envision the proposed framework being

flexibly adopted into the common workflow for scRNA-seq data analysis.

Methods

The autoencoder-based cluster ensemble framework is summarised in Figure 1A.
The proposed framework accepts scRNA-seq data in the form of an N x M expres-
sion matrix (denoted as X) where N is the number of cells and M is the number

of genes.

Dimension reduction by autoencoders

Genes are randomly selected from the input dataset to produce a set of “random
projection” datasets X' (t =1,...,T), each with a dimension of N x M’. The pur-
pose of this step is to create ‘diversity’ [27] in subsequent encodings and individual
clusterings of these datasets to achieve a more robust consensus in the resulting
ensemble. Following the random projection step, each matrix X* is then used to
train a fully-connected autoencoder neural network. An autoencoder is an artificial
neural network consisting of two sub-networks: an encoder and a decoder, intersect-
ing at a 'bottleneck’ layer of a smaller size than the original input. The network is
trained to reconstruct the original input with minimum error, forcing the network
to learn to encode the information contained within the smaller latent space of the
output of the bottleneck layer[30].

In the autoencoders used with our framework, the encoder accepts samples of cell
data from X’ as input. The encoder contains a single hidden layer and an output
layer which produces reduced-dimension encodings of the aforementioned samples.
The decoder subnetwork accepts these encoded samples as input, passing these
through a single hidden layer and an output layer which produces reconstructions
of the original samples. In both subnetworks, the activation function of the hidden
layer is a ‘Leaky ReLu’ [31]; linear activation is applied to all other layers.

Each autoencoder is trained by minimising reconstruction error using the mean

squared loss function:

UXE XYY ={l, i}, 1y = (2, — ab)?

n

. . ’ .
t*® random projection and X? is

where X? is the input expression matrix from the

the autoencoder’s reconstruction of X*.
Following training, each matrix Xt is fed through its respective autoencoder and

a low-dimension encoded dataset is extracted from the encoder output. Training

and hyperparameter optimisation of autoencoders are discussed in Section 4.1.
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Table 2 Summary of the experimental scRNA-seq datasets used for hyperparameter optimisation and
method evaluation.

Repository Source # cell # class Ref. Protocol Purpose
GSE60361 Mouse cortex 3005 7 32 SMARTer Optimisation
GSE45719 Mouse embryogenesis 300 8 33 SMART-seq2 Optimisation
GSE67835 Adult and fetal human brain 466 8 34 SMARTer Optimisation
E_MTAB_3929 Human embryogenesis 1529 5 35 SMART-seq2 Optimisation
GSE84371 Mouse neurons 1402 8 36 Smart-seq2 Evaluation
GSE82187 Mouse striatum 705 10 37 SMARTer & Smart-seq2 Evaluation
Broad portal Human archived brain 14963 19 38 Drop-seq Evaluation
Broad portal Mouse archived brain 13313 26 38 Drop-seq Evaluation

Clustering algorithms
To perform clustering on dimension-reduced datasets generated from autoencoders,
we utilised both a standard k-means clustering algorithm with Lloyd’s implemen-
tation [39] and a kernel-based clustering algorithm (SIMLR) specifically designed
for scRNA-seq data analysis [10].

Given an initial set of random centres my, ..., mg, and a distance matrix D (typ-
ically computed from Euclidean space), the algorithm first finds the closest cluster
centres for each of all cells based on their expression profiles X¢ = z§, ..., z%:

for x € X¢:c(x) = argmin,_,; g {D(z,m;)}
and then updates the cluster centres:
for kel,..,K :mp=mean({z € X°c(x) = k})

The output is the assignment of each cell based on its expression profile z to a
cluster k€ 1,..., K.

SIMLR calculates the distance matrix for cells using multiple kernels as follows:

D(wi, ;) =Y wi(2 =2 x Kz, 2;))
l

where w; is the weight of a Gaussian kernel function for a pair of cells defined as
follows:

1 |z — a5

— ex _
€5V 2T P 26%

K(Iivxj) =

where €;; is the variance and |z; —z; |2 is the squared distance between cell i and 7,
calculated from their expression profiles z; and ;. To test the proposed framework,
we utilised SIMLR (Version 1.8.0) implemented in Bioconductor (Release 3.7).

The number of clusters to be created was set according to the number of pre-
defined cell types/classes in each scRNA-seq data for both the k-means clustering
and SIMLR (see Section 10). After obtaining individual clustering outputs (denoted
as P') from either k-means clustering or SIMLR, a fixed-point algorithm for ob-
taining hard least squares Euclidean consensus partitions was applied to compute
the consensus Pg of individual partitions [28]:

T
argminp, cp ZwbD(Pt,PE)2 (1)

t=1
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in which wy, is the weight associated with individual clustering output and is set to
1 in our case, and D(P;, Pg)? is the squared Euclidean function for computing the
distance of an individual partition with the consensus partition.

Together, the proposed autoencoder-based cluster ensemble framework can be
summarised in pseudocode as below.

Algorithm 1: Autoencoder-based cluster ensemble

Data: X, an N X M expression matrix
Result: A clustering partition P of all cells in X
t=0;
Pg < NULL; // initialise consensus partitions
while ¢t < T do
t+—t+1;
X! < randomProjection(X);
X ¢ + autoencoder(X?);
P? «+ clustering(X*©); // k-means, SIMLR etc.
Pg <+ Pp U Pt; // saving each clustering output
end
P + consensus(Pg); // Equation (1).

© O N O AW N

[
=]

Data Description and Evaluation
This section summarises the scRNA-seq datasets and performance assessment met-
rics utilised for method evaluation.

scRNA-seq datasets

A collection of eight publicly available scRNA-seq datasets (Table 2) were utilized
in this study. These datasets were downloaded from the NCBI GEO repository, the
EMBL-EBI ArrayExpress repository, or the Broad Institute Single-Cell database
portal. The logs-transformed transcripts per million (TPM) or counts per million
(CPM) values (as determined by the original publication for a given dataset) were
used to quantify full length gene expression for datasets generated by SMARTer or
SMART-seq2 protocols. UMI-filtered counts were used to quantify gene expression
for the Drop-seq datasets. All datasets have undergone cell-type identification using
biological knowledge from their respective original publications which we retain for
evaluation purposes. For each dataset, genes detected in less than 20% of cells
were removed. This step trims the number of genes and allows only those that are
expressed in at least a subset of cells to be considered for subsequent analyses. Four
datasets were used to optimise autoencoder hyperparameters. We present evaluation
benchmarking results for four additional datasets.

Evaluation metrics
A common approach to assess the performance of clustering methods for cell type
identification in scRNA-seq data analysis is to compare the concordance of the
clustering outputs of cells with a ‘gold standard’. As mentioned above, such a gold
standard may be obtained from orthogonal information such as cell type marker
genes and/or other biological knowledge of cell type characteristics. In this study,
cell type annotations from their original publications are used as ‘gold standards’.
For each dataset, number of clusters for both k-means clustering and SIMLR
were set as the number of pre-defined classes based on its original publication and
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the concordance between the clustering outputs and the ‘gold standard’ were mea-
sured using different metrics. Here we employed a panel of four evaluation met-
rics including Adjusted Rand index (ARI), normalized mutual information (NMI),
Fowlkes-Mallows index (FM), and Jaccard index [40] (Figure 6).

Concordance measured by:

- Adjusted rand index (ARI),

- normalized mutual information (NMI),
- Fowlkes-Mallows index (FM),

- Jaccard index
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Figure 6 A schematic showing the quantification of concordance of the clustering output with the
original 'gold standard’ annotation using a panel of evaluation metrics.

Let G, P be the cell partitions based on the gold standard and the clustering
output respectively. We define a, the number of pairs of cells assigned to the same
group in both partitions; b, the number of pairs of cells assigned to the same cell
type in the first partition but to different cell types in the second partition; ¢, the
number of pairs of cells assigned to different cell types in the first partition but
to the same cell type in the second partition; and d, the number of pairs of cells
assigned to from different cell types in both partitions. ARI, FM, and Jaccard index
can then be calculated as follows:

2(ad — be) )
(a+b)b+d)+ (a+c)(c+d)’

FM:\/<aib) (aic>;

a
a+b+c

ARI =

Jaccard =

Let G = {u1,ua,...,u;} and P = {vy,va,...,v;} denote the gold standard and the
clustering partition across K classes, respectively. NMI is defined as follows:

NMI =
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where I(G, P) is the mutual information of G and P, defined as

K K
lu; Nwj Nlu; Nl
1G.P)=3 > = Flos
i=1 j=1

and H(G) and H(P) are the entropy of partitions G and P calculated as

Uj Ujg (] Vj
H(G)=-) —log— H(P):—Z—Jlogﬁj

where N is the total number of cells.

List of abbreviations

scRNA-seq: Single-cell RNA-seq; PCA: principal component analysis; t-distributed
stochastic neighbour embedding (tSNE); ARI: adjusted rand index; FM: Fowlkes-
Mallows index; kernel-based clustering algorithm (SIMLR); counts per mil-
lion(CPM); transcripts per million (TPM).
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