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Abstract. Antibiotic resistance is a compound effect of several factors in the infection to healing cycle, from molecular 
factors such as mutation rate of bacteria to habitual behaviors such as adherence to a prescribed drug. Usually each of 
these factors is modeled separately from biochemistry, evolutionary biology or population health perspectives. To develop 
an understanding for the drug resistance at a population level, which is of high global significance, it is important to 
weigh all these factors in an integrated model. We develop RASAID, a model for resistance considering bacterial 
adaptation, infection spread, population adherence, immunity, and drug dosage. We apply the model to antibiotic 
resistance in the spread of resistant strains of Streptococcus Pneumoniae (Sp) in a finite community. We analyze the 
contributions from several factors to resistance, with a goal towards asking how important is the pursuit of newer drug 
developments relative to improving the awareness about the good practices in drug usage. 
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I. INTRODUCTION 
NTIBIOTIC resistance in microorganisms is posing a threat to public 
health. Infection of an individual by a drug resistance is a matter of 
dual concern: firstly concerning their own recovery and secondly 

they becoming a source of transmission and spread of the resistant strain 
at a community level. The rise and development of resistant strains that 
result in longer duration of hospitalisation, higher chances of recurrent 
infections and mortality. While immune comprimised groups like 
children, elderly, diabetics etc are more sensitive, the antibiotic 
resistance is a global threat. At a molecular level, drug resistance in 
bacteria develops from bacteria developing random mutations with a 
certain error rate, some of which have a selection advantage against the 
drugs. At the population level, there are many factors that could 
contribute to the growth of antibiotic resistance – self medication, poor 
adherence to drug dose or prescription of a suboptimal dosage. Increased 
exposure to drugs can even arise from industrial contamination of water 
[1,2] and rampant antibiotic use in livestock and poultry [3].  
 
The different pieces of the puzzle to understand the causative factors of 
this global crisis are spread across literature – biochemical studies 
interested in targeting the critical bacterial enzymes as well as 
identifying the key mutations in them, ecological studies comparing the 
selection advantage of mutants, emperical transmission-dynamic 
mathematical models. Over the years many attempts have been made to 
model antibiotic resistance at the population level [4-6] and some included the host immunity in their models [6]. Transmission-
dynamic models are aimed at bridging the gap between the individual and group level effects, adherence which is a critical 
behavior level factor used in many clinical models is usually not factored into these models. Pharmacokinetics and 
bioavailability of the drug, at a dosage is usually dealt with in models which are separate from the population level models and 
the ones considering mutational effects. Some of the reviews [7] summarize the importance of developing mathematical models 
to simulate and predict various possible scenarios to arrive at strategies against drug resistance. 

A 

 
Fig 1: The variuos factors we consider to be contributing to the 
antibiotic resistance along the infection to healing process are 
shown in this schematic. The orange arcs represent the variability 
at the specific stage from infection to healing. Molecular factors 
such as the chance of a adaptation, evolutionary factors which give 
a selection advantage to the mutants, variability in drug dosage, 
pharmacokinetic details and adptation of immunity are also 
considered in a population model. 
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There is presently a surge of activity towards developing newer types of antibiotics. However, an equal emphasis is required on 
performing an audit of the relative contributions of the different factors to the development of resistance, failing which the 
resistance problem can not be comprehensively addressed. This approach requires developing integrative models which consider 
several aspects together, but to our knowledge there are no such models. In the present work, an integrative model for Resistance 
considering bacterial Adaptation, infection Spread, population Adherence, Immunity, and drug Dosage (RASAID), a schematic 
of which is shown in Figure 1. We apply RASAID to study the antibiotic resistance in Streptococcus pneumoniae (Sp) that 
causes contagious and acute respiratory infections. According to the World Health Organisation, pneumonia is the largest 
infectious cause of death among children and about 20% of the pneumonia cases in many developing countries [8]. Several 
strains of Sp are fast becoming resistant to most antibiotics and the cycle of developing newer drugs is quite long. We use 
RASAID to ask if the adaptation rate in bacteria is the major contributing factor and if any other anthropic origins have 
comparable effects on population level antibiotic resistance. 

II. INTEGRATIVE MODEL 
Major factors in the model 
 
In this study, the development of resistant Sp strains was used as a subject to develop an integrative model for drug resistance. 
Three different strains of Sp are assumed based on their sensitivity relativity to cefotaxime, a commonly used antibiotic for 
which adequate data and relevance to usage in the public health system worldwide was found. Sensitive which is part of the 
normal nasal flora and responsive to the drug, resistant type 1 which is an immediate strain in evolution of the bacteria 
challenged with cefotaxime which resists the drug but has a lower fitness because of the mutation and resistant type 2 which 
maintains the resistance while regaining the fitness of the sensitive strain. The scope of the results is general and not limited to 
the specific choice of either the pathogen or the drug. The present model was built by adapting and integrating several available 
models. The logistic model for the in vivo (in an animal model) growth of pneumococcal bacteria [2] was updated with an 
adaptive immune response, where the killing of the bacteria was bacterial load dependent [6]. To estimate the bioavailability of 
the antibiotic, we used a first order Pharmacokinetic/Pharmacodynamic (PK/PD) elimination of the drug from the system. Poor 
adherence to drug was also factored into these PK/PD models and the mutant selection windows were used in the analysis based 
on the recommended drug dosage and usage.  A hyperbolic-Monod like kill rate curve for the killing action as in [4,7] is adopted. 
We simulated the model for a population of 10,000 individuals. Ordinary differential equations are used to model these different 
populations, as well as the immune response, as detailed below. The parameters were obtained from literature as much as 
possible (Table 1). Where the parameters were missing, we assumed the relevant parameters that resulted in scientifically 
acceptable benchmarking against clinical observations such as the duration of the infection, timescales of recovery, frequency of 
appearance of the resistant strains etc. 

Bacterial growth 
 
Since Sp is a natural flora of the respiratory tract, from studies [6,9] we have adopted a normal count as about 106 sensitive 
strains and 0 resistant strains at the start of the simulation. A person is considered infected if the bacterial numbers rise by a 100x 
of the normal level, which corresponds to the numbers found in mouse models [9,10]. At the level of the individual, the growth 
of the bacteria was assumed to be according to a logistic growth [2] as in [Eq1] below.  
 
𝑑𝑁
𝑑𝑡

∝   𝛼 ∗ 𝑁 ∗ 1 −
𝑁
𝑘

…………… 𝐸𝑞1  

 
where N is the number of bacteria, α the growth rate and k is the carrying capacity. Extrapolating the numbers found in mice to 
humans, a carrying capacity of 1012 was assumed (justification in Supporting information).  
 
Drug dosage, mutation selection 

The typical therapeutic dosage of Cefotaxime for an adult is about 500 to 1000mg, twice or thrice a day depending on the 
medical condition of the patient. We assume the drug is given for 7 days (2 times a day) with an extension period of 4 days if 
required (maintaining the same dosage as before) and extension period up to three extensions in a month. From the experimental 
study conducted [11] the peak antibiotic concentration in otitis media exudates ranges from 2-10 µg/ml for therapeutic doses. 

In the current study, we assumed that the resistance development is correlated with the higher minimum inhibitory concentration 
(MIC). The mutations are taken in dual stages; the first being the mutation in PBP2x for the immediate resistance to the drug and 
a compensatory mutation in PBP1a after the drug pressure is removed. Although the mutations mentioned above are not 
necessarily point mutations, for the sake of simplicity in modeling it, we have considered them to be point mutations. 
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Antibiotic action 
 
The drug concentration in vivo is modeled by using the first order pharmacokinetics [Eq2]  
 

𝑑𝐶
𝑑𝑡

=   −𝜆 ∗ 𝐶……………………………………… . 𝐸𝑞2  

where, λ is the half-life of the drug. The rate at which the drug kills the sensitive and resistant bacteria are sigmoidal as below 
[5,6]. 
 

𝐾𝑖𝑙𝑙𝑖𝑛𝑔  𝑟𝑎𝑡𝑒  𝑏𝑦  𝑑𝑟𝑢𝑔:     𝛿 ∗
𝐶

𝐶 + 𝐶50
∗ 𝑁 … . [𝐸𝑞3]   

In equation [Eq3], δ is the rate at which the drug kills sensitive bacteria; N is the susceptible bacteria population. C50 is the 
concentration at which half the maximum kill is achieved.  
 
The maximal killing rate of sensitive bacteria is taken to be 1 as in [12] and the maximal killing rate of resistant bacteria has been 
assumed to be in proportion to the value adopted in [8], parametrizing it with the maximal killing rate from the above mentioned 
study on cefotaxime [12]. The rest of the parameters are kept the same as in the model described in [13]. It has been reported in 
the literature that the mutant selection occurs in cephalosporins at concentrations less than or equal to 16 times MIC [13,14]. This 
level is termed as MPC (mutant prevention concentration) above which chance of resistance buildup is negligible. For single step 
mutations the MPC for Cefotaxime was determined to be about ~ 8*MIC [15]. For the above MPC, to gain resistance to 
antibiotics multiple mutations have to occur thus decreasing the chance of resistance buildup. For concentrations below MIC, the 
drug selection pressure is not sufficient to cause mutation [18]. Sp sensitive to cefotaxime are defined as a colony with the MIC 
<= 0.25 µg/ml [16]. The effect of this mutant selection window has been modeled with a higher mutation rate with the 
concentration coming within the mutant selection window and a lower mutation rate when it falls outside of it.  
 
Adaptive immune response 
 
We have adopted the model described by [Eq2] where the immune response is both the function of bacterial load dependent 
immune response dynamics and bacterial load dependent immune response killing.  
 
𝑑𝑖
𝑑𝑡
= 𝑔 ∗ 𝑁 − 𝑑 ∗ 𝑖. . . . . . . .… . [𝐸𝑞2] 

where g and d are constants.  
 
Killing term of pathogenic bacteria by immunity: 

  −𝑏 ∗ 𝑖 ∗
𝑁

𝑁 + 𝑠
……………… . . . . [𝐸𝑞3]   

where i represents the immune response term, N is the total amount of bacteria present, s is the saturation of the immune 
response and b is the rate constant at which the bacteria are eliminated by the immune system. The values of the constants used 
in the equation are given in Table 1.  
 
Some of the parameters used are estimated as follows. In this work, the basic dictum in benchmarking the immunity level is that 
in a healthy person the immune response is such that it keeps the bacterial growth in check. The incubation for Sp when the 
symptoms are clearer and the patient is recommended an antibiotic dosage generally varies between a few hours to 2 days, and 
we use the latter in our model. Generally, a reduction in immunity could be an aiding circumstance for getting an infection. For 
simulating this aspect, we decrease the constants in the immunity by a few factors of 10’s. For the recovery of immunity, we 
initially increase it in a linear fashion during the first dosage of the drug to a level where the immunity manages to keep the 
bacterial load just on the border line of infection threshold (such that there is a necessity of drug action to heal the patient) and 
for the subsequent time we increase them in steps. A random Gaussian variable with a mean of 1 and variance of 0.06 was 
introduced to bring in a sense of variation among the population and to make the model more realistic by multiplying this factor 
with our estimated parameter for immunity.  
 
Infection spread 
 
The infection is assumed to spread from the individual in the following way. A contact rate which describes the number of 
contacts made by an individual in a particular duration. Although this contact rate could be variable [17], an approximate rate of 
40 contacts per month, which can potentially transfer bacteria from to another was assumed. At the end of each month in our 
simulation, we select 40 members at random from the population with whom an individual makes contact (handshakes). The  
number of bacteria transferred are proportional to the number of bacteria the individual has [18], thus bringing an asymmetry to 
the transmission between individuals of different infection levels.  
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Overall model at the population level 
 
We combine all the factors discussed above into a population level model for 10,000 individuals. An average of eighty new cases 
per month was assumed. The set of simultaneous ordinary differential equations (ODEs) was developed and simulated for a 
period of 12 months.  
 
 
a) Healthy state, Incubation state and Infected state: 
! !
!"

= 𝛼 ∗ 𝑆 ∗ 1 − !!!!!!!
!

−    𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !
!!!!!!!!!

… . . 𝐸𝑞6   
 
! !!
!"

= 1 −𝑚2 ∗ 𝑓1 ∗ 𝛼 ∗ 𝑟1 ∗ 1 − !!!!!!!
!

−    𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !!
!!!!!!!!!

……………………………………………………… . 𝐸𝑞7   
 
! !!
!"

= 𝑚2 ∗ 𝑓1 ∗ 𝛼 ∗ 𝑟1 + 𝑓2 ∗ 𝛼 ∗ 𝑟2 ∗ 1 − !!!!!!!
!

− 𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !!
!!!!!!!!!

.……………… . 𝐸𝑞8   
 
𝑑𝑖
𝑑𝑡
= 𝑔 ∗ 𝑆 + 𝑟1 + 𝑟2 − 𝑑 ∗ 𝑖…… . . . 𝐸𝑞9  

 

TABLE 1 
PARAMETERS AND THEIR VALUES 

Symbol Parameter Value Reference 

α Growth of sensitive strain determined from doubling 
time. 

1.386/h  (30 mins) 
(Range(20-84 mins) 
0.495/h -2.079/h ^) 

[6] 

k Carrying capacity ~1012 [9]^ 
f1 Fitness Factor of strain to survive antibiotic conditions 

(Type 1 resistance) 
0.89# 
 

[19] 

f2 Fitness factor of compensatory mutation to restore fitness 
factor (Type 2 resistance) 

1.0 [19] 

m1,m2 (correspon-
ding to f1 and f2) 

Mutation rate to form resistance to bacteria 10-8 
 

[15] 

δ1 Rate at which sensitive bacteria are killed by drug 1.0/h [12] 
δ 2 Rate at which resistive bacteria are killed by drug 0.733/h 

(In proportion with the value used by Andreas 
Handel in his model [4]) 

- 

C50:1 Half maximal kill concentration for sensitive type  0.25 µg/ml 
(heterogeneous data) 

[8] 

C50:2 Half maximal kill concentration for all resistant  type 5 µg/ml 
(heterogeneous data) 

[8] 

- Mean peak concentration of antibiotic in otitis media 5 µg/ml [11] 
λ Half life of Cefotaxime  1.1h [20] 
s Saturation point of immune kill rate k/100 [8] 
x A Gaussian factor for rate at which the immunity kills 

pathogen to bring in variation in a population. 
mean=1,  variance=0.06 @ 

d Immune response decay at a fixed rate 20** @ 
g a) Healthy 

b) Incubation 
c) First Drug dosing period 
 
d) Subsequent drug dosing period 
e) Infected state 

a) α *105 
b) α *0.2*103 
c) linear increase from α *0.2*103 to α *104 
in 168 hours 
d) α *104 
e) α *104 

@ 

b Rate constant at which immunity kills bacteria (Sp) 
a) Healthy 
b) Incubation 
c) First Drug dosing period (L) 
d) Subsequent drug dosing period 
e) Infected state 

 
a) 10*s 
b) s 
c) s 
d) s 
e) s 

@ 

^Data based on mouse used to model in vivo condition 
**The decay of the immune response is assumed to be fast that it will closely follow the bacteria load 
#Range for in-vivo fitness of type 1 resistance is 0.7-0.89. To pronounce the effect of its presence in the simulation we have considered the upper limit. The 
lower fitness factors don’t give suitable simulation results for arriving to conclusions. It is probably this reason that the menace of antibiotic resistant strains 
is constrained to smaller numbers in the society and not leading to a mass outbreak. The higher fitness factor leads to larger generation of resistant strains and 
can be used to figuratively and logically predict trends. 
@ numerical values optimised to the model based on preliminary simulation studies.  
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b) During drug intake duration: 

!"
!"
= 1 −𝑚1 ∗ 𝛼 ∗ 𝑆 ∗ 1 − !!!!!!!

!
− 𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !

!!!!!!!!!
−    𝛿1 ∗ !

!! !!":!
∗ 𝑆 …………… . .… . 𝐸𝑞10   

 
! !!
!"

= 𝑚1 ∗ 𝛼 ∗ 𝑆 + 𝑓1 ∗ 𝛼 ∗ 𝑟1 ∗ 1 − !!!!!!!
!

− 𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !!
!!!!!!!!!

− 𝛿2 ∗ !
!! !!":!

∗ 𝑟1 … . 𝐸𝑞11   

 
! !!
!"

= 𝑓2 ∗ 𝛼 ∗ 𝑟2 ∗ 1 − !!!!!!!
!

− 𝑏 ∗ 𝑥 ∗ 𝑖 ∗ !!
!!!!!!!!!

−    𝛿2 ∗ !
!! !!":!

∗ 𝑟2 ……………… . . 𝐸𝑞12   

 
𝑑𝑖
𝑑𝑡
= 𝑔 ∗ 𝑆 + 𝑟1 + 𝑟2 − 𝑑 ∗ 𝑖  …………………… . . 𝐸𝑞  13  

 
𝑑𝐶
𝑑𝑡

=   −𝜆 ∗ 𝐶  …………………………… 𝐸𝑞14  

 
In the above equations, the notation, S-sensitive, r1- resistance formed during antibiotic environment, r2- compensatory mutation 
was used. It may be noted that for healthy state, incubation state and infected state, the structure of the system of equations 
remain unaltered, however the numerical values are subject to the stated considerations as mentioned in Table 1. The system of 
simultaneous equations was solved numerically using Python. 

III. RESULTS AND DISCUSSIONS 

A. Growth and Spread of Resistant strain (within host) 
We simulated the numbers of bacteria 
of the three types. The fitness of 
resistant types 1 and 2 was assumed to 
be 0.89 and 1 respectively. The 
simulation was performed for a time 
period of one month and the results 
for these bacterial numbers assuming 
drug usage adherences from 60% to 
100% are plotted in Figure 2.  
 
In Figure 2, panel A shows the 
number of sensitive bacteria in the 
individual throughout the period of a 
month. As seen in the plot, in the 
initial stage of incubation (48 hours), 
the individual maintains a high level 
of sensitive strains and upon the 
antibiotic pressure, the count of the 
sensitive bacteria fall drastically 
responding to the treatment. In perfect 
adherence (equal to 1, represented by 
solid line) sensitive strains falls to the 
minimum value under antibiotic 
pressure towards the end of the 
therapeutic period. Due to its higher 
multiplication rate when compared to the resistant strains, it regains itself to the benign count level of the default nasal bacterial 
flora (growth is balanced by immune response). In partial adherence (of 0.8), as the antibiotic pressure eases out earlier, the 
number of sensitive strains follows the trend of perfect adherence over a period of time however has a sudden increase due to the 
relieving of the antibiotic pressure (Fig. 3B). However in the case of adherence of 0.6, we notice a different trend contrary to the 
common expectation. Here the number of sensitive strains falls to a negligible level even though the antibiotic is discontinued at 
early stage of the treatment. This is due to the repeated exposure (extension periods) and with the growth of resistant strains. As 
shown in panel B, in perfect adherence, the number of resistant type 1 progressively builds up as long as the antibiotic pressure 
exists and subsequently drops to negligible level in about 16 days due to the low fitness factor. The rate at which the resistant 
strain reproduces is much slower than the rate at which immunity kills them and the competition for resources from the growing 
sensitive strain depicted well in (Figure 3) is responsible for their eradication. In the cases of partial adherence, due to their 
imperfect adherence to the first duration of treatment the individual remains infected and takes an additional dosage of drug 
namely the extension period mentioned in the materials and methods. Due to this a secondary spike is seen in the number of 

 
Fig 2: Studying the growth of bacteria (sensitive & resistant) in an individual for different adherence levels. The 
simulation starts with base level bacterial load of 106 in the individual. The Gaussian factor (x) for the immunity 
was taken to be 1 for this simulation. The calculations were repeated for three different cases where the individual 
adheres to 60%, 80% or 100% (A0.6, A0.8, A1.0 respectively) of the prescribed dosage. At the recommended 
dosage for a normal healthy person, there is no resistance type 2 strain at the end of the infection period. However, 
as it can be seen in (C), when the adherence is poor, it leads to the development of resistant type 2.  
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resistant type 1 bacteria in the 
individual. Due to imperfect 
adherence causing recurrent 
infections the immune system is 
weakened and the antibiotic 
exposure time is increased. Decrease 
in the antibiotic concentration in the 
individual during this time due to 
poor adherence gives rise to 
favorable conditions for 
compensatory mutations to develop 
restoring the fitness cost imposed by 
the drug resistance.  
 
As seen in panel C, with the perfect 
adherence of 1, the number of 
resistant strains developed is not in 
great numbers and the immune 
system comes back to normal by 
then. This as seen from the study by 
[8] reduced the mutant selection window and thus very few resistant type 2 strains are observed in the simulation. Whereas in the 
case of lower adherences such as 0.8 and 0.6, as explained above the favorable conditions like a still recovering immunity 
broadens the mutant selection window by the slower killing of the bacteria thus increasing the probability of the mutation 
occurring. This is also exacerbated by the lack of competition from the sensitive strains that are significantly depleted from the 
drug dosage and would take time to recover to their benign level. Thus, we are able to see the stark increase in numbers of 
resistant type 2 strains in the population for imperfect adherences. All these are under the assumption that seven days of the drug 
are required for cure. For this particular immunity level chosen, seven days are required. In the case of a person with a lower  
immunity level (immuno-compromised) seven days may be a non optimal dose. 
 

B. Growth and Spread of Resistant strain in a Population with fixed adherence 
The simulation was then repeated 
for a population of 10,000 people. 
The immunity distribution in the 
population was assumed to be a 
Gaussian (Table 1). From panel 
B, we can quantitatively see that 
the number of resistant type 2 
bacteria in the population is lesser 
in number with good adherence. 
The reason for the sudden spurt of 
the resistant bacteria might be the 
possibility of an immune-
compromised person getting 
infected. In case of an immune-
compromised person as studied in 
[13], the resistant strains grow 
uninhibited by the lack of 
competition from sensitive strains 
as they get killed by the drug and 
a weak immunity aids the 
proliferation of resistant strains. 
Panel C, shows the sensitive bacteria in the population. With complete adherence the sensitive strain is the highest (compared to 
imperfect adherence) resulting in the resistant bacteria to be minimum due to the competition faced. This also is a better scenario 
as the sensitive bacteria being in the majority in the population makes the treatment effective in case of an illness. The higher the 
number of resistant strains in the population, the higher the chances of the population being infected by the resistant strain and 
this case is of great public health concern as the drugs present in the market have lesser effect on them. Panel D is the overall 
indicator of the effectiveness of treatment in the population. Panel D, shows the number of people infected in each month. In the 
case where all infected people are completely healed the plot would be a straight line at 8 cases of infection per month. The line 

 
Fig 4: The bacteria growth and dynamics for varying adherences in a population. Panels A to C represent the 
average number of bacteria in the population. Panel D is the total number of infected individuals. The adherence 
has a strong influence at the population level.  

 
Fig 3: The data is exactly same as in Fig 2. However, it is presented from a different perspective. All the 
data corresponding to one adherence are pooled together in each of the subplots.  
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deviating from the normal level shows us that there are people infected at the end of the month and aren’t fully cured. In the 
event that the person cannot be cured in the same month he is carried forward to the next month and continued.  
 

C. Growth and Spread of Resistant strain in a Population with mixed adherence 
In a population, a more likely scenario than a pure adherence of 0.6 or 0.8 is a distribution of individuals with different 
adherences. We assumed three different distributions (Figure 5) and studied the dependence of the development of resistant 
strains as well as the number of infected individuals. It is clear that the communities which have a better distribution of 
adherence are more effective in containing the infections. 
 

 
 

 
 
 
 

 

D. Comparing the effect of variation in immunity and adherence. 
 
In the calculations we performed at 
the population level, we sorted the 
number of people infected by 
resistant strain type 2 according to 
their innate immunity and the 
adherence. It is clear from Fig 6 that 
the it is important for the immune 
compromised to have better 
adherence. The results also suggest 
that a moderate reduction in 
immunity can be compensated by a 
better adherence to the optimal 
dosage.  
 
 
 

 

Fig 5: Distribution (hypothetical) of adherences in a population was assumed as shown in the pie chart. The evolution of the community level 
resistance was studied assuming these distributions. More compliant communities have better chances of fighting the antibiotic resistance.  
 

Fig. 6 For a population with mixed adherence shown on the left, the number of people infected with resistant strain 2 was calculated depending 
on the adherence and innate immunity levels. The color bar indicates the number of infected. It is clear from the graph that a moderate 
reduction in immunity can be compensated by a strict adherence.   
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E. Comparing the contributions from bacterial adaptation with adherence 
 
We also compared the rise in number of infected people (Figure 7) when the adherence was perfect, but mutation rates increased 
by a factor of 100, to those when the adherence dropped to 0.6. Interestingly, while the effects of an adherence of 0.8 was 
comparable to a 100x increase in the mutation rates, adherence of 0.6 significantly increases the number of infections, from the 
resistant strains. The finding underscores the need to comprehensively evaluate all the possible factors that contribute to the 
antibiotic resistance. 
 

 
 
  
 
 
 
 
 
 

 
 

The limitations of the model are that it assumes that the treatment course continues to be the same and no new antibiotics are 
suggested to a patient that is not responding. While the model studies the competition between the different strains, we do not 
consider competition from any other bacterial types not related to Sp. Further, the since we studied Sp, one expects to have 
seasonal variations, which is not taken into account in the present model. Despite these limitations, we believe the integrative 
model we present combines information across scales from mutations, mutant selection window, pharmacokinetics, drug dosage 
and adherence to quantify the different contributions to the population level antibiotic resistance. 

IV. CONCLUSION 
We developed an integrative model to scan across the contributors from bacterial adaptation rate to drug dosage adherence by 
patients. The model allowed us to weigh the factors contributing to the resistance development. The comprehensive model 
allowed us to see that adherence is comparable, if not more important to the mutational adaptation of bacteria. Considering the 
urgency of tackling the antibiotic resistance, we believe the integrative model gives an opportunity to weigh the cost-benefits of 
spending resources on the different factors contributing to the drug resistance.  
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