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Bridging sensory and language theories of dyslexia: towards a
multifactorial model

Research Highlights

e Our research provides direct evidence that a single-mechanism, or core-deficit, model of
dyslexia cannot account for the range of linguistic and sensory outcomes in children.

e Individual differences in visual motion processing, perceptual decision making, phonological
awareness and rapid naming each account for unique variance in reading skill.

e  QOur data support an additive risk-factor model, in which multiple independent dimensions each
confer risk for reading difficulties.

Abstract

Competing theories of dyslexia posit that reading disability arises from impaired sensory,
phonological, or statistical learning mechanisms. Importantly, many theories posit that dyslexia
reflects a cascade of impairments emanating from a “core deficit”. Here we collect a battery of
psychophysical and language measures in 106 school-aged children to investigate whether
dyslexia is best conceptualized under a core-deficit model, or as a disorder with heterogenous
origins. Specifically, by capitalizing on the drift diffusion model to separate sensory encoding from
task-related influences on performance in a visual motion discrimination experiment, we show that
deficits in motion perception, decision making and phonological processing manifest largely
independently. Based on statistical models of how variance in reading skill is parceled across
measures of sensory encoding, phonological processing and decision-making, our results
challenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings
indicate a model where reading skill is explained by several distinct, additive predictors, or risk
factors, of reading (dis)ability.
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Background

Recently, there has been growing adoption of the view that dyslexia, a reading disability,
is probabilistic in nature: children with a family history of dyslexia are considered “at-risk™, and
compensatory skills such as strong oral language or executive functions may be “protective
factors” (Haft, Myers, & Hoeft, 2016; Hulme, Nash, Gooch, Lervig, & Snowling, 2015; Muter &
Snowling, 2009; Pennington, 2006). In this multifactorial framework, most cases of dyslexia
cannot be explained by a single cognitive deficit. Despite this heterogeneity, it is broadly accepted
that phonological awareness (PA) and rapid automatized naming (RAN) are two of the strongest—
if imperfect—predictors of reading development (Pennington et al., 2012; Wolf & Bowers, 2000).

In parallel, there is a broad literature characterizing dyslexia as the consequence of a
fundamental deficit that supersedes phonological processing. There are many reports indicating
that people with dyslexia also perform worse in experiments targeting various aspects of visual
(Stuart, McAnally, McKay, Johnston, & Castles, 2006; Talcott et al., 2002) and auditory
processing (Hdmaldinen, Salminen, & Leppéinen, 2013; Noordenbos & Serniclaes, 2015), as well
domain general mechanisms such as processing speed and statistical learning (Gabay, Thiessen,
& Holt, 2015; Vandermosten, Wouters, Ghesquiere, & Golestani, 2018). These findings have
spurred competing theories that explain dyslexia as the consequence of cascading effects from a
fundamental sensory processing deficit. Generally, these “cascading deficit” theories contend that
relatively low- or mid-level aspects of sensory processing disrupt the development of phonological
awareness, and by this mechanism disrupt reading development.

Notably, these two branches of research remain largely distinct: while multifactorial
models of reading disability are increasingly accepted among researchers studying high-level
cognitive and linguistic functions, these models largely ignore lower-level deficits in sensory
processing. In the sensory-processing literature, on the other hand, cascading deficit models
continue to dominate and appeals to a “core mechanism” of dyslexia are still commonplace.
Indeed, a PubMed search for the phrase “core deficit of dyslexia” turns up 118 results from 1986
to the present. Presently, hypotheses positing a core deficit with cascading effects are the focus of
many neuroscientific and psychophysical studies of reading disability (Casini, Pech-Georgel, &
Ziegler, 2018; Colling, Noble, & Goswami, 2017; Frey, Francois, Chobert, Besson, & Ziegler,
2019; Frey, Frangois, Chobert, Velay, et al., 2019; Gori, Seitz, Ronconi, Franceschini, & Facoetti,
2016; Krause, 2015; Lieder et al., 2019; Nicolson & Fawcett, 2018; Vidyasagar, 2019).

A core deficit model is inherently at odds with a multifactorial model; to accept both
models implies that a deficit is not really “core” in the majority of individuals with dyslexia.
Reconciling the many disparate theories of reading disability remains a formidable challenge. To
further compound the difficulty, there are several variants of the cascading deficit theory: one is
the magnocellular deficit theory of dyslexia, in which a low-level impairment in the motion-
sensitive magnocellular pathway of the visual system is said to disrupt reading skill development
(Stein, 2001, 2018; Stein & Walsh, 1997). Proponents of this theory have argued that sensitivity
to transient sensory information may not be restricted to vision, but could also affect auditory
processing (Stein & Talcott, 1999; Van Ingelghem et al., 2001; Witton et al., 1998).
Hypothetically, insensitivity to rapid auditory cues could diminish an individual’s ability to learn
the sounds of their language (phonemes), and hence develop PA. A recent spin on this theory is
the temporal processing hypothesis, which contends that, in fact, slow temporal mechanisms
involved in entraining to the envelope of speech are the fundamental disorder (Casini et al., 2018;
Goswami, 2015; Huss, Verney, Fosker, Mead, & Goswami, 2011). Distinct from these sensory
theories, proponents of the statistical-learning hypothesis argue that a domain-general deficit in
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sensory learning and perceptual decision-making could explain why people with dyslexia perform
poorly on myriad psychophysical tasks (Ahissar, 2007; Nicolson & Fawcett, 2018; Ziegler, 2008).
It also purports to explain why children with dyslexia struggle to learn the mapping between letters
and sounds.

Today, the literature remains inconclusive for several reasons. First, the various cascading
deficit models contradict one another as each posits distinct mechanisms for disrupting
phonological processing and, in turn, reading. While a statistical learning model of dyslexia could
potentially explain why so many struggling readers also perform poorly on visual psychophysics,
it has not been established whether these two types of deficits occur in the same individuals. The
widespread use of group-level statistics makes it challenging to interpret how many individuals
show a given pattern of low-level deficits, and the few studies focusing on individual patterns
across a battery of diverse tasks do not encourage much hope for a uniform profile (Amitay, Ben-
Yehudah, Banai, & Ahissar, 2002; Ho, Chan, Tsang, & Lee, 2002; Menghini, Carlesimo, Marotta,
Finzi, & Vicari, 2010; Ramus et al., 2003; White et al., 2006).

Perhaps more importantly, it remains challenging to understand what relationship
predictors from psychophysical tasks have with phonological predictors in determining reading
ability--in other words, whether the influence of low-level sensory processing mechanisms on
reading skill is mediated by phonological processing. Perhaps Talcott et al. (2000) best addressed
this question by administering auditory, visual, and phonological tasks to 32 children, concluding
that a measure of visual motion processing explained some additional variance in reading skill
beyond a measure of PA. A follow-up study in more than 300 school-aged children replicated the
finding that visual and auditory psychophysics explained variance in both phonological and
literacy skills but did not clarify the fit of a cascading model (Talcott et al., 2002). Several others
have observed evidence that psychophysical measures influence reading skill separate from the
proposed phonological pathway (Snowling, Lervdg, Nash, & Hulme, 2019; Stein, 2001; White et
al., 2006). Despite these findings, cascading deficit models remain at the forefront of the dyslexia
debate, particularly for theories that hold a central role for sensory deficits (reviewed in (Goswami,
2015)).

There are several reasons why studies such as Talcott et al.’s are well-cited, but not broadly
adopted as conclusive evidence about sensory processing in dyslexia. In the last two decades, there
has been growing focus on non-sensory mechanisms that may affect how struggling readers
perform on psychophysical tasks— a confound that many studies may not have sufficiently
accounted for (Banai & Ahissar, 2004, 2006; Ramus & Abhissar, 2012). Furthermore, in the
multifactorial literature, it is increasingly accepted that at least two dissociable aspects of
phonological processing (PA and RAN) contribute to reading skill (Pennington et al., 2012; Wolf
& Bowers, 1999, 2000). Most sensory literature explores the relationship of sensory measures to
a single dimension of PA. As evidence mounts that PA alone is unlikely to explain many (or even
most (Pennington et al., 2012)) cases of dyslexia, it remains worth considering how individual
differences in visual motion processing, or perceptual decision making more generally, will fit into
changing conceptions of reading disability.

Emanating from the rift in the literature, and the incompatibility of the myriad of “core
deficit” models, this study investigates whether a cascading-deficit model, in which an underlying
deficit in some other lower-level sensory or cognitive process disrupts phonological processing, is
compatible with the pattern of behavioral testing and psychophysical results seen in a large sample
of children with dyslexia. In order to separate the contributions of sensory encoding of visual
motion from non-sensory aspects of the decision-making process, we revisit a widely used measure
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of visual motion sensitivity (random dot motion discrimination) with a mathematical modeling
approach. The drift diffusion model (DDM) estimates the generating function that corresponds to
an individual’s pattern of responses and reaction times on a task (Ratcliff & McKoon, 2008), and
has been previously used to understand how cognitive mechanisms associated with aging (Ratcliff,
Thapar, & McKoon, 2004), ADHD (Huang-Pollock et al., 2017), and development (Ratcliff, Love,
Thompson, & Opfer, 2012) manifest in psychophysical task performance. The model has been
extensively used to describe decision-making on the motion discrimination task (Gold & Shadlen,
2007; Palmer, Huk, & Shadlen, 2005; Shadlen, Hanks, Churchland, Kiani, & Yang, 2013), and
many of its assumptions are validated by electrophysiological work in non-human primates
(Shadlen & Newsome, 2001). As such, the DDM provides a rigorous way to explore the
intersection of sensory integration and decision making in relation to reading skill.

Contrary to predictions of the myriad of core-deficit models, our data reveal a
heterogeneity of deficits among children with dyslexia; no single factor, including measures of
phonological processing, can reliably distinguish children with dyslexia from control subjects. The
DDM reveals that sensory encoding and perceptual decision making are separable factors which
predict unique variance in reading skill above and beyond phonological processing, and that there
is not a consistent pattern of impairments among children with dyslexia. Furthermore, these
sensory predictors are useful in addition to PA and RAN in characterizing an individual’s level of
reading (dis)abilities. As a whole, these data provide further evidence against core-deficit models
of dyslexia and indicate that multiple-deficit models must consider the combined influence of
sensory, cognitive and linguistic factors on the development of reading skills.

Methods

Participants

A total of 119 native English-speaking school-aged children ages 8-12 were recruited for
the study. Children without histories of neurological or sensory disorders were recruited from a
database of volunteers in the Seattle area (University of Washington Reading & Dyslexia Research
Database;_http://ReadingAndDyslexia.com). Parents and/or legal guardians of all participants
provided written informed consent under a protocol that was approved by the University of
Washington Institutional Review Board. All subjects demonstrated normal or corrected-to-normal
vision. Participants were tested on a battery of cognitive and literacy assessments, including the
Woodcock-Johnson IV (WJ-1V) Letter Word Identification and Word Attack sub-tests, the Test of
Word Reading Efficiency (TOWRE-2), Comprehensive Test of Phonological Processing (CTOPP-
2) and the Wechsler Abbreviated Scale of Intelligence (WASI-II). All subjects had normal or
corrected-to-normal vision.

Five subjects did not complete the psychophysics. An additional two subjects did not show
evidence of performing above chance (greater than 60.5% accuracy at any of the four stimulus
coherence levels) and were excluded from analysis. A further six subjects did not produce enough
usable data to fit the DDM (no more than 15% responses outside of the acceptable response time
window from 200 ms to 10 s). This left 106 subjects with usable data.

Demographics
We recruited participants whose reading abilities ranged from profoundly impaired to
highly proficient. Since reading abilities fall on a continuum (Shaywitz, Escobar, Shaywitz,
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Fletcher, & Makuch, 1992) we treat reading ability as a continuous measure in our main statistical
analyses. For the purpose of comparison with other studies we include group-level analyses
(Dyslexic versus Control) in our Supplementary Materials. Group labels were assigned on the basis
of the composite Woodcock-Johnson Basic Reading Score (WJ-BRS) and TOWRE Index. As both
the WJ-BRS and TOWRE Index are scored on the same standardized scale, a composite reading
skill measure was created by averaging the two scores for each participant. The “Dyslexic” group
comprised participants whose reading score fell 1 standard deviation or more below the population
mean (reading score < 85); the “Control” group had reading skill measures above this cutoff and
had never been diagnosed with a reading disability. There were 43 subjects in the Dyslexic group
and 48 in the Control group. A remaining 15 subjects were not well-described by either label (e.g.,
reading score > 85 but an indication of a dyslexia diagnosis) so were not included in the group
comparisons. As in several other studies (O’Brien, McCloy, Kubota, & Yeatman, 2018;
Pennington et al., 2012), we did not IQ-match these groups, but rather controlled for nonverbal-
1Q explicitly in our statistical analyses. Additionally, ADHD diagnosis was not grounds for study
exclusion because of the high comorbidity between ADHD and dyslexia. The presence of ADHD
was entered into our linear modeling analyses as a covariate. Relationships between demographic
characteristics, phonological, IQ measures and reading skill are presented in Supplementary Tables
S1 and S2.

Healthy Brain Network dataset

The Healthy Brain Network dataset is provided to the public by the Child Mind Institute.
At the time of writing, the released dataset included 1814 subjects. From this dataset, we identified
124 school-aged individuals (ages 5-17) in the urban New York City region who had been
diagnosed with “Specific Learning Disorder with Impairment in Reading” by a panel of clinicians
affiliated with the Child Mind Institute and had also been administered the CTOPP-2. We also
identified 119 individuals who were similarly assessed and given no diagnosis of any kind. Due to
the large number of participants available, we were able to create nonverbal-IQ matched control
groups on the basis of the Wechsler Intelligence Scale for Children’s Matrix Reasoning scaled
score (Dyslexia: n = 110; Control: n = 105). These groups did not significantly differ in terms of
nonverbal-1Q (#(208.85) =-1.0668, p = 0.287) and age (#(212.65 = 1.041, p = 0.299). The Healthy
Brain Network dataset can be accessed here:
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/index.html

Psychophysics stimuli and apparatus

Stimuli for the motion discrimination experiment were created using MATLAB (The
Mathworks Corporation, Natick, MA, USA) in conjunction with the Psychophysics Toolbox.
Stimuli were displayed on a LG liquid crystal display (1,920 x 1,080 resolution, 120 Hz refresh
rate, subtending 51° horizontally). The subjects’ response was collected using keypresses. The
viewing distance was 56 cm. We used random-dot motion stimuli (150 dots) that were displayed
in a circular aperture (14° in diameter) centered around the fixation mark (1°) at the center of
display. Light (271 cd/m?) and dark (0 cd/m?) dots (dot size = 0.15°) moved at the speed of 8°/s on
a gray background (135cd/m?). Each dot was assigned a random lifetime from a uniform
distribution between 0 and 200 ms (24 video frames). When a dots lifetime expired, it was
randomly re-positioned within the aperture and assigned the maximum lifetime (200 ms). Motion
coherence was defined as the percentage of dots moving together in the same direction compared
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to dots moving in random directions. The stimuli were equivalent to those used in Joo et al.(Joo,
Donnelly, & Yeatman, 2017) except (a) with fixed coherence levels, and (b) stimuli remained on
the screen until the subject indicated a decision with a button press (as opposed to fixed duration).

Psychophysics procedure

Each session comprised 6 experimental blocks. For each subject, three blocks of fifty
stimuli were tested with a brief break in between. This was followed by a longer break to collect
reading, phonological and IQ measures, and followed by the final set of three blocks. At the
beginning of the session, subjects completed 10 practice trials comprising high coherence motion
(60—-100%). Subjects were allowed to repeat the practice up to three times, until they got at least
70% correct. All participants were able to do this.

Stimuli were presented at five coherence levels: 6%, 12%, 24%, 48%, and 100%. However,
early in the study we realized that many subjects (unrelated to reading ability) found 100%
coherence difficult and reported varying visual percepts. Performance typically declined for 100%
coherence stimuli compared to 48% coherence. Therefore, we analyzed only the range of stimulus
coherence levels where performance was generally monotonic, from 6% to 48%. Each stimulus
coherence level was presented 60 times for a total of 300 presentations, 240 of which were included
in the analysis.

Each trial started with a fixation mark at the center of the display. After 500 ms, random-
dot motion stimuli were displayed until the subject made a keypress (or until 10 seconds had
elapsed). Subjects pressed right or left arrow keys on a standard keyboard to report motion
direction. The fixation mark was turned off when the response was made, and visual and auditory
feedback was given to indicate correct and incorrect responses. The experiment did not proceed
until subjects reported the motion direction. The inter-trial interval was 1 s, and after this interval
the fixation mark re-appeared at the center of the display to indicate the beginning of the next trial.

Drift diffusion model

Fundamentally, the DDM tries to maximize the likelihood of observing a distribution of
reaction times according to the probability density function

2
v,a,z) = ﬁexp (—vaz— %)

X Zk exp (— k;z:“‘) sin (k7 z)
k=1

f@

where x is reaction time, v is drift rate (the average rate at which evidence is accumulated for a
decision), a is the distance between the two decision boundaries, and z is a bias term that allows
for an observer to prefer one alternative to the other (Wald, 1947). The parameter v is allowed to
vary with stimulus level. Additionally, the DDM fits a parameter ¢, which corresponds to the non-
decision time- in other words, the time taken by all sensory and motor processes besides
accumulating evidence for a decision, such as planning and executing a motor response and
converting incoming sensory inputs to units of evidence.

The above equation predicts perfectly symmetric distributions of correct and error response
times, and so the DDM model has been extended to include three free parameters that allow it to
approximate more realistic distributions. The first of these parameters is sz, the trial-to-trial
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variability in the drift process starting point (centered around the halfway-point between the two
decision bounds), which allows the model to predict fast errors. The other parameters are sv, the
trial-to-trial variability in average drift rate, and st, the trial-to-trial variability in residual time ¢.
When the DDM is fit with these three additional parameters, it is referred to as the fu//l DDM.

The full DDM was fit using the Hierarchical Drift Diffusion Model toolkit for
Python(Wiecki, Sofer, & Frank, 2013). Parameter reliability estimates are provided in the
supplement (Table S3). The DDM was fit to each individual’s behavioral responses and reaction
times using the Maximum Likelihood fitting method (as recommended by Van Zandt(2011)). The
optimization scheme was attempted five times per individual and parameter estimates from the
best run were saved. In all cases, the optimization scheme terminated successfully. As
recommended by the makers of the HDDM package (Wiecki et al., 2013), the DDM was fit with
a mixture model that allowed up to 5% of responses to be assigned to a uniform “lapse”
distribution. This reduces bias in drift rate estimates due to occasional lapses. Because this mixture
component was included, we employed only a coarse screen for outlier detection before DDM
fitting: responses occurring before 200 ms (before a typical behavioral response can be executed)
and after 10s (after the stimulus had concluded) were excluded. Although we excluded two
participants with >15% data loss, the average participant in the remaining sample had 98.1%
usable data.

Outlier detection

To determine the presence of highly unusual model fits, we computed the Mahalanobis
distance for each individual with respect to the 9 parameters estimated by the DDM. The
Mabhalanobis distance for multiple dimensions follows a chi-squared distribution, and so we use
this measure to detect outliers(Filzmoser, 2004). Specifically, individuals with a Mahalanobis
distance corresponding to values beyond the p < 0.001 threshold were deemed to be outliers. Two
such individuals were detected; both had been fit with extremely high a values (a = 8.17 and a =
5.60). One of these individuals had a composite reading score in the Dyslexic range, whereas the
other would have been above our cutoff. These two points were excluded from further analysis as
we have cause to doubt the quality of their DDM parameter estimates, but their results are included
with the full dataset online.

Stepwise model selection procedure

In our analyses of the relationships between various parameter estimates from the DDM
and reading skill, we employed a stepwise model selection procedure. In all cases, we considered
three covariates: age, nonverbal-1Q, and the presence of an ADHD diagnosis. Each model selection
procedure began with a fully specified model of reading score as a function of the parameter(s) of
interest plus the three covariates. Fitting was performed with the base R Im() function, except
where mixed model usage is noted, in which case the Ime4 library was used(Bates, Sarkar, &
Matrix, 2007). The contributions of the covariates were first tested using an anova test. Model
terms were retained if the p-value associated with the more complex model was less than 0.1. Next,
parameters of interest were tested similarly. Throughout the manuscript, wherever model selection
is performed we report the selected (“most parsimonious’) model.
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Mediation analysis

Mediation analysis was performed using the “mediation” package for R(Tingley, Yamamoto, Hirose,
Keele, & Imai, 2015). In all mediation models, nonverbal IQ was entered as a covariate. 4000 bootstrap
simulations were used to estimate the proportion of mediation of a variable of interest by PA in a linear
model of reading skill.

Results

Predicting dyslexia from phonological measures

We first assessed the phonological core deficit model by quantifying the extent to which
deficits in PA, RAN, or both differentiate individuals with dyslexia from control subjects with
typical reading skills (Figure 1). A recently released public dataset, the Child Mind Institute’s
Healthy Brain Network (Alexander et al., 2017) (HBN), allows us to explore this question in a
large sample of children (N = 1814, n = 110 children with dyslexia, n = 105 children selected to
match on age and nonverbal IQ with no neurological or psychiatric diagnosis). Using quadratic
discriminant analysis (QDA) with age and nonverbal-IQ matched groups, we asked what
proportion of children could be correctly classified on the basis of two predictors: the
Comprehensive Test of Phonological Processing (CTOPP-2)’s Elision measure of PA and Rapid
Symbol Naming Composite measure of RAN (both age-normed). A QDA classifier trained with
leave-one-out cross validation could correctly classify 67.4% (£6.3%; 95% confidence interval)
of individuals with a specificity of 68.2% and a sensitivity of 66.7%. A support vector machine
achieved equivalent accuracy.

This result is undoubtedly in alignment with the extensive literature on phonological
processing: PA and RAN are both meaningful predictors of reading skill. Yet, these two measures
alone fail to account for many cases of dyslexia. Furthermore, many individuals with apparently
typical reading abilities would be predicted to be dyslexic on the basis of their PA and RAN scores
alone.

In the original formulation of the phonological core deficit model (e.g. (Stanovich, 1988)),
PA is purported to be a more powerful predictor of reading disability in early childhood, so it may
be unsurprising that our model performs poorly in a sample containing teenagers. We therefore
repeated our analysis on two subsets of the sample: 62 children between aged 5-8 (n =29 with a
Dyslexia diagnosis), and 153 children aged 8-17 (n = 81 with a Dyslexia diagnosis). The classifier
trained on the younger cohort obtained an accuracy of 69.4% (+ 11.7%) while the classifier trained
on the older cohort reached 66.7% ( 7.5%). We ran a second analysis treating age as a continuous
predictor: we used logistic regression on our entire sample to model dyslexia diagnosis (present or
absent) with main effects of age, PA, and the interaction of the two. The interaction term was not
significant (f =-0.007, SE = 0.0243, p = 0.767). For completeness, we tested a direct measure of
pseudoword reading skill provided in the HBN dataset (the age-normed Weschler Individual
Achievement Test Pseudoword subtest) as the dependent variable in a linear model. The
interaction of age and PA was again not significant (f =-0.0322, SE=0.116, p=0.782). As such,
our finding that standard phonological measures are only modest predictors of dyslexia in the HBN
dataset is unlikely to be an artifact of the age range in the sample.
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Figure 1. Panels A-B: Density plots for phonological awareness (PA, CTOPP Elision) and rapid
automatized naming (RAN, CTOPP Rapid Symbolic Naming Composite) in the Healthy Brain
Network (HBN) dataset in two groups. The Dyslexia group (blue) consists of 110 school-aged
children diagnosed with dyslexia by a panel of clinicians. The red density plot represents an age-
and nonverbal-1Q-matched control group of 105 children identified as having no psychiatric or
neurological diagnoses by the same panel. Panel C: The decision boundary of a quadratic
discriminant analysis trained on the entire dataset is shown. Dots represent observations from the
dataset with slight jitter added for visibility of overlapping points.

Differences in visual motion processing

Having demonstrated that phonological predictors alone are an insufficient to explain many
cases of dyslexia, we next consider the contribution of visual motion processing to reading
abilities: do visual motion processing difficulties typically coincide with phonological
impairments, as would be expected in a cascading model of reading disability? Or are they a
separable contributor to reading outcomes which explain cases of dyslexia that were not captured
by the phonological core deficit model? Here we present the results of the motion discrimination
experiment (conducted in the lab) in 106 school-aged children, including 42 individuals who meet
our criteria for dyslexia. Accuracy and response times were collected for stimuli presented at four
coherence levels: 6%, 12%, 24%, and 48%.

Before we model the respective contributions of sensory and decision processes to task
performance, it is important to establish that task performance is related to reading skill. We
confirmed that reading skill was related to reaction time: using model selection, we identified that
the most parsimonious model of median reaction time included main effects of stimulus coherence
(B =-0.173, SE=0.00898, p < 1 x 107%), age (B =-0.059, SE =0.0214, p < 1 x 10'%), and reading
skill (8 = -0.006, SE = 0.00149, p = 1.15 x 10"*) with a random effect of subject (Table S4 and
Figure S1). Accuracy was not significantly related to reading skill (Table S5), likely reflecting the
fact that the motion stimuli remained on the screen until the subject provided a response. Notably,
we also observed that the ratio of correct to error median response times within each subject was
significantly associated with reading skill (f = -0.00444, SE = 0.00224, p = 0.0497), with poor
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readers showing an increased tendency to make “fast errors” relative to correct response times
(Table S6 and Figure S2). The presence of fast errors is notable because this phenomenon is
typically associated with non-sensory mechanisms, including a tendency to initiate guesses before
an optimal amount of evidence is considered (Smith & Ratcliff, 2004). Thus, raw reaction time
data indicated that children with dyslexia were not only less efficient than control subjects, but
also showed a qualitatively different pattern of responses.

Less efficient visual motion processing in dyslexia

To decouple sensory encoding of visual motion from the process of forming and executing
a binary decision, we fit the drift diffusion model (DDM) to each subject’s distribution of
behavioral responses and reaction times. In the DDM for a two-alternative forced-choice
judgment, it is assumed that an observer samples sensory input at discrete moments in time, and
that these samples are accumulated in a noisy decision variable that represents the integrated
evidence over the course of the trial (plus internal noise). When this decision variable reaches a
threshold, the observer initiates a decision (Figure 2A). The DDM therefore separates the encoding
and evaluation of sensory information (which drives changes in the decision variable) from non-
sensory processes, such as the magnitude of the threshold for triggering a decision and the trial-
to-trial variability in the decision process (for a detailed review of the DDM, see (Ratcliff &
McKoon, 2008; Wiecki et al., 2013)).

After fitting the DDM to each subject’s behavioral responses, we investigated whether
there was a relationship between the drift rate parameter, v, and reading skill. Drift rate models the
efficiency with which information is extracted and integrated from incoming sensory signals. For
example, drift rate monotonically increases with stimulus coherence level (f =0.719, SE =0.0249,
p < 1 x 10"%) indicating the visual system can more efficiently extract motion information when
stimulus noise is low. If individuals with dyslexia do not have any difficulties with sensory
encoding, as predicted by the statistical learning hypothesis, we would expect drift rate to be
uncorrelated with reading skill once covariates like 1Q, age, and ADHD diagnosis are controlled
for. Note that in our analyses, we treat reading as a continuous measure, but we also provide
analyses where reading disability is treated as a categorical variable in Supplementary Analysis 1
(Tables S7-S9).

Table 1. Selected model of drift rate

B SE p
Intercept 1.534 0.0620 <1x10%
Stimulus coherence 0.719 0.0249 <1x107%
Age 0.268 0.0623 3.878 x 10°
Reading skill 0.173 0.0623 6.605 x 1073
Stimulus coherence : Reading skill 0.0869 0.0249 7.04 x 10

Individual estimates of drift rate are shown in Figure 2. Drift rate was best modeled by a
main effect of reading skill, a main effect of stimulus coherence, a main effect of age, and the
interaction of reading skill and stimulus coherence (Table 1). Our results therefore indicate that
drift rate increases with stimulus coherence, as expected, as well as age and reading skill.
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Furthermore, there is a stronger relationship between reading skill and drift rate at high stimulus
coherence levels, which is likely a consequence of the fact that estimates of drift rate are more
reliable at higher coherence levels (see Methods).

Group

Control
Dyslexic

A evidence _
Atime

N[ R
evidence

time

B 6% 12% 24% 48%

61 r=0.19,p =0.048 r=0.29,p=0.003 r=0.26,p =0.009 r=0.25,p=0.009
L]

Drift Rate (v)
=

60 80 100 120 60 80 100 120 60 80 100 120
Reading Score

Figure 2. Panel (A): A schematic of the drift diffusion model (DDM) with reaction time
distributions (at 12 % coherence) from the control and dyslexic groups imposed above. The red
and blue lines in the schematic show how differences in drift rater predict differences in the
reaction time distributions. The DDM model was fit separately to each individual’s data and the
average drift rate parameter for the dyslexic and control groups is shown in the bar plot in panel
A (+/- 1 standard error). (B) The relationship between estimated drift rate and reading skill at
four different stimulus coherence levels. Lines are best fit regression lines and shaded regions are
confidence intervals.

The DDM also estimates a parameter modeling the trial-to-trial variability in drift rate, sv.
This parameter is known to be correlated with drift rate under certain conditions, with higher
average drift rates being associated with greater trial-to-trial variability(Wagenmakers & Brown,
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2007; Wagenmakers, Grasman, & Molenaar, 2005). Unsurprisingly, we found that sv was
correlated with drift rates at every stimulus level. It was positively related to reading skill, but this
effect did not reach significance (r = 0.13, p = 0.0953).

As to the question of whether drift rate explains additional variance in reading skill beyond
phonological processing, consider the subset of readers in our sample with above average PA (PA
scores > 100). Within this subgroup of 38 participants, 9 children (23.7%) met our criteria for
dyslexia despite having high PA, and reading skill was significantly correlated with mean drift rate
(r =0.49, p = 0.0019; see Figure 3). For these individuals, knowing drift rate explains 24% of
variance in reading skill. In readers with average-or-better PA, it appears that individual
differences in motion encoding and sensory integration distinguish between struggling and expert
readers.

r =0.49, p = 0.0019
1401
= 1201
i
(7))
[®)]
£
®
S 1007
o
so{ ¢ g
E
e
Lod 80 100 120
60 ° ‘ | i
R 0 1 > 3

Average drift rate

Figure 3. The relationship between drift rate and reading skill in a subset of individuals with good
phonological awareness. Average drift rate is calculated by averaging each individual’s z-scored
drift rate estimates at each stimulus coherence level. Inset: a scatter plot indicating in black which
subset of the study sample is included in the “good phonological awareness” group.

Decision making parameters are related to reading skill and independent of sensory
processing

We next consider the predictions of the non-sensory hypothesis by analyzing the
relationship between non-sensory parameters of the DDM and reading skill (Figure 4A-D). If poor
readers struggled with the task only because of differences in sensory encoding, we would expect
no parameters besides drift rate (and sv) to be correlated with reading skill. To the contrary, the
parameter sz was correlated with reading skill and, after model selection, the best model of sz
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contained only a main effect of reading skill (f = -0.0842, SE = 0.0280, p = 0.00331). The
parameter sz represents the trial-to-trial variability in the relative amount of evidence required to
initiate a judgment; individuals with high sz values are prone to making fast errors. Indeed, we
confirmed that the ratio of median correct response times to error response times within a subject
was correlated with the DDM estimation of sz (r = 0.452, p = 1.44 x 10°©).

Similarly, we observed that the parameter representing the threshold of evidence required
to initiate a decision, a, had a modest but significant correlation with reading skill (8 =-0.136, SE
= 0.0632, p = 0.0329), indicating that worse reading skill is associated with employing a more
conservative criterion for initiating a perceptual decision. No covariates (age, nonverbal IQ or
ADHD diagnoses) were retained by model selection.

Lastly, we examined parameters that represent the lumped contributions of all non-decision
processes to reaction time, including the time necessary to encode a sensory stimulus and execute
a motor response. Because some individuals with dyslexia are known to have slower processing
speed (Pennington et al., 2012; Peterson & Pennington, 2015), we might expect this time to be
longer in children with worse reading skills. Indeed, the parameter ¢ representing an individual’s
average non-decision time showed an overall negative relationship with reading skill. However,
the magnitude of the effect was not nearly large enough to attain statistical significance, and after
model selection, only age was retained as a predictor of # (§ =-0.0496, SE = 0.0163, p = 0.00301).
As such, maturation is associated with reduced non-decision time. Interestingly, a parameter
modeling trial-to-trial variability in non-decision time, stz, was best modeled by main effects of
reading skill (f = -0.0810, SE = 0.0278, p = 0.00436) and age (5 = -0.0846, SE = 0.0278, p =
0.00296).

We have so far identified several parameters of the DDM, both sensory and non-sensory,
that show associations with reading skill. We next considered the extent to which these parameters
were correlated with one another (Figure 4E). As expected, we noted strong correlations between
the four drift rate parameters. None of the drift rate parameters were significantly correlated with
any non-sensory parameters after correction for multiple comparisons. There were moderate
correlations between three non-sensory parameters, st, ¢t and sz (s¢ and #: r = 0.685, p = 9.75 x 10
16: ¢ and sz: r = 0.335, p = 0.0005; sz and st: r = 0.386, p = 5.03 x 107) These three parameters
largely contribute to modeling the leading edge of the reaction time distribution: sz allows for the
presence of relatively fast errors, ¢ shifts the response time distribution along the time axis, and s¢
allows for responses before an individual’s average response time. Finally, we noted that the
parameter a was uncorrelated with any of the other parameters.

Hierarchical clustering with Ward’s method (Ward, 1963) indicated that the correlation
matrix was consistent with three clusters of parameters: a cluster consisting only of a, another
consisting of the s¢, ¢, and sz, and a final cluster including all four drift rates and sv. This suggests
that the DDM captures several independent mechanisms underlying sensory encoding and
perceptual decision making.


https://doi.org/10.1101/773853
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/773853; this version posted September 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Viz
Voq
Vag

A B, $=029,p = 0.003 E ‘
8z
4.001 . 08
st
1.00 . 08
— . :
© ] e * Y
3.00 e e o
0.50 o L el et a .
2.00 PR ot sv 0
0.00 e om e o ;-. . .
50 70 90 110 130 50 70 90 110 130 ve o
Reading skl Reading skill v o
C + r=015p=0130 D .« 17029,p=0003 Vot 0
.. d .
0.90 . . 0.751 N A Veo - 08
-
. & . . ° —_ 4
. . .« *® _dmm 3 Voon
~ 0.60 [P L te N 0501 * F p o
W 0.4 0.4 04
]
wo MR . e |l i i
030 o Ve n, ’ 0.251 PR £ 00 © 0.0 ! 200 F
L ] . .
. ‘- . . : . 0.4 04 o4
. 0.00 ode s soe me am e o
50 70 90 110 130 50 70 90 110 130
Reading skill Reading skill Group [l Control [l Dyslexic

Figure 4. Panels A-D: The relationship between reading score and four non-sensory parameters
of the DDM. (A) decision threshold a, (B) variability in drift process starting point sz, (C) non-
decision time t, and (D) variability in non-decision time st. Panel E: correlations between
parameters of the DDM. Boxes indicate hierarchical clustering results (Ward’s method) and stars
indicate significant correlations after Holmes-Sidak correction for multiple comparisons: p < 0.05
is noted with *, p < 0.01 with ** and p < 0.001 with *** Panel F: group comparisons for the
three composite measures based on hierarchical clustering of the DDM parameters: dcomp:
composite of sz, st, and t, the a parameter, and Veomp: composite of the four drift rate parameters
and sv. Note that all three composite parameters are z-scored. Error bars represent one standard
error of the mean.

Sensory and non-sensory predictors both explain reading outcomes

So far in our analysis, there seem to be several separate profiles of performance on the
motion discrimination task that are associated with low reading skill: reduced ability to encode
and integrate sensory information, setting a more conservative decision criterion, and generally
more variability in terms of the time taken to gather evidence and/or execute a decision. The lack
of correlations between many of the DDM parameter estimates indicates that individuals who
display a deficit in terms of one process (e.g., sensory encoding), are not necessarily the same
individuals who perform abnormally in terms of another process (e.g., decision-making) and that
profiles of performance are variable across subjects. Therefore, we might expect that each
parameter contributes separately to explaining variance in reading outcomes.

To test whether each dimension of task performance is indeed a unique contributor to a
model of reading skill, we employed a linear model. To simplify the number of parameters, we
introduce several composite measures based on the correlation matrix of DDM parameters and our
clustering analysis (Figure 4F). Drift rate is summarized as a composite measure, Veomp, by taking
the first principal component of the four drift rates and sv. A second composite measure deonmp Was
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derived from the first principal component s¢, ¢, and sz, which we expect represents aspects of
variability in the decision-making process.

The dyslexic and control groups differed in terms of each of these three mechanisms
(Figure 4F). We performed model selection, starting with the full model with reading score as the
dependent measure and all hypothesized DDM parameters and the three covariates (Veomp, decomp, @,
nonverbal 1Q, ADHD diagnosis and age) as predictors. The selected model retained all three
predictors from the DDM and nonverbal 1Q (Table 2).

Table 2. Selected model of reading skill from DDM parameters

B SE p
Intercept 0.972 0.351 0.00663
Veomp -0.274 0.0778 6.56 x 10-4
a -0.339 0.119 0.00548
dcomp 0.291 0.0755 2.10 x 10-4
Nonverbal 1Q 0.0453 0.0766 4.68x 10

This result confirms that non-sensory mechanisms explain additional variance in reading
skill once the quality of sensory evidence encoding is accounted for. As such, even within this
single psychophysical task, there are multiple non-correlated dimensions of variance contributing
to the pattern of responses observed in individual’s with dyslexia: the ability to extract evidence
from sensory information, choice of decision threshold, and trial-to-trial variability in behavior.

Psychophysical measures are not proxies for PA

To address the question of whether performance on the motion discrimination task is
related to reading skill by way of phonological processing, or in addition to it, we explore a series
of models. We first test the hypothesis that predictors from the psychophysical task do not explain
additional variance in reading skill once phonological processing is accounted for. We again
modeled reading skill as a function of our parameters of interest from the DDM—Veonp, deomp, and
a—as well as two phonological processing measures, PA and RAN, and the three covariates.
Model selection retained all predictors except ADHD diagnosis and age (Table 3).
Correspondingly, an ANOVA F-test comparing the selected model to a reduced model with only
PA, RAN and nonverbal IQ confirmed that adding predictors from the DDM explained variance
in reading skill above and beyond the reduced model (F(100, 97) = 4.0438, p = 0.00936). The
reduced model also had a higher AIC (selected model AIC = 794.4, reduced model AIC = 800.7)
and BIC (selected model BIC = 813.9, reduced model BIC = 815.6). From this analysis, we can
confirm that all three predictors from the DDM are useful for explaining differences in reading
skill in addition to traditional measures of phonological processing.

Because ordinary least squares models may be poorly affected by multicollinearity, we also
applied lasso regression with 10-fold cross validation (Friedman, Hastie, & Tibshirani, 2010). This
modeling approach is provided in the Supplement (Figures S3-S4; Table S10).
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Table 3. Selected model of reading skill

B SE p
Intercept -0.554 0.256 0.0331
Veomp -0.120 0.0601 0.0491
a -0.193 0.0871 0.0293
deomp 0.142 0.0570 0.0140
Nonverbal IQ 0.335 0.0602 2.26x 107
CTOPP PA 0.172 0.0653 0.0097
CTOPP RAN 0.521 0.0582 2.49x 101

Do sensory deficits have cascading effects?

It has been argued that deficits in sensory processing or decision-making could affect
reading skill because they disrupt the typical development of PA (Lieder et al., 2019; Manis et al.,
1997; Richardson, Thomson, Scott, & Goswami, 2004). We therefore explored whether this
hypothesis is borne out in our data by employing a mediation analysis. While a was not
significantly correlated with PA, veomp and deomp showed modest correlations (veomp and PA: r =
0.324, p = 4.80 x 10™*; deomp and PA: r=0.182, p = 0.0358).

We first tested a model with PA mediating the relationship between veomp and reading skill
and found a significant, partial mediation effect (42.3%, p = 0.0052). Similarly, the dcomp-reading
skill relationship is partially mediated by PA (22.2% mediation, p = 0.0224)), but there was also
still a significant direct relationship (8 = 4.293, SE = 1.501, p = 0.00516). As such, our results
provide some support for the idea that in certain poor readers, low PA could be a consequence of
a more fundamental impairment in either sensory or non-sensory mechanisms. However, our data
suggest a partial mediation, indicating that many individuals would not be well described by this
cascading model and that there are also direct links between the model parameters and reading
skill.

Multiple dimensions of skilled and disabled reading

Contrary to theories that seek to discover a unified deficit that characterizes children with
dyslexia, we have established that sensory processing of visual motion is separable from non-
sensory aspects of perceptual decision making, and both factors account for independent variance
in reading skill. To speak to the question of how many separable underlying factors predict reading
skill, we next apply exploratory factor analysis (EFA). EFA is an unsupervised learning approach
for identifying the number, and characteristics, of latent factors that explain the correlation
structure of a multi-dimensional data set (Costello & Osborne, 2005; Ferguson & Cox, 1993;
Kline, 2013). We applied EFA to characterize the space of the DDM parameters, nonverbal-1Q,
and the six subtests of the CTOPP (measure of reading skill were not included in the EFA). An
analysis of the eigenvalues of the correlation matrix indicated that four latent factors were
warranted (i.e., the first four eigenvalues > 1, see scree plot in Figure S5). This was confirmed by
parallel analysis (Hayton, Allen, & Scarpello, 2004) (i.e., in a simulation of 1000 random
correlation matrices, the first four resulting eigenvalues were lower than the corresponding
eigenvalues from our data’s correlation matrix 95% of the time). The four factors are shown in
Figure 5 with orthogonal varimax rotation. The total proportion of explained common variance by
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the four-factor model was 55.8% (Factor 1: 20.3%, Factor 2: 14.2%, Factor 3: 10.7%, Factor 4:
10.6%).

The loadings of the first factor are dominated by the four drift rate parameters, whereas the
second factor is loaded most heavily by nonverbal-IQ and four of the CTOPP subtests. The
remaining two subtests, Rapid Digits and Rapid Letters, load onto their own factor (in line with
the double-deficit hypothesis (Wolf & Bowers, 1999)). An additional factor appears to reflect non-
decision time and variability parameters of the DDM s¢, sz, and ¢. Notably, the evidence threshold
parameter, a, is not particularly associated with any factor; 87% of variance in a is unexplained by
this model.

Factor analysis largely conforms to the intuitions we have built so far through linear
models: drift rate, although correlated with phonological processing and perhaps partially
mediated by it, is identified as a separate factor. Drift rate and the non-sensory parameters of the
DDM are modeled as observations from two distinct factors. It is likely that a is representative of
an additional factor, consistent with its lack of correlations with any other parameter of the DDM
(note that without multiple estimates of a, EFA cannot estimate measurement noise and
consequently does not assign it to a new factor). Critically, each of these four factors was
significantly related to reading skill demonstrating that, rather than representing a single
underlying construct, there are multiple, independent cognitive and sensory dimensions
characterizing individual differences in reading skill (Figure 5). A linear model of reading skill as
a function of scores on the four factors indicated that all four effects were significant (see
coefficients in Figure 5). Furthermore, the full model also had a lower AIC (full model AIC =
798.8, single factor model AIC = 869.9) and BIC (full model BIC = 814.6, single factor model
BIC = 877.8).

In addition to standard model selection, we compared the accuracy of the four-factor model
on predicting held-out observations to the accuracy of a single-factor model. Using leave-one-out
cross validation to control for overfitting, the four-factor model explained 63.9% of variance in
reading skill for the held-out points. The single factor model used only Factor 2, which is largely
a composite of the CTOPP measures of PA, phonological memory, and nonverbal 1Q. This model
was only able to explain 27.4% of variance in reading skill for held-out observations (Figure S6),
indicating the necessity of considering multiple underlying dimensions (at least 4) in order to
accurately predict individual differences in reading ability.
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Figure 5. Factor loadings for the orthogonal four-factor model are shown in the table; shading
corresponds to absolute value of the loading. The scatterplot shows the correspondence between
true (measured) and predicted reading skill using a linear model with all four factors as
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predictors. Each point was predicted using leave-one-out cross-validation (LOO-CV). Color
indicates whether that point was more accurately predicted by the single-factor model or the full
model with all four factors. Green points had a lower squared error when predicted by the four-
factor model, and purple points had a lower squared error when predicted by the single-factor.
Gray points had similar prediction accuracy for both models.

Conclusions

Our results demonstrate that (1) a core phonological deficit model is insufficient to account
for many cases of developmental dyslexia, (2) abnormal performance on the motion discrimination
experiment in children with dyslexia cannot be ascribed to a uniform profile of either sensory or
non-sensory deficits, (3) both sensory and non-sensory mechanisms explain variance in reading
skill above and beyond phonological processing, (4) the correlational structure of cognitive,
linguistic and sensory measures explored here is consistent with, at minimum, four underlying
factors, (5) each of these four factors accounts for unique variance in children’s reading abilities.
In sum, our results are not consistent with models of dyslexia that only consider phonological
processing or models in which impairments in sensory encoding or decision making primarily
affect reading development via a disruption of phonological processing. Instead, dyslexia should
be conceptualized as a disorder that may arise from several distinct loci.

Our work is consistent with that of the Pennington and colleagues, which has capitalized
on large samples to demonstrate that individuals with dyslexia have a heterogeneous profile of
cognitive and linguistic impairments (Pennington, 2006; Pennington et al., 2012; Peterson &
Pennington, 2015). The present work extends this perspective to address the role of sensory
processing and perceptual decision-making deficits in dyslexia.

Several preceding studies have attempted to investigate multiple candidate mechanisms of
dyslexia, including auditory, visual, and motor processes. Our work generally conforms to the
finding of at least four such studies (Ho et al., 2002; Menghini et al., 2010; Ramus et al., 2003;
White et al., 2006) that show a heterogenous pattern of deficits present in struggling readers. In a
study with related methodology, Talcott ef al. collected several psychophysical measures in 350
school aged children and found that each uniquely explained a small percentage of variance in
literacy skill (Talcott et al., 2000). Our study similarly finds that several distinct mechanisms each
explain a small, but unique, proportion of variance in reading outcomes.

To our knowledge, the present study is the first use of the DDM to model motion
discrimination in children with dyslexia. Our results serve as a partial validation of two seemingly
contradictory theories: some poor readers show a pattern of performance consistent with reduced
ability to extract information from incoming sensory signals, while others are better described as
having normal sensory processing but altered decision-making characteristics (including, as the
propensity to make fast errors reveals, more trial-to-trial variability in the relative amount of
evidence needed to initiate a decision). Neither the statistical learning hypothesis, which would
argue that sensory deficits are not meaningful, nor the magnocellular deficit hypothesis, which
would fail to predict the non-sensory parameters of the DDM relate to reading skill, entirely match
our results. Yet we see evidence for both sensory- and non-sensory profiles of impairment in our
sample. In line with these findings, we propose that each mechanism should be reconceptualized
as a dimension of risk, as opposed to a single cause, of reading difficulties.
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As a correlational study, our results cannot validate any particular causal mechanism. It is
possible that each factor represent clusters of symptoms that indicate underlying impairment in a
processing system, but are not a direct cause of dyslexia themselves. For example, the fact that
differences in visual motion processing predict unique variance in reading skill does not
necessarily mean that, for those individuals, poor perception of visual motion is the cause of their
reading difficulty. Instead, measurements of task performance may be a proxy for the fidelity with
which the visual system constructs a sensory representation of a noisy stimulus (Sperling, Lu,
Manis, & Seidenberg, 2005, 2006), or the efficiency of information transfer between visual regions
(Yeatman, Dougherty, Ben-Shachar, & Wandell, 2012; Yeatman, Rauschecker, & Wandell, 2013),
or the integration of sensory signals over time (Joo et al., 2017). Skilled reading requires rapid
communication among a distributed network of visual, auditory and language processing systems
and an impairment in any one of these systems, or the connections between them, could cause
difficulties learning a complex skill like reading (Wandell & Yeatman, 2013).

Our main conclusion is a lack of concordance with either a single deficit or cascading
model. As such, our results contradict claims that a single mechanism, either phonological or
sensory, can be considered the “fundamental” or “core” deficit of dyslexia. In particular, our work
opposes the recent claim that the majority of individuals with dyslexia have a magnocellular
processing deficit (Stein, 2018); if the DDM is accepted as a reasonable model of behavior on the
motion discrimination task—a starting point with considerable basis (Huang-Pollock et al., 2017,
Palmer et al., 2005; Ratcliff & McKoon, 2008)—then we conclude that a minority of children with
dyslexia are best modeled as having a motion encoding deficit.

Furthermore, while we do not directly test auditory theories of dyslexia here, our results
still speak to this research. For example, the influential temporal sampling hypothesis holds that
the core deficit of dyslexia is abnormal processing of syllable-scale acoustic features, which in
turn disrupts PA development and manifests as sampling problems in the visual domain (Casini et
al., 2018; Goswami, 2011). Our results indicate that, even if we could establish that abnormal
auditory processing impairs PA, many cases of dyslexia would still be unaccounted for based on
the effectiveness of a phonological-core model. Furthermore, the idea that difficulties sampling
incoming stimuli largely explains poor performance on the motion discrimination task is specious,
as we have demonstrated that there are several reasons (some non-sensory) why individuals with
dyslexia may perform differently on this task than typical readers. While the idea of a centralized
deficit in some aspect of temporal processing has an elegant appeal, our data are simply not
consistent with such a simple model.

The clinical implications of this multifactorial model are a target for future research.
Whether or not different risk profiles predict outcomes for children enrolled in competing
intervention programs is an empirical question that cannot be readily inferred from correlational
data. For example, in a previous intervention study we demonstrated that individual differences in
visual motion sensitivity have no prognostic value for predicting a child’s response to intervention
(Joo et al., 2017).

Moving forward, we propose an additive risk factor mode of dyslexia in which multiple
dimensions of sensory, cognitive and linguistic processes contribute distinct risk for reading
difficulties. Our results are agnostic to whether poor performance on any given task indicates
deficits in the specific targeted function (e.g., motion processing) or indexes processing capacities
of a broader system (e.g., constructing a high-fidelity representation of a noisy visual signal). There
are many proposed neurobiological mechanisms that could, in theory, be compatible with our
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findings (e.g., heterogeneous profiles of abnormal cortical migration (Hancock, Pugh, & Hoeft,
2017)).

In sum, our results demonstrate that an additive model outperforms cascading deficit
models or models that only consider measures of phonological processing without considering the
role of sensory processing and perceptual decision making. Thus, rather than continuing to seek
an underlying cause of dyslexia, the field should systematically build towards a more complete
model of the factors that add risk (or protection) for reading difficulties. Our data and model
necessitate a shift towards theories that explain skilled and disabled reading as emerging from a
high-dimensional space determined by several distinct processing systems.
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