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Bridging sensory and language theories of dyslexia: towards a 
multifactorial model 
 

Research Highlights 
• Our research provides direct evidence that a single-mechanism, or core-deficit, model of 

dyslexia cannot account for the range of linguistic and sensory outcomes in children. 
• Individual differences in visual motion processing, perceptual decision making, phonological 

awareness and rapid naming each account for unique variance in reading skill.  
• Our data support an additive risk-factor model, in which multiple independent dimensions each 

confer risk for reading difficulties. 
 

Abstract 
 
Competing theories of dyslexia posit that reading disability arises from impaired sensory, 
phonological, or statistical learning mechanisms. Importantly, many theories posit that dyslexia 
reflects a cascade of impairments emanating from a “core deficit”. Here we collect a battery of 
psychophysical and language measures in 106 school-aged children to investigate whether 
dyslexia is best conceptualized under a core-deficit model, or as a disorder with heterogenous 
origins. Specifically, by capitalizing on the drift diffusion model to separate sensory encoding from 
task-related influences on performance in a visual motion discrimination experiment, we show that 
deficits in motion perception, decision making and phonological processing manifest largely 
independently. Based on statistical models of how variance in reading skill is parceled across 
measures of sensory encoding, phonological processing and decision-making, our results 
challenge the notion that a unifying deficit characterizes dyslexia. Instead, these findings 
indicate a model where reading skill is explained by several distinct, additive predictors, or risk 
factors, of reading (dis)ability.  
 
Keywords: dyslexia, deficit, visual, psychophysics, learning, reading, phonological  
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Background 
Recently, there has been growing adoption of the view that dyslexia, a reading disability, 

is probabilistic in nature: children with a family history of dyslexia are considered “at-risk”, and 
compensatory skills such as strong oral language or executive functions may be “protective 
factors” (Haft, Myers, & Hoeft, 2016; Hulme, Nash, Gooch, Lervåg, & Snowling, 2015; Muter & 
Snowling, 2009; Pennington, 2006). In this multifactorial framework, most cases of dyslexia 
cannot be explained by a single cognitive deficit. Despite this heterogeneity, it is broadly accepted 
that phonological awareness (PA) and rapid automatized naming (RAN) are two of the strongest—
if imperfect—predictors of reading development (Pennington et al., 2012; Wolf & Bowers, 2000). 
 In parallel, there is a broad literature characterizing dyslexia as the consequence of a 
fundamental deficit that supersedes phonological processing. There are many reports indicating 
that people with dyslexia also perform worse in experiments targeting various aspects of visual 
(Stuart, McAnally, McKay, Johnston, & Castles, 2006; Talcott et al., 2002) and auditory 
processing (Hämäläinen, Salminen, & Leppänen, 2013; Noordenbos & Serniclaes, 2015), as well 
domain general mechanisms such as processing speed and statistical learning (Gabay, Thiessen, 
& Holt, 2015; Vandermosten, Wouters, Ghesquière, & Golestani, 2018). These findings have 
spurred competing theories that explain dyslexia as the consequence of cascading effects from a 
fundamental sensory processing deficit. Generally, these “cascading deficit” theories contend that 
relatively low- or mid-level aspects of sensory processing disrupt the development of phonological 
awareness, and by this mechanism disrupt reading development. 

Notably, these two branches of research remain largely distinct: while multifactorial 
models of reading disability are increasingly accepted among researchers studying high-level 
cognitive and linguistic functions, these models largely ignore lower-level deficits in sensory 
processing. In the sensory-processing literature, on the other hand, cascading deficit models 
continue to dominate and appeals to a “core mechanism” of dyslexia are still commonplace. 
Indeed, a PubMed search for the phrase “core deficit of dyslexia” turns up 118 results from 1986 
to the present. Presently, hypotheses positing a core deficit with cascading effects are the focus of 
many neuroscientific and psychophysical studies of reading disability (Casini, Pech-Georgel, & 
Ziegler, 2018; Colling, Noble, & Goswami, 2017; Frey, François, Chobert, Besson, & Ziegler, 
2019; Frey, François, Chobert, Velay, et al., 2019; Gori, Seitz, Ronconi, Franceschini, & Facoetti, 
2016; Krause, 2015; Lieder et al., 2019; Nicolson & Fawcett, 2018; Vidyasagar, 2019).  
 A core deficit model is inherently at odds with a multifactorial model; to accept both 
models implies that a deficit is not really “core” in the majority of individuals with dyslexia. 
Reconciling the many disparate theories of reading disability remains a formidable challenge. To 
further compound the difficulty, there are several variants of the cascading deficit theory: one is 
the magnocellular deficit theory of dyslexia, in which a low-level impairment in the motion-
sensitive magnocellular pathway of the visual system is said to disrupt reading skill development 
(Stein, 2001, 2018; Stein & Walsh, 1997). Proponents of this theory have argued that sensitivity 
to transient sensory information may not be restricted to vision, but could also affect auditory 
processing (Stein & Talcott, 1999; Van Ingelghem et al., 2001; Witton et al., 1998). 
Hypothetically, insensitivity to rapid auditory cues could diminish an individual’s ability to learn 
the sounds of their language (phonemes), and hence develop PA. A recent spin on this theory is 
the temporal processing hypothesis, which contends that, in fact, slow temporal mechanisms 
involved in entraining to the envelope of speech are the fundamental disorder (Casini et al., 2018; 
Goswami, 2015; Huss, Verney, Fosker, Mead, & Goswami, 2011). Distinct from these sensory 
theories, proponents of the statistical-learning hypothesis argue that a domain-general deficit in 
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sensory learning and perceptual decision-making could explain why people with dyslexia perform 
poorly on myriad psychophysical tasks (Ahissar, 2007; Nicolson & Fawcett, 2018; Ziegler, 2008). 
It also purports to explain why children with dyslexia struggle to learn the mapping between letters 
and sounds. 
 Today, the literature remains inconclusive for several reasons. First, the various cascading 
deficit models contradict one another as each posits distinct mechanisms for disrupting 
phonological processing and, in turn, reading. While a statistical learning model of dyslexia could 
potentially explain why so many struggling readers also perform poorly on visual psychophysics, 
it has not been established whether these two types of deficits occur in the same individuals. The 
widespread use of group-level statistics makes it challenging to interpret how many individuals 
show a given pattern of low-level deficits, and the few studies focusing on individual patterns 
across a battery of diverse tasks do not encourage much hope for a uniform profile (Amitay, Ben-
Yehudah, Banai, & Ahissar, 2002; Ho, Chan, Tsang, & Lee, 2002; Menghini, Carlesimo, Marotta, 
Finzi, & Vicari, 2010; Ramus et al., 2003; White et al., 2006). 

Perhaps more importantly, it remains challenging to understand what relationship 
predictors from psychophysical tasks have with phonological predictors in determining reading 
ability--in other words, whether the influence of low-level sensory processing mechanisms on 
reading skill is mediated by phonological processing. Perhaps Talcott et al. (2000) best addressed 
this question by administering auditory, visual, and phonological tasks to 32 children, concluding 
that a measure of visual motion processing explained some additional variance in reading skill 
beyond a measure of PA. A follow-up study in more than 300 school-aged children replicated the 
finding that visual and auditory psychophysics explained variance in both phonological and 
literacy skills but did not clarify the fit of a cascading model (Talcott et al., 2002). Several others 
have observed evidence that psychophysical measures influence reading skill separate from the 
proposed phonological pathway (Snowling, Lervåg, Nash, & Hulme, 2019; Stein, 2001; White et 
al., 2006). Despite these findings, cascading deficit models remain at the forefront of the dyslexia 
debate, particularly for theories that hold a central role for sensory deficits (reviewed in (Goswami, 
2015)). 

There are several reasons why studies such as Talcott et al.’s are well-cited, but not broadly 
adopted as conclusive evidence about sensory processing in dyslexia. In the last two decades, there 
has been growing focus on non-sensory mechanisms that may affect how struggling readers 
perform on psychophysical tasks— a confound that many studies may not have sufficiently 
accounted for (Banai & Ahissar, 2004, 2006; Ramus & Ahissar, 2012). Furthermore, in the 
multifactorial literature, it is increasingly accepted that at least two dissociable aspects of 
phonological processing (PA and RAN) contribute to reading skill (Pennington et al., 2012; Wolf 
& Bowers, 1999, 2000). Most sensory literature explores the relationship of sensory measures to 
a single dimension of PA. As evidence mounts that PA alone is unlikely to explain many (or even 
most (Pennington et al., 2012)) cases of dyslexia, it remains worth considering how individual 
differences in visual motion processing, or perceptual decision making more generally, will fit into 
changing conceptions of reading disability.  

Emanating from the rift in the literature, and the incompatibility of the myriad of “core 
deficit” models, this study investigates whether a cascading-deficit model, in which an underlying 
deficit in some other lower-level sensory or cognitive process disrupts phonological processing, is 
compatible with the pattern of behavioral testing and psychophysical results seen in a large sample 
of children with dyslexia. In order to separate the contributions of sensory encoding of visual 
motion from non-sensory aspects of the decision-making process, we revisit a widely used measure 
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of visual motion sensitivity (random dot motion discrimination) with a mathematical modeling 
approach. The drift diffusion model (DDM) estimates the generating function that corresponds to 
an individual’s pattern of responses and reaction times on a task (Ratcliff & McKoon, 2008), and 
has been previously used to understand how cognitive mechanisms associated with aging (Ratcliff, 
Thapar, & McKoon, 2004), ADHD (Huang-Pollock et al., 2017), and development (Ratcliff, Love, 
Thompson, & Opfer, 2012) manifest in psychophysical task performance. The model has been 
extensively used to describe decision-making on the motion discrimination task (Gold & Shadlen, 
2007; Palmer, Huk, & Shadlen, 2005; Shadlen, Hanks, Churchland, Kiani, & Yang, 2013), and 
many of its assumptions are validated by electrophysiological work in non-human primates 
(Shadlen & Newsome, 2001). As such, the DDM provides a rigorous way to explore the 
intersection of sensory integration and decision making in relation to reading skill. 

Contrary to predictions of the myriad of core-deficit models, our data reveal a 
heterogeneity of deficits among children with dyslexia; no single factor, including measures of 
phonological processing, can reliably distinguish children with dyslexia from control subjects. The 
DDM reveals that sensory encoding and perceptual decision making are separable factors which 
predict unique variance in reading skill above and beyond phonological processing, and that there 
is not a consistent pattern of impairments among children with dyslexia. Furthermore, these 
sensory predictors are useful in addition to PA and RAN in characterizing an individual’s level of 
reading (dis)abilities. As a whole, these data provide further evidence against core-deficit models 
of dyslexia and indicate that multiple-deficit models must consider the combined influence of 
sensory, cognitive and linguistic factors on the development of reading skills.  
 

Methods 
Participants  

A total of 119 native English-speaking school-aged children ages 8-12 were recruited for 
the study. Children without histories of neurological or sensory disorders were recruited from a 
database of volunteers in the Seattle area (University of Washington Reading & Dyslexia Research 
Database; http://ReadingAndDyslexia.com). Parents and/or legal guardians of all participants 
provided written informed consent under a protocol that was approved by the University of 
Washington Institutional Review Board. All subjects demonstrated normal or corrected-to-normal 
vision. Participants were tested on a battery of cognitive and literacy assessments, including the 
Woodcock-Johnson IV (WJ-IV) Letter Word Identification and Word Attack sub-tests, the Test of 
Word Reading Efficiency (TOWRE-2), Comprehensive Test of Phonological Processing (CTOPP-
2) and the Wechsler Abbreviated Scale of Intelligence (WASI-II). All subjects had normal or 
corrected-to-normal vision. 

Five subjects did not complete the psychophysics. An additional two subjects did not show 
evidence of performing above chance (greater than 60.5% accuracy at any of the four stimulus 
coherence levels) and were excluded from analysis. A further six subjects did not produce enough 
usable data to fit the DDM (no more than 15% responses outside of the acceptable response time 
window from 200 ms to 10 s). This left 106 subjects with usable data.  

 
Demographics 

We recruited participants whose reading abilities ranged from profoundly impaired to 
highly proficient. Since reading abilities fall on a continuum (Shaywitz, Escobar, Shaywitz, 
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Fletcher, & Makuch, 1992) we treat reading ability as a continuous measure in our main statistical 
analyses. For the purpose of comparison with other studies we include group-level analyses 
(Dyslexic versus Control) in our Supplementary Materials. Group labels were assigned on the basis 
of the composite Woodcock-Johnson Basic Reading Score (WJ-BRS) and TOWRE Index. As both 
the WJ-BRS and TOWRE Index are scored on the same standardized scale, a composite reading 
skill measure was created by averaging the two scores for each participant. The “Dyslexic” group 
comprised participants whose reading score fell 1 standard deviation or more below the population 
mean (reading score < 85); the “Control” group had reading skill measures above this cutoff and 
had never been diagnosed with a reading disability. There were 43 subjects in the Dyslexic group 
and 48 in the Control group. A remaining 15 subjects were not well-described by either label (e.g., 
reading score > 85 but an indication of a dyslexia diagnosis) so were not included in the group 
comparisons. As in several other studies (O’Brien, McCloy, Kubota, & Yeatman, 2018; 
Pennington et al., 2012), we did not IQ-match these groups, but rather controlled for nonverbal-
IQ explicitly in our statistical analyses. Additionally, ADHD diagnosis was not grounds for study 
exclusion because of the high comorbidity between ADHD and dyslexia. The presence of ADHD 
was entered into our linear modeling analyses as a covariate. Relationships between demographic 
characteristics, phonological, IQ measures and reading skill are presented in Supplementary Tables 
S1 and S2.  
 

Healthy Brain Network dataset  
The Healthy Brain Network dataset is provided to the public by the Child Mind Institute. 

At the time of writing, the released dataset included 1814 subjects. From this dataset, we identified 
124 school-aged individuals (ages 5-17) in the urban New York City region who had been 
diagnosed with “Specific Learning Disorder with Impairment in Reading” by a panel of clinicians 
affiliated with the Child Mind Institute and had also been administered the CTOPP-2. We also 
identified 119 individuals who were similarly assessed and given no diagnosis of any kind. Due to 
the large number of participants available, we were able to create nonverbal-IQ matched control 
groups on the basis of the Wechsler Intelligence Scale for Children’s Matrix Reasoning scaled 
score (Dyslexia: n = 110; Control: n = 105). These groups did not significantly differ in terms of 
nonverbal-IQ (t(208.85) = -1.0668, p = 0.287) and age (t(212.65 = 1.041, p = 0.299). The Healthy 
Brain Network dataset can be accessed here: 
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html 
 

Psychophysics stimuli and apparatus 
Stimuli for the motion discrimination experiment were created using MATLAB (The 

Mathworks Corporation, Natick, MA, USA) in conjunction with the Psychophysics Toolbox. 
Stimuli were displayed on a LG liquid crystal display (1,920 × 1,080 resolution, 120 Hz refresh 
rate, subtending 51° horizontally). The subjects’ response was collected using keypresses. The 
viewing distance was 56 cm. We used random-dot motion stimuli (150 dots) that were displayed 
in a circular aperture (14° in diameter) centered around the fixation mark (1°) at the center of 
display. Light (271 cd/m2) and dark (0 cd/m2) dots (dot size = 0.15°) moved at the speed of 8°/s on 
a gray background (135 cd/m2). Each dot was assigned a random lifetime from a uniform 
distribution between 0 and 200 ms (24 video frames). When a dots lifetime expired, it was 
randomly re-positioned within the aperture and assigned the maximum lifetime (200 ms). Motion 
coherence was defined as the percentage of dots moving together in the same direction compared 
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to dots moving in random directions. The stimuli were equivalent to those used in Joo et al.(Joo, 
Donnelly, & Yeatman, 2017) except (a) with fixed coherence levels, and (b) stimuli remained on 
the screen until the subject indicated a decision with a button press (as opposed to fixed duration). 
 

Psychophysics procedure 
Each session comprised 6 experimental blocks. For each subject, three blocks of fifty 

stimuli were tested with a brief break in between. This was followed by a longer break to collect 
reading, phonological and IQ measures, and followed by the final set of three blocks. At the 
beginning of the session, subjects completed 10 practice trials comprising high coherence motion 
(60–100%). Subjects were allowed to repeat the practice up to three times, until they got at least 
70% correct. All participants were able to do this.  

Stimuli were presented at five coherence levels: 6%, 12%, 24%, 48%, and 100%. However, 
early in the study we realized that many subjects (unrelated to reading ability) found 100% 
coherence difficult and reported varying visual percepts. Performance typically declined for 100% 
coherence stimuli compared to 48% coherence. Therefore, we analyzed only the range of stimulus 
coherence levels where performance was generally monotonic, from 6% to 48%. Each stimulus 
coherence level was presented 60 times for a total of 300 presentations, 240 of which were included 
in the analysis.  

Each trial started with a fixation mark at the center of the display. After 500 ms, random-
dot motion stimuli were displayed until the subject made a keypress (or until 10 seconds had 
elapsed). Subjects pressed right or left arrow keys on a standard keyboard to report motion 
direction. The fixation mark was turned off when the response was made, and visual and auditory 
feedback was given to indicate correct and incorrect responses. The experiment did not proceed 
until subjects reported the motion direction. The inter-trial interval was 1 s, and after this interval 
the fixation mark re-appeared at the center of the display to indicate the beginning of the next trial. 
 

Drift diffusion model 
Fundamentally, the DDM tries to maximize the likelihood of observing a distribution of 

reaction times according to the probability density function 

 
where x is reaction time, v is drift rate (the average rate at which evidence is accumulated for a 
decision), a is the distance between the two decision boundaries, and z is a bias term that allows 
for an observer to prefer one alternative to the other (Wald, 1947). The parameter v is allowed to 
vary with stimulus level. Additionally, the DDM fits a parameter t, which corresponds to the non-
decision time- in other words, the time taken by all sensory and motor processes besides 
accumulating evidence for a decision, such as planning and executing a motor response and 
converting incoming sensory inputs to units of evidence.  

The above equation predicts perfectly symmetric distributions of correct and error response 
times, and so the DDM model has been extended to include three free parameters that allow it to 
approximate more realistic distributions. The first of these parameters is sz, the trial-to-trial 
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variability in the drift process starting point (centered around the halfway-point between the two 
decision bounds), which allows the model to predict fast errors. The other parameters are sv, the 
trial-to-trial variability in average drift rate, and st, the trial-to-trial variability in residual time t. 
When the DDM is fit with these three additional parameters, it is referred to as the full DDM.  

The full DDM was fit using the Hierarchical Drift Diffusion Model toolkit for 
Python(Wiecki, Sofer, & Frank, 2013). Parameter reliability estimates are provided in the 
supplement (Table S3). The DDM was fit to each individual’s behavioral responses and reaction 
times using the Maximum Likelihood fitting method (as recommended by Van Zandt(2011)). The 
optimization scheme was attempted five times per individual and parameter estimates from the 
best run were saved. In all cases, the optimization scheme terminated successfully. As 
recommended by the makers of the HDDM package (Wiecki et al., 2013), the DDM was fit with 
a mixture model that allowed up to 5% of responses to be assigned to a uniform “lapse” 
distribution. This reduces bias in drift rate estimates due to occasional lapses. Because this mixture 
component was included, we employed only a coarse screen for outlier detection before DDM 
fitting: responses occurring before 200 ms (before a typical behavioral response can be executed) 
and after 10s (after the stimulus had concluded) were excluded. Although we excluded two 
participants with >15% data loss, the average participant in the remaining sample had 98.1% 
usable data.  
 

Outlier detection 
To determine the presence of highly unusual model fits, we computed the Mahalanobis 

distance for each individual with respect to the 9 parameters estimated by the DDM. The 
Mahalanobis distance for multiple dimensions follows a chi-squared distribution, and so we use 
this measure to detect outliers(Filzmoser, 2004). Specifically, individuals with a Mahalanobis 
distance corresponding to values beyond the p < 0.001 threshold were deemed to be outliers. Two 
such individuals were detected; both had been fit with extremely high a values (a = 8.17 and a = 
5.60). One of these individuals had a composite reading score in the Dyslexic range, whereas the 
other would have been above our cutoff. These two points were excluded from further analysis as 
we have cause to doubt the quality of their DDM parameter estimates, but their results are included 
with the full dataset online.  
 
Stepwise model selection procedure 

In our analyses of the relationships between various parameter estimates from the DDM 
and reading skill, we employed a stepwise model selection procedure. In all cases, we considered 
three covariates: age, nonverbal-IQ, and the presence of an ADHD diagnosis. Each model selection 
procedure began with a fully specified model of reading score as a function of the parameter(s) of 
interest plus the three covariates. Fitting was performed with the base R lm() function, except 
where mixed model usage is noted, in which case the lme4 library was used(Bates, Sarkar, & 
Matrix, 2007). The contributions of the covariates were first tested using an anova test. Model 
terms were retained if the p-value associated with the more complex model was less than 0.1. Next, 
parameters of interest were tested similarly. Throughout the manuscript, wherever model selection 
is performed we report the selected (“most parsimonious”) model.  
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Mediation analysis 
Mediation analysis was performed using the “mediation” package for R(Tingley, Yamamoto, Hirose, 
Keele, & Imai, 2015). In all mediation models, nonverbal IQ was entered as a covariate. 4000 bootstrap 
simulations were used to estimate the proportion of mediation of a variable of interest by PA in a linear 
model of reading skill.  

Results 
Predicting dyslexia from phonological measures 

We first assessed the phonological core deficit model by quantifying the extent to which 
deficits in PA, RAN, or both differentiate individuals with dyslexia from control subjects with 
typical reading skills (Figure 1). A recently released public dataset, the Child Mind Institute’s 
Healthy Brain Network (Alexander et al., 2017) (HBN), allows us to explore this question in a 
large sample of children (N = 1814, n = 110 children with dyslexia, n = 105 children selected to 
match on age and nonverbal IQ with no neurological or psychiatric diagnosis). Using quadratic 
discriminant analysis (QDA) with age and nonverbal-IQ matched groups, we asked what 
proportion of children could be correctly classified on the basis of two predictors: the 
Comprehensive Test of Phonological Processing (CTOPP-2)’s Elision measure of PA and Rapid 
Symbol Naming Composite measure of RAN (both age-normed). A QDA classifier trained with 
leave-one-out cross validation could correctly classify 67.4% (±6.3%; 95% confidence interval) 
of individuals with a specificity of 68.2% and a sensitivity of 66.7%. A support vector machine 
achieved equivalent accuracy. 

This result is undoubtedly in alignment with the extensive literature on phonological 
processing: PA and RAN are both meaningful predictors of reading skill. Yet, these two measures 
alone fail to account for many cases of dyslexia. Furthermore, many individuals with apparently 
typical reading abilities would be predicted to be dyslexic on the basis of their PA and RAN scores 
alone.  

In the original formulation of the phonological core deficit model (e.g. (Stanovich, 1988)), 
PA is purported to be a more powerful predictor of reading disability in early childhood, so it may 
be unsurprising that our model performs poorly in a sample containing teenagers. We therefore 
repeated our analysis on two subsets of the sample: 62 children between aged 5-8 (n = 29 with a 
Dyslexia diagnosis), and 153 children aged 8-17 (n = 81 with a Dyslexia diagnosis). The classifier 
trained on the younger cohort obtained an accuracy of 69.4% (± 11.7%) while the classifier trained 
on the older cohort reached 66.7% (± 7.5%). We ran a second analysis treating age as a continuous 
predictor: we used logistic regression on our entire sample to model dyslexia diagnosis (present or 
absent) with main effects of age, PA, and the interaction of the two. The interaction term was not 
significant (𝛽𝛽 = -0.007, SE = 0.0243, p = 0.767). For completeness, we tested a direct measure of 
pseudoword reading skill provided in the HBN dataset (the age-normed Weschler Individual 
Achievement Test Pseudoword subtest) as the dependent variable in a linear model. The 
interaction of age and PA was again not significant (𝛽𝛽 = -0.0322, SE = 0.116, p = 0.782). As such, 
our finding that standard phonological measures are only modest predictors of dyslexia in the HBN 
dataset is unlikely to be an artifact of the age range in the sample. 
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Figure 1. Panels A-B: Density plots for phonological awareness (PA, CTOPP Elision) and rapid 
automatized naming (RAN, CTOPP Rapid Symbolic Naming Composite) in the Healthy Brain 
Network (HBN) dataset in two groups. The Dyslexia group (blue) consists of 110 school-aged 
children diagnosed with dyslexia by a panel of clinicians. The red density plot represents an age- 
and nonverbal-IQ-matched control group of 105 children identified as having no psychiatric or 
neurological diagnoses by the same panel. Panel C: The decision boundary of a quadratic 
discriminant analysis trained on the entire dataset is shown. Dots represent observations from the 
dataset with slight jitter added for visibility of overlapping points. 

 

Differences in visual motion processing 
Having demonstrated that phonological predictors alone are an insufficient to explain many 

cases of dyslexia, we next consider the contribution of visual motion processing to reading 
abilities: do visual motion processing difficulties typically coincide with phonological 
impairments, as would be expected in a cascading model of reading disability? Or are they a 
separable contributor to reading outcomes which explain cases of dyslexia that were not captured 
by the phonological core deficit model? Here we present the results of the motion discrimination 
experiment (conducted in the lab) in 106 school-aged children, including 42 individuals who meet 
our criteria for dyslexia. Accuracy and response times were collected for stimuli presented at four 
coherence levels: 6%, 12%, 24%, and 48%.  

Before we model the respective contributions of sensory and decision processes to task 
performance, it is important to establish that task performance is related to reading skill. We 
confirmed that reading skill was related to reaction time: using model selection, we identified that 
the most parsimonious model of median reaction time included main effects of stimulus coherence 
(𝛽𝛽 = -0.173, SE = 0.00898, p < 1 x 10-15), age (𝛽𝛽 = -0.059, SE = 0.0214, p < 1 x 10-15), and reading 
skill (𝛽𝛽 = -0.006, SE = 0.00149, p = 1.15 x 10-4) with a random effect of subject (Table S4 and 
Figure S1). Accuracy was not significantly related to reading skill (Table S5), likely reflecting the 
fact that the motion stimuli remained on the screen until the subject provided a response. Notably, 
we also observed that the ratio of correct to error median response times within each subject was 
significantly associated with reading skill (𝛽𝛽 = -0.00444, SE = 0.00224, p = 0.0497), with poor 
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readers showing an increased tendency to make “fast errors” relative to correct response times 
(Table S6 and Figure S2). The presence of fast errors is notable because this phenomenon is 
typically associated with non-sensory mechanisms, including a tendency to initiate guesses before 
an optimal amount of evidence is considered (Smith & Ratcliff, 2004).  Thus, raw reaction time 
data indicated that children with dyslexia were not only less efficient than control subjects, but 
also showed a qualitatively different pattern of responses. 

Less efficient visual motion processing in dyslexia 
To decouple sensory encoding of visual motion from the process of forming and executing 

a binary decision, we fit the drift diffusion model (DDM) to each subject’s distribution of 
behavioral responses and reaction times. In the DDM for a two-alternative forced-choice 
judgment, it is assumed that an observer samples sensory input at discrete moments in time, and 
that these samples are accumulated in a noisy decision variable that represents the integrated 
evidence over the course of the trial (plus internal noise). When this decision variable reaches a 
threshold, the observer initiates a decision (Figure 2A). The DDM therefore separates the encoding 
and evaluation of sensory information (which drives changes in the decision variable) from non-
sensory processes, such as the magnitude of the threshold for triggering a decision and the trial-
to-trial variability in the decision process (for a detailed review of the DDM, see (Ratcliff & 
McKoon, 2008; Wiecki et al., 2013)).  

After fitting the DDM to each subject’s behavioral responses, we investigated whether 
there was a relationship between the drift rate parameter, v, and reading skill. Drift rate models the 
efficiency with which information is extracted and integrated from incoming sensory signals. For 
example, drift rate monotonically increases with stimulus coherence level (𝛽𝛽 = 0.719, SE = 0.0249, 
p < 1 x 10-15) indicating the visual system can more efficiently extract motion information when 
stimulus noise is low. If individuals with dyslexia do not have any difficulties with sensory 
encoding, as predicted by the statistical learning hypothesis, we would expect drift rate to be 
uncorrelated with reading skill once covariates like IQ, age, and ADHD diagnosis are controlled 
for. Note that in our analyses, we treat reading as a continuous measure, but we also provide 
analyses where reading disability is treated as a categorical variable in Supplementary Analysis 1 
(Tables S7-S9).  

Table 1. Selected model of drift rate 
 

𝛽𝛽 SE p 

Intercept 
Stimulus coherence 
Age 
Reading skill 
Stimulus coherence : Reading skill 

1.534 
0.719 
0.268 
0.173 
0.0869 

0.0620 
0.0249 
0.0623 
0.0623 
0.0249 

< 1 x 10-15 
< 1 x 10-15 

3.878 x 10-5 
6.605 x 10-3 
7.04 x 10-4 

 

 
Individual estimates of drift rate are shown in Figure 2. Drift rate was best modeled by a 

main effect of reading skill, a main effect of stimulus coherence, a main effect of age, and the 
interaction of reading skill and stimulus coherence (Table 1). Our results therefore indicate that 
drift rate increases with stimulus coherence, as expected, as well as age and reading skill. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773853doi: bioRxiv preprint 

https://doi.org/10.1101/773853
http://creativecommons.org/licenses/by-nc/4.0/


Furthermore, there is a stronger relationship between reading skill and drift rate at high stimulus 
coherence levels, which is likely a consequence of the fact that estimates of drift rate are more 
reliable at higher coherence levels (see Methods).  

 

 

Figure 2. Panel (A): A schematic of the drift diffusion model (DDM) with reaction time 
distributions (at 12 % coherence) from the control and dyslexic groups imposed above. The red 
and blue lines in the schematic show how differences in drift rater predict differences in the 
reaction time distributions. The DDM model was fit separately to each individual’s data and the 
average drift rate parameter for the dyslexic and control groups is shown in the bar plot in panel 
A (+/- 1 standard error). (B) The relationship between estimated drift rate and reading skill at 
four different stimulus coherence levels. Lines are best fit regression lines and shaded regions are 
confidence intervals. 

 
The DDM also estimates a parameter modeling the trial-to-trial variability in drift rate, sv. 

This parameter is known to be correlated with drift rate under certain conditions, with higher 
average drift rates being associated with greater trial-to-trial variability(Wagenmakers & Brown, 
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2007; Wagenmakers, Grasman, & Molenaar, 2005). Unsurprisingly, we found that sv was 
correlated with drift rates at every stimulus level. It was positively related to reading skill, but this 
effect did not reach significance (r = 0.13, p = 0.0953).  

As to the question of whether drift rate explains additional variance in reading skill beyond 
phonological processing, consider the subset of readers in our sample with above average PA (PA 
scores ≥ 100). Within this subgroup of 38 participants, 9 children (23.7%) met our criteria for 
dyslexia despite having high PA, and reading skill was significantly correlated with mean drift rate 
(r = 0.49, p = 0.0019; see Figure 3). For these individuals, knowing drift rate explains 24% of 
variance in reading skill. In readers with average-or-better PA, it appears that individual 
differences in motion encoding and sensory integration distinguish between struggling and expert 
readers.  
 

 
Figure 3. The relationship between drift rate and reading skill in a subset of individuals with good 
phonological awareness. Average drift rate is calculated by averaging each individual’s z-scored 
drift rate estimates at each stimulus coherence level. Inset: a scatter plot indicating in black which 
subset of the study sample is included in the “good phonological awareness” group. 

 
 

Decision making parameters are related to reading skill and independent of sensory 
processing 

We next consider the predictions of the non-sensory hypothesis by analyzing the 
relationship between non-sensory parameters of the DDM and reading skill (Figure 4A-D). If poor 
readers struggled with the task only because of differences in sensory encoding, we would expect 
no parameters besides drift rate (and sv) to be correlated with reading skill. To the contrary, the 
parameter sz was correlated with reading skill and, after model selection, the best model of sz 
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contained only a main effect of reading skill (𝛽𝛽 = -0.0842, SE = 0.0280, p = 0.00331). The 
parameter sz represents the trial-to-trial variability in the relative amount of evidence required to 
initiate a judgment; individuals with high sz values are prone to making fast errors. Indeed, we 
confirmed that the ratio of median correct response times to error response times within a subject 
was correlated with the DDM estimation of sz (r = 0.452, p = 1.44 x 10-6). 

Similarly, we observed that the parameter representing the threshold of evidence required 
to initiate a decision, a, had a modest but significant correlation with reading skill (𝛽𝛽 = -0.136, SE 
= 0.0632, p = 0.0329), indicating that worse reading skill is associated with employing a more 
conservative criterion for initiating a perceptual decision. No covariates (age, nonverbal IQ or 
ADHD diagnoses) were retained by model selection.  

Lastly, we examined parameters that represent the lumped contributions of all non-decision 
processes to reaction time, including the time necessary to encode a sensory stimulus and execute 
a motor response. Because some individuals with dyslexia are known to have slower processing 
speed (Pennington et al., 2012; Peterson & Pennington, 2015), we might expect this time to be 
longer in children with worse reading skills. Indeed, the parameter t representing an individual’s 
average non-decision time showed an overall negative relationship with reading skill. However, 
the magnitude of the effect was not nearly large enough to attain statistical significance, and after 
model selection, only age was retained as a predictor of t (𝛽𝛽 = -0.0496, SE = 0.0163, p = 0.00301). 
As such, maturation is associated with reduced non-decision time. Interestingly, a parameter 
modeling trial-to-trial variability in non-decision time, st, was best modeled by main effects of 
reading skill (𝛽𝛽 = -0.0810, SE = 0.0278, p = 0.00436) and age (𝛽𝛽 = -0.0846, SE = 0.0278, p = 
0.00296).  

We have so far identified several parameters of the DDM, both sensory and non-sensory, 
that show associations with reading skill. We next considered the extent to which these parameters 
were correlated with one another (Figure 4E). As expected, we noted strong correlations between 
the four drift rate parameters. None of the drift rate parameters were significantly correlated with 
any non-sensory parameters after correction for multiple comparisons. There were moderate 
correlations between three non-sensory parameters, st, t and sz (st and t: r = 0.685, p = 9.75 x 10-

16; t and sz: r = 0.335, p = 0.0005; sz and st: r = 0.386, p = 5.03 x 10-5) These three parameters 
largely contribute to modeling the leading edge of the reaction time distribution: sz allows for the 
presence of relatively fast errors, t shifts the response time distribution along the time axis, and st 
allows for responses before an individual’s average response time. Finally, we noted that the 
parameter a was uncorrelated with any of the other parameters.  

Hierarchical clustering with Ward’s method (Ward, 1963) indicated that the correlation 
matrix was consistent with three clusters of parameters: a cluster consisting only of a, another 
consisting of the st, t, and sz, and a final cluster including all four drift rates and sv. This suggests 
that the DDM captures several independent mechanisms underlying sensory encoding and 
perceptual decision making.  
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Figure 4. Panels A-D: The relationship between reading score and four non-sensory parameters 
of the DDM. (A) decision threshold a, (B) variability in drift process starting point sz, (C) non-
decision time t, and (D) variability in non-decision time st. Panel E: correlations between 
parameters of the DDM. Boxes indicate hierarchical clustering results (Ward’s method) and stars 
indicate significant correlations after Holmes-Sidak correction for multiple comparisons: p < 0.05 
is noted with *, p < 0.01 with **, and p < 0.001 with ***. Panel F: group comparisons for the 
three composite measures based on hierarchical clustering of the DDM parameters: dcomp: 
composite of sz, st, and t, the a parameter, and vcomp: composite of the four drift rate parameters 
and sv. Note that all three composite parameters are z-scored. Error bars represent one standard 
error of the mean.  

 

Sensory and non-sensory predictors both explain reading outcomes 
So far in our analysis, there seem to be several separate profiles of performance on the 

motion discrimination task that are associated with low reading skill: reduced ability to encode 
and integrate sensory information, setting a more conservative decision criterion, and generally 
more variability in terms of the time taken to gather evidence and/or execute a decision. The lack 
of correlations between many of the DDM parameter estimates indicates that individuals who 
display a deficit in terms of one process (e.g., sensory encoding), are not necessarily the same 
individuals who perform abnormally in terms of another process (e.g., decision-making) and that 
profiles of performance are variable across subjects. Therefore, we might expect that each 
parameter contributes separately to explaining variance in reading outcomes.  

To test whether each dimension of task performance is indeed a unique contributor to a 
model of reading skill, we employed a linear model. To simplify the number of parameters, we 
introduce several composite measures based on the correlation matrix of DDM parameters and our 
clustering analysis (Figure 4F). Drift rate is summarized as a composite measure, vcomp, by taking 
the first principal component of the four drift rates and sv. A second composite measure dcomp was 
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derived from the first principal component st, t, and sz, which we expect represents aspects of 
variability in the decision-making process.  

The dyslexic and control groups differed in terms of each of these three mechanisms 
(Figure 4F). We performed model selection, starting with the full model with reading score as the 
dependent measure and all hypothesized DDM parameters and the three covariates (vcomp, dcomp, a, 
nonverbal IQ, ADHD diagnosis and age) as predictors. The selected model retained all three 
predictors from the DDM and nonverbal IQ (Table 2).  

 
Table 2. Selected model of reading skill from DDM parameters 

 
𝛽𝛽 SE p 

Intercept 
vcomp 
a 
dcomp 
Nonverbal IQ 

0.972 
-0.274 
-0.339 
0.291 
0.0453 

0.351 
0.0778 
0.119 
0.0755 
0.0766 

0.00663 
6.56 x 10-4 

0.00548 
2.10 x 10-4 
4.68 x 10-8 

 
This result confirms that non-sensory mechanisms explain additional variance in reading 

skill once the quality of sensory evidence encoding is accounted for. As such, even within this 
single psychophysical task, there are multiple non-correlated dimensions of variance contributing 
to the pattern of responses observed in individual’s with dyslexia: the ability to extract evidence 
from sensory information, choice of decision threshold, and trial-to-trial variability in behavior. 

 
Psychophysical measures are not proxies for PA 

To address the question of whether performance on the motion discrimination task is 
related to reading skill by way of phonological processing, or in addition to it, we explore a series 
of models. We first test the hypothesis that predictors from the psychophysical task do not explain 
additional variance in reading skill once phonological processing is accounted for. We again 
modeled reading skill as a function of our parameters of interest from the DDM—vcomp, dcomp, and 
a—as well as two phonological processing measures, PA and RAN, and the three covariates. 
Model selection retained all predictors except ADHD diagnosis and age (Table 3). 
Correspondingly, an ANOVA F-test comparing the selected model to a reduced model with only 
PA, RAN and nonverbal IQ confirmed that adding predictors from the DDM explained variance 
in reading skill above and beyond the reduced model (F(100, 97) = 4.0438, p = 0.00936). The 
reduced model also had a higher AIC (selected model AIC = 794.4, reduced model AIC = 800.7) 
and BIC (selected model BIC = 813.9, reduced model BIC = 815.6). From this analysis, we can 
confirm that all three predictors from the DDM are useful for explaining differences in reading 
skill in addition to traditional measures of phonological processing.  
 Because ordinary least squares models may be poorly affected by multicollinearity, we also 
applied lasso regression with 10-fold cross validation (Friedman, Hastie, & Tibshirani, 2010). This 
modeling approach is provided in the Supplement (Figures S3-S4; Table S10).  
 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/773853doi: bioRxiv preprint 

https://doi.org/10.1101/773853
http://creativecommons.org/licenses/by-nc/4.0/


Table 3. Selected model of reading skill 
 

𝛽𝛽 SE p 

Intercept 
vcomp 
a 
dcomp 
Nonverbal IQ 
CTOPP PA 
CTOPP RAN 

-0.554 
-0.120 
-0.193 
0.142 
0.335 
0.172 
0.521 

0.256 
0.0601 
0.0871 
0.0570 
0.0602 
0.0653 
0.0582 

0.0331 
0.0491 
0.0293 
0.0140 

2.26 x 10-7 
0.0097 

2.49 x 10-14 

 
Do sensory deficits have cascading effects? 

It has been argued that deficits in sensory processing or decision-making could affect 
reading skill because they disrupt the typical development of PA (Lieder et al., 2019; Manis et al., 
1997; Richardson, Thomson, Scott, & Goswami, 2004). We therefore explored whether this 
hypothesis is borne out in our data by employing a mediation analysis. While a was not 
significantly correlated with PA, vcomp and dcomp showed modest correlations (vcomp and PA: r = 
0.324, p = 4.80 x 10-4; dcomp and PA: r = 0.182, p = 0.0358).  

We first tested a model with PA mediating the relationship between vcomp and reading skill 
and found a significant, partial mediation effect (42.3%, p = 0.0052). Similarly, the dcomp-reading 
skill relationship is partially mediated by PA (22.2% mediation, p = 0.0224)), but there was also 
still a significant direct relationship (𝛽𝛽 = 4.293, SE = 1.501, p = 0.00516). As such, our results 
provide some support for the idea that in certain poor readers, low PA could be a consequence of 
a more fundamental impairment in either sensory or non-sensory mechanisms. However, our data 
suggest a partial mediation, indicating that many individuals would not be well described by this 
cascading model and that there are also direct links between the model parameters and reading 
skill. 

Multiple dimensions of skilled and disabled reading 
Contrary to theories that seek to discover a unified deficit that characterizes children with 

dyslexia, we have established that sensory processing of visual motion is separable from non-
sensory aspects of perceptual decision making, and both factors account for independent variance 
in reading skill. To speak to the question of how many separable underlying factors predict reading 
skill, we next apply exploratory factor analysis (EFA). EFA is an unsupervised learning approach 
for identifying the number, and characteristics, of latent factors that explain the correlation 
structure of a multi-dimensional data set (Costello & Osborne, 2005; Ferguson & Cox, 1993; 
Kline, 2013). We applied EFA to characterize the space of the DDM parameters, nonverbal-IQ, 
and the six subtests of the CTOPP (measure of reading skill were not included in the EFA). An 
analysis of the eigenvalues of the correlation matrix indicated that four latent factors were 
warranted (i.e., the first four eigenvalues > 1, see scree plot in Figure S5). This was confirmed by 
parallel analysis (Hayton, Allen, & Scarpello, 2004) (i.e., in a simulation of 1000 random 
correlation matrices, the first four resulting eigenvalues were lower than the corresponding 
eigenvalues from our data’s correlation matrix 95% of the time). The four factors are shown in 
Figure 5 with orthogonal varimax rotation. The total proportion of explained common variance by 
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the four-factor model was 55.8% (Factor 1: 20.3%, Factor 2: 14.2%, Factor 3: 10.7%, Factor 4: 
10.6%).  

The loadings of the first factor are dominated by the four drift rate parameters, whereas the 
second factor is loaded most heavily by nonverbal-IQ and four of the CTOPP subtests. The 
remaining two subtests, Rapid Digits and Rapid Letters, load onto their own factor (in line with 
the double-deficit hypothesis (Wolf & Bowers, 1999)). An additional factor appears to reflect non-
decision time and variability parameters of the DDM st, sz, and t. Notably, the evidence threshold 
parameter, a, is not particularly associated with any factor; 87% of variance in a is unexplained by 
this model.  

Factor analysis largely conforms to the intuitions we have built so far through linear 
models: drift rate, although correlated with phonological processing and perhaps partially 
mediated by it, is identified as a separate factor.  Drift rate and the non-sensory parameters of the 
DDM are modeled as observations from two distinct factors. It is likely that a is representative of 
an additional factor, consistent with its lack of correlations with any other parameter of the DDM 
(note that without multiple estimates of a, EFA cannot estimate measurement noise and 
consequently does not assign it to a new factor). Critically, each of these four factors was 
significantly related to reading skill demonstrating that, rather than representing a single 
underlying construct, there are multiple, independent cognitive and sensory dimensions 
characterizing individual differences in reading skill (Figure 5). A linear model of reading skill as 
a function of scores on the four factors indicated that all four effects were significant (see 
coefficients in Figure 5). Furthermore, the full model also had a lower AIC (full model AIC = 
798.8, single factor model AIC = 869.9) and BIC (full model BIC = 814.6, single factor model 
BIC = 877.8). 

In addition to standard model selection, we compared the accuracy of the four-factor model 
on predicting held-out observations to the accuracy of a single-factor model. Using leave-one-out 
cross validation to control for overfitting, the four-factor model explained 63.9% of variance in 
reading skill for the held-out points. The single factor model used only Factor 2, which is largely 
a composite of the CTOPP measures of PA, phonological memory, and nonverbal IQ. This model 
was only able to explain 27.4% of variance in reading skill for held-out observations (Figure S6), 
indicating the necessity of considering multiple underlying dimensions (at least 4) in order to 
accurately predict individual differences in reading ability. 

 
Figure 5. Factor loadings for the orthogonal four-factor model are shown in the table; shading 
corresponds to absolute value of the loading. The scatterplot shows the correspondence between 
true (measured) and predicted reading skill using a linear model with all four factors as 
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predictors. Each point was predicted using leave-one-out cross-validation (LOO-CV).  Color 
indicates whether that point was more accurately predicted by the single-factor model or the full 
model with all four factors. Green points had a lower squared error when predicted by the four-
factor model, and purple points had a lower squared error when predicted by the single-factor. 
Gray points had similar prediction accuracy for both models. 

 

Conclusions 
 Our results demonstrate that (1) a core phonological deficit model is insufficient to account 
for many cases of developmental dyslexia, (2) abnormal performance on the motion discrimination 
experiment in children with dyslexia cannot be ascribed to a uniform profile of either sensory or 
non-sensory deficits, (3) both sensory and non-sensory mechanisms explain variance in reading 
skill above and beyond phonological processing, (4) the correlational structure of cognitive, 
linguistic and sensory measures explored here is consistent with, at minimum, four underlying 
factors, (5) each of these four factors accounts for unique variance in children’s reading abilities. 
In sum, our results are not consistent with models of dyslexia that only consider phonological 
processing or models in which impairments in sensory encoding or decision making primarily 
affect reading development via a disruption of phonological processing. Instead, dyslexia should 
be conceptualized as a disorder that may arise from several distinct loci.  

Our work is consistent with that of the Pennington and colleagues, which has capitalized 
on large samples to demonstrate that individuals with dyslexia have a heterogeneous profile of 
cognitive and linguistic impairments (Pennington, 2006; Pennington et al., 2012; Peterson & 
Pennington, 2015). The present work extends this perspective to address the role of sensory 
processing and perceptual decision-making deficits in dyslexia.  

Several preceding studies have attempted to investigate multiple candidate mechanisms of 
dyslexia, including auditory, visual, and motor processes. Our work generally conforms to the 
finding of at least four such studies (Ho et al., 2002; Menghini et al., 2010; Ramus et al., 2003; 
White et al., 2006) that show a heterogenous pattern of deficits present in struggling readers. In a 
study with related methodology, Talcott et al. collected several psychophysical measures in 350 
school aged children and found that each uniquely explained a small percentage of variance in 
literacy skill (Talcott et al., 2000). Our study similarly finds that several distinct mechanisms each 
explain a small, but unique, proportion of variance in reading outcomes.  

To our knowledge, the present study is the first use of the DDM to model motion 
discrimination in children with dyslexia. Our results serve as a partial validation of two seemingly 
contradictory theories: some poor readers show a pattern of performance consistent with reduced 
ability to extract information from incoming sensory signals, while others are better described as 
having normal sensory processing but altered decision-making characteristics (including, as the 
propensity to make fast errors reveals, more trial-to-trial variability in the relative amount of 
evidence needed to initiate a decision). Neither the statistical learning hypothesis, which would 
argue that sensory deficits are not meaningful, nor the magnocellular deficit hypothesis, which 
would fail to predict the non-sensory parameters of the DDM relate to reading skill, entirely match 
our results. Yet we see evidence for both sensory- and non-sensory profiles of impairment in our 
sample. In line with these findings, we propose that each mechanism should be reconceptualized 
as a dimension of risk, as opposed to a single cause, of reading difficulties. 
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As a correlational study, our results cannot validate any particular causal mechanism. It is 
possible that each factor represent clusters of symptoms that indicate underlying impairment in a 
processing system, but are not a direct cause of dyslexia themselves. For example, the fact that 
differences in visual motion processing predict unique variance in reading skill does not 
necessarily mean that, for those individuals, poor perception of visual motion is the cause of their 
reading difficulty. Instead, measurements of task performance may be a proxy for the fidelity with 
which the visual system constructs a sensory representation of a noisy stimulus (Sperling, Lu, 
Manis, & Seidenberg, 2005, 2006), or the efficiency of information transfer between visual regions 
(Yeatman, Dougherty, Ben-Shachar, & Wandell, 2012; Yeatman, Rauschecker, & Wandell, 2013), 
or the integration of sensory signals over time (Joo et al., 2017). Skilled reading requires rapid 
communication among a distributed network of visual, auditory and language processing systems 
and an impairment in any one of these systems, or the connections between them, could cause 
difficulties learning a complex skill like reading (Wandell & Yeatman, 2013). 

Our main conclusion is a lack of concordance with either a single deficit or cascading 
model. As such, our results contradict claims that a single mechanism, either phonological or 
sensory, can be considered the “fundamental” or “core” deficit of dyslexia. In particular, our work 
opposes the recent claim that the majority of individuals with dyslexia have a magnocellular 
processing deficit (Stein, 2018); if the DDM is accepted as a reasonable model of behavior on the 
motion discrimination task—a starting point with considerable basis (Huang-Pollock et al., 2017; 
Palmer et al., 2005; Ratcliff & McKoon, 2008)—then we conclude that a minority of children with 
dyslexia are best modeled as having a motion encoding deficit.  

 Furthermore, while we do not directly test auditory theories of dyslexia here, our results 
still speak to this research. For example, the influential temporal sampling hypothesis holds that 
the core deficit of dyslexia is abnormal processing of syllable-scale acoustic features, which in 
turn disrupts PA development and manifests as sampling problems in the visual domain (Casini et 
al., 2018; Goswami, 2011). Our results indicate that, even if we could establish that abnormal 
auditory processing impairs PA, many cases of dyslexia would still be unaccounted for based on 
the effectiveness of a phonological-core model. Furthermore, the idea that difficulties sampling 
incoming stimuli largely explains poor performance on the motion discrimination task is specious, 
as we have demonstrated that there are several reasons (some non-sensory) why individuals with 
dyslexia may perform differently on this task than typical readers. While the idea of a centralized 
deficit in some aspect of temporal processing has an elegant appeal, our data are simply not 
consistent with such a simple model.  

The clinical implications of this multifactorial model are a target for future research. 
Whether or not different risk profiles predict outcomes for children enrolled in competing 
intervention programs is an empirical question that cannot be readily inferred from correlational 
data. For example, in a previous intervention study we demonstrated that individual differences in 
visual motion sensitivity have no prognostic value for predicting a child’s response to intervention 
(Joo et al., 2017). 

Moving forward, we propose an additive risk factor mode of dyslexia in which multiple 
dimensions of sensory, cognitive and linguistic processes contribute distinct risk for reading 
difficulties.  Our results are agnostic to whether poor performance on any given task indicates 
deficits in the specific targeted function (e.g., motion processing) or indexes processing capacities 
of a broader system (e.g., constructing a high-fidelity representation of a noisy visual signal). There 
are many proposed neurobiological mechanisms that could, in theory, be compatible with our 
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findings (e.g., heterogeneous profiles of abnormal cortical migration (Hancock, Pugh, & Hoeft, 
2017)).  

In sum, our results demonstrate that an additive model outperforms cascading deficit 
models or models that only consider measures of phonological processing without considering the 
role of sensory processing and perceptual decision making. Thus, rather than continuing to seek 
an underlying cause of dyslexia, the field should systematically build towards a more complete 
model of the factors that add risk (or protection) for reading difficulties. Our data and model 
necessitate a shift towards theories that explain skilled and disabled reading as emerging from a 
high-dimensional space determined by several distinct processing systems.  
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