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Abstract

Metabolic feedback between the gut and the brain relayed via the vagus nerve
contributes to energy homeostasis. We investigated in healthy adults whether non-
invasive stimulation of vagal afferents impacts energy homeostasis via efferent effects
on metabolism or digestion. In a randomized crossover design, we applied
transcutaneous auricular vagus nerve stimulation (taVNS) while recording efferent
metabolic effects using simultaneous electrogastrography (EGG) and indirect
calorimetry. We found that taVNS reduced gastric myoelectric frequency (p = .008),
but did not alter resting energy expenditure. We conclude that stimulating vagal
afferents induces gastric slowing via vagal efferents without acutely affecting net
energy expenditure at rest. Collectively, this highlights the potential of taVNS to
modulate digestion by activating the dorsal vagal complex. Thus, taVNS-induced
changes in gastric frequency are an important peripheral marker of brain stimulation

effects.
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1. Introduction

Maintaining energy homeostasis is vital for organisms and necessitates a
balance between energy intake and expenditure [1]. Achieving this balance requires
vagal afferents to transmit information between peripheral organs and the dorsal vagal
complex in the brain stem [2—6]. Invasive stimulation of the vagus nerve (VNS) as well
as the more recent non-invasive transcutaneous auricular VNS (taVNS, [7-9]) impact
energy homeostasis by modulating food intake, energy metabolism, and glycemic
control [10-12]. In rodents, VNS triggered by phasic stomach contractions resulted in
weight loss [13]. In humans, taVNS led to a decreased frequency and increased
amplitude of gastric motility [14]. Such metabolic effects might be related to VNS-
induced increases in the activity of brown adipose tissue, which in turn increased the
basal metabolic rate [15]. Notably, dopamine has been suggested as a
neuromodulator of energy homeostasis within the gut-brain axis [16,17]. Afferently,
stimulation of the vagal sensory ganglion in mice was found to induce dopamine
release in the substantia nigra [17]. Efferently, dopamine administration to the dorsal
vagal complex in rats modulated the upper gastrointestinal tract by reducing gastric
tone and motility via DA2 receptors in the dorsal motor nucleus of the vagus [18]. Thus,
while vagal stimulation mostly targets afferent pathways, studies in rodents provide

evidence for brain-mediated effects on downstream targets.

Although there is preliminary evidence linking vagal signaling and energy
homeostasis [14], efferent taVNS-induced effects on digestion and energy metabolism
in healthy humans have not been conclusively demonstrated. We therefore
investigated whether taVNS vs. sham changes electrogastrography (EGG) and

indirect calorimetry as markers of energy homeostasis.
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2. Methods

2.1 Participants and procedure

We included 22 participants (14 female, Mage + SD = 23.3 + 2.7 years, range:
19-29) in the study. In a randomized crossover design, we measured EGG using four
standard electrocardiogram electrodes connected to a BrainProducts BrainAmp DC
EEG recording system. Electrodes were placed as previously described [19]. Resting
energy expenditure (REE) was measured with the CareFusion Vmax ventilated hood
system for indirect calorimetry (see Sl). For administering taVNS, we used Cerbomed
NEMOS following the protocol presented in ref. [8]. Briefly, the electrode was placed
at the left cymba conchae (taVNS) or was turned upside down and placed at the
earlobe (sham). The stimulation protocol of NEMOS is preset with a biphasic impulse

frequency of 25 Hz with alternating intervals of 30 s stimulation on and 30 s off.

After a resting period of at least 15 minutes, we recorded a 15-minute baseline
for both EGG and calorimetry. Next, we placed the taVNS device on the participants’
left ear according to the randomization protocol. The individual stimulation intensity
was adjusted based on subjective pain thresholds using concurrent VAS ratings (for
details, see [20]). We then recorded at least 30 minutes of EGG and calorimetry during

active stimulation before the participant was debriefed.

2.2 Data preprocessing and statistical analysis

EGG data were preprocessed and inspected for muscle artifacts. We then
identified the gastric peak frequency for baseline, taVNS and sham, respectively,
based on spectral density for each EGG channel (see Sl). One participant had to be
excluded after quality control due to absence of visibly identifiable peaks in any

channel in both sessions, leaving N=21 for the statistical analysis.

We calculated baseline-corrected delta mean gastric frequency (in mHz) by
subtracting the individual session-specific baseline mean gastric frequency from the
respective taVNS and sham mean gastric frequency. Next, we calculated the net effect

of stimulation (interaction) by subtracting delta sham from delta taVNS. After
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preprocessing the calorimetry data (see Sl), we calculated the same measures for
REE (in kcal/day). For non-parametric inference, we bootstrapped the distribution of
taVNS-induced changes in gastric frequency and REE, respectively, using 50,000

repetitions and calculated two-tailed p-values.

3. Results

We found that taVNS compared to sham led to a significant reduction in gastric
myoelectric frequency (Figure 1A; mean [95% bootstrap CI] Time X Stimulation: -2.24
mHz [-4.44, -0.72], pnoot= .008). In contrast, we observed no significant effect of taVNS
on resting energy expenditure (Figure 1B; mean [95% bootstrap CI] Time X

Stimulation: -3.69 kcal/day [-46.52, 42.31], pboot= .863).
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Figure 1. Gastric frequency is reduced after transcutaneous auricular vagus nerve
stimulation (taVNS) compared to sham stimulation, but there is no change in resting
energy expenditure (REE). The figure depicts A) changes (stimulation — baseline) in gastric
frequency and B) changes (stimulation — baseline) in REE for taVNS and sham. It further
depicts C) bootstrapped delta gastric frequency distributions (stimulation — baseline) and D)
bootstrapped delta REE distributions (stimulation — baseline) as well as the interaction
between Time (pre, post) and Stimulation (taVNS, sham) for E) EGG and F) REE. While the
interaction is significant for gastric frequency with ppoot = .008, the same term does not reach
significance for REE with pwoot = .863. Bootstrapped distributions are based on 50,000
iterations.
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4. Discussion

In line with the hypothesized efferent effect, we found that taVNS alters a
marker of energy homeostasis in humans. The observed taVNS-induced reduction in
gastric frequency is well in line with previous findings linking VNS to altered energy
homeostasis [13,14,17]. This efferent effect on gastric motility might be due to a
taVNS-induced release of dopamine in the brain stem. Previous work has shown that
elevated levels of brain stem dopamine lead to reduced food intake [21] and gastric
relaxation [22]. Moreover, dopamine administration in the brain stem reduced gastric
tone and motility which was abolished by vagotomy [18]. Studies linking alterations in
vagal signaling to the development of Parkinson’s disease [23,24] further support the
assumption of afferent signaling between the gut and key dopaminergic brain regions
along the vagal pathway. Therefore, taVNS-induced neuromodulation in the brain
stem might lead to the observed slowing of gastric myoelectric frequency via the

efferent vagal pathway.

In contrast to chronic VNS in patients [15], we did not find changes in energy
expenditure during acute taVNS. This pattern indicates that compared to changes in
digestion taVNS-induced effects on energy expenditure may develop across longer

time periods.

In sum, we demonstrated that taVNS reduces gastric frequency without
affecting REE. This shows that transcutaneous stimulation of vagal afferents can elicit
efferent gastric effects through a feedback loop via the dorsal vagal complex. Thus, in
light of the heterogeneous efferent effects of taVNS on electrocardiogram parameters
[25,26], the EGG may be a promising positive control measure for taVNS in healthy

humans [27].
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