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Genome-wide discovery of candidate genes for functional traits within a species
typically involves the sequencing of large samples of phenotyped individuals', or
linkage analysis through multiple generations’. When a trait occurs repeatedly
among phylogenetically independent lineages within a genus, a more efficient
approach may be to identify genes via detection of amino acid residues shared by
species possessing that trait’*. Here, by taking this approach, we identify candidate
loci in the genus Fraxinus (ash trees) for resistance to the emerald ash borer beetle
(EAB; Agrilus planipennis), a pest species that appears innocuous to otherwise
healthy ash in its native East Asian range’ but is highly destructive in North
America® and poses a threat to ash trees in Europe7. Assembling whole genome
sequences for 24 diploid species and subspecies of ash, and estimating resistance to
EAB for 26 taxa from egg bioassays, we find 53 genes containing amino acid
variants shared between two or more independent Fraxinus lineages with EAB-
resistant species, that are unlikely to be due to chance or undetected paralogy. Of
these, seven genes have putative roles relating to the phenylpropanoid biosynthesis
pathway and 17 are potentially connected to herbivore recognition, defence
signalling or programmed cell death. We also find that possible loss-of-function

mutations among our 53 candidate genes are more frequent in susceptible species,
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than in resistant ones. Patterns of polymorphism for the EAB-associated amino acid
variants in ash trees representing different European populations suggest that

selection may be able to enhance their resistance to EAB.

EAB has proved more costly than any other invasive forest insect within the USA to
date®. We assessed resistance to EAB for 26 Fraxinus taxa (Supplementary Table 1).
Tree resistance was scored according to the instar, health and weight of EAB larvae in the
stems of artificially infested trees eight weeks after infestation’ (Methods, Supplementary
Table 1). In Fraxinus baroniana, F. chinensis, F. floribunda, F. mandshurica, F.
platypoda and Fraxinus sp. D2006-0159, least squares means (LSM) of the proportion of
host killed larvae (number of larvae killed by tree defence response divided by total
larvae entering the tree) were >0.75 (Fig. 1a, Supplementary Table 2) and no surviving
larvae reached the last developmental instar (L4; Fig. 1b, Supplementary Table 2),
indicating that these species are resistant to EAB. In contrast, all other taxa tested had a
LSM proportion of larvae killed of 0.58 or less (Fig. 1a) and had LSM for L4 larvae
proportion between 0 and 0.89 (Fig. 1b).

To search for candidate genes related to defence response against EAB, we sequenced
and assembled the genomes of 28 individuals from 26 diploid taxa representing all
sections within the genus'®, including a common EAB-susceptible accession and a rare
putatively EAB-resistant accession’ for F. pennsylvanica (Supplementary Table 3). For
all individuals we generated c. 35 to 85X whole genome shotgun coverage with [llumina
sequencing platforms (Methods; Supplementary Table 4). On assembly (Methods) these
data generated 133,719 to 715,871 scaffolds for each individual, with N50s ranging from
1,987 to 50,545bp (Supplementary Table 4). We annotated genes in these assemblies via
a reference based approach (Methods) using the published genome annotation of F.
excelsior’’. We clustered the protein sequences of these genes into putative orthologue
groups (OGs; Methods), also including protein sequences from the F. excelsior reference
genome and the published genome annotations of Olea europaea'’, Erythranthe guttata®
and Solanum lycopersicum'®. We found a total of 87,194 OGs, each containing sequences

from between two and 32 taxa; 1,403 OGs included a sequence from all 32 taxa.

We generated multiple sequence alignments for the 1,403 OGs including all taxa and

inferred gene-trees for each (Methods). In order to generate a species-tree estimate for the
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genus Fraxinus, we conducted Bayesian concordance analysis (Methods). This resulted
in a tree based on 272 phylogenetically informative low copy genes (Fig. 2 and
Supplementary Note 1). Within this tree, the EAB-resistant taxa identified from our
bioassays occurred in three independent lineages. (1) F. baroniana, F. chinensis, F.
Sfloribunda and Fraxinus sp. D2006-0159 clustered together, within a larger clade that
included most species in section Ornus, including susceptible F. ornus. (2) F.
mandshurica occurred within a clade corresponding to section Fraxinus that also
included susceptible taxa. (3) F. platypoda was sister to a clade corresponding to section

Melioides, which includes most of the susceptible American species.

We searched for amino acid variants putatively convergent between the resistant lineages
using an approach that identifies loci with a level of convergence in excess of that likely
to be due to chance alone (grand-conv; see Methods). We conducted three pairwise
analyses of lineages: (1) F. mandshurica versus F. platypoda, (2) F. mandshurica versus
F. baroniana, F. floribunda and Fraxinus sp. D2006-0159, (3) F. platypoda versus F.
baroniana, F. floribunda and Fraxinus sp. D2006-0159. In all these analyses we included
three outgroups and five Fraxinus species with high susceptibility (Methods). Each
analysis was based on alignments of OGs found in all of the included taxa: 3,454 OGs in
analysis 1, 3,097 OGs in analysis 2 and 3,026 OGs in analysis 3. Our candidate amino
acid variants were those identified by grand-conv as convergent (minimum posterior
probability of 0.90) within loci predicted to have the highest excess of convergent over
divergent substitutions in the resistant lineages (Methods). These loci were then checked
for the possible confounding effect of paralogy, as well as gene model and alignment
errors, leaving a total of 67 amino acid sites in 53 genes (Supplementary Note 2 and
Supplementary Table 5). Phylogenetic analysis of the CDS alignments for the 53 genes
revealed that, in all but one case (0OG20252; Supplementary Fig. 1a), the pattern of amino
acid variation at candidate sites is better explained by a hypothesis of convergent point
mutations, rather than introgressive hybridisation or incomplete lineage sorting
(Supplementary Fig. 1). For four loci (OG11013, OG20859, OG37870 and OG41448) the
state identified as convergent by grand-conv appears more likely to be ancestral within
Fraxinus, with change occurring in the other direction (i.e. from the “convergent” state

identified by grand-conv to the “non-convergent” state; Supplementary Table 5).
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Three of the 67 candidate amino acids are predicted to be presence/absence variants for
phosphorylation sites (Supplementary Fig. 2a, 2b and Supplementary Table 5), a post-
translational modification that plays a key role in regulating plant immune signalling'’.
We also looked for evidence of loss-of-function of the 53 candidate genes, based on the
presence of frameshifts, stop codon gains and start codon losses, in any of the Fraxinus
individuals included in our convergence analyses. Six of our 53 candidate genes appear to
lack a fully functional allele in a susceptible taxon, compared with one for resistant taxa
(Supplementary Note 3 and Supplementary Table 6), suggesting these susceptible taxa

may have impaired function of some genes related to defence against EAB.

Among our 53 candidate genes, seven have putative roles relating to the phenylpropanoid
biosynthesis pathway (Supplementary Note 4). This pathway generates antifeedant and
cytotoxic compounds, as well as products involved in structural defence, such as lignin'®;
it can contribute to indirect defence by producing volatiles which attract parasitoids or
predators'’. Loci 0G15551, 0G853 and OG16673 are of particular interest. Four
convergent amino acids were identified in OG15551 (Fig. 3), a paralogue of CYP9843
(Supplementary Fig. 3a), which encodes a critical phenylpropanoid pathway enzyme'®.
Three of the four residues fall within CYP98A3 putative substrate recognition sites, with
two at positions predicted to contact the substrate'” including a leucine (sulphur
containing)/methionine (non-sulphur containing) variant (Fig. 3). OG853 is apparently
orthologous to MEDS5a/RFR1 (Supplementary Fig. 3b), a known regulator of the

2021 that seems to be involved in regulation of defence response

phenylpropanoid pathway
genes™. 0G16673 is a likely glycoside hydrolase; putative Arabidopsis thaliana
homologues belong to glycoside hydrolase family 1 and have beta-glucosidase activity,
with functions such as chemical defence against herbivory, lignification and control of
phytohormone levels®. A role for beta-glucosidases in defence against EAB in individual
Fraxinus species has been previously suggested on the basis of chemical®* and
transcriptomic” data, and several metabolomic studies have indicated that products of the

phenylpropanoid pathway could be involved’.

We found 15 candidate genes (Supplementary Note 4) with possible roles in perception
and signalling relevant to defence response against herbivorous insects'’. 0G4469 is a
probable orthologue of AtG-LecRK-1.6, a G-type lectin receptor kinase (LecRK) with
ATP binding activity (Supplementary Note 4.3). G-type LecRKs can act as pattern
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recognition receptors (PRRs) in the perception of feeding insects”’; extracellular ATP is a
damage-associated molecular pattern (DAMP) whose perception can trigger defence
response related genes”’. 0G38407 appears orthologous to SNIPER4 (Supplementary
Fig. 1), a F-box protein encoding gene involved in regulating turnover of defence-
response related proteins, for optimal defence activation®; the convergent site is in a
leucine rich repeat (LRR) region (Supplementary Fig. 2¢), which is involved in

.. . . . . 282
recognition of substrate proteins for ubiquitination™*.

Several genes appear to relate to phytohormone biosynthesis and signalling, including
those with putative functions in jasmonate (JA; OG41448), brassinosteroid (OG43828),
cytokinin (OG39275) and abscisic acid (ABA; OG47560) biosynthesis, and GO terms
associated with hormone metabolism and biosynthesis are significantly enriched among
our set of candidate genes (Supplementary Note 5; Supplementary Table 7). JA signalling
is the central regulatory pathway for defence response against insect herbivores®’~°
whereas brassinosteroids and cytokinins can play important roles in insect resistance, via
modulation of the JA pathway’**'. ABA is induced by herbivory and is a known
modulator of resistance to insect herbivores®’~°. 0G11720 is putatively orthologous to
NRTI.5/NPF7.3., a member of the NRT1/PTR family>* which is involved in transport of
multiple phytohormones (Supplementary Note 4.3); a transcript matching this gene
family had decreased expression in response to both mechanical wounding and EAB
feeding in F. pennsylvanica®. Putative functions of further candidates relate to other
signalling molecules involved in triggering defence response (Supplementary Note 4.5),
including calcium (0G50989)'7, nitric oxide (NO; 0G21033)***° and spermine
(0G33348)°°. Increased resistance to EAB can be artificially induced in Fraxinus species
with otherwise high susceptibility’’, leading to the suggestion that susceptible species
may fail to recognise, or respond quickly enough to, early signs of EAB attack*®. Our
identification of candidate genes putatively involved in perception and signalling
underlines the possibility of differences between EAB-resistant and susceptible Fraxinus

species in both their ability to sense and react to attacking insects.

Hypersensitive response (HR), involving programmed cell death (PCD), is associated
with effector-triggered immunity in response to microbial pathogens®® but can also be
induced by insect herbivory™ and oviposition®”. 0G16739 and OG37870 are candidates
with putative roles related to HR-like effects and PCD. OG16739 has homologues that
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control cell death in response to wounding, via the induction of ethylene and the
expression of defence and senescence related genes*'. 0G37870 may be orthologous to
genes that seem to play a role in controlling PCD of xylem elements**. Candidate loci
whose putative functions lack an obvious link to plant defence response (Supplementary
Note 4), could be involved in other phenotypic traits shared between EAB resistant
species or may play a role in defence response that is not yet understood. We found that
19 of our 53 candidates match the same A. thaliana genes as transcripts that are
differentially expressed in response to elm leaf beetle (either in response to simulated egg
deposition, or larval feeding)®, including genes, such as 0G24969, whose putative A.

thaliana homologues lack a clear defence-related function.

We analysed allelic variation at the 67 amino acid sites within the 53 candidate genes for
all sequenced taxa assessed for resistance to EAB. Of the 67 sites, seven only have the
EAB-resistance associated state in resistant taxa, and another is only homozygous for the
EAB-resistance associated state in resistant taxa (Supplementary Table 8). Of the 53
candidate genes, four are only homozygous in resistant taxa for the EAB-resistance
associated state at the candidate amino acid site(s) detected within them (OG853,
0G21449, 0G36502 and OG37560; Supplementary Table 8). If we omit the genomes of
F. nigra, F. excelsior and the three F. angustifolia subspecies (sect. Fraxinus), for 24 of
the 53 candidate genes we only find the EAB-resistance associated states in resistant taxa,
for 48 genes they are only found in taxa with a LS mean proportion of larvae killed of
>(.25 and the remaining five genes are only homozygous for the EAB-resistance
associated states in taxa with a LS mean proportion of larvae killed of >0.25

(Supplementary Table 8).

Analysis of previously generated whole genome sequence data for 37 F. excelsior
individuals from different European provenances revealed that for 50 of the 67 candidate
amino acid sites (occurring in 41 of the 53 genes) the EAB-resistance associated state
was present, with evidence for polymorphism at seven of these sites (Supplementary
Table 9). None of the EAB-resistance associated amino acid states were found in the
putatively resistant F. pennsylvanica genotype (Supplementary Table 8), suggesting that
different genes, or different variants within these genes, are involved in the intraspecific
variation in susceptibility of this species. Despite this, transcripts inferred to be from 11

of our candidate genes showed evidence for differential expression subsequent to EAB-
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feeding in F. pennsylvanica (Supplementary Note 6 and Supplementary Table 10) and
two gene families that were highlighted as potentially important for response to tissue

. . 25 .
damage in F. pennsylvanica™ are also represented among our candidates (see above).

We have provided the first evidence based on genome-wide analyses for the types of
genes involved in resistance to EAB in the genus Fraxinus, indicating that multiple loci,
contributing to different defence responses, underlie this trait. Our genome level data may
help to target future efforts to increase the resistance of American and European ash

species to EAB via breeding or gene editing.
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METHODS

Data reporting

For the emerald ash borer resistance assays, experiments were conducted using a
randomised block design. No statistical methods were used to predetermine sample size.
The investigators were not blinded to allocation during experiments and outcome

assessment.

Plant material

All plant materials used in this study were sourced from living or seed collections in the
UK or USA. Due to biosecurity measures, we were not able to move living materials
between the two countries. In our initial selection of material we relied upon species
identifications that had already been made in the arboreta or seed banks within which the
materials were held. For each of the accessions included in this study, we PCR amplified
and Sanger sequenced the nuclear ribosomal internal transcribed spacer (ITS) region,
following standard methods; forward and reverse sequences were assembled into contigs
using CLC Genomics Workbench v8.5.1 (QIAGEN Aarhus, Denmark). As far as
possible the identity of all materials was verified by Eva Wallander using morphology
and ITS sequences, according to her classification of the genus'’. This led to some re-
designation of samples: of particular note, one of the three accessions of F. pennsylvanica
that we genome sequenced was originally sampled as F. caroliniana, and the accession
that we originally sampled and genome sequenced as F. bungeana was determined to be
F. ornus (Supplementary Table 3). However, subsequent phylogenetic analysis including
allele sequences for this latter individual (see below - Distinguishing between different
underlying causes of convergent patterns) indicated it to likely be a hybrid between the F.
ornus lineage and another lineage within sect. Ornus and therefore we designate it as
Fraxinus sp. 1973-6204. We also designated an accession that was originally sampled for
genome sequencing as F. chinensis as Fraxinus sp. D2006-0159 due to uncertainty
regarding species delimitation. Furthermore, for genotype vel-4, that was redetermined as
F. pennsylvanica, we have maintained its original species name (F. velutina). A list of all
materials used in the study is shown in Supplementary Table 3, including initial
identifications and subsequent identifications by Eva Wallander, as well as details of

voucher specimens.

Emerald ash borer resistance assays
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Twenty six Fraxinus taxa (species, subspecies and one taxon of uncertain status) were
collected for egg bioassay experiments (Supplementary Table 3). We aimed to test three
clonal replicates (grafts or cuttings) of at least two genotypes of each species. For some
taxa less than two genotypes were available in the US, and occasionally genotypes did
not propagate well by graft or cutting so seedlings from the same seedlot were used
instead (details for each taxon are included in Supplementary Table 1). The majority of
egg bioassays were conducted in 2015 and 2016 and groups of approximately 20
genotypes were conducted in each set (week within year; Supplementary Table 1) with
one grafted ramet, cutting or seedling in each block and all ramets, cuttings and seedlings
within the block randomised to location/order of assay. To facilitate comprehensive
analysis, the same controls were repeated in each week (susceptible F. pennsylvanica

genotype pe-37 and/or pe-39 and resistant F. mandshurica genotype ‘mancana’).

Trees were treated as uniformly as possible prior to inoculation. Adult beetles were
reared and used for egg production as previously described’. Inoculations were
performed in a greenhouse to keep conditions uniform for the duration of the assay, and
to minimise predation of the eggs. We followed the EAB egg transfer bioassay method
reported by Koch et al.,” that had previously been used on genotypes of F. pennsylvanica
and F. mandshurica with the changes noted below. The egg dose for each tree was
determined according to the method of Duan et al.,*, which takes into account the bark
surface area. A target density of 400 eggs per m” was used; this density is above that
reported to allow host defences to kill larvae in green ash, but is in the range where
competition and cannibalism are minimised**. Twelve individual eggs, on a small strip
cut from the coffee filter paper on which they were laid, were taped to each tree. The
spacing was varied between eggs to maintain a consistent target dose (e.g. eggs placed
7.5 cm apart on stem 1.0-1.1cm diameter to eggs placed 3 cm apart on stem 2.5-2.6cm
diameter). The portion of the tree where eggs were placed was wrapped in medical gauze
to protect from jostling and egg predation. Past experiments have shown that egg assay
results are not consistent on stems less than 1 cm in diameter (JLK, unpublished data).
Due to size differences between some species, to achieve the target dose and avoid
placing eggs where the stem diameter was <1 cm, occasionally less than 12 eggs were
placed. A total of 2199 egg bioassays (each egg represents a bioassay) were conducted on

61 different genotypes and a total of 206 ramets, cuttings or seedlings.
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Occasional ramets, cuttings and/or seedlings were considered as assay failures if less than
three larvae successfully entered the tree (i.e. the effective egg dose was too low), or if
there were other problems with the tree (too small diameter overall, cultivation issues,
etc.), and that replicate was excluded from analysis (data not shown). Four weeks after
egg attachment each egg was inspected to determine if it had successfully hatched, and if
there were signs of the larva entering the tree. Larval entry holes, when detected, were
marked to assist with future dissection. At eight weeks, dissection of the entry site was
performed and galleries made by larval feeding were carefully traced using a grafting
knife to determine the outcome of each hatched egg. Health (dead or alive) and weight (in
cases when larvae could be recovered intact) was recorded for each larva, and

developmental instar was determined using measurements of head capsule and length*>*°

Preliminary exploratory data analysis indicated that the proportion of “tree killed” (i.e.
larvae killed by tree defence response) and the proportion of live L4 larvae (number
divided by the number of larvae that entered the tree) were the best variables to
distinguish resistance versus susceptibility at the species level. We fitted a generalised
linear mixed model to the proportion tree killed and proportion L4 using the GLIMMIX
procedure in SAS. The model specification is proportion as a binomial distribution with a
logit link function, species as a fixed effect, and block/replicate nested within sequential
week (week within year) as a random effect (this allowed for comprehensive analysis
over years and weeks with correct variance/covariance restrictions). Non-significant
predictors were eliminated from the final model. Least squares means of tree killed or L4

proportion were calculated with confidence intervals on the data scale (proportion).

Genome size estimation by flow cytometry (FC)

We used FC to estimate the genome size of individuals used for whole genome
sequencing (Supplementary Table 4). Fraxinus samples from UK collections were
prepared and analysed as described in Pellicer et al. (2014), with the exception that
‘general purpose isolation buffer’ (GPB*’) without the addition of 3%
polyvinylpyrrolidone (PVP-40) and LBO1 buffer*® were used for some samples. Oryza
sativa (‘IR-36; 1C = 0.50 pg*”) was used as an internal standard. For each individual
analysed, two samples were prepared (from separate leaves or different parts of the same
leaf) and two replicates of each sample run. Fraxinus samples from US collections were

analysed using a Sysmex CyFlow Space flow cytometer, as described in Whittemore and

10
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Xia™; Pisum sativum (‘Ctirad’; 1C = 4.54 pg™") and Glycine max (‘Williams 82”; 1C =
1.13 pg’®) were used as internal standards. For each individual analysed, six samples
were prepared (from separate leaves or different parts of the same leaf) and three samples

run with each size standard.

DNA extraction
Total genomic DNA was extracted from fresh, frozen or silica-dried leaf or cambial

material, using either a CTAB extraction protocol modified from™ or using a Qiagen

DNeasy” Plant Mini or Maxi kit.

Genome sequencing and assembly

For each of the 28 diploid individuals selected for whole genome sequencing
(Supplementary Table 3), sufficient [llumina sequence data were generated to provide a
minimum of ¢. 30x coverage of the 1C genome size, based on the C-value estimates
obtained for the same individuals (see above - Genome size estimation by flow cytometry
(FC)), or those of closely related taxa. Libraries with average insert sizes of 300 or
350bp, 500 or 550bp and 800bp were prepared from total genomic DNA by the Genome
Centre, at Queen Mary University of London, and the Centre for Genomic Research, at
the University of Liverpool. Paired-end reads of 125, 150 or 151 nucleotides were
generated using the [llumina NextSeq 500, HiSeq 2500 and HiSeq 4000 platforms
(Illumina, San Diego, California, USA); see Supplementary Table 4 for the exact
combination of libraries, read lengths and sequencing platforms used for each individual.
For selected taxa, chosen to represent different sections within the genus, we also
generated data from long mate-pair (LMP) libraries (Supplementary Table 4). LMP
libraries with average insert sizes of 3kb and 10kb were prepared from total genomic
DNA by the Centre for Genomic Research, at the University of Liverpool, and sequenced
on an [llumina HiSeq 2500 to generate reads of 125 nucleotides to a depth of ¢. 10x

coverage of the 1C genome size.

Initial assessment of sequence quality was performed for all read pairs from the short-
insert libraries (300-800bp inserts) using FastQC v.0.11.3 or v.0.11.5
(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were clipped using the
fastx_trimmer tool in the FASTX-Toolkit v.0.0.14
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) to remove the first 5-10 nucleotides

11
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of each read; for the NextSeq reads, the last 5 nucleotides were also clipped. Adapter
trimming was performed using cutadapt v.1.8.1°* with the “O” parameter set to 5 (i.e.
minimum overlap of five bases) and using option “b” (i.e. adapters allowed to occur on
both the 5’ and 3’ end of reads); default settings were used for all other parameters.
Quality trimming and length filtering was performed using Sickle v.1.33” with the “pe”
option and the following parameter settings: -t sanger -q 20 -1 50 and default settings for
other parameters. This yielded quality trimmed paired and singleton reads with a
minimum length of 50 nucleotides; only intact read pairs were used for downstream

analyses.

For the LMP libraries, duplicate reads were removed using NextClip v.1.3.1
(https://github.com/richardmleggett/nextclip) with the --remove duplicates parameter
specified and default settings for all other parameters. Adapter trimming was performed
using cutadapt v.1.10°*; junction adapters were removed from the start of reads by
running option “g”, with the adapter sequence anchored to the beginning of reads with
the “*”” character, and the following settings for other parameters: -O 10 -n 2 -m 25.
Other adapter trimming was performed using option “a”, with the further parameters set
to the same values as specified above. Quality trimming was performed with PRINSEQ-
lite v.0.20.4°°, with the following parameter settings: -trim_qual_left 20 -trim_qual_right
20 -trim_qual _window 20 -trim_tail left 101 -trim_tail right 101 -trim_ns_left 1 -

trim_ns_right 1 -min_len 25 -min_qual _mean 20 -out_format 3.

De novo genome assembly was performed for each individual using CLC Genomics
Workbench v8.5.1 (QIAGEN Aarhus, Denmark). All trimmed read pairs from the short-
insert libraries were used for assembly under the following parameter settings: automatic
optimization of word (k-mer) size; maximum size of bubble to try to resolve=5000;
minimum contig length=200bp. Assembled contigs were joined to form scaffolds using
SSPACE (version 3.0°7) with default parameters, incorporating data from mate-pair
libraries with 3kb and 10kb insert sizes where available. Library insert lengths were
specified with a broad error range (i.e. £40%). Gaps in the SSPACE scaffolds were filled
using GapCloser (version 1.12°%) with default parameters. The average library insert
lengths were specified using the estimates produced by SSPACE during scaffolding.
Scaffolding and gap filling was not performed for individuals that lacked data from

libraries with insert size of >500bp (only a single insert size library was available for
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these taxa; Supplementary Table 4). We did not attempt to extract sequences of
organellar origin from the assemblies, or to separately assemble the plastid and

mitochondrial genomes.

Sequences within the assemblies that correspond to the Illumina PhiX control library
were identified via BLAST. A PhiX bacteriophage reference sequence (GenBank
accession number CP004084) was used as a query for BLASTN searches, implemented
with the BLAST+ package (v.2.5.0+”"), against the genome assembly for each taxon with
an E value cut-off of 1x107'%. Sequences that matched the PhiX reference sequence at
this threshold were removed from the assemblies. We used the assemblathon_stats.pl

script (https://github.com/ucdavis-bioinformatics/assemblathon2-

analysis/blob/master/assemblathon_stats.pl) with default settings to obtain standard

genome assembly metrics, such as N50. BUSCO v2.0%° was used to assess the content of
the genome assemblies. The “embryophyta odb9“ lineage was used and analyses run

with the following parameter settings: --mode genome -c 8 -e 1e-05 -sp tomato.

Gene annotation and orthologue inference

To annotate genes in the newly assembled Fraxinus genomes, we used a similarity based
approach implemented in GeMoMa®', with genes predicted in the F. excelsior BATGO0.5
assembly as a reference set. We used the “Full Annotation” gff file for BATGO.5
(Fraxinus_excelsior 38873 TGAC_v2.longestCDStranscript.gff3; available from

http://www.ashgenome.org/transcriptomes), which contains the annotation for the single

longest splice variant for each gene model. This annotation file also includes preliminary
annotations for genes within the organellar sequences (gene models

FRAEX38873 v2 000400370-FRAEX38873 v2 000401330) which were not reported
in the publication of the reference genome''; none of the sets of putative orthologues used
for the species-tree inference or molecular convergence analysis (see below) include
these preliminary organellar models from the BATGO.5 reference assembly. The
Extractor tool from GeMoMa v.1.3.2 was used to format the data from the reference
genome (gff and assembly files), with the following parameter settings: v=true f=false
r=true Ambiguity=AMBIGUOUS. To obtain information on similarity between the
reference gene models and sequences in the newly assembled Fraxinus genomes, we
performed TBLASTN searches of individual exons (i.e. the “cds-parts” file generated by
Extractor) against the assembly file for each individual with BLAST+ (v.2.2.29+).
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makeblastdb was used to format each assembly file into a BLAST database with the
following parameter settings: -out ./blastdb -hash_index -dbtype nucl. tblastn was then
run with the “cds-parts.fasta” file as the query, with the following parameter settings: -
num_threads 24 -db ./blastdb -evalue le-5 -outfmt "6 std sallseqid score nident positive
gaps ppos qframe sframe gseq sseq glen slen salltitles" -db_gencode 1 -matrix
BLOSUMSG62 -seg no -word_size 3 -comp_based_stats F -gapopen 11 -gapextend 1 -
max_hsps 0. Finally, the GeMoMa tool itself was run for each individual, with the
TBLASTN output, cds-parts file and de novo assembly file as input, with the “e”
parameter set to “le-5" and default settings for all other parameters. Because GeMoMa
generates predictions for each reference gene model separately, the output may contain
gene models that are at identical, or overlapping, positions, especially for genes that
belong to multi-gene families (http://www.jstacs.de/index.php/GeMoMa#FAQs). As the
presence of these redundant gene models does not prevent the correct inference of sets of
orthologues with OMA (see below), we opted to retain the predicted proteins from all
gene model predictions generated by GeMoMa for input into OMA. The gffread utility
from cufflinks v.2.2.1%* was used to generate the CDS for each gene model; getfasta from
bedtools v.2.26.0% used to generate full-length gene sequences (i.e. including introns

where present), with the “-name” and ““-s” options invoked.

To identify sets of putatively orthologous sequences, we used OMA standalone
v.2.0.0°*% to infer OMA groups (OGs) and hierarchical orthologous groups (HOGs). To
the protein sets from the 29 diploid Fraxinus genome assemblies (the 28 newly generated
assemblies, plus the existing reference assembly for F. excelsior), we added proteomes
from three outgroup species: Olea europaea (olive), which belongs to the same family as
Fraxinus (Oleaceae); Erythranthe guttata (monkey flower; formerly known as Mimulus
guttatus), which belongs to the same order as Fraxinus (Lamiales); Solanum
lycopersicum (tomato), which belongs to the same major eudicot clade as Fraxinus
(lamiids). For O. europaea, we used the annotation for v6 of the genome assembly'?; the
file containing proteins for the single longest transcript per gene
(OE6A.longestpeptide.fa) was downloaded from:
http://denovo.cnag.cat/genomes/olive/download/?directory=.%2FOe6%2F. For E. guttata

we used the annotation for v2.0 of the genome assembly'’; the file containing proteins for
the primary transcript per gene (Mguttatus 256 v2.0.protein_primaryTranscriptOnly.fa)

was downloaded from Phytozome 12°. For S. lycopersicum we used the annotation for
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the vVITAG2.4 genome assembly; the file containing proteins for the primary transcript
per gene (Slycopersicum 390 ITAG2.4.protein_primaryTranscriptOnly.fa) was

downloaded from Phytozome 12.

Fasta formatted files containing the protein sequences from all 32 taxa were used to
generate an OMA formatted database. An initial run of OMA was performed using the
option to estimate the species-tree from the OGs (option ‘estimate’ for the SpeciesTree
parameter); we set the InputDataType parameter to 'AA' and left all other parameters with
the default settings. The species-tree topology from the initial run was then modified in
FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) to reroot it on S. lycopersicum;
nodes within the main clades of Fraxinus species (which corresponded to sections
recognised in the taxonomic classification'’) were also collapsed and relationships
between these major clades and any individual Fraxinus not placed into a clade, were
collapsed. OMA was then rerun with the modified species-tree topology specified in
Newick format through the SpeciesTree parameter; the species-tree topology is used

during the inference of HOGs (https://omabrowser.org/standalone/), and does not

influence the OGs obtained.

Species-tree inference

To obtain a more robust estimate of the species-tree for Fraxinus (compared with that
estimated by OMA, see above, or existing species-tree estimates based on very few
independent loci®”®), we selected clusters of putatively orthologous sequences from the
results of the OMA analysis. OGs containing protein sequences from all 32 taxa (29
diploid Fraxinus and three outgroups) were identified and corresponding CDSs aligned
with MUSCLE® via GUIDANCE2"’ with the following parameter settings: --program
GUIDANCE --msaProgram MUSCLE --seqType codon --bootstraps 100, and default
settings for other parameters. Datasets where sequences were removed during the
alignment process (identified by GUIDANCE2 as being unreliably aligned) or which
failed to align due to the presence of incomplete codons (i.e. the sequence length was not
divisible by three) were discarded. Alignment files with unreliably aligned codons
removed (i.e. including only codons with GUIDANCE scores above the 0.93 threshold

for the “colCutoff” parameter) were used for downstream analyses. A custom Perl script

was used to identify alignments shorter than 300 characters in length or which included
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sequences with <10% non-gap characters; these datasets were excluded from further

analysis.

The remaining alignment files were converted from fasta to nexus format with the seqret
tool from EMBOSS v.6.6.0"'. MrBayes v. 3.2.6"> was used to estimate gene-trees with
the following parameter settings: Iset nst=mixed rates=gamma; prset
statefreqpr=dirichlet(1,1,1,1); mcmc nruns = 2 nchains = 4 ngen = 5000000 samplefreq =
1000; Sumt Burninfrac = 0.10 Contype = Allcompat; Sump Burninfrac = 0.10.
Diagnostics (average standard deviation of split frequencies (ASDSF) and for post burnin
samples, potential scale reduction factor (PSRF) for branch and node parameters and
effective sample size (ESS) for tree length) were examined to ensure that runs for a given
locus had reached convergence and that a sufficient number of independent samples had
been taken. We discarded datasets where the ASDSF was >0.010; all remaining datasets
had an ESS for tree length in excess of 500.

We used BUCKy v.1.4.47>"" to infer a species-tree for Fraxinus via Bayesian
concordance analysis, which allows for the possibility of gene-tree heterogeneity (arising
from biological processes such as hybridisation, that is reported to occur within
Fraxinus®") but which makes no assumptions regarding the reason for discordance
between different genes’®. First, mbsum v.1.4.4 (distributed with BUCKYy) was run on the
MrBayes tree files for each locus, removing the trees sampled during the first 500,000
generations of each run as a burn-in. We then used the output from mbsum to select the
most informative loci on the basis of the number of distinct tree topologies represented in
the sample of trees from MrBayes; loci with a maximum of 2000 distinct topologies were
retained. BUCKy was then run on the combined set of mbsum output files for all retained
loci under ten different values for the o parameter (0.1, 1, 2, 5, 10, 20, 100, 500, 1000,
o), which specifies the a priori level of discordance expected between loci. Each analysis
with a different a setting was performed with different random seed numbers (parameters
-s1 and -s2) and the following other parameter settings: -k 4 -m 10 -n 1000000 -c 2. Run
outputs were checked to ensure that the average standard deviation of the mean sample-
wide concordance factors (CF; the sample-wide CF is the proportion of loci in the sample
with that clade’) was <0.01. The same primary concordance tree (PCT; the PCT

comprises compatible clades found in the highest proportion of loci and represents the
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main vertical phylogenetic signal’*) and CFs for each node were obtained for all settings

of a.

We also repeated the species-tree inference using full-length sequences (i.e. including
introns, where present); alignment and gene-tree inference were carried out as described
above, with the exception that the --seqType parameter in GUIDANCE2 was set to
“nuc”. BUCKYy analyses were performed as described above. The same PCT was
obtained for all settings of a, with only minor differences in the mean sample-wide
concordance factors. The PCT inferred from the full-length datasets was also identical to
that obtained from the CDS analyses; we based our final species-tree estimate on the
output of the full-length analyses due to the presence of a larger number of informative

loci within these datasets.

One of the informative loci from the CDS analyses (i.e. those with <2000 distinct
topologies within their gene-tree sample), and three of those from the full-length
analyses, were subsequently found to be among our filtered set of candidate loci with
evidence of convergence between EAB-resistant taxa (see below). To test whether the
signal from these loci had an undue influence on the species-tree estimation, we excluded
them and repeated the BUCKYy analyses for the CDS and full-length datasets as described
above, with the exception that only an o parameter setting of 1 was used. The PCTs
obtained from these analyses were identical to those inferred when including all datasets,

with minor (i.e. 0.01) differences in CFs.

In addition to the analysis including all taxa, we also performed BUCKYy analyses for 13
taxa selected for inclusion in the grand-conv analyses and for the subsets of 10-12 taxa
for each of the three grand-conv pairwise comparisons (see below - Analysis of patterns
of sequence variation consistent with molecular convergence). OGs containing protein
sequences from all 13 taxa (10 Fraxinus and three outgroups) were identified and
corresponding CDSs for these 13 taxa aligned with MUSCLE via GUIDANCE?2, as
described above. We also identified and aligned CDSs for all additional OGs which did
not include all 13 taxa, but which contained proteins for all taxa in one of the subsets
used for the pairwise comparisons. Filtering of alignments and gene-tree inference were
carried out as described above for the full set of 32 taxa. BUCKy was run separately with

the MrBayes tree sample samples for loci including all 13 taxa and for additional loci
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including taxa for each of the three smaller subsets for the grand-conv pairwise
comparisons. BUCKYy analyses were performed as described above, with the exception
that no filtering of loci on the basis of number of distinct gene-tree topologies was
performed, a value of between 2 and 35 was used for the -m parameter, and only a single
o parameter setting, of 0.1, was used. Topologies for the PCTs for the set of 13 taxa and
subsets of 10-12 taxa were both congruent with each other and with the PCTs inferred

from analyses including all taxa, for all nodes with a CF of >0.38.

Analysis of patterns of sequence variation consistent with molecular convergence

To test for signatures of putative molecular convergence in protein sequences we used a
set of diploid taxa representing the extremes of variation in susceptibility to EAB, as
assessed by our egg bioassays. By limiting our analysis at this stage to this subset of taxa
we could also maximise the number of genes analysed, as with increasing taxon sampling
the number of OGs for which all taxa are represented decreases. This set comprised: five
highly susceptible taxa (F. americana, F. latifolia, F. ornus, F. pennsylvanica
[susceptible genotype], and F. velutina), five resistant taxa (F. baroniana, F. floribunda,
F. mandshurica, F. platypoda and Fraxinus sp. D2006-0159) and three outgroups (O.

europaea, E. guttata and S. lycopersicum).

We did not include F. nigra as one of the highly susceptible species, although it has been
used in comparisons of resistant and susceptible species in several previous studies (e.g.
7>76) 'because detailed analysis of the phenotype of F. nigra individuals using EAB
bioassays indicates evidence of a possible widespread hypersensitive-like response,
which rather than being a beneficial defence response may actually accelerate tree death
(JLK, unpublished data), similar to what has been proposed for Tsuga canadensis in
response to hemlock woolly adelgid”. This is consistent with reports of mortality of F.

nigra occurring at lower densities of EAB in the field compared with other highly

susceptible North American species (N. Siegert and D. McCullough, pers. comm.).

Of the ten Fraxinus genome assemblies included in the convergence analysis, six were
from genotypes that were also included in the EAB resistance assays outlined above (F.
americana am-6, F. baroniana bar-2, F. floribunda flor-ins-12, F. pennsylvanica pe-48

and F. platypoda spa-1 and Fraxinus sp. D2006-0159 F-unk-1). For the other four, we
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could not test the exact individual that we sequenced the genome of, but relied upon

results of bioassays of other individuals in the same species.

We used the following three pairwise comparisons to seek loci showing amino acid
convergence between resistant taxa:
1. F. mandshurica (sect. Fraxinus) versus F. platypoda (incertae sedis)
2. F. mandshurica (sect. Fraxinus) versus F. baroniana, F. floribunda and Fraxinus
sp. D2006-0159 (sect. Ornus)
3. F. platypoda (incertae sedis) versus F. baroniana, F. floribunda and Fraxinus sp.

D2006-0159 (sect. Ornus)

The more divergent homologous amino acid sequences are between species, the more
likely it is that a convergent amino acid state will occur by chance®. In order to account
for this, we compared the posterior expected numbers of convergent versus divergent
substitutions across all pairs of independent branches of the Fraxinus species-tree for the
selected taxa using a beta-release of the software Grand-Convergence v0.8.0 (hereafter

referred to as grand-conv; https://github.com/dekoning-lab/grand-conv). This software is

based on PAML 4.8” and is a development of a method used by Castoe et al*. It has also

. . 8
been recently used, for example, to detect convergence among Laverania species’.

For input into grand-conv, we used the same OGs that were the basis of the BUCKy
analyses of the 13 taxa selected for the grand-conv analyses, and analyses of the subsets
of taxa for the pairwise comparisons (see above - Species-tree inference). Therefore, as
well as meeting the criterion of including all relevant taxa, the OGs analysed with grand-
conv had also successfully passed the alignment, filtering and gene-tree inference steps.
A set of input files was created for each of the three pairwise comparisons that, where
present, removed any taxa from the other resistant lineage from the alignments generated
by GUIDANCE2. Alignment files were then converted from fasta to phylip format using
the Fasta2Phylip.pl script [https://github.com/josephhughes/Sequence-manipulation]. To

ensure that sequences from each taxon appeared in a consistent order across all datasets
(which is necessary for automating the generation of site-specific posterior probabilities
for selected branch pairs with grand-conv), the phylip formatted files were sorted using

the unix command “sort” prior to input into grand-conv. Species-tree files for each of the

19


https://doi.org/10.1101/772913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772913; this version posted September 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pairwise comparisons were created from the Newick formatted PCTs for the relevant

taxon sets generated with BUCKYy, with the trees edited to root them on S. /ycopersicum.

For the grand-conv analysis, “gc-estimate” was first run on the full set of input alignment
files for each pairwise comparison, with the following parameters settings: --gencode=0 -
-aa-model=Ig --free-bl=1, specifying the appropriate species-tree file for each of the
pairwise comparisons. Next, “gc-discover” was run to generate site-specific values for
the posterior probability (PP) of divergence or convergence for the branch pairs of
interest; the numbers for the branch pairs relating to the resistant taxa were established
from an initial run of “gc-estimate” and “gc-discover” on a single input file, and then
specified when running “gc-discover” on all input files using the --branch-pairs
parameter. A custom Perl script was then used to filter the output files containing the site-
specific posterior probabilities to identify loci with at least one amino acid site where the
PP of convergence was higher than divergence and passed a >0.9000 threshold. For this
filtered set of datasets with significant evidence of convergence at at least one site, we
checked if the “excess” convergence, as measured from the residual values from the non-
parametric errors-in-variables regression calculated by grand-conv, was higher for the
branch pair of interest than for any other independent pair of branches within the species-
tree (i.e. the highest residual was found for the resistant branch pair). Only loci where the
highest excess convergence was found in the resistant branch-pair were retained for

further analysis.

Refining the initial list of candidate loci identified with grand-cony

For the set of loci with evidence of convergence between at least one pair of resistant
lineages from the grand-conv analyses, we applied additional tests to assess the
robustness of the pattern of shared amino acid states. Specifically, we checked for the
potential impact of alignment uncertainty and orthology/paralogy conflation. For each
candidate locus, we identified the Hierarchical Orthologous Group (HOG) from the OMA
analysis, to which the sequences for the candidate locus belong. These HOGs include
sequences for an expanded set of taxa (see above - Species-tree inference) and may
represent a single gene for all taxa (i.e. a set of orthologous sequences) or several closely
related paralogues®. Protein sequences for HOGs were aligned with GUIDANCE and
gene-tree inference conducted with MrBayes, as described above for the OMA putative

orthologous groups with the exception that the --seqType parameter in GUIDANCE was
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set to “aa” and in MrBayes the prset parameter was set to “prset aamodelpr = mixed”.
Any MrBayes analyses that had not converged after 5M generations (average standard
deviation of split frequencies >0.01) were run for an additional 5M generations. The
multiple sequence alignment and gene-tree estimates were then used to refine the initial
list of candidate loci. Loci were dropped from initial list of candidates if either of the
following applied:

1. If in the filtered MSA alignment generated by GUIDANCE, the site/sites where
convergence was detected were not present, indicating they were in a part of the
protein sequences that can not be aligned reliably.

2. Ifin the consensus gene-tree estimated by MrBayes, there was evidence that the
sequences within which convergence was initially detected (i.e. those belonging
to the ten Fraxinus species included in the grand-conv analysis) belong to
different paralogues and that the pattern of convergence could be explained by
sequences with the “convergent” state belonging to one paralogue and the “non-
convergent” state belonging to another paralogue. We also excluded two loci that
belong to large gene families (>10 copies) for which the MrBayes analyses failed
to reach convergence within a reasonable time (<10M generations) and for which

orthology/paralogy conflation could therefore not be excluded.

Additionally, for the set of loci remaining, we checked for errors in the estimation of
gene models (including in the reference models from F. excelsior) that might impact the
results of the grand-conv analyses. Specifically, we dropped from our list any loci where
the amino acid sites with evidence of convergence were found to be outside of an exon,

or outside of the gene itself, following manual correction of the gene model prediction.

Analysis of variants within candidate loci

To assess the possible impact of allelic variants (i.e. those not represented in the genome
assemblies) on patterns of amino acid variation associated with the level of EAB
susceptibility in Fraxinus, we called variants (SNPs and indels) and predicted their
functional effects. For each sequenced Fraxinus individual, trimmed read pairs from the
short insert Illumina libraries were mapped to the de novo genome assembly for the same
individual using Bowtie 2 v.2.3.0"’ with the “very-sensitive” preset and setting “maxins”
to between and 1000 and 1400, depending on the libraries available for that individual.

Read mappings were converted to BAM format and sorted using the “view” and “sort”
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functions in samtools v.1.4.1%. Prior to variant calling, duplicate reads were marked and
read group information added to the BAM files using the “MarkDuplicates” and
“AddOrReplaceReadGroups” functions in picard tools v.1.139
(http://broadinstitute.github.io/picard).

Variant discovery was performed with gatk v.3.8°'. BAM files were first processed to
realign INDELSs using the “RealignerTargetCreator” and “IndelRealigner” tools. An
initial set of variants was called for each individual using the “HaplotypeCaller” tool,
setting the -stand_call conf parameter to 30. VCF files from the initial variant calling
were then hard filtered to identify low confidence calls by running the “VariantFiltration”
tool with the -filterExpression parameter set as follows: "QD < 5.0 || FS > 20.0 || MQ <
30.0 || MQRankSum < -8.0 || MQRankSum > 8.0 || ReadPosRankSum < -2.0 ||
ReadPosRankSum > 2.0" (hard filtering thresholds were selected by first plotting the
values for FS, MQ, MQRankSum, QD and ReadPosRankSum from the initial set of
variant calls for selected individuals, representing the range of different sequence and
library types used, to visualise their distribution and then modifying the default hard
filtering thresholds in line with the guidance provided in the gatk document
“Understanding and adapting the generic hard-filtering recommendations”

(https://software.broadinstitute.org/gatk/documentation/article.php?id=6925).

Variants passing the gatk hard filtering step (excluding those where alleles had not been
called; GT field = ./.) were further analysed using SnpEff v.4.3u®, in order to predict the
impact of any variants within genes identified from the convergence analyses. Custom
genome databases were built for each individual using the SnpEff command “build” with
option “-gtf22”; a gtf file containing the annotation for all genes, as well as fasta files
containing the genome assembly, CDS and protein sequences, were used as input.
Annotation of the impact of variants was performed by running SnpEff with genes of
interest specified using the -onlyTr parameter and the -ud parameter set to “0” to
deactivate annotation of up or downstream variants. For each variant predicted to alter the
protein sequence, the position of the change was checked to see whether it occurred at a
site at which evidence for convergence had also been detected and, if so, whether it
involved a change to or from the state identified as being convergent between resistant

taxa.
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We also used the SnpEff results to check for evidence of mutations that could indicate the
presence of non-functional gene copies in certain taxa. Variants annotated as “stop
gained”, “start lost” or “frameshift” in the 10 ingroup taxa included in the convergence
analysis were manually examined to confirm that they would result in a disruption to the
expected protein product, and that they were not false positives caused by errors in gene
model estimation (e.g. misspecification of intron/exon boundaries). We checked further
for evidence of truncation of sequences or errors in the GeMoMa gene model estimation
that might be caused by loss-of-function mutations outside of the predicted exon
boundaries (e.g. such as the loss of a start codon, which could cause GeMoMa to predict
an incomplete gene model if an alternative possible start codon was present downstream).
Such putative loss-of-function mutations would not be detected as such by SnpEff

because they would be interpreted as low impact intergenic or intron variants.

We used WhatsHap v0.15% to perform read-based phasing of alleles for loci with
evidence of multiple variants within them. Input files for phasing in each taxon consisted
of the fasta formatted genome assembly, VCF file containing variants passing the gatk
hard-filtering step and BAM file from Bowtie 2 with duplicates marked and indels
realigned (i.e. as input into variant calling with gatk - see above). The WhatsHap “phase”
tool was run with the following parameter settings: --max-coverage 20 --indels; only
contigs/scaffolds containing the genes of interest were phased (specified using the “--
chromosome” option). For loci with evidence of variants within the CDS, we used the
output of WhatsHap to generate fully or partially phased allele sequences. The SnpSift
tool from SnpEff v.4.3u®* was used to select variants that alter the CDS from the
annotated VCF file generated by SnpEff and the positions of these variants checked
against the WhatsHap output to see if they fell within phased blocks. For each gene, the
number and size (i.e. number of phased variants encompassed) of each phased block was
found and a custom Perl script used to select the largest (or joint largest) block for genes
with at least one block spanning multiple phased variants within the CDS. Details of
phased variants impacting the CDS within the selected blocks, and of variants for genes
with only a single variant within the CDS (which were not considered for phasing with
WhatsHap, but for which the CDS for separate alleles can be generated), were extracted
from the WhatsHap output VCF file; these selected variants were then applied to the gene
sequences from each genome assembly to generate individual alleles which are fully or

partially phased within the CDS. The “faidx” function in samtools v.1.6™ was used to
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extract the relevant subsequences from the genome assembly files, and the “consensus”
command in beftools v.1.4 (http://www.htslib.org/doc/bcftools-1.4.html) used to obtain
the sequence for each allele with the “-H 1 and “-H 2” options . In cases where the
selected phased block also spans unphased variants, both sequences output by bcftools
will have the state found in the original genome assembly at these sites, as they will for
any variants outside of the selected phased block. The revseq and descseq tools from
EMBOSS v.6.6.0"" were used to reverse complement the sequences for any genes
annotated on the minus strand and to rename the output sequences. Phased alleles were
used for further phylogenetic analysis of candidate loci (see below); phasing results were
also used to check loci with multiple potential loss-of-function mutations within a single
individual, to establish whether the mutations are on the same or different alleles. We
discounted any cases of potential loss-of-function mutations where multiple frameshifts
occurring in close proximity on the same allele resulting in the correct reading frame

being maintained.

To check for polymorphism within F. excelsior at sites with evidence of convergence, we
examined the combined BAM file generated from mapping Illumina HiSeq reads from 37
individuals from different European provenances (the European Diversity Panel) to the F.
excelsior reference genome (BATGO.5) by Sollars et al''. Duplicate reads were removed
from the BAM file using the “MarkDuplicates” function in picard tools v.1.139
(http://broadinstitute.github.io/picard), with the REMOVE DUPLICATES option set to
“true”. Selected contigs (containing the genes of interest) were extracted from the BAM
file using the “view” function in samtools v.1.6*" and visualised with Tablet
v.1.17.08.17%*; evidence for polymorphism was observed directly from the reads and
variants only recorded if supported by at least 10% of reads at that site. Loci OG39275
and OG46977 were excluded from this analysis due to errors in the reference gene
models, possibly arising from misassembly, which meant the sites homologous to those
with evidence of convergence between EAB-resistant taxa could not be identified (see

Supplementary Table 5 for more details).

Distinguishing between different underlying causes of convergent patterns
To test whether evidence of convergence found by grand-conv might actually be due to
taxa sharing the same amino acid variant as a result of introgression or incomplete

lineage sorting (ILS), we conducted phylogenetic analyses of coding DNA sequences for
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the candidate loci to infer their gene-trees. If introgression or ILS were the cause of the
patterns detected by grand-conv, we would expect sequences from loci with apparently
convergent residues to group together within their gene-tree, even when nucleotides
encoding those residues are removed. The CDSs for the refined set of candidate loci were
aligned with MUSCLE via GUIDANCE?2 and alignment files with unreliably aligned
codons removed were used for downstream analyses, as described above (see - Species-
tree inference); none of datasets had sequences that were identified by GUIDANCE?2 as
being unreliably aligned. OG40061 failed to align due to the presence of an incomplete
codon at the end of the reference gene model from F. excelsior; we trimmed the final 2bp

from the F. excelsior sequence and reran GUIDANCE?2 using this modified file.

Phased allele sequences generated using the WhatsHap results (see above - Analysis of
variants within candidate loci) were added to the CDS alignments using MAFFT
v.7.310% with the options “--add” and “--keeplength”, in order to splice out any introns
present in the phased sequences and maintain the original length of the CDS alignments.
For any taxa for which phased sequences had been added, the original unphased sequence

was removed from the alignment.

If intragenic recombination has taken place, gene-trees inferred from the CDS alignments
may fail to group together the sequences with evidence of convergence even in cases
where the convergent pattern is due to ILS or introgressive hybridisation. This is because
the phylogenetic signal from any non-recombinant fragments of alleles derived from ILS
or introgressive hybridisation may not be sufficiently strong to override that from
fragments of alleles that have not been subject to these processes. To account for this
possibility, we used hyphy v.2.3.14.20181030beta(MPI)* to conduct recombination tests
with GARD®” with the following parameter settings: 012345 "General Discrete" 3. Where
GARD found significant evidence for a recombination breakpoint (p-value < 0.05), we

partitioned the alignment into non-recombinant fragments for phylogenetic analysis.

Alignment files were converted to nexus format and gene-trees estimated with MrBayes,
as described above (see - Species-tree inference). We checked the ASDSF and used
Tracer v.1.6.0 (http://beast.bio.ed.ac.uk/Tracer) to inspect the ESS values for each
parameter from the post burnin samples and to confirm that the burnin setting (i.e.

discarding the first 10% of samples) was sufficient; in cases where runs had not
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converged after SM generations (ASDSF >0.010), additional generations were run until
an ASDSF of <0.010 was reached. We examined the consensus trees generated by
MrBayes to look for evidence that sequences sharing the amino acid states inferred as
convergent by grand-conv cluster together in the gene-tree, in conflict with relationships
inferred in the species-tree for Fraxinus. In cases where evidence of such clustering was
found, the codon(s) corresponding to the amino acid site(s) at which evidence of
convergence was detected were excluded and the MrBayes analysis repeated. In cases
where sequences that have the “convergent” amino acid group together in the gene-tree
even after the codon(s) for the relevant site(s) have been excluded, we concluded that the
evidence of convergence detected by grand-conv is more likely due to introgressive
hybridisation or ILS. We also examined the gene-tree topologies to assess whether any of
the amino acid states identified as convergent by grand-conv is more likely to be the

ancestral state for Fraxinus.

Further characterisation of candidate loci

To identify the gene from Arabidopsis thaliana that best matches each of the candidate
loci in our refined set, we conducted a TBLASTN search of the F. excelsior protein
sequence belonging to the relevant OGs against the 4. thaliana sequences in the nr/nt
database in GenBank™ and selected the hit with the lowest E value. In cases where the
OG lacked a sequence from F. excelsior, we used the protein sequence from F.

mandshurica as the query for the TBLASTN search instead.

We also checked for the presence of the F. excelsior sequences within the OrthoMCL
clusters generated by Sollars et al.'' to see if they were associated with the same 4.
thaliana genes as identified by BLAST. We obtained information on the function of the
best matching A. thaliana genes from The Arabidopsis Information Resource (TAIR;

https://www.arabidopsis.org) and the literature. The OrthoMCL analysis conducted by

Sollars et al." also included a range of other plant species, including S. lycopersicum
(tomato) and the tree species Populus trichocarpa (poplar). As tomato is much more
closely related to F. excelsior than is A. thaliana, and poplar is also a tree species, the
function of the genes in these taxa may provide a better guide to the function of the F.
excelsior genes. We therefore also checked the OrthoMCL clusters containing our
candidate F. excelsior genes to identify putative orthologues, or close paralogues, from

tomato and poplar. In cases where the OrthoMCL cluster included multiple tomato or
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poplar genes, we focused attention on the tomato sequence that also belonged to the
OMA group, as the putative orthologue of our F. excelsior gene in that species. For
poplar, we looked for information on all sequences, unless there were a large number in
the cluster (>4). We searched for literature on the function of the tomato and poplar
genes, using the gene identifiers from the versions of the genome annotations used for the

OrthoMCL analysis'' and also looked for information on PhytoMine, in Phytozome 12°°.

To further clarify the orthology/paralogy relationships between our candidates and genes
from other species, we conducted phylogenetic analysis of the relevant OrthoMCL
clusters from Sollars et al'' for selected loci. Protein sequences belonging to each
OrthoMCL cluster were aligned and gene-trees inferred using GUIDANCE2 and
MrBayes respectively, as described above for the OGs and HOGs. For the OrthoMCL
cluster relating to OG15551, following an initial MrBayes analysis, we removed two
incomplete sequences (Migut.000792.1.p and GSVIVT01025800001, which were
missing >25% of characters in the alignment) and two divergent sequences from A.
thaliana (AT1G74540 and AT1G74550) which are known to derive from a Brassicales-
specific retroposition event and subsequent Brassicaceae-specific tandem duplication®;

the alignment and phylogenetic analysis was then repeated for the reduced dataset.

For OG15551, we generated a sequence logo for regions of the protein containing sites at
which evidence of convergence was detected. We obtained putatively homologous
sequences by downloading the fasta file for the OMA group (OMA Browser fingerprint
YGPIYSF”) containing the A. thaliana CYP98A3 gene (AT2G40890); the sequences
were filtered to include only those from angiosperms, with a maximum of one sequence
per genus retained (29 genera in total). To this dataset, we added the OG15551 protein
sequences for F. mandshurica and F. pennsylvanica pe-48 and manually aligned the
regions containing the relevant sites (positions 208-218 and 474-482 in the F. excelsior
FRAEX38873 v2 000261700 reference protein). We used WebLogo v.3.7.3°! without

compositional adjustment to generate logos for each of these regions.

GO term enrichment analysis
To test for the possibility of overrepresentation of particular functional categories among
the candidate loci in our refined set, compared with the complete set of genes used as

input for the convergence analyses, we conducted gene ontology (GO) enrichment tests.
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Fisher’s exact tests with the “weight” and “elim” algorithms, which take into account the
GO graph topology”’, were run using the topGO package” (v.2.32.0) in R v.3.5.1*. We
created a “genes-to-GOs” file for the complete set of F. excelsior gene models included
in the grand-conv analyses, using GO terms from the existing functional annotation for
the reference genome (Sollars et al.'"); only the single longest transcript per gene (see

http://www.ashgenome.org/transcriptomes) was included and for any OMA groups that

lacked an F. excelsior sequence we used the reference model referred to by the majority
of other Fraxinus sequences in the group (i.e. as indicated in the GeMoMa gene model
names). We also created a list of F. excelsior reference model genes belonging to our
refined set of candidate loci; again, for any OMA groups that lacked an F. excelsior
sequence, we used the reference model referred to by the majority of other Fraxinus
sequences in the group. The complete list of F. excelsior reference genes included in the
grand-conv analyses, and their associated GO terms, was used as the background against
which the list of gene models from the refined set of candidate loci was tested. Fisher’s
exact test was run separately, with each of the algorithms, to check for enrichment of
terms within the biological process (BP), molecular function (MF) and cellular

component (CC) domains.

Protein modelling

The SignalP 5.0 server”> and Phobius server’® (http://phobius.sbc.su.se/index.html) were

used to detect the presence of signal peptides; for SignalP the organism group was set to
“Eukarya” and for Phobius the “normal prediction” method was used. All Fraxinus
sequences belonging to the OMA groups were used as input for the signal peptide
analyses; we only concluded that a signal peptide was present if it was predicted by both

methods. The NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/) was used

with default settings to identify candidate phosphorylation sites for loci where the amino
acid variant observed at a site with evidence of convergence included a serine, threonine
or tyrosine. The same protein sequences for low and high susceptibility taxa as used for
protein modelling (see below) were input to an initial run of NetPhos 3.1; where evidence
for phosphorylation site presence/absence was detected with this initial sequence pair (i.e.
present in the sequence with the convergent state and absent from that with the non-
convergent state, or vice versa) we reran NetPhos 3.1 on all Fraxinus sequences from the
relevant OMA groups to test if this difference was consistently associated with the

convergent/non-convergent state. We only counted as potential phosphorylation sites
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those for which the NetPhos score for phosphorylation potential was >0.900 for all

sequences with the putative site.

RaptorX-Binding97 (http://raptorx.uchicago.edu/BindingSite/) was used to generate

predicted protein models for each of the candidate genes in our refined set, as well as to
outline possible binding sites and candidate ligands. Protein sequences for gene models
from the F. excelsior reference genome were used for initial protein model and binding
site prediction, except in cases where F. excelsior was not present in the OMA group or
where comparison with the other ingroup and outgroup taxa indicated the F. excelsior
gene model may be incorrect/incomplete; for these loci, the F. mandshurica sequences
were used instead as, after the reference, the genome assembly for this taxon is one of the
highest quality available. For loci for which a binding site could be successfully predicted
(i.e. with at least one potential binding site with a pocket multiplicity value of >40),
additional models were generated for representative resistant (F. mandshurica or F.
platypoda) and susceptible (F. ornus or susceptible F. pennsylvanica) taxa using Swiss-
model”® and Phyre2” (intensive mode), with the exact taxon selection depending on
which grand-conv pairwise comparison the locus was detected in (see above - Analysis of
patterns of sequence variation consistent with molecular convergence) and which taxa
had complete gene models. Where errors were detected in the predicted protein
sequences for resistant or susceptible taxa (i.e. due to errors in the predicted gene model,
which were detected through comparison with sequences from other species, including
those from outgroups) these were corrected prior to modelling (e.g. by trimming extra
sequence resulting from incorrect prediction of the start codon). Models predicted by the
three independent methods (RaptorX-Binding, Swiss-modeller and Phyre2) were
compared by aligning them using PyMOL v.2.0 with the align function to check for
congruence; only those loci whose models displayed congruence and where the
convergent site was located within/close to the putative active site were taken forward for
predictive ligand docking analysis (using the Phyre2 and RaptorX-Binding models for the
docking itself). In addition, any loci with congruent models where the site with evidence
of convergence is also a putative phosphorylation site presence/absence variant, or which
are within a putative functional domain, were analysed further. Ligand candidates were
selected based on relevant literature and/or the RaptorX-Binding output, with SDF files

for each of the molecules being obtained from PubChem

(https://pubchem.ncbi.nlm.nih.gov). SDF files were converted to 3d pdb files using

29


https://doi.org/10.1101/772913
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772913; this version posted September 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Online SMILES Translator and Structure File Generator

(https://cactus.nci.nih.gov/translate/), so they could be used with Autodock. Docking

analysis was carried out using Autodock Vina v.1.1.2'° with the GUI PyRx v.0.8'%".
Following docking, ligand binding site coordinates were exported as SDF files from
Pyrex and loaded into PyMOL with the corresponding protein model file for the resistant
and susceptible taxa. Binding sites were then annotated and the residues at which

evidence for convergence had been detected with grand-conv were labelled.

Evidence for differential expression of candidate loci in F. pennsylvanica

We used published transcriptome assembly and expression data from F. pennsylvanica™
to look for evidence of differential expression of our candidate loci in response to EAB
larval feeding. This dataset comprised six genotypes of F. pennsylvanica, four putatively
resistant to EAB and two susceptible to EAB. To identify the orthogues of our genes in
the protein sequences of this independently assembled transcriptome™, we repeated the
OMA clustering analysis (see above - Gene annotation and orthologue inference) with the
addition of these data, available as “Fraxinus_pennsylvanica 120313 peptides” at the

Harwood Genomics Project website (https://hardwoodgenomics.org). OMA was run as

described above, with the SpeciesTree parameter set to ‘estimate’; because we only
intended to use the results for the OGs, and not the HOGs, from this analysis, we did not
repeat the clustering with a modified species-tree as was done for our main OMA
analysis. Having identified the likely orthologous loci from the F. pennsylvanica
transcriptome™, we used the results of the differential expression analysis® to check
whether our candidate loci had significantly increased or decreased expression post-EAB

feeding in this dataset.

Data availability

Underlying data for Figure 1 are available in Supplementary Tables 1 and 2. All lllumina
sequence data and genome assemblies will be submitted to the European Nucleotide
Archive, and the accession number provided, prior to publication. VCF files containing
variants called for Fraxinus individuals will be submitted to the European Variation
Archive, and the accession number provided, prior to publication. All other data are

available from the corresponding authors upon reasonable request.

Code availability
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All unpublished code is available upon reasonable request from the corresponding

authors.
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Figures

Figure 1. Fraxinus species’ resistance to EAB in bioassays. a, b, Measures of
resistance of different Fraxinus taxa to EAB larvae. The x axis shows taxa tested; the y
axis shows least squares means (LSM) of the proportion of larvae successfully entering
the tree that were killed by a host defence response (a) or LSM of the proportion of
larvae successfully entering the tree that reached the L4 instar (b). The error bars
represent 95% confidence intervals. Fraxinus sp. D2006-0159 is a genotype from China
for which we could not determine a recognised species name. Fraxinus biltmoreana, F.
chinensis, F. lanuginosa, F. profunda and F. uhdei are polyploids and were not included

in the genomic analyses; F. apertisquamifera was also not included.
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Figure 2. Species-tree for the genus Fraxinus. Primary concordance tree inferred from
272 phylogenetically informative loci found in all taxa, inferred via Bayesian
concordance analysis with BUCKy. Taxonomic sections within Fraxinus, according to
Wallander'’, are shown in different colours: dark blue - section Dipetalae; dark green -
section Fraxinus; light blue - section Melioides; light green - section Ornus; purple -
section Pauciflorae; brown - section Sciadanthus. Fraxinus species not placed into a
specific section (incertae sedis) are coloured grey and outgroups black. Numbers above
the branches are sample-wide concordance factors. Filled squares (linked by dashed
lines) indicate the resistant taxa included in the three pairwise convergence analyses, with
the number of candidate genes found from that comparison shown; numbers do not sum
to 53 (i.e. the total number of candidate genes) because some genes were identified by

more than one pairwise comparison.
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Figure 3. Predicted protein structure for OG15551. a, Predicted structure for
OG15551, modelled using the protein sequence for the EAB-resistant species Fraxinus
mandshurica. The black box indicates the region containing the active site, which is
enlarged in b and c¢. b, Region containing the predicted active site in F. mandshurica,
showing the four amino acid sites at which evidence for convergence between EAB-
resistant species was detected. The putative substrate, p-Coumarate, is shown in blue and
the heme cofactor in yellow. ¢, Region containing the predicted active site in the EAB-
susceptible F. pennsylvanica pe-48, showing the amino acid states found at the four sites
at which evidence for convergence between EAB-resistant species was detected; the
putative substrate and cofactor are shown as in b. d, Sequence logos for OG15551 and
putatively homologous sequences from other angiosperms for regions containing sites at
which evidence of convergence was detected (positions 208-218 (top) and 474-482
(bottom) in the F. excelsior reference protein), showing the degree of sequence
conservation across 30 genera. The height of each residue indicates its relative frequency
at that site; amino acids are coloured according to their hydrophobicity (blue =
hydrophilic; black = hydrophobic; green = neutral). Dashed lines indicate substrate
recognition sites and solid lines residues that are predicted to contact the substrate in the
A. thaliana CYP98A3 protein'’; arrowheads indicate sites at which evidence of
convergence between EAB-resistant taxa was detected and grey shading shows the amino

acid states associated with resistance.
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Supplementary Note 6. Differential expression in response to EAB-feeding.
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Supplementary Figure 1. Gene-trees for the 53 candidate loci inferred from CDS
alignments including phased alleles and accounting for evidence of recombination.
a, Gene-tree for 0G20252 inferred from positions 378-1524 of the CDS alignment
excluding the codon for the amino acid site with evidence of convergence (the gene-tree
inferred from positions 1-377 is not shown because the majority of nodes are poorly
supported and the codon for the convergent site is within the other fragment). b, Gene-
tree for OG853. ¢, Gene-tree for OG2897. d, Gene-tree for OG4372. e, Gene-tree for
0G44609 inferred from positions 1-250 of the CDS alignment. f, Gene-tree for OG4469
inferred from positions 251-2595 of the CDS alignment. g, Gene-tree for OG5539. h,
Gene-tree for OG6935 inferred from positions 1-794 of the CDS alignment. i, Gene-tree
for OG6935 inferred from positions 795-2208 of the CDS alignment. j, Gene-tree for
0G7454 inferred from positions 1-557 of the CDS alignment. k, Gene-tree for OG7454
inferred from positions 558-1405 of the CDS alignment. 1, Gene-tree for 0G7454
inferred from positions 1406-2352 of the CDS alignment excluding the codons for the
amino acid sites with evidence of convergence. m, Gene-tree for OG10762 inferred from
the CDS alignment with the codon for the amino acid site with evidence of convergence
excluded. n, Gene-tree for OG11013. o, Gene-tree for OG11720 inferred from positions
1-868 of the CDS alignment excluding the codon for the amino acid site with evidence of
convergence. p, Gene-tree for OG11720 inferred from positions 869-1773 of the CDS
alignment. q, Gene-tree for OG13887 inferred from positions 1-269 of the CDS
alignment. r, Gene-tree for OG13887 inferred from positions 270-1803 of the CDS
alignment. s, Gene-tree for OG15551 inferred from the CDS alignment with the codons
for the amino acid sites with evidence of convergence excluded. t, Gene-tree for
0OG16673 inferred from the CDS alignment with the codon for the amino acid site with
evidence of convergence excluded. u, Gene-tree for OG16739. v, Gene-tree for
OG17252. w, Gene-tree for OG19104. x, Gene-tree for 0G20520 inferred from positions
1-372 of the CDS alignment. y, Gene-tree for 0G20520 inferred from positions 373-1452
of the CDS alignment. z, Gene-tree for OG20859. aa, Gene-tree for OG21033 inferred
from positions 1-327 of the CDS alignment. ab, Gene-tree for OG21033 inferred from
positions 328-1539 of the CDS alignment. ac, Gene-tree for OG21449 inferred from
positions 1-455 of the CDS alignment. ad, Gene-tree for OG21449 inferred from
positions 456-1209 of the CDS alignment. ae, Gene-tree for 0G23214 inferred from
positions 1-836 of the CDS alignment. af, Gene-tree for 0G23214 inferred from
positions 837-1401 of the CDS alignment. ag, Gene-tree for 0G23284. ah, Gene-tree for
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0G24614. ai, Gene-tree for 0G249609. aj, Gene-tree for 0G26964 inferred from
positions 1-205 of the CDS alignment. ak, Gene-tree for 0G26964 inferred from
positions 206-1092 of the CDS alignment. al, Gene-tree for OG27080. am, Gene-tree for
0G27693. an, Gene-tree for OG27838 inferred from positions 1-381 of the CDS
alignment. ao, Gene-tree for OG27838 inferred from positions 382-1707 of the CDS
alignment. ap, Gene-tree for OG28712. aq, Gene-tree for OG30208. ar, Gene-tree for
0G32176 inferred from the CDS alignment with the codons for the amino acid sites with
evidence of convergence excluded. as, Gene-tree for OG33348. at, Gene-tree for
0G35707. au, Gene-tree for OG36502. av, Gene-tree for OG37560. aw, Gene-tree for
0G37870. ax, Gene-tree for OG38407. ay, Gene-tree for OG38543. Az, Gene-tree for
0G39275. aaa, Gene-tree for OG40061. aab, Gene-tree for OG41448 inferred from
positions 1-243 of the CDS alignment. aac, Gene-tree for OG41448 inferred from
positions 244-981 of the CDS alignment excluding the codon for the amino acid site with
evidence of convergence. aad, Gene-tree for 0G41488. aae, Gene-tree for OG43828.
aaf, Gene-tree for OG46977 inferred from positions 1-291 of the CDS alignment. aag,
Gene-tree for OG46977 inferred from positions 292-804 of the CDS alignment. aah,
Gene-tree for OG47560 inferred from positions 1-280 of the CDS alignment. aai, Gene-
tree for OG47560 inferred from positions 281-852 of the CDS alignment excluding the
codons for the amino acid sites with evidence of convergence. aaj, Gene-tree for
0G47629. aak, Gene-tree for 0G49074. aal, Gene-tree for OG50989. aam, Gene-tree
for OG56563. aan, Gene-tree for OG59564 inferred from positions 1-189 of the CDS
alignment. aao, Gene-tree for 0G59564 inferred from positions 190-558 of the CDS
alignment excluding the codon for the amino acid site with evidence of convergence.
aap, Gene-tree for OG60899. aaq, Gene-tree for OG64545. Gene-trees were inferred
with MrBayes and rooted on Solanum lycopersicum. Numbers above branches are

posterior probabilities (PP) of >0.95; asterisks indicate nodes with PP=1.
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Supplementary Figure 2. Predicted protein structures for selected candidate loci. a,
Predicted protein structure for OG36502, modelled using the protein sequence for
Fraxinus platypoda. The serine/asparagine variant at the site where convergence was
detected is highlighted; the serine is a putative phosphorylation site. b, Predicted protein
structure for 0G40061, modelled using the protein sequence for F. mandshurica. The
asparagine/serine variant at the site where convergence was detected is highlighted; the
serine is a putative phosphorylation site. The putative substrate, NADP, is shown docked
within the predicted active site. ¢, Predicted protein structure for OG38407, modelled
using the protein sequence for F. mandshurica. The aspartic acid/asparagine variant at the
site where convergence was detected is highlighted; the site falls within a leucine rich
repeat region (LRR; shaded blue) which is predicted to span from position 111-237
within the protein sequence (detected using the GenomeNet MOTIF tool
(www.genome.jp/tools/motif/), searching against the NCBI-CDD and Pfam databases
with default parameters; the LRR region was identified as positions 111-237 with an e-
value of 1e-05). d, Predicted protein structure for OG21033, modelled using the protein
sequence for F. platypoda. The lysine/glutamine at the site where convergence was
detected is highlighted. The putative substrate, B-D-Glcp-(1—3)-B-D-GlcpA-(1—4)-B-D-

Glcp, is shown docked within the predicted active site.
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Supplementary Figure 3. Gene-trees for OrthoMCL clusters including Fraxinus
excelsior sequences from selected candidate genes. Gene-trees for OrthoMCL clusters
including FRAEX38873 v2 000261700 (a), FRAEX38873 v2 000200250 (b),
FRAEX38873 v2 000386580 (¢), FRAEX38873 v2 000122730 (d),
FRAEX38873 v2 000111170 (e), FRAEX38873 v2 000248940 (f),
FRAEX38873 v2 000080400 (g), FRAEX38873 v2 000093260 (h),
FRAEX38873 v2 000000770 (i), FRAEX38873 v2 000268710 (j),
FRAEX38873 v2 000106520 (k), FRAEX38873 v2 000076410 (1),
FRAEX38873 v2 000034500 (m), FRAEX38873 v2 000324730 (n),
FRAEX38873 v2 000319270 (o), FRAEX38873 v2 000309460 (p),
FRAEX38873 v2 000207320 (q), FRAEX38873 v2 000363060 (r),
FRAEX38873 v2 000237270 (s), FRAEX38873 v2 000382300 (t),
FRAEX38873 v2 000262780 (u), FRAEX38873 v2 000393500 (v),
FRAEX38873 v2 000338500 (w), FRAEX38873 v2 000092000 (x) and
FRAEX38873 v2 000227880 (y). Gene-trees were inferred with MrBayes and rooted on
either Pinus taeda, Amborella trichopoda or midpoint rooted (in cases where branch
lengths viewed when the tree was unrooted did not clearly indicate that sequences from
either P. taeda or A. trichopoda represented suitable outgroups). Numbers above
branches are posterior probabilities (PP) of >0.95; asterisks indicate nodes with PP=1.
Species names are abbreviated as follows: ATHA, Arabidopsis thaliana; ATRI,
Amborella trichopoda; CROB, Coffea canephora; FEXC, Fraxinus excelsior; MGUT,
Erythranthe guttata; MTRU, Medicago truncatula; PITA, Pinus taeda; PTRI, Populus
trichocarpa; SLYC, Solanum lycopersicum; UGIB, Utricularia gibba; VVIN, Vitis

vinifera. Gene model names follow species abbreviations.
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Supplementary Note 1

1. Species-tree for Fraxinus

The primary concordance tree inferred with BUCKYy (Fig. 2) suggests evidence for
significant incongruence between individual gene-tree topologies, as demonstrated by the
low concordance factors (CFs) for many of the nodes. Nevertheless, with the exception of
sect. Ornus, all taxonomic sections represented by more than one taxon are resolved as
monophyletic with a CF of >0.95, indicating that the majority of genes support these
relationships. All species from sect. Ornus form a monophyletic group (CF=0.91) except
for F. griffithii, which was also found to fall outside of the section on the basis of data

from the plastid genome®®.

Supplementary Note 2

2. Results of grand-conv analyses

From grand-conv analyses of susceptible versus resistant Fraxinus lineages, we identified
64 loci with significant evidence of excess convergence (defined as loci with at least one
amino acid site with a PP >0.90 of convergence and where the resistant branch pair has
higher excess convergence than any other independent branch pair within the species-
tree) in at least one of the three pairwise combinations of resistant lineages. The majority
of loci (45) only show evidence of convergence between F. mandshurica and F.
platypoda. Seven loci are only convergent between F. mandshurica and the sect. Ornus
taxa (F. baroniana, F. floribunda and Fraxinus sp. D2006-0159), and nine between F.
platypoda and the sect. Ornus taxa. Of the remaining three loci, one shows evidence for
convergence in two of the three pairwise comparisons, with the final two loci having
evidence of convergence in all three pairs of lineages. For all three loci with evidence of
convergence between more than one pair of lineages, the same residues were inferred as
being convergent in each case. Filtering of this initial list of 64 loci according to the
criteria specified in the Methods (see section “Refining the initial list of candidate loci
identified with grand-conv”), resulted in a refined list of 53 loci. Further details of each

of these loci is provided in Supplementary Note 4.

Supplementary Note 3
3. Evidence for loss-of-function mutations
Nineteen of our 53 loci have evidence for potential loss-of-function mutations (start

codon losses, stop codon gains/premature stop codons or frameshift variants) that cannot
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be discounted by errors in gene model estimation (Supplementary Table 6). For ten of
these loci, possible loss-of-function mutations are found only in susceptible taxa, for
seven loci they are found only in resistant taxa, and for two loci they are found both in
susceptible and resistant taxa. Three susceptible taxa (F. latifolia, F. ornus and F.
pennsylvanica (susceptible genotype)) lack an allele without potential loss-of-function
mutations (either they are homozygous for the mutation, or phasing indicates there are
separate mutations on each allele) for two loci each (Supplementary Table 6) suggesting
these genes could be non-functional, or generate a truncated protein product. For a single
resistant taxon (F. floribunda) both alleles for OG60899 have potential loss-of-function
mutations. In all other cases, there is either one allele that appears fully functional or it is
uncertain whether multiple possible loss-of-function mutations are on the same or

different alleles (Supplementary Table 6).

Supplementary Note 4

4. Details of candidate loci

Seven candidate genes have putative roles relating to the phenylpropanoid biosynthesis
pathway (OG853, OG15551, 0G16673, 0G19104, 0G27080, OG40061 and OG64545),
15 have possible roles in perception and signalling that are relevant to defence response
against insect herbivores (0G4469, OG11720, 0G21033, 0G23214, 0G23284,
0G24614, 0G32176, 0G33348, 0OG38407, 0G39275, 0G41448, 0G41488, 0G43828,
0G47560 and OG50989) and two (OG16739 and OG37870) are candidates with putative
roles related to hypersensitive like-response and programmed cell death. Further
candidates also have potential roles relating to other aspects of defence response,
including OG27693 and OG59564, which may play a role in response to oxidative stress,
OG11013, an apparent member of a protein superfamily whose members have roles in
plant stress and immunity, OG37560, a probable member of the HIPP gene family that
may be involved in plant-pathogen interactions, and OG47629, which has a putative

orthologue in S. lycopersicum that has been classified as a "disease-specific gene".

Below we provide details of the individual candidate genes, including information from
literature searches and results obtained from any phylogenetic analyses and protein
modelling. Gene model numbers from the BATGO0.5 reference genome for F. excelsior

are shown in parentheses after the OMA group names.
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4.1. Candidates found in all three grand-conv pairwise comparisons

0G6935 (FRAEX38873 v2 000218910). Grand-conv detected evidence of a
convergent methionine in all five resistant taxa, at a site where the other Fraxinus species
in the analysis have a threonine (Supplementary Table 5). The top match for this gene in
Arabidopsis thaliana is an RNA helicase family protein (AT3G62310) which is in the
DExD/H-box RH family and has a putative orthologue in rice (OS03G0314100; both
belong to the same OMA group (fingerprint: QWCVDFA),

omabrowser.org/oma/info/ ARATH24986/) that is drought inducible'"*. Expression of

AT3G62310 has been shown to be induced in response to salt acclimation'®.

0G11013 (FRAEX38873 v2 000029110). Grand-conv detected evidence of a
convergent arginine in all five resistant taxa, at a site where the other Fraxinus species in
the analysis have a glutamine (Supplementary Table 5). The alignment of all sequences
for OG11013 showed some susceptible species also have an arginine at the relevant
amino acid site. However, the glutamine was only present in species that are susceptible
to EAB, including F. ornus (sect. Ornus) and members of sect. Melioides (Supplementary
Table 8), indicating possible convergence between a subset of the taxa with high
susceptibility. It should be noted that both F. pennsylvanica individuals (susceptible and
putatively resistant) have a glutamine at the relevant position. Among the outgroups,
Mimulus had an arginine, Olea a glutamine and Solanum a histidine. The top match for
this gene in A. thaliana is a tetratricopeptide repeat (TPR)-like superfamily protein
encoding gene (AT3G49142). Although the function of AT3G49142 has not been fully
characterised, the functions of some individual TPR proteins have been deduced, and

include roles in plant stress, hormone signaling and immunity'**,

4.2. Candidate found in grand-conv analyses 1 and 3

0G27838 (FRAEX38873 v2 000134340). Grand-conv detected evidence of a
convergent arginine in the five resistant taxa, at a site where the susceptible Fraxinus
species in the analysis have a glutamine. Although grand-conv identified the arginine as
convergent between F. mandshurica and F. platypoda, and between F. platypoda and F.
baroniana, F. floribunda and Fraxinus sp. D2006-0159, it was not detected as convergent
in the pairwise comparison between F. mandshurica and F. baroniana, F. floribunda and
Fraxinus sp. D2006-0159 (Supplementary Table 5). The top match for this gene in 4.
thaliana is REDUCED DORMANCY 2 (AT2G38560), or RDO2, which is also known as
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TRANSCRIPT ELONGATION FACTOR 1IS (TFIIS). AT2G38560/RDO2/TFIIS encodes a
transcription factor that is needed for RNA polymerase II (RNAPII) processivity,
stimulating transcription elongation by RNAPII, and may also play a role in the control

of alternative splicing'®.

4.3. Candidates found in F. mandshurica and F. platypoda (grand-conv analysis 1)
0GS853 (FRAEX38873 v2 000200250). Grand-conv detected evidence of a convergent
phenylalanine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an isoleucine (Supplementary Table 5). The top match for
this gene in A. thaliana is REF4-RELATED 1 (AT3G23590), or RFRI; phylogenetic
analysis of the OrthoMCL cluster containing both FRAEX38873 v2 000200250 and
AT3G23590 indicates that they are orthologues (Supplementary Fig. 3b).
AT3G23590/RFRI is also known as MED5a or MED33a and encodes a protein that
belongs to the Mediator complex, which is a transcriptional regulator of nearly all cellular
pathways®’. AT3G23590/RFR1/MED5a acts in a partially redundant manner with its
paralogue REF4/MED5b (AT2G48110) to limit phenylpropanoid accumulation®.
Disruption of both the MED5a and MEDS5b genes in the lignin-deficient ref8 mutant of 4.
thaliana, which has reduced activity of REF8/CYP98A43 (AT2G40890; the gene encoding
p-coumaroylshikimate 3’-hydroxylase (C3°H) and the best matching A. thaliana gene for
one of our other candidates, OG15551/FRAEX38873 v2 000261700), restores lignin
deposition to wild-type levels®' . However, the disruption of the MEDS genes does not
restore the synthesis of guaiacyl and syringyl lignin subunits; the lignin content of the
med5a/5b ref8 triple mutant is almost entirely composed of p-hydroxyphenyl subunits,
which account for < 2% of the lignin content in wild-type plants *'. It has also been found
that med5a/5b loss-of-function mutant plants show increased expression of numerous
genes involved in the phenylpropanoid biosynthesis pathway, including those encoding
PAL, C4H, 4CL, C3’H, CCR, CAD and CSE, and that ‘phenylpropanoid biosynthesis’
was the most significantly enriched GO term for genes that were overexpressed in
med5a/5b plants®'. Although the direct targets of the MEDS genes are yet to be identified,
it has been suggested that MED5a and MEDS5b may limit phenylpropanoid biosynthesis

1 Fyrther

via the transcriptional activation of genes that negatively regulate the pathway
analysis of med5a/5b loss-of-function mutant plants found that genes with significantly
decreased expression were enriched for GO terms related to defence response, such as

“response to jasmonic acid”, “response to wounding” and “defence response to insect”,
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suggesting a role for MED5a and MEDS5b in regulation of defence response genes>*. The
orthologue of FRAEX38873 v2 000200250 in S. lycopersicum is Solyc01g080200
(Supplementary Fig. 3b), and has been shown to be upregulated in response to tomato

yellow leaf curl virus'”’.

0G2897 (FRAEX38873 v2 000138720). Grand-conv detected evidence of a
convergent isoleucine and glutamic acid in F. mandshurica and F. platypoda, at sites
where the other Fraxinus species in the analysis have a phenylalanine and glycine
(Supplementary Table 5). The top match for this gene in 4. thaliana is a gene encoding a
tetratricopeptide repeat (TPR)-like superfamily protein (AT4G30825), also known as
PPRb'". AT4G30825/PPRb is involved in nucleotide-excision repair, phosphorylation
and regulation of transcription by RNA polymerase I, amongst other processes
(www.arabidopsis.org/servlets/TairObject?1d=500231848&type=locus). AT4G30825 is
co-expressed with the disease resistance regulator OVEREXPRESSOR OF CATIONIC
PEROXIDASE3 (OCP3'"), which also plays a role in drought tolerance'®.

0G4372 (FRAEX38873 v2 000149840). Grand-conv detected evidence of a
convergent isoleucine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a serine or aspartic acid (Supplementary Table 5).
The top match for this gene in 4. thaliana is a gene encoding a transcription regulator
NOT2/NOT3/NOTS family protein (AT5G18230). NOT2 and NOT3/5 form a module
that is part of the CCR4-NOT complex, which is a conserved multi-subunit complex that
regulates gene expression at different levels''’. The NOT2-3/5 module appears to be
involved in coordination of transcriptional regulation and mRNA degradation, as well as

assembly of cellular complexes such as the proteasome''’.

0G4469 (FRAEX38873 v2 000386580). Grand-conv detected evidence of a
convergent threonine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a proline (Supplementary Table 5). The top match
for this gene in 4. thaliana is a gene encoding a protein kinase superfamily protein
(AT5G24080); phylogenetic analysis of the OrthoMCL cluster containing
FRAEX38873 v2 000386580 and AT5G24080 indicates they are likely to be
orthologous (Supplementary Fig. 3c). The protein encoded by AT5G24080 is reported to

be a G-type lectin S-receptor-like serine/threonine-protein kinase with an ATP binding
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site, belonging to the Ser/Thr protein kinase family (www.uniprot.org/uniprot/Q9FLV4).
G-type lectin receptor kinases have various functions, including in self-incompatibility,

: . . 111,112
with some having a role in plant defence

such as in response to the tobacco hawk
moth (Manduca sexta) in Nicotiana attenuata'” or to the brown planthopper
(Nilaparvata lugens) in rice''*. Extracellular ATP is associated with cell damage, and
perception of ATP may play a role in defence response against insect herbivores via
stimulation of the JA pathway®’. AT5G24080 has also been named ArG-LecRK-1.6 by
Teixeira et al.''!, who suggest it may be defective because its protein has an incomplete
kinase domain and lacks some of the subdomains typically found in kinases. However,
such proteins may still be functional even if they lack kinase activity'''. Putative
orthologues of OG4469/FRAEX38873 v2 000386580 in S. lycopersicum
(Solyc03g007790 and Solyc06g036470) have been found to encode proteins that include

. . . . . 111
the S-locus glycoprotein domain, transmembrane domain and kinase domains'

although their precise functions have not been characterised.

0G5539 (FRAEX38873 v2 000290300). Grand-conv detected evidence of a
convergent leucine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a phenylalanine (Supplementary Table 5).
However, the leucine is also found in the alternate allele for susceptible F. americana
(Supplementary Table 8). The top match for this gene in 4. thaliana is CHLORIDE
CHANNEL G (AT5G33280), CLCG. AT5G33280/CLCG is also known as CBSCLC6
(www.uniprot.org/uniprot/P60300) and is suggested to function in chloride homeostasis

during NaCl stress' .

0G7454 (FRAEX38873 v2 000218430). Grand-conv detected evidence of a
convergent histidine and lysine in F. mandshurica and F. platypoda, at sites where the
other Fraxinus species in the analysis have arginine and glutamic acid (Supplementary
Table 5). The top match for this gene in 4. thaliana is EMBRYO DEFECTIVE 3141
(AT5G50390), or EMB3141. AT5G50390/EMB3141 is also known as PCMP-H58 and
encodes a pentatricopeptide repeat containing protein

(www.uniprot.org/uniprot/Q9FK33); this gene appears to be required for embryo

development''°.
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0G10762 (FRAEX38873 v2 000122730). Grand-conv detected evidence of a
convergent serine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an alanine (Supplementary Table 5). The top match for this
gene in A. thaliana is WITH NO LYSINE (K) KINASE 4 (AT5G58350), or WNK4.
Phylogenetic analysis of the OrthoMCL cluster containing both
FRAEX38873 v2 000122730 and AT5G58350 indicates that they are orthologues
(Supplementary Fig. 3d). AT5SG58350/WNK4 is also known as ZIK2 and encodes a
serine/threonine kinase''”. The function of AT5G58350/WNK4 in not yet known,
although its expression is influenced by circadian rhythms and other members of the
WNK gene family in A. thaliana are involved in the regulation of flowering time''”. It has
also been suggested that plant WNK genes are involved in enhancing the oxidative
defence system''’. GO terms have been associated with AT5G58350/WNK4 via
identification of functional gene modules''®, namely: CELLULAR RESPONSE TO
PHOSPHATE STARVATION, GALACTOLIPID BIOSYNTHETIC PROCESS,
CELLULAR RESPONSE TO WATER DEPRIVATION and ORGAN SENESCENCE
(see
http://bioinformatics.psb.ugent.be/cig_data/plant_modules/createResultsHTML2.php?gen
eID=AT5G58350&moduleTypes=repModules). The orthologue of
FRAEX38873 v2 000122730 in S. lycopersicum appears to be Solyc06g082470
(Supplementary Fig. 3d) and is also known as SIMAPKKK42'"’. The function of
Solyc06g082470/SIMAPKKK42 has not been fully characterised, but it has been
suggested that SIMAPKKK genes in general might have a role in plant hormone

signalling in relation to development and defence response''”.

0G11720 (FRAEX38873 v2 000155730). Grand-conv detected evidence of a
convergent valine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an isoleucine (Supplementary Table 5). The top match for
this gene in A. thaliana is NITRATE TRANSPORTER 1.5 (AT1G32450), which is also
known as NRT1.5 or NPF7.3. AT1G32450/NRT1.5 is a transmembrane nitrate transporter
and has been shown to be involved in transport of nitrate from the root to shoot’”. In
addition to nitrate, some members of the NRT1 family (also known as the PTR or NPF
120

family) are also involved in transport of some phytohormones and defence compounds .

Indeed, many of the 53 members of the NRT1 family in 4. thaliana have multiple
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substrates and may be able transport jamonate, abscisic and/or gibberellins as well as

. 121
nitrates, or other substrates .

0G13887 (FRAEX38873 v2 000015960). Grand-conv detected evidence of a
convergent lysine n F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an arginine (Supplementary Table 5). The top match for this
gene in A. thaliana is 54 CHLOROPLAST PROTEIN (AT5G03940), or 54CP, and is also
known as cpSRP54. AT5G03940/54CP/cpSRP54 encodes the 54kDa subunit of the
chloroplast signal recognition particle and an A. thaliana mutant (chd) with a T-DNA
insertion in the gene has lower chlorophyll and carotenoid content compared with wild
type plants, shows defects in chloroplast development and is deficient in abscisic acid'*.
The cbd mutant also shows evidence of cell death in leaves; it has been suggested that a
reduced ability to quench reactive oxygen species as a result the lower levels of

carotenoids in the mutant may contribute to the observed cell death'*,

0G15551 (FRAEX38873 v2 000261700). Grand-conv detected evidence of four
convergent amino acids in F. mandshurica and F. platypoda, valine, isoleucine,
isoleucine and methionine, where the other Fraxinus species in the analysis have an
isoleucine at the first site and leucine at the other three (Supplementary Table 5). The top
match for this gene in A. thaliana is the CYP98A3 gene (AT2G40890; also known as
REFS). In A. thaliana this gene is at a critical bottleneck in the phenylpropanoid
pathway'®. When CYP9843/REFS is mutated in A. thaliana, it results in reduced lignin
content, changes in lignin composition, a lack of soluble sinapoyl esters, and
accumulation of flavonol glycosides'®. Another study found a more than 90% reduction
in the level of scopoletin and scopolin in the roots of 4. thaliana mutants with T-DNA
insertions in this gene compared with that found in wild type plants'*. Phylogenetic
analysis of the OrthoMCL cluster containing AT2G40890 and
FRAEX38873 v2 000261700 indicates that they are close paralogues, rather than
orthologues and suggests that the Fraxinus gene lacks a direct orthologue in A. thaliana
(Supplementary Fig. 3a). There appears to be a small family of CYP98A3-like genes in F.
excelsior, including FRAEX38873 v2 000095940 and FRAEX38873 v2 000127720 as
well as FRAEX38873 v2 000261700 (Supplementary Fig. 3a). In a predicted protein
model for OG15551/FRAEX38873 v2 000261700 all four variable sites identified by

grand-conv are in close proximity to the active site (Fig. 3).
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0G16673 (FRAEX38873 v2 000150510). Grand-conv detected evidence of a
convergent isoleucine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a valine (Supplementary Table 5). However, the
isoleucine is also found in the alternate allele for susceptible F. ornus (Supplementary
Table 8). The top match for this gene in 4. thaliana is B-GLUCOSIDASE 41
(AT5G54570; also known as BGLU41). BGLU41 belongs to the glycoside hydrolase
family 1 (GH1) in 4. thaliana, members of which function in processes such as chemical
defence against herbivory, lignification, cell wall modification and control of
phytohormone levels®'**. A number of cis-elements have been found in the region
upstream of AT5G54570/BGLU41, including those that are responsive to abscisic acid
and gibberellins'**. The putative orthologue of OG16673/FRAEX38873 v2_ 000150510
in tomato is Solyc07g063880; this gene is differentially expressed in the ovate mutant
and it had been suggested that its downregulation could be responsible for decreased

glucose content in the fruit of ovate plants'>

. There has been debate regarding whether
glucose should be considered as part of defence response, because it can reduce herbivore

126
performance .

0G17252 (FRAEX38873 v2 000111170). Grand-conv detected evidence of a
convergent asparagine and methionine in F. mandshurica and F. platypoda, at sites
where the other Fraxinus species in the analysis have aspartic acid and threonine
(Supplementary Table 5). The top match for this gene in 4. thaliana is AT1G50460
(HEXOKINASE-LIKE 1/HKLI), which has a role in abiotic stress response in addition to
its other functions (growth, root hair development'*’). AT4G29130 (HXK) belongs to
the same OrthoMCL cluster as AT1G50460, along with three other 4. thaliana genes,
and has response to oxidative stress and pathogen resistance among its functions'’.
Phylogenetic analysis of the OrthoMCL cluster indicates that

FRAEX38873 v2 000111170 is orthologous to both AT1G50460/HKLI and another 4.
thaliana gene, AT3G20040 (HEXOKINASE-LIKE 2/HKL?2; Supplementary Fig. 3e).
AT3G20040/HKL? is also known as ATHXK4, but its function is apparently unknown'*’.

0G19104 (FRAEX38873 v2 000248940). Grand-conv detected evidence of a
convergent leucine in F. mandshurica and F. platypoda, at a site where the other

Fraxinus species in the analysis have a serine (Supplementary Table 5). The top match
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for this gene in A. thaliana is AT4G01240, a gene encoding a S-adenosyl-L-methionine-
dependent methyltransferases superfamily protein. Phylogenetic analysis of the
OrthoMCL cluster containing FRAEX38873 v2 000248940 and AT4G01240 indicates
they are likely to be orthologous (Supplementary Fig. 3f). The function of AT4G01240
has not been characterised but the gene was found to be within a region related to aphid
feeding performance from a GWAS conducted in 4. thaliana'*. Plant S-adenosyl-L-
methionine-dependent methyltransferases are also key enzymes in the phenylpropanoid,

129

flavonoid and other metabolic pathways “”. Methyltransferases in maize may function in

generating volatile methyl esters (which function in plant defence) in response to

130 . . . . .
. The serine variant in Fraxinus is a

herbivore (African cotton leaf worm) damage
putative phosphorylation site (Supplementary Table 5); it was not possible to generate a
predicted model for OG19104/FRAEX38873 v2 000248940 and therefore the position

of the putative phosphorylation site within the structure of the protein is unknown.

0G20252 (FRAEX38873 v2 000397500). Grand-conv detected evidence of a
convergent valine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an isoleucine (Supplementary Table 5). However, the gene-
tree inferred for 0OG20252 with the codon for the valine/isoleucine variant excluded
groups sect. Fraxinus (all of which have the valine; Supplementary Table 8) and F.
platypoda together (PP=0.98; Supplementary Fig. 1a) in conflict with the species-tree
(Fig. 2), indicating that the evidence of convergence found by grand-conv is likely due to
introgression or incomplete lineage sorting. The top match for this gene in 4. thaliana is
BROMODOMAIN 4 (AT1G61215) which encodes a bromodomain protein with a DNA
binding motif. The exact function of the bromodomain is unclear, but it may be involved
in protein-protein interactions (http://www.ebi.ac.uk/interpro/entry/IPR001487). The
putative orthologue of 0G20522/FRAEX38873 v2 000397500 in S. lycopersicum is
Solyc02g078810.2 and is annotated with a MYB-like DNA binding domain in
PhytoMine
(https://phytozome.jgi.doe.gov/phytomine/report.do?1d=285298920&trail=%7¢28529892
0).

0G20859 (FRAEX38873 v2 000138760). Grand-conv detected evidence of a
convergent alanine and glutamic acid in F. mandshurica and F. platypoda, at sites where

the other Fraxinus species in the analysis have threonine or serine and aspartic acid
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(Supplementary Table 5). The top match for this gene in 4. thaliana is AT5G57830,

which encodes a zein-binding protein of unknown function.

0G23214 (FRAEX38873 v2 000080400). Grand-conv detected evidence of a
convergent valine and isoleucine in F. mandshurica and F. platypoda, at sites where the
other Fraxinus species in the analysis have a methionine and threonine (Supplementary
Table 5). The top match for this gene in 4. thaliana is a gene encoding an eukaryotic
aspartyl protease family protein (AT1G64830). Aspartic proteases are involved in many
biological processes, including senescence, stress responses, and programmed cell
death''. Phylogenetic analysis of the OrthoMCL cluster that contains
FRAEX38873 v2 000080400 indicates it is orthologous to both AT1G64830 and
another A. thaliana gene, AT5G33340 (CDRI1/CONSTITUTIVE DISEASE RESISTANCE
I; see Supplementary Fig. 3g). AT5G33340/CDRI is an extracelluar aspartic protease
that is involved in disease signalling via salicylic acid-dependent inducible resistance'?;
overexpression of AT5G33340/CDR1 leads increased expression of other defence-related
genes and enhanced resistance to a bacterial pathogen'*. Salicylic acid is more often
linked with defense against biotrophic pathogens, but is involved in response to
oviposition by insect herbivores'’ and plays a key role in pathogen-triggered programmed

cell death®.

0G24614 (FRAEX38873 v2 000093260). Grand-conv detected evidence of a
convergent isoleucine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a threonine (Supplementary Table 5). The top
match for this gene in A. thaliana is a gene encoding a zinc finger protein (AT5G54630).
However, phylogenetic analysis of the relevant OrthoMCL cluster indicates another 4.
thaliana gene, AT4G27240, is equally closely related to FRAEX38873 v2 000093260,
with both appearing to be paralogues of the F. excelsior gene (Supplementary Fig. 3h).
AT4G27240 also encodes a zinc finger protein; both AT4G27240 and AT5G54630 are
transcription factors'*®, but their functions are not fully characterised. AT5G54630 is
expressed in response to brassinolide'*, a brassinosteroid, which have a crucial role in
regulating the growth-immunity trade-off'*’; transcriptions factors act both up and
downstream of phytohormone signalling to regulate defence responses” . One of the
susceptible taxa included in our convergence analyses, F. ornus, may lack a functional

copy of this gene (Supplementary Table 6).
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0G24969 (FRAEX38873 v2 000395930). Grand-conv detected evidence of a
convergent serine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have a threonine (Supplementary Table 5). The top match for this
gene in A. thaliana is ROHI (AT1G63930). AT1G63930 has been suggested to play a
role in seed coat development, but it is possible that it does not have this function in wild-

136

type A. thaliana*°. One of the susceptible taxa included in our convergence analyses, F.

pennsylvanica, may lack a functional copy of this gene (Supplementary Table 6).

0G26964 (FRAEX38873 v2 000042410). Grand-conv detected evidence of a
convergent histidine and methionine in F. mandshurica, at sites where the other Fraxinus
species in the analysis have an arginine and threonine (Supplementary Table 5). The top
match for this gene in A. thaliana is C5orf35 (AT5G23200); the function of this gene has

not been characterised.

0G27080 (FRAEX38873 v2 000000770). Grand-conv detected evidence of a
convergent aspartic acid and methionine in F. mandshurica and F. platypoda, at sites
where the other Fraxinus species in the analysis have an asparagine and leucine
(Supplementary Table 5). The top match for this gene in 4. thaliana is the
uncharacterised gene AT5G67020. However, phylogenetic analysis of the OrthoMCL
cluster containing FRAEX38873 v2 000000770 indicates it is orthologous to both
AT5G67020 and AT3G50340 (Supplementary Fig. 31). Although the function of
AT5G67020 is unknown it is suggested to be a possible target of members of the R2R3-
MYB gene family, which appear to control accumulation of flavonols'>’. AT5G67020 has
reduced expression in a mutant where three R2R3-MYB genes have been knocked out;
other genes that also show a reduction in expression include those encoding known
flavonoid biosynthesis enzymes, as well as the 4CL3 gene (AT1G65060) that functions in
the general phenylpropanoid pathway'*’. AT3G50340 is also not fully characterised but
has been identified as an auxin-inducible gene'*® and is also suggested to be regulated by

.. . . . . 1139
drought, abscisic acid and jasmonic acid ™.

0G28712 (FRAEX38873 v2 000047370). Grand-conv detected evidence of a
convergent histidine and methionine in F. mandshurica and F. platypoda, at sites where

the other Fraxinus species in the analysis have alanine and threonine (Supplementary
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Table 5). The top match for this gene in 4. thaliana is PROTOCHLOROPHYLLIDE
OXIDOREDUCTASE A (AT5G54190), also known as PORA. AT5G54190/PORA
encodes light-dependent NADPH:protochlorophyllide oxidoreductase A and is involved
in chlorophyll biosynthesis
(www.arabidopsis.org/servlets/TairObject?type=locus&name=AT5G54190). The
putative orthologue of OG28712/FRAEX38873 v2 000047370 in S. lycopersicum is
Solyc12g013710; this gene has been identified as a mycorrhiza-regulated gene'*’, and is
upregulated in plants colonised with a mycorrhizal fungus along with a number of other
genes involved in photosynthesis'*’. Expression of Solyc12g013710 is repressed by
overexpression of SIRBZ (Solyc03g033560'*") which is the putative orthologue of
another of the candidate loci, OG32176. One of the susceptible taxa included in our
convergence analyses, F. pennsylvanica, may lack a functional copy of this gene (see

Supplementary Table 6).

0G30208 (FRAEX38873 v2 000228080). Grand-conv detected evidence of a
convergent histidine and valine in F. mandshurica and F. platypoda, at sites where the
other Fraxinus species in the analysis have a glutamine and alanine (Supplementary
Table 5). The top match for this gene in 4. thaliana is a gene encoded an uncharacterised
transmembrane protein, DUF677 (AT1G20180). AT1G20180 is upregulated in two 4.
thaliana autophagy mutant lines in response to differing amounts of nitrogen'*; other
genes upregulated at the same time were predominantly involved in response to biotic
stress, chemical and abiotic stress and salicylic acid'**. The
FRAEX38873 v2 000228080 reference gene model from F. excelsior is truncated
relative to the other sequences in the OG, which may be due to a misassembly
introducing a premature stop codon or might indicate that the F. excelsior reference
individual does not have a full-length copy of the gene (Supplementary Table 5). One of
the susceptible taxa included in our convergence analyses, F. ornus, may lack a

functional copy of this gene (Supplementary Table 6).

0G32176 (FRAEX38873 v2 000268710). Grand-conv detected evidence of a
convergent histidine and leucine in F. mandshurica and F. platypoda, at sites where the
other Fraxinus species in the analysis have an glutamine and serine (Supplementary
Table 5). The top match for this gene in 4. thaliana is STRESS ASSOCIATED RNA-
BINDING PROTEIN 1 (AT2G17975), also known as SRPI,
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FRAEX38873 v2 000268710 and AT2G17975/SRP1 appear orthologous on the basis of
phylogenetic analysis of the OrthoMCL cluster to which they belong (Supplementary Fig.
3j). AT2G17975/SRP1 is an RNA-binding protein involved in the post-transcriptional
regulation of abscisic acid (ABA) signalling via the modulation of ABI genes'*;
expression of AT2G17975 is down regulated in response to ABA and abiotic stress'*.
The apparent orthologue of OG32176/FRAEX38873 v2 000268710 in S. lycopersicum
is Solyc03g033560 (Supplementary Fig. 3j); this gene is also known as SIRBZ and is a
RanBP2-type zinc finger protein gene'*'. Mutants that overexpress SIRBZ have a dwarf
phenotype and are chlorotic'*'. Overexpression of SIRBZ also leads to decreased
expression of photosynthesis genes, including Solyc12g013710 which is the putative
orthologue of another of the candidate loci, OG28712; gibberellic acid (GA) biosynthesis
genes were also repressed'*’. It is suggested that SIRBZ regulates the formation of
chloroplasts, and as a result also controls chlorophyll, carotenoid and GA biosynthesis,
which take place in the chloroplast'*'. GA may play a role in regulating anti-herbivore

2
defense?’.

0G33348 (FRAEX38873 v2 000106520). Grand-conv detected evidence of a
convergent serine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have an asparagine (Supplementary Table 5). The top match for
this gene in A. thaliana is S-ADENOSYLMETHIONINE DECARBOXYLASE 4
(AT5G18930), or SAMDC4. AT5G18930/SAMDCH4 is also known as BUSHY AND
DWARF 2 (BUD2) and is involved in the synthesis of S-adenosylmethioninamine from S-
adenosyl-L-methionine within the S-adenosylmethioninamine biosynthesis pathway
(https://www.uniprot.org/uniprot/Q3E9DS). Phylogenetic analysis of the OrthoMCL
cluster including FRAEX38873 v2 000106520 and AT5G18930 indicates they are likely

to be orthologous, albeit the relevant node is not well supported (PP<0.95;
Supplementary Fig. 3k). AT5G18930/SAMDC4/BUD? is essential for biosynthesis of the
polyamines spermidine and spermine'**; polyamines in higher plants can be involved in
mediating biotic and abiotic stress responses, such as pathogen infection, osmotic stress
and wounding '**. Spermine in particular is suggested to play a role in defence response
signalling®®. Loss of function of AT5G18930/SAMDC4/BUD? alters growth and
development'** and analysis of its promoter region found elements that are associated
with response to auxin, dehydration, drought, salt, cold, wounding, defence related gene

. . . 145
expression and wound response, amongst other physiological responses .
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0G37560 (FRAEX38873 v2 000076410). Grand-conv detected evidence of a
convergent alanine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a proline (Supplementary Table 5). The top match
for this gene in A4. thaliana is a gene encoding a heavy metal transport/detoxification
superfamily protein (AT5G27690). AT5G27690 has also been called AthHIPP36 or
AthHIP36 and is a member of a heavy metal-associated isoprenylated plant protein
(HIPP) family'*’. HIPPs may have roles in heavy metal homeostasis and detoxification,
transcriptional responses to cold and drought, and plant-pathogen interactions'*.
However, FRAEX38873 v2 000076410 does not belong to the same OrthoMCL cluster
as AT5G27690, and appears not to have an orthologue in A. thaliana.
FRAEX38873 v2 000076410 does belong to the same OrthoMCL cluster as, and
appears orthologous to (Supplementary Fig. 31), the P. trichocarpa gene
Potri.010G024700 (also called POPTR 0010s02550), which encodes a putative copper
(Cu) transport protein

(https://phytozome.jgi.doe.gov/phytomine/report.do?id=49365037 &trail=%7c¢49365037)
and belongs to the HIPP family (PtrHIP43'%). It has been suggested that mechanisms for

signalling and responding to Cu stress could overlap with those involved in biotic stress,
possibly relating to both types of stress causing the production of reactive oxygen
species'*’; exposure to high Cu can prime maize plants for increased production of
volatile organic compounds and faster phytohormone signalling upon subsequent
herbivory by an insect herbivore'*’. Moreover, copper transport genes have been
implicated in the regulation of defence response to whitefly (Bemisia tabaci) in cotton'*®,
One of the susceptible taxa included in our convergence analyses, F. latifolia, may lack a

functional copy of this gene (see Supplementary Table 6).

0G37870 (FRAEX38873 v2 000034500). Grand-conv detected evidence of a
convergent glutamine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have an arginine (Supplementary Table 5). The top
match for this gene in A. thaliana is METACASPASE 9 (AT5G04200), or AtMC9. Results
of phylogenetic analysis of the OrthoMCL cluster including
FRAEX38873 v2 000034500 and AT5G04200/4tMC9 are compatible with the

inference that these genes are orthologues (although the topology does not fit exactly
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with expected species relationships, suggesting the A. thaliana and F. excelsior sequences
may be from different paralogues, this is not well supported; Supplementary Fig. 3m).
AT5G04200/4tMCY plays a role in controlling autophagy in tracheary elements, ensuring
that cell death does not spread to surrounding non-target cells'*’. The site with evidence
of convergence in Fraxinus is located within a linker region between p20 and p10-like
domains of the AtMC9 protein'’; the linker region appears to be important to the
function of AtMC9, as its removal causes a significant reduction in the enzyme’s
activity'*’. Two poplar genes, Potri.006G026500.1 and Potri.016G024500.1, appear
orthologous to FRAEX38873 v2 000034500 (Supplementary Fig. 3m) and are known as
PtMC13 and PtMCI4, respectively*”. Both poplar genes are suggested to play a role in

controlling cell death in xylem elements**.

0G38407 (FRAEX38873 v2 000324730). Grand-conv detected evidence of a
convergent aspartic acid in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have an asparagine (Supplementary Table 5). The top
match for this gene in A. thaliana is SNCI-INFLUENCING PLANT E3 LIGASE
REVERSE GENETIC SCREEN 4 (AT3G48880), or SNIPER4, which encodes an F-box
protein. Phylogenetic analysis of their OrthoMCL cluster indicates that
FRAEX38873 v2 000324730 and AT3G48880/SNIPER4 are likely be to orthologues
(Supplementary Fig. 3n). AT3G48880/SNIPER4 was found to be a positive regulator of
effector triggered immunity (ETI) in A. thaliana and has a role in maintaining the balance
of immune response by forming part of a complex directing the MUSE13 and MUSE14
proteins for degradation®®. The targeted degradation of MUSE13/14 ensures sufficient
levels of SNC1, an immune sensor, are available to trigger defence response against a

bacterial pathogen.

0G38543 (FRAEX38873 v2 000362960). Grand-conv detected evidence of a
convergent aspartic acid in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have an asparagine (Supplementary Table 5). The top
match for this gene in A. thaliana is a gene encoding a cyclin-like protein (AT3G19650).
Specific functional information is lacking for AT3G19650, however, cyclins regulate
activity of cyclin-dependent kinases, which play critical roles in the control of cell cycle

progression'>’.
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0G39275 (FRAEX38873 v2 000319270). Grand-conv detected evidence of a
convergent glutamic acid in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a glutamine (Supplementary Table 5). The top
match for this gene in A. thaliana is ISOPENTENYLTRANSFERASE 6 (AT1G25410),
also called /PT6. Phylogenetic analysis of the OrthoMCL cluster including
FRAEX38873 v2 000319270 indicates that, in addition to AT1G25410/IPT6, it is
equally closely related to two other A. thaliana genes (AT1G68460/IPT1 and
AT3G19160/IPT8) and may be orthologous to all three (Supplementary Fig. 30).
AT1G68460/IPT1, AT1G25410/IPT6 and AT3G19160/IPT8 belong to a plant-specific
ATP/ADP IPT clade of genes, which synthesize iP- and tZ-type cytokinins'>*. Cytokinins
play a role in plant growth, defence response and immunity; they help to mediate trade-
offs between growth and defence®"'>*. The FRAEX38873 v2_ 000319270 reference gene
model from F. excelsior appears to be incorrect, possibly due to a misassembly causing

an internal inversion (Supplementary Table 5).

0G40061 (FRAEX38873 v2 000309460). Grand-conv detected evidence of a
convergent asparagine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a serine (Supplementary Table 5). The top match
for this gene in A. thaliana is a gene encoding a NAD(P)-binding Rossmann-fold
superfamily protein (AT2G23910), which is reported to be involved in lignin biosynthetic
process and response to karrikin and to cinnamoyl-CoA reductase activity and
oxidoreductase activity
(https://www.arabidopsis.org/servlets/TairObject?name=AT2G23910&type=locus).
However, phylogenetic analysis indicates that FRAEX38873 v2 000309460 is
paralogous to AT2G23910, along with AT4G30470 (another NAD(P)-binding

Rossmann-fold superfamily protein), and may lack a direct orthologue in 4. thaliana
(Supplementary Fig. 3p). AT2G23910 is also known as CCR(Cinnamoyl-CoA
reductase)6”?, CCR-like8"” or CCRL9™° and is co-expressed with genes involved in
flavonoid metabolism'*®. AT4G30470 is also known as CCR-like6'”” and, in common
with the best matching A. thaliana gene for another of our candidates (OG27080, see
above), is a possible target of transcription factors in the R2R3-MYB gene family that
appear to control accumulation of flavonols'*’. The apparent orthologue of
OG40061/FRAEX38873 v2 000309460 in S. lycopersicum is Solyc03g097170
(Supplementary Fig. 3p); Solyc03g097170 was found to be upregulated in response to
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gibberellin and has been defined as a DELLA-dependent gene'®’. The serine variant in
Fraxinus is a putative phosphorylation site (Supplementary Table 5), and is found on the
exterior of the protein in the predicted model for
OG40061/FRAEX38873 v2 000309460 in close proximity to the putative active site
(Supplementary Fig. 2b). The FRAEX38873 v2 000309460 reference gene model from
F. excelsior appears to be truncated on the 3' end due to the genome assembly being

incomplete (Supplementary Table 5).

0G41448 (FRAEX38873 v2 000207320). Grand-conv detected evidence of a
convergent alanine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have glycine (Supplementary Table 5). The top match for
this gene in A. thaliana is JASSY (AT1G70480); phylogenetic analysis of the OrthoMCL
cluster including FRAEX38873 v2 000207320 and AT1G70480/J4SSY indicates they
are likely to be orthologous (Supplementary Fig. 3q). AT1G70480/J4SSY encodes a
chloroplast outer membrane protein that is involved in the transport of the JA precursor
2-oxophytodienoic acid (OPDA) from the chloroplast'”®. AT1G70480/JASSY loss-of-
function of mutants show increased susceptibility to a fungal pathogen compared with
wild-type plants and also lacked activation of JA-responsive genes following wounding,

38 PFurther

suggesting that the gene is essential for initiation of JA-signalling pathways
analysis revealed that the defects observed in the mutants result from a failure of JA
accumulation in the absence of AT1G70480/J4SSY expression' . JASSY belongs to the
Bet v1-like protein superfamily'*®; a related protein has been proposed to play a role in

resistance to EAB in F. mandshurica’ .

0G41488 (FRAEX38873 v2 000363060). Grand-conv detected evidence of a
convergent threonine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have alanine (Supplementary Table 5). The top match for
this gene in A. thaliana is AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 17
(AT5G49700), or AHL17. Phylogenetic analysis of the OrthoMCL cluster including
FRAEX38873 v2 000363060 indicates that it is likely to be orthologous to both
AT5G49700/AHL17 and AT1G14490/AHL2S8 (Supplementary Fig. 3r).
AT5G49700/AHL17 and belong AT1G14490/4HL28 to the AHL gene family in A.
thaliana, members of which are involved in modulating plant growth and

159

development ~". AHL genes may also play a role in regulating homeostasis of
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gibberellins, jasmonic acid and cytokinins, and some AHL genes may be involved in
regulating plant defence response (reviewed by Zhao et al.,'®®). The apparent orthologue
of OG41488/FRAEX38873 v2 000363060.1 in S. lycopersicum is Solyc04g076220 and
is also known as AHLI7a"%" (Howden et al., 2017); the potential role of
Solyc04g076220/AHL17a in immunity to a fungal pathogen in tomato has been

investigated, but over-expression this gene did not visibly impact immunity'®".

0G46977 (FRAEX38873 v2 000304400). Grand-conv detected evidence of a
convergent arginine in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a serine (two taxa with a glutamine instead were
found to have errors in their predicted gene models; Supplementary Table 5). The top
match for this gene in A. thaliana is a transmembrane proteins 14C gene (AT3G43520).
AT3G43520 is also known as FATTY ACID EXPORT 2 (AtFAX2) and may be involved
in free fatty acids export from the plastids (https://www.uniprot.org/uniprot/Q94A32).
The FRAEX38873 v2 000304400 reference gene model from F. excelsior appears to be

incorrect on the 3' end, possibly due to a misassembly (Supplementary Table 5).

0G47629 (FRAEX38873 v2 000173180). Grand-conv detected evidence of a
convergent aspartic acid in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a glycine (Supplementary Table 5). The top match
for this gene in A. thaliana is a gene encoding a MIZU-KUSSEI-like protein of unknown
function (AT2G37880). AT2G37880 has been identified as an early high-light responsive
gene, showing increased expression in an A. thaliana cell culture 30 min after exposure to
162

high light stress conditions
OG47629/FRAEX38873 v2 000173180 in S. lycopersicum is Solyc09g011350 and has

. The putative orthologue of

been identified as a "disease-specific gene" that is differentially regulated in tomato
leaves at 24 hours post inoculation with three pathogens'®*. Solyc09g011350 was
upregulated in the infected leaves compared with the control, specifically in response to

o 163
Botrytis cinerea ™.

0G49074 (FRAEX38873 v2 000159740). Grand-conv detected evidence of a
convergent valine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have a glycine (Supplementary Table 5). The top match for this
gene in A. thaliana is MEMBRANE-ASSOCIATED PROGESTERONE BINDING
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PROTEIN 4 (AT4G14965), or MAPR4. Although the function of AT4G14965/MAPR4
has not been fully characterised, GO terms have been associated with it via identification
of functional gene modules''®, which are: NEGATIVE REGULATION OF CELLULAR
PROCESS and POSTREPLICATION REPAIR (see
http://bioinformatics.psb.ugent.be/cig_data/plant_modules/createResultsHTML.php?gene
ID=AT4G14965).

0G50989 (FRAEX38873 v2 000237270). Grand-conv detected evidence of a
convergent serine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have a proline (Supplementary Table 5). The top match for this
gene in A. thaliana is a gene encoding a calcium-binding EF-hand family protein
(AT4G26470), which functions in calcium ion binding and calcium-mediated signaling
(www.arabidopsis.org/servlets/TairObject?type=locus&name=At4g26470) and appears
orthologous to FRAEX38873 v2 000237270 on the basis of phylogenetic analysis of
their OrthoMCL cluster (Supplementary Fig. 3s). AT4G26470 is also known as CML21

(short for Calmodulin-like protein 21)'** and is transcriptionally upregulated during
pollen tube growth'®. AT4G26470/CML21 also shows increased expression in response
to melatonin'®’; many of the other genes that also showed altered expression in response
to melatonin levels were involved in stress defence response, indicating an important role
for melatonin triggering defence response to both abiotic and biotic stresses'®. Calcium
signalling plays a key role in plant defence response'®’ including in pathogen-triggered
programmed cell death® and Ca*" influx is one of the early signals of feeding insects and

. . . . 1
is involved in triggering defense response'’.

0G59564 (FRAEX38873 v2 000174000). Grand-conv detected evidence of a
convergent aspartic acid in F. mandshurica and F. platypoda, at a site where the other
Fraxinus species in the analysis have a glutamic acid (Supplementary Table 5). The top
match for this gene in A. thaliana is Na-translocating NADH-quinone reductase subunit
A (AT5G55640). AT5G55640 is also known as MDF20.8

(www.uniprot.org/uniprot/Q9FM74). Information on the precise function of

AT5G55640/MDF20.8 is lacking, however, quinone reductases are considered to be
detoxifying enzymes and have a role in protecting organisms from oxidative stress'®".
One of the susceptible taxa included in our convergence analyses, F. latifolia, may lack a

functional copy of this gene (Supplementary Table 6).
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0G60899 (FRAEX38873 v2 000255120). Grand-conv detected evidence of a
convergent serine in F. mandshurica and F. platypoda, at a site where the other Fraxinus
species in the analysis have a glycine. However, the serine is also found in the alternate
allele for susceptible F. ornus (Supplementary Table 5). The convergent site is predicted
to be within a signal peptide, but the amino acid variant is not suggested to alter the
localisation of the protein (Supplementary Table 5). The top match for this gene in A4.
thaliana is EARLY NODULIN-LIKE PROTEIN 7 (AT1G79800), or ENODL?7. Although
the function of AT1G79800 has not been fully characterised, GO terms have been
associated with it via identification of functional gene modules''®, which are: COPPER
ION BINDING and ELECTRON CARRIER ACTIVITY
(http://bioinformatics.psb.ugent.be/cig_data/plant modules/createResultsHTML.php?gen

eID=AT1G79800). Two P. trichocarpa genes belong to the same OrthoMCL cluster as
FRAEX38873 v2 000255120 (Sollars et al.'") both of which (Potri.001G187700 and
Potri.003G050500) have been categorised as AGP genes (highly glycosylated

arabinogalactan-proteins), and are known as PtPAG36 and PtPAG37'%"

. However, there
is no specific information on the function of these genes. One of the resistant taxa
included in our convergence analyses, F. floribunda, may lack a functional copy of this
gene (Supplementary Table 6). The FRAEX38873 v2 000255120 reference gene model
from F. excelsior appears to be incorrect, possibly due to a misassembly (Supplementary

Table 5).

4.4. Candidates found in F. mandshurica and resistant taxa in section Ornus (grand-
conv analysis 2)

0G21449 (FRAEX38873 v2 000266260). Grand-conv detected evidence of a
convergent threonine in F. mandshurica, F. baroniana, F. floribunda and Fraxinus sp.
D2006-0159, at a site where the other Fraxinus species in the analysis have an isoleucine
(Supplementary Table 5). The top match for this gene in 4. thaliana is
PHOTOLYASE/BLUE-LIGHT RECEPTOR 2 (AT2G47590), also known as PHR?.
Photolyases are light activated and repair damage caused to DNA by UV radiation; PHR2

photolyases are specific to plants' ™.

0G23284 (FRAEX38873 v2 000124490). Grand-conv detected evidence of a

convergent phenylalanine and serine in F. mandshurica, F. baroniana, F. floribunda and
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Fraxinus sp. D2006-0159, at sites where the other Fraxinus species in the analysis have a
cysteine and a leucine (Supplementary Table 5). The top match for this gene in A.
thaliana is a gene encoding an alpha/beta-Hydrolases superfamily member
(AT3G19970); phylogenetic analysis of the OrthoMCL cluster including
FRAEX38873 v2 000124490 and AT3G19970 indicates they are likely to be
orthologous (Supplementary Fig. 3t). Although the function of AT3G19970 has not been
fully characterised, GO terms have been associated with it via identification of functional
gene modules''®, including: CALLOSE DEPOSITION DURING DEFENSE
RESPONSE, SALICYLIC ACID MEDIATED SIGNALING PATHWAY, JASMONIC
ACID MEDIATED SIGNALING PATHWAY, REGULATION OF PLANT-TYPE
HYPERSENSITIVE RESPONSE, REGULATION OF IMMUNE RESPONSE,
RESPONSE TO CHITIN (see
http://bioinformatics.psb.ugent.be/cig_data/plant_modules/createResultsHTML.php?gene

ID=AT3G19970) indicating that this gene may potentially have a role related to plant
defence response. The apparent orthologue of FRAEX38873 v2 000382300 in S.

lycopersicum is Solyc02g020890 (Supplementary Fig. 3t); Solyc02g020890 was among
4774 genes in tomato whose expression was significantly affected by application of

methyl jasmonate'”".

0G47560 (FRAEX38873 v2 000262780). Grand-conv detected evidence of a
convergent lysine and phenylalanine in F. mandshurica, F. baroniana, F. floribunda and
Fraxinus sp. D2006-0159, at sites where the other Fraxinus species in the analysis have a
glutamic acid and tyrosine (Supplementary Table 5). The top match for this gene in A.
thaliana is TAPETUM 1 (AT3G42960), or TA1. AT3G42960/TA1 is also known as ASD
or ATAI and is expressed in tapetal cells; it has been reported to be involved in flower
development and to have oxidoreductase activity
(www.arabidopsis.org/servlets/TairObject?name=AT3G42960&type=locus).
Phylogenetic analysis of the OrthoMCL cluster including FRAEX38873 v2 000262780

and AT3G42960/TA1 suggests they may be paralogues, although this result is not
conclusive (Supplementary Fig. 3u). The apparent orthologue of
0G47560/FRAEX38873 v2 000262780 in S. lycopersicum is Solyc11g018600
(Supplementary Fig. 3u) and has decreased expression in a male-sterile tomato mutant'’*.
The PhytoMine entry for Solyc11g018600 predicts that this gene is involved in the
abscisic acid (ABA) biosynthesis pathway
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(https://phytozome.jgi.doe.gov/phytomine/report.do?1d=286588936&trail=%7c28658893
6). AT3G42960/TA1 is also predicted to be involved in the ABA biosynthesis pathway,

although this has not yet been confirmed with experimental evidence

(https://pmn.plantcyc.org/ ARA/NEW-IMAGE?type=PATHWAY &object=PWY-695). A

major function of ABA is response to abiotic stress’'; ABA also plays an important role
in triggering stomatal closure, which represents a plant defence mechanism®'. Evidence
suggests that ABA interacts with other phytohormones to influence response to herbivory

and plant defence against pathogens®*".

0G56563 (FRAEX38873 v2 000135960). Grand-conv detected evidence of a
convergent valine in F. mandshurica, F. baroniana, F. floribunda and Fraxinus sp.
D2006-0159, at sites where the other Fraxinus species in the analysis have an alanine or
threonine (Supplementary Table 5). However, the valine is also found in the alternate
allele for susceptible F. ornus (Supplementary Table 8). The top match for this gene in 4.
thaliana is CASP-LIKE PROTEIN 4D1 (AT2G39530), CASPL4D1. The function of
AT2G39530/CASPL4D1 is not well characterised, but it has been shown to have reduced
expression in response to drought stress' . AT2G39530/CASPL4D] also showed
upregulation in 4. thaliana plants infiltrated with an avirulent strain of Pseudomonas
syringae pv. tomato but downregulation after ABA induced susceptibility followed by
pathogen inoculation'”. However, FRAEX38873 v2_ 000135960 does not belong to the
same OrthoMCL cluster as AT2G39530 (Sollars et al.'"), and appears not to have an
orthologue in A. thaliana. The putative orthologue of
OG56563/FRAEX38873 v2 000135960 in S. lycopersicum is Solyc03g098090, but

information on the function of this gene is apparently lacking.

0G64545 (FRAEX38873 v2 000393500). Grand-conv detected evidence of a
convergent serine in F. mandshurica, F. baroniana, F. floribunda and Fraxinus sp.
D2006-0159 in a position where the other Fraxinus species in the test have an asparagine
(Supplementary Table 5). The top match for this gene in 4. thaliana is a gene encoding a
single hybrid motif superfamily protein (AT2G35120) and is involved in glycine
decarboxylation via the glycine cleavage system
(www.arabidopsis.org/servlets/TairObject?name=AT2G35120&type=locus).
AT2G35120 is also known as GDCH2'” or GDH? (short for Glycine cleavage system H

protein 2; www.uniprot.org/uniprot/O82179). The glycine decarboxylase (GDC)
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multienzyme system (also known as the glycine cleavage system;

www.uniprot.org/uniprot/O82179) consists of four enzymes (P, H, T and L proteins) and

catalyses the destruction of glycine molecules emitted from the peroxisomes during

176

photorespiration . The H protein shuttles the methylamine group of glycine from the P

protein to the T protein (www.uniprot.org/uniprot/O82179). GDC might be involved in

plant stress-response, via cross-talk between nitric oxide and reactive oxygen species'’” .
Two P. trichocarpa genes belong to the same OrthoMCL cluster as
FRAEX38873 v2 000393500'" (Supplementary Fig. 3v) both of which
(Potri.012G123700 and Potri.015G122500, also known as gdcHI and gdcH?2
respectively; https://phytozome.jgi.doe.gov/) have correlated expression with several
genes involved in the phenylpropanoid pathway, including a P. trichocarpa CYP98A43
putative orthologue (Potri.006G033300;
https://phytozome.jgi.doe.gov/phytomine/report.do?id=48451623) which belongs to the

same OrthoMCL cluster as another of our candidate loci,
OGI15551/FRAEX38873 v2 000261700 (Supplementary Fig. 3a).
Potri.012G123700/gdcH1 was found to be most highly expressed in xylem tissues and
Potri.015G122500/gdcH?2 also shows evidence of higher expression in wood tissues than
in numerous other tissue types examined'”* (see

http://popgenie.org/gene?id=Potri. T122200). Both poplar genes contain the AC element

within their promoters'”’. This element also occurs within many phenylpropanoid
biosynthesis genes in P. trichocarpa (including PAL, C4H, C3’H, CCR and CAD),
suggesting that the expression of Potri.012G123700/gdcH1 and
Potri.015G122500/gdcH? is coordinated with that of phenylpropanoid genes to support
lignin and flavonoid biosynthesis' . This role for GDC H protein genes may be a tree-
specific adaptation in response to high demands for one-carbon units during lignification,

which is distinct from the role of GDC genes in A. thaliana'”.

4.5. Candidates found in F. platypoda and resistant taxa in section Ornus (grand-
conv analysis 3)

0G16739 (FRAEX38873 v2 000338500). Grand-conv detected evidence of a
convergent alanine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp. D2006-
0159, at a site where the other Fraxinus species in the analysis have a threonine
(Supplementary Table 5). However, the alanine is also found in the alternate allele for

susceptible F. ornus (Supplementary Table 8). The top match for this gene in 4. thaliana
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is a gene encoding a RNA-binding (RRM/RBD/RNP motifs) protein family member
(AT2G41060), which is also known as UBA2B. Phylogenetic analysis of the OrthoMCL
cluster including FRAEX38873 v2 000338500 and AT2G41060 indicates they are
paralogues rather than orthologues (Supplementary Fig. 3w) and that
FRAEX38873 v2 000338500 is equally closely related to AT3G56860, also known as
UBA24. Overexpression of both UBA24 and UBA2B leads to increased expression of a
number of senescence-associated and defence related genes, as well as to increased
ethylene biosynthesis, hypersentive-like patterns of cell death and callose deposition®'.
Expression of the UBA2 genes was not found to increase in relation to natural, age-
related, senescence, but instead appears connected to wound-induced cell-death and
senescence pathways, supporting the suggestion that these genes play a role in regulating

. . . 41
senescence in response to wounding and other environmental cues™ .

0G20520 (FRAEX38873 v2 000382300). Grand-conv detected evidence of a
convergent isoleucine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp.
D2006-0159, at a site where the other Fraxinus species in the analysis have a serine
(Supplementary Table 5). The top match for this gene in A. thaliana is SHOOT
GRAVITROPISM 7 (AT4G37650), which is also known as SHORT ROOT (SHR).
AT4G37650/SHR is essential for root ground tissue patterning and interacts with
SCARECROW/SCR"; they are thought to function as transcriptional regulators'®. The
putative orthologue of OG20520/FRAEX38873 v2 000382300 in S. lycopersicum is
Solyc02g092370; this gene is also known as SISHRa and is involved in root radial
patterning'®'. The putative orthologue from Populus trichocarpa, Potri.007G063300
(being the only P. trichocarpa gene belonging to the same OrthoMCL cluster as
FRAEX38873 v2 000382300'"), is also known as PtSHR1"*’ and down-regulation of
this gene in transgenic hybrid poplar leads to increased height and girth, indicating that
SHR is involved in regulation of cell division and meristem activity in shoots as well as

183
roots .

0G21033 (FRAEX38873 v2 000092000). Grand-conv detected evidence of a
convergent lysine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp. D2006-
0159, at a site where the other Fraxinus species in the analysis have a glutamine
(Supplementary Table 5). The top match for this gene in 4. thaliana is an O-Glycosyl
hydrolases family 17 protein encoding gene (AT3G55430); proteins in this family
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include those with a number of B-glucosidase related activities

(www.cazy.org/GH17.html) and are involved in hydrolysis of glycosidic bonds in
carbohydrates (http://www.ebi.ac.uk/interpro/entry/IPR000490). Phylogenetic analysis of
the OrthoMCL cluster including FRAEX38873 v2 000092000 indicates it is equally
closely related to AT3G55430 and another O-Glycosyl hydrolases family 17 protein

encoding gene from A. thaliana, AT2G39640, and appears orthologous to both
(Supplementary Fig. 3x). Expression of AT3G55430 seems to be at least in part
dependent on nitric oxide, and A4. thaliana mutants where AT3G55430 function is
impaired have increased susceptibility to the fungal pathogen Botrytis cinerea’. It is
suggested that the control of AT3G55430 expression via nitric oxide might form part of
the mechanism for basal resistance to B. cinerea in A. thaliana'®. In the predicted protein
model for OG21033/FRAEX38873 v2 000092000 the lysine/glutamine variant is close
to the active site (Supplementary Fig. 2d).

0G27693 (FRAEX38873 v2 000056890). Grand-conv detected evidence of a
convergent isoleucine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp.
D2006-0159, at a site where the other Fraxinus species in the analysis have a threonine or
alanine (Supplementary Table 5). The top match for this gene in A. thaliana is
HESPERIN (AT1G31500); this gene is a transcriptional regulator of circadian rhythms

but apparently also has a role in response to oxidative stress'™.

0G35707 (FRAEX38873 v2 000303580). Grand-conv detected evidence of a
convergent leucine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp. D2006-
0159, at a site where the other Fraxinus species in the analysis have a phenylalanine
(Supplementary Table 5). The top match for this gene in 4. thaliana is ZRT/IRT-LIKE
PROTEIN 2 (AT5G59520), or ZIP2. AT5G59520/ZIP2 probably plays a role in Mn (and

"% In plants,

possibly Zn) transport into the root vasculature for translocation to the shoot
Mn is a cofactor in processes such as photosynthesis, lipid biosynthesis and oxidative
stress'. Three P. trichocarpa genes belong to the same OrthoMCL cluster as
FRAEX38873 v2 000303580 (Sollars et al.'") one of which, Potri.009G034600, is also

known as ZIP2 and is involved in Cd*" uptake'™.

0G36502 (FRAEX38873 v2 000266620). Grand-conv detected evidence of a
convergent serine in F. platypoda, F. baroniana, F. floribunda and Fraxinus sp. D2006-
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0159, at a site where the other Fraxinus species in the analysis have an asparagine
(Supplementary Table 5). The top match for this gene in 4. thaliana is TRNA
METHYLTRANSFERASE 140B (AT1G54650), which encodes a methyltransferase family
protein. AT1G54650/TRM140B is proposed to have a role in tRNA nucleoside
methylation, generating m3C (3-methylcytidine) modifications'®. The serine variant in
Fraxinus is a putative phosphorylation site (Supplementary Table 5), and is found on the
exterior of the protein in the predicted model for

0G36502/FRAEX38873 v2 000266620 (Supplementary Fig. 2a).

0G43828 (FRAEX38873_v2_000227880).

Grand-conv detected evidence of a convergent leucine in F. platypoda, F. baroniana, F.
floribunda and Fraxinus sp. D2006-0159, at a site where the other Fraxinus species in the
analysis have a serine (Supplementary Table 5). The top match for this gene in A4.
thaliana is ATDET2 (AT2G38050), a gene involved in the brassinolide (brassinosteroid)
biosynthetic pathway. Phylogenetic analysis indicates that FRAEX38873 v2 000227880
and AT2G38050/ATDET? are likely to be orthologues (Supplementary Fig. 3y).
AT2G38050/ATDET? is also known as DWARF 6 (DWF6) and is involved in multiple
reactions within the brassinosteriod biosynthesis pathway'*’. Brassinosteroids are

191

hormones whose functions in plants include regulating growth and development = and

which also play an important part in modulating growth—defence trade-offs'>”.
Brassinosteriods in plants have potential role in mediating response to stresses such as
freezing, drought, salinity, disease, heat and nutrient deﬁciencym. There is also evidence
for a role for brassinosteriods in regulating glucosinolate profiles, which function in

192

defence response against insects in A. thaliana "*. The det2-1 mutant in A. thaliana has

impaired stomatal opening in response to blue light, suggesting a further possible role for

'3 One of the apparent orthologues of

brassinosteroids in stomatal opening
OG43828/FRAEX38873 v2 000227880 in P. trichocarpa, Potri. T122200
(Supplementary Fig. 3y), was found to be preferentially expressed in beetle damaged
leaves!'” (see http://popgenie.org/gene?id=Potri. T122200). The

FRAEX38873 v2 000227880 reference gene model from F. excelsior appears to be

incomplete on the 5' end, apparently due to a frameshift induced by the assembly of a

chimeric haplotype combining variants from both alleles (Supplementary Table 5).

Supplementary Note 5
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5. Significant enrichment of GO terms

Three GO terms are significantly enriched among the refined list of 53 candidates (p-
value < 0.01) relative to the set of genes included in the grand-conv analyses, according
to Fisher’s exact test run with the weight algorithm, all within the biological process (BP)
domain and all related to hormone metabolic processes: estrogen metabolic process, C21-
steroid hormone metabolic process and androgen metabolic process (Supplementary
Table 7). These terms are associated with two of the 53 candidates, OG40061
(FRAEX38873 v2 000309460) and OG43828 (FRAEX38873 v2 000227880), the
latter of which appears to be involved in brassinosteroid biosynthesis (see Supplementary
Note 4.5). The same terms were found to be significantly enriched when running Fisher’s
exact test run with the elim algorithm. However, two additional terms within the BP
domain were also significantly enriched: hormone biosynthetic process and organic
cyclic compound biosynthetic process (Supplementary Table 7). Three of the candidate
genes are associated with the term “hormone biosynthetic process”, OG16739
(FRAEX38873 v2 000338500.1), 0G39275 (FRAEX38873 v2 000319270.1) and
0G43828 (FRAEX38873 v2 000227880). Nine candidate genes are associated with the
term “organic cyclic compound biosynthetic process” including some that appear to be
involved in phytohormone biosynthesis (Supplementary Table 7 and Supplementary Note
4). Also, two terms within the molecular function (MP) domain were found to be
significantly enriched when using the elim algorithm: steroid dehydrogenase activity and
carboxy-lyase activity (Supplementary Table 7). Both of these terms are associated with
0G40061 (FRAEX38873 v2 000309460) and OG43828
(FRAEX38873 v2 000227880). Some of the genes among the top 53 candidates did not
have any GO terms annotated by the analysis performed by (Sollars et al.'"), which may
explain why some of the candidates that appear to be involved in phytohormone
biosynthesis (Supplementary Note 4) are not associated with the significantly enriched

GO terms.

Supplementary Note 6

6. Differential expression in response to EAB-feeding

For 29 the 53 loci in our refined set of candidates we were able to identify the likely
orthologue from the published F. pennsylvanica transcriptome®; of these 29 F.
pennsylvanica genes, 11 showed evidence for differential expression subsequent to EAB-

feeding (four with decreased expression, and seven with increased expression;
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Supplementary Table 10)*. However, none of these genes showed a difference in
expression pattern between susceptible and resistant F. pennsylvanica individuals,
suggesting that the majority of these loci may not play a critical role in governing the
degree to which this species can defend itself against EAB. Nevertheless, loci that show a
response to EAB, but where expression patterns are not differentiated between
individuals with contrasting levels of susceptibility, may form part of a suite of genes that
are required for defence, with trees that succumb fully to the insect lacking further
essential components. Alternatively, these differentially expressed genes may reflect
other changes that impacted the seedlings during the eight week period between

collection of the “pre” and “post” EAB-feeding samples™.
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