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Abstract

Somatic mosaicism exists among tissues widely and would mark circulating cell-free
DNA (cfDNA) as DNA fragments released by lytic cells from distinct tissues into the
blood. By investigating the alignment pattern of sequencing reads from whole genome
sequencing on genomic DNA of different tissues, we found the reads distribution
forms tissue-specific patterns on some regions, as a result of somatic mosaicism. We
then utilized this indication to construct a tissue-of-origin mapping model and
evaluated the predictive performance on WGS data from tissue and cfDNA. In total,
1,545 tissue samples involving 13 cancer types were included, and the performance of
identification of tissue-of-origin achieved specificity of 82% and sensibility of 80%.
Furthermore, a total of 30 cfDNA samples involving lung cancer, liver cancer, and
healthy control were analyzed to indicate their nidus’ tissue-of-origin with specificity
and sensibility both at 87%. Our results show that reads distribution of whole genome
sequencing could be used to identify the tissue-of-origin of cfDNA samples with high
accuracy, suggesting the potential application of our model on early tumor detection
and diagnosis.

Main

Somatic mosaicism exists among tissues widely (1, 2) and would mark circulating cell-
free DNA (cfDNA) as DNA fragments released by lytic cells from distinct tissues into
the blood. Two groups reported abnormal Copy Number Variations (CNVs) of cfDNA
from pregnant women with tumors (3, 4). However, researchers could not determine
the tumor’s types with CNVs that were information loss when CNV calling. We
developed a sensitive model to catch somatic mosaicism footprints from reads
distribution of whole genome sequencing data directly.

To develop our model of tracking tissue-of-origin for circulating tumor DNA (ctDNA),
we first investigated the alignment pattern of sequencing reads from whole genome
sequencing on genomic DNA of 1,545 tissue samples involving 13 cancer types from
the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International
Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) (5, 6).
All the cancer types contain more than 60 donors (Table 1). Our technology includes
the following 4 major steps (Methods): 1) Count the reads’ distribution on reference.
Firstly, we divide reference into series length-fixed windows, the typical windows-
length is 10K, an empirical value. For simplicity sake, we join all chromosomes
together (Y excluded), and gained a chain of 257973 windows (existing windows
spanning two adjacent chromosomes). Then count each window’s mapped-inside-
window reads by sample, gain the number of reads (NRs) sequences. 2) Search the
frequent distribution patterns among the samples. This step is trying to summarize the
landscape of samples of the same type with frequent patterns. The pattern refers to the
relationships between windows by NRs, more/equal/less (Figure 1a). We think that
only those near-by windows would influence each other effectively. Notably, one
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pattern could involve several windows, if those windows’ relationships are common in
samples. As an example, assume exists such a pattern “3, 1, 2”, the numbers in which
point to the windows’ indexes, means that for many samples, the NR of window 3 is
more than that of window 1, and the latter is more than that of window 2. Here, we sort
a pattern’s windows by NRs to describe their relationship simply (Figure 1b). 3)
Extract type-special patterns from frequent patterns. After the previous step, we gain a
large number of frequent patterns by types. Patterns gained from one type of samples
are frequent for that type, but it doesn’t mean that all patterns are not frequent for other
types. We need to extract those type-specific patterns. Here, we use the transform of
fisher-exact-test p-value to measure how “specific” a pattern is for one type when
compared with another. The transformed value is called pattern’s weight. EXxtract
patterns whose weights are up above a calculated threshold. Obviously, when describe
a type-special pattern, we must point it out that from which type the pattern is gained,
and with which type the pattern is extracted. 4) Identify a sample’s type according to
type-special patterns. Two types of samples generate two frequent pattern sets, the two
frequent sets after filtered with each other’s samples gain two paired type-special
pattern sets. When we try to determine to which one of this two a type-unknown sample
is probably belonged, we observe how much patterns from each type-special pattern set
match the sample, and calculate the sum of matched pattern’s weights by type. Here,
we say a pattern “match” a sample if the windows’ relationship described by the pattern
is also valid for the sample. Compare the two weighted sums, the type which the bigger
one stands for is the possible type. Obviously, if we need to deal with three or more
types, we need to repeat the step 3 for the combines of every two types, and integrate
all results to vote a final answer. Finally, we executed 5-fold cross validation on tissue
samples and found our model achieve high specificity of 82% and high sensibility of
80% (Figure 2a).

To evaluate the performance of identification the tissue-of-origin of cfDNA samples, a
total of 30 cfDNA samples involving lung cancer, liver cancer, and healthy control were
analyzed by our model. The cfDNA samples were sequenced on BGlseg-500 with
average 3X depth of coverage. We execute 10-fold cross validation on cfDNA samples
and found our model achieve high specificity of 87% and high sensibility of 87%
(Figure 2b). There are 4 misjudged samples out of 30 samples, 1 healthy control sample
misjudged as liver cancer, 1 lung cancer samples misjudged as liver cancer and 2 liver
cancer samples misjudged as healthy control and lung cancer.

Our model distinguishes the healthy control samples with high accuracy, which is very
important in early tumor screening. Generally, cFDNA concentration of healthy control
is significantly lower than that of cancer patient. It seems that we can determine whether
an individual bears tumor according to their cfDNA concentration, however, it may be
unreliable for early tumor patients. On the other hand, we sequence all cfDNA samples
with the same sequencing depth of 3X~4X, which means that all samples have the
approximate total reads numbers, eliminating the concentration differences.
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We consider that CNV is not always sensitive enough to descript cfDNA features for
the low tumor cell DNA concentration in cfDNA. The reads distribution forms tissue-
specific patterns used in our model focusses on the relationship of windows with NRs.
In theory, relationship of two windows about NRs of the same sample is not affected
by the sequencing depth. In fact, it works quite well under low sequencing depth.
Furthermore, the biological meaning of reads distribution pattern is still ambiguous,
and still needs more exploring works. Understanding the biology meaning of pattern
would help us more effectively improve our method, and help to discover cancer
mechanism, promote cancer treatments.
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Table 1. Detail of Cancer Type from PCAWG Project

. Cancer Type Number of

Cancer Type from PCAWG Project Abbreviation DONors
Bone Cancer - United Kingdom BOCA-UK 76
Bre_ast ER_+ and _HER2- Cancer - European BRCA-EU 79
Union/United Kingdom

Chronic Lymphocytic Leukemia - Spain CLLE-ES 100
Esophageal Adenocarcinoma - United Kingdom ESAD-UK 100
Liver Cancer - Japan LIRI-JP 259
Malignant Lymphoma - Germany MALY-DE 101
Skin Cancer - Australia MELA-AU 70
Ovarian Cancer - Australia OV-AU 73
Pancreatic Cancer - Canada PACA-CA 148
Pancreatic Cancer Endocrine neoplasms - Australia PAEN-AU 69
Pediatric Brain Cancer - Germany PBCA-DE 251
Prostate Adenocarcinoma - Canada PRAD-CA 124
Renal Cell Cancer - European Union/France RECA-EU 95
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Figure 1. The reads distribution pattern on reference. a) The generation of reads
distribution pattern. As what's shown, we divide the reference into 4 length-fixed

windows, labeled A-D; count the number of reads (NRs) mapped on each window
respectively; compared two windows by NRs to get the relationship, more/equal/less.
When combined two windows' relationships of multiple samples, we use a percentage
to represent the sample number difference between the NRs-of-A-more-than-B
samples and the NRs-of-B-more-than-A samples (assume that the two windows were
labeled A and B respectively). b) The reads distribution patterns of three types of
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cfDNA samples. For the sake of simplicity, we joined all chromosomes (Y excluded)
together, and obtain a long chain of 257973 windows. Here, we demonstrate the
relationship of windows ranked 105400-105500, 100 windows in total, by group.
Each window was compared with its 10 downstream windows.
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Figure 2. The predicted results of tissues and cfDNA samples. a) The results of tissue
samples. This test involves 13 types of tissue samples, the figure shows the

integration of 5-fold cross validation results. Rows stand for different types of
samples, the right-side labels represent samples’ real types, columns stand for
predicted results, the bottom-side labels represented predicted types; the numbers
inside cells represent the percentages of samples predicted as the predicted as the
bottom-side labels in samples marked as the right-side labels. b) The results of cfDNA
samples. This test involved 3 types of cfDNA samples, the figure shows the
integration of 10-fold cross validation.
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Methods

Count the reads’ distribution on reference.

Here, we define the sorted windows indexes (SW1), which referring to a series indexes
of windows divided on reference, those indexes are sorted according to numbers of
window’s mapped-inside-window reads, or NRs. In this paper, a SWI is considered as
simplified reads distribution.

First of all, we need to count every sample’s SWI, this step is described as the following:
1) Divide reference into series length-fixed windows, and labeled those windows with
their indexes. For simplicity sake, we join all chromosomes together by the order of
chromosome 1-22 & X (Y excluded). The window length is typical set as 10K, an
empirical value, but sometime we would try another value in the range of 5K-50K.

2) Count each window’s mapped-inside-window reads for each sample. The reads are
mapped on reference after the standard short reads alignment. When a read spanning
two windows, we consider the most-bases-located windows as its mapped window.

3) Get the SWI for each sample by sorting window-indexes according to NRs.

4) Repeat steps 2 and 3 until all samples are handled.

A sample produces a SWI, and SWIs gained from a sample set form a SWI set.

Search the frequent distribution patterns among SWiIs.

The pattern is a series of order- sensitive numbers, which referring to windows indexes,
e.g., (3,1, 2), it is a mini-SWI. A pattern could content a series of numbers which are
too many to search directly, we develop a model named splicing to find it:

If there are two patterns, one of which's tail section is the same with another pattern's
head section, the operation of joining the former pattern and the latter pattern's
remainder tail section, called splicing.

As an example, there are two patterns (1, 2) and (2, 3), the tail section of the former
pattern is "2" which is the same with the latter pattern's head section "2", we will splice
the former pattern (1, 2) with the latter pattern's remainder tail section "3" to gain a new
longer pattern (1, 2, 3).

Actually, we only splice such two patterns whose indexes just content one different
element with another to reduce computational complexity. For example, we could
splice pattern (1, 2, 3) and (2, 3, 4) into a new pattern (1, 2, 3, 4), because the former
and the latter are both just content one different element “1” and “4”, respectively.
Splicing combines two shorter patterns would produce a longer one, and the shortest
pattern just contents two indexes, called L2. We search L2s using the following formula:

L2(d, n)=(i, j) ieN,jeN,1<i<n,1<j<n,i-j|<d

Where n is the maximal index of windows, d is the maximal distance of two indexes of
a L2. By experience, we set d as 40.

It is noteworthy that we just interest in frequent patterns, extra check is required. To
determine whether a pattern is frequent, we check how much SWis does this pattern


https://doi.org/10.1101/772657
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772657; this version posted September 18, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cover. Here, we say a pattern “cover” a SWI when the orders of windows contented by
the pattern are the same with that in SWI. For example, we say pattern (3, 1, 2) covers
SWI (4, 3, 1, 2) because the orders of “1”, ”2”, ”3” in pattern is the same with that in
the SWI. Only if a pattern covered samples no less than a given threshold, will we
consider it as a frequent pattern.

We try to gain all frequent patterns by splicing patterns iteratively, until no more
frequent patterns are generated.

Frequent patterns gained from a sample set form a frequent pattern set.

Extract type-special patterns from frequent patterns

A frequent pattern is tissue-specific if there is significant difference between its
coverages of two sample sets. We filter frequent patterns according to their coverages
of two sample sets. When two pattern sets gained from two sample sets, after filtered
with each other’s sample set, gain two paired type-special pattern sets. To measure one
frequent pattern’'s ability to distinguish two kinds of samples, we use the transform of
Fisher-Exact-Test p-value as the pattern's weight. To calculate the p value, we need to
check how much samples of each sample set are covered by a pattern. The transform
formula is described as,

f(x) = —log(max (1719, x))
To judge a sample's possible type of the two types, we use the following formula,

score(S,P) = ZN {Weight(Pi), if order(P,n;) = order(S,n;)
T Lo 0, otherwise
n; = index(P;) N index(S)

Where S is a SWI extracted from the to-be-judged sample, P is one of two paired tissue-
specific pattern sets, N is the total number of P's pattern(s), weight(x) is the weight of
pattern x, Pj is the i-th pattern of P, order(Xx, y) is the order vector of index set y in
pattern/SW1 X, index(x) is the index set of pattern/SWI x.

Compare two scores of the two tissue-specific pattern sets, the type which the higher
score stands for will be considered as the possible type.

The differences between the weighted sums of two specific pattern sets would
enormous, making one score always be larger than another, we need to delete some
patterns to balance them with the following formula,

balance(Cg, Cy|P,, Py, Sa, Sp)

= argmin p(co(Sy, P,, Co, Py, Cp), in(Sy, Py, Cq, Py, Cp), co(Sy, Py, Cy, Py, Cp), in(Sy, Py, Cy, Py, Cp))
Ca,Cp

Where C, and Cy, are two wanted factors. Ca is used as a weight-threshold to filter the
tissue-specific pattern set Pa which is gained from sample set Ss; Cp, Pn and Sy are
belonged to anther sample type. When a pattern set is filtered with a threshold, we will
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delete all patterns whose weights are less than that threshold. The p(a, b, c, d) is the p
value calculated using the Fisher exact test with factors a, b, c, d; co(s, a, b, c, d) is the
number of samples judged correctly from sample-set S with pattern set a filtered with
threshold b and pattern set c filtered with threshold d; in (s, a, b, ¢, d) is the number of
samples misjudged with similar factors with the function co.

To solve this formula, we use the Expectation-Maximum like algorithm. At first, we
set Ca as a reasonable random value, and find the best C, under the given situation; then
keep the Cp unchanged, and find the best Ca. This is an iterative process with the end
condition of C, and Cy, never change again.

We use Ca and Cy to filter the two paired tissue-specific pattern sets, and update them.

Identify a sample’s type according to type-special patterns

The way to identify a sample’s type is introduced in the previous step, but just for two
types. When try to judge a sample’s type from N (N>2) candidates, we need repeat the
previous step for combines of every two types. Obviously, for N types, there will be
N(N-1)/2 combines. In this situation, every repeat will provide a possible answer, all
these answers can vote a final one.
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