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Abstract 

Somatic mosaicism exists among tissues widely and would mark circulating cell-free 

DNA (cfDNA) as DNA fragments released by lytic cells from distinct tissues into the 

blood. By investigating the alignment pattern of sequencing reads from whole genome 

sequencing on genomic DNA of different tissues, we found the reads distribution 

forms tissue-specific patterns on some regions, as a result of somatic mosaicism. We 

then utilized this indication to construct a tissue-of-origin mapping model and 

evaluated the predictive performance on WGS data from tissue and cfDNA. In total, 

1,545 tissue samples involving 13 cancer types were included, and the performance of 

identification of tissue-of-origin achieved specificity of 82% and sensibility of 80%. 

Furthermore, a total of 30 cfDNA samples involving lung cancer, liver cancer, and 

healthy control were analyzed to indicate their nidus’ tissue-of-origin with specificity 

and sensibility both at 87%. Our results show that reads distribution of whole genome 

sequencing could be used to identify the tissue-of-origin of cfDNA samples with high 

accuracy, suggesting the potential application of our model on early tumor detection 

and diagnosis. 

 

Main 

Somatic mosaicism exists among tissues widely (1, 2) and would mark circulating cell-

free DNA (cfDNA) as DNA fragments released by lytic cells from distinct tissues into 

the blood. Two groups reported abnormal Copy Number Variations (CNVs) of cfDNA 

from pregnant women with tumors (3, 4). However, researchers could not determine 

the tumor’s types with CNVs that were information loss when CNV calling. We 

developed a sensitive model to catch somatic mosaicism footprints from reads 

distribution of whole genome sequencing data directly.  

 

To develop our model of tracking tissue-of-origin for circulating tumor DNA (ctDNA), 

we first investigated the alignment pattern of sequencing reads from whole genome 

sequencing on genomic DNA of 1,545 tissue samples involving 13 cancer types from 

the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International 

Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) (5, 6). 

All the cancer types contain more than 60 donors (Table 1). Our technology includes 

the following 4 major steps (Methods): 1) Count the reads’ distribution on reference. 

Firstly, we divide reference into series length-fixed windows, the typical windows-

length is 10K, an empirical value. For simplicity sake, we join all chromosomes 

together (Y excluded), and gained a chain of 257973 windows (existing windows 

spanning two adjacent chromosomes). Then count each window’s mapped-inside-

window reads by sample, gain the number of reads (NRs) sequences. 2) Search the 

frequent distribution patterns among the samples. This step is trying to summarize the 

landscape of samples of the same type with frequent patterns. The pattern refers to the 

relationships between windows by NRs, more/equal/less (Figure 1a). We think that 

only those near-by windows would influence each other effectively. Notably, one 
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pattern could involve several windows, if those windows’ relationships are common in 

samples. As an example, assume exists such a pattern “3, 1, 2”, the numbers in which 

point to the windows’ indexes, means that for many samples, the NR of window 3 is 

more than that of window 1, and the latter is more than that of window 2. Here, we sort 

a pattern’s windows by NRs to describe their relationship simply (Figure 1b). 3) 

Extract type-special patterns from frequent patterns. After the previous step, we gain a 

large number of frequent patterns by types. Patterns gained from one type of samples 

are frequent for that type, but it doesn’t mean that all patterns are not frequent for other 

types. We need to extract those type-specific patterns. Here, we use the transform of 

fisher-exact-test p-value to measure how “specific” a pattern is for one type when 

compared with another. The transformed value is called pattern’s weight. Extract 

patterns whose weights are up above a calculated threshold. Obviously, when describe 

a type-special pattern, we must point it out that from which type the pattern is gained, 

and with which type the pattern is extracted. 4) Identify a sample’s type according to 

type-special patterns. Two types of samples generate two frequent pattern sets, the two 

frequent sets after filtered with each other’s samples gain two paired type-special 

pattern sets. When we try to determine to which one of this two a type-unknown sample 

is probably belonged, we observe how much patterns from each type-special pattern set 

match the sample, and calculate the sum of matched pattern’s weights by type. Here, 

we say a pattern “match” a sample if the windows’ relationship described by the pattern 

is also valid for the sample. Compare the two weighted sums, the type which the bigger 

one stands for is the possible type. Obviously, if we need to deal with three or more 

types, we need to repeat the step 3 for the combines of every two types, and integrate 

all results to vote a final answer. Finally, we executed 5-fold cross validation on tissue 

samples and found our model achieve high specificity of 82% and high sensibility of 

80% (Figure 2a). 

 

To evaluate the performance of identification the tissue-of-origin of cfDNA samples, a 

total of 30 cfDNA samples involving lung cancer, liver cancer, and healthy control were 

analyzed by our model. The cfDNA samples were sequenced on BGIseq-500 with 

average 3X depth of coverage. We execute 10-fold cross validation on cfDNA samples 

and found our model achieve high specificity of 87% and high sensibility of 87% 

(Figure 2b). There are 4 misjudged samples out of 30 samples, 1 healthy control sample 

misjudged as liver cancer, 1 lung cancer samples misjudged as liver cancer and 2 liver 

cancer samples misjudged as healthy control and lung cancer.  

 

Our model distinguishes the healthy control samples with high accuracy, which is very 

important in early tumor screening. Generally, cfDNA concentration of healthy control 

is significantly lower than that of cancer patient. It seems that we can determine whether 

an individual bears tumor according to their cfDNA concentration, however, it may be 

unreliable for early tumor patients. On the other hand, we sequence all cfDNA samples 

with the same sequencing depth of 3X~4X, which means that all samples have the 

approximate total reads numbers, eliminating the concentration differences. 
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We consider that CNV is not always sensitive enough to descript cfDNA features for 

the low tumor cell DNA concentration in cfDNA. The reads distribution forms tissue-

specific patterns used in our model focusses on the relationship of windows with NRs. 

In theory, relationship of two windows about NRs of the same sample is not affected 

by the sequencing depth. In fact, it works quite well under low sequencing depth. 

Furthermore, the biological meaning of reads distribution pattern is still ambiguous, 

and still needs more exploring works. Understanding the biology meaning of pattern 

would help us more effectively improve our method, and help to discover cancer 

mechanism, promote cancer treatments. 
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Table 1. Detail of Cancer Type from PCAWG Project 

Cancer Type from PCAWG Project 
Cancer Type 

Abbreviation 

Number of 

Donors 

Bone Cancer - United Kingdom  BOCA-UK 76 

Breast ER+ and HER2- Cancer - European 

Union/United Kingdom  
BRCA-EU 79 

Chronic Lymphocytic Leukemia - Spain  CLLE-ES 100 

Esophageal Adenocarcinoma - United Kingdom  ESAD-UK 100 

Liver Cancer - Japan  LIRI-JP 259 

Malignant Lymphoma - Germany  MALY-DE 101 

Skin Cancer - Australia  MELA-AU 70 

Ovarian Cancer - Australia  OV-AU 73 

Pancreatic Cancer - Canada  PACA-CA 148 

Pancreatic Cancer Endocrine neoplasms - Australia  PAEN-AU 69 

Pediatric Brain Cancer - Germany  PBCA-DE 251 

Prostate Adenocarcinoma - Canada  PRAD-CA 124 

Renal Cell Cancer - European Union/France  RECA-EU 95 

 

 

  

Figure 1. The reads distribution pattern on reference. a) The generation of reads 

distribution pattern. As what's shown, we divide the reference into 4 length-fixed 

windows, labeled A-D; count the number of reads (NRs) mapped on each window 

respectively; compared two windows by NRs to get the relationship, more/equal/less. 

When combined two windows' relationships of multiple samples, we use a percentage 

to represent the sample number difference between the NRs-of-A-more-than-B 

samples and the NRs-of-B-more-than-A samples (assume that the two windows were 

labeled A and B respectively). b) The reads distribution patterns of three types of 
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cfDNA samples. For the sake of simplicity, we joined all chromosomes (Y excluded) 

together, and obtain a long chain of 257973 windows. Here, we demonstrate the 

relationship of windows ranked 105400-105500, 100 windows in total, by group. 

Each window was compared with its 10 downstream windows. 

 

  

Figure 2. The predicted results of tissues and cfDNA samples. a) The results of tissue 

samples. This test involves 13 types of tissue samples, the figure shows the 

integration of 5-fold cross validation results. Rows stand for different types of 

samples, the right-side labels represent samples’ real types, columns stand for 

predicted results, the bottom-side labels represented predicted types; the numbers 

inside cells represent the percentages of samples predicted as the predicted as the 

bottom-side labels in samples marked as the right-side labels. b) The results of cfDNA 

samples. This test involved 3 types of cfDNA samples, the figure shows the 

integration of 10-fold cross validation. 
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Methods 

 

Count the reads’ distribution on reference.  

Here, we define the sorted windows indexes (SWI), which referring to a series indexes 

of windows divided on reference, those indexes are sorted according to numbers of 

window’s mapped-inside-window reads, or NRs. In this paper, a SWI is considered as 

simplified reads distribution. 

First of all, we need to count every sample’s SWI, this step is described as the following: 

1) Divide reference into series length-fixed windows, and labeled those windows with 

their indexes. For simplicity sake, we join all chromosomes together by the order of 

chromosome 1-22 & X (Y excluded). The window length is typical set as 10K, an 

empirical value, but sometime we would try another value in the range of 5K-50K.  

2) Count each window’s mapped-inside-window reads for each sample. The reads are 

mapped on reference after the standard short reads alignment. When a read spanning 

two windows, we consider the most-bases-located windows as its mapped window. 

3) Get the SWI for each sample by sorting window-indexes according to NRs. 

4) Repeat steps 2 and 3 until all samples are handled. 

A sample produces a SWI, and SWIs gained from a sample set form a SWI set. 

 

Search the frequent distribution patterns among SWIs. 

The pattern is a series of order- sensitive numbers, which referring to windows indexes, 

e.g., (3, 1, 2), it is a mini-SWI. A pattern could content a series of numbers which are 

too many to search directly, we develop a model named splicing to find it: 

If there are two patterns, one of which's tail section is the same with another pattern's 

head section, the operation of joining the former pattern and the latter pattern's 

remainder tail section, called splicing. 

As an example, there are two patterns (1, 2) and (2, 3), the tail section of the former 

pattern is "2" which is the same with the latter pattern's head section "2", we will splice 

the former pattern (1, 2) with the latter pattern's remainder tail section "3" to gain a new 

longer pattern (1, 2, 3). 

Actually, we only splice such two patterns whose indexes just content one different 

element with another to reduce computational complexity. For example, we could 

splice pattern (1, 2, 3) and (2, 3, 4) into a new pattern (1, 2, 3, 4), because the former 

and the latter are both just content one different element “1” and “4”, respectively. 

Splicing combines two shorter patterns would produce a longer one, and the shortest 

pattern just contents two indexes, called L2. We search L2s using the following formula: 

 

L2(d, n)=(i, j)  iϵN,jϵN,1≤i≤n,1≤j≤n,|i-j|≤d 

 

Where n is the maximal index of windows, d is the maximal distance of two indexes of 

a L2. By experience, we set d as 40. 

It is noteworthy that we just interest in frequent patterns, extra check is required. To 

determine whether a pattern is frequent, we check how much SWIs does this pattern 
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cover. Here, we say a pattern “cover” a SWI when the orders of windows contented by 

the pattern are the same with that in SWI. For example, we say pattern (3, 1, 2) covers 

SWI (4, 3, 1, 2) because the orders of “1”, ”2”, ”3” in pattern is the same with that in 

the SWI. Only if a pattern covered samples no less than a given threshold, will we 

consider it as a frequent pattern. 

We try to gain all frequent patterns by splicing patterns iteratively, until no more 

frequent patterns are generated. 

Frequent patterns gained from a sample set form a frequent pattern set. 

 

Extract type-special patterns from frequent patterns 

A frequent pattern is tissue-specific if there is significant difference between its 

coverages of two sample sets. We filter frequent patterns according to their coverages 

of two sample sets. When two pattern sets gained from two sample sets, after filtered 

with each other’s sample set, gain two paired type-special pattern sets. To measure one 

frequent pattern's ability to distinguish two kinds of samples, we use the transform of 

Fisher-Exact-Test p-value as the pattern's weight. To calculate the p value, we need to 

check how much samples of each sample set are covered by a pattern. The transform 

formula is described as, 

 

f(x) = −log(max(1−100, x)) 

 

To judge a sample's possible type of the two types, we use the following formula, 

 

score(S, P) = ∑ {
𝑤𝑒𝑖𝑔ℎ𝑡(𝑃𝑖), 𝑖𝑓 𝑜𝑟𝑑𝑒𝑟(𝑃𝑖, 𝑛𝑖) = 𝑜𝑟𝑑𝑒𝑟(𝑆, 𝑛𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖=0
 

𝑛𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑃𝑖) ∩ 𝑖𝑛𝑑𝑒𝑥(𝑆) 

 

Where S is a SWI extracted from the to-be-judged sample, P is one of two paired tissue-

specific pattern sets, N is the total number of P's pattern(s), weight(x) is the weight of 

pattern x, Pi is the i-th pattern of P, order(x, y) is the order vector of index set y in 

pattern/SWI x, index(x) is the index set of pattern/SWI x. 

Compare two scores of the two tissue-specific pattern sets, the type which the higher 

score stands for will be considered as the possible type. 

The differences between the weighted sums of two specific pattern sets would 

enormous, making one score always be larger than another, we need to delete some 

patterns to balance them with the following formula, 

 

balance(C𝑎, 𝐶𝑏|𝑃𝑎 , 𝑃𝑏 , 𝑆𝑎, 𝑆𝑏)

= argmin
𝐶𝑎,𝐶𝑏

𝑝(𝑐𝑜(𝑆𝑎, 𝑃𝑎, 𝐶𝑎, 𝑃𝑏 , 𝐶𝑏), 𝑖𝑛(𝑆𝑎, 𝑃𝑎, 𝐶𝑎, 𝑃𝑏 , 𝐶𝑏), 𝑐𝑜(𝑆𝑏, 𝑃𝑎 , 𝐶𝑎, 𝑃𝑏 , 𝐶𝑏), 𝑖𝑛(𝑆𝑏, 𝑃𝑎, 𝐶𝑎, 𝑃𝑏 , 𝐶𝑏)) 

 

Where Ca and Cb are two wanted factors. Ca is used as a weight-threshold to filter the 

tissue-specific pattern set Pa which is gained from sample set Sa; Cb, Pb and Sb are 

belonged to anther sample type. When a pattern set is filtered with a threshold, we will 
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delete all patterns whose weights are less than that threshold. The p(a, b, c, d) is the p 

value calculated using the Fisher exact test with factors a, b, c, d; co(s, a, b, c, d) is the 

number of samples judged correctly from sample-set S with pattern set a filtered with 

threshold b and pattern set c filtered with threshold d; in (s, a, b, c, d) is the number of 

samples misjudged with similar factors with the function co. 

To solve this formula, we use the Expectation-Maximum like algorithm. At first, we 

set Ca as a reasonable random value, and find the best Cb under the given situation; then 

keep the Cb unchanged, and find the best Ca. This is an iterative process with the end 

condition of Ca and Cb never change again. 

We use Ca and Cb to filter the two paired tissue-specific pattern sets, and update them. 

 

Identify a sample’s type according to type-special patterns 

The way to identify a sample’s type is introduced in the previous step, but just for two 

types. When try to judge a sample’s type from N (N>2) candidates, we need repeat the 

previous step for combines of every two types. Obviously, for N types, there will be 

N(N-1)/2 combines. In this situation, every repeat will provide a possible answer, all 

these answers can vote a final one.  
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