=

bioRxiv preprint doi: https://doi.org/10.1101/772582; this version posted September 19, 2019. The copyright holder for this preprint (which was

OOV UTLHWN R

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Flexible cobamide metabolism in Clostridioides (Clostridium) difficile 630 Aerm
Amanda N. Shelton', Xun Lyu?, Michiko E. Taga'"

'Department of Plant & Microbial Biology and *“Department of Molecular & Cell Biology,
University of California, Berkeley, Berkeley, CA 94720

#Correspondence to taga@berkeley.edu

Running title: By, metabolism in C. difficile


https://doi.org/10.1101/772582
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772582; this version posted September 19, 2019. The copyright holder for this preprint (which was

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

Abstract

Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to
colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino
acid metabolism have been investigated, but its cobamide (vitamin B, and related cofactors)
metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent
metabolisms encoded in its genome in addition to a nearly complete cobamide biosynthesis
pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile,
we studied C. difficile 630 Aerm and mutant derivatives under cobamide-dependent conditions in
vitro. Our results show that C. difficile can use a surprisingly diverse array of cobamides for
methionine and deoxyribonucleotide synthesis, and can use alternative metabolites or enzymes,
respectively, to bypass these cobamide-dependent processes. C. difficile 630 Aerm produces the
cobamide pseudocobalamin when provided the early precursor 5-aminolevulinc acid or the late
intermediate cobinamide, and produces other cobamides if provided an alternative lower ligand.
The ability of C. difficile 630 Aerm to take up cobamides and Cbi at micromolar or lower
concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in
in the btuFCD locus of different C. difficile strains, which may result in differences in the ability
to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its

physiology, cobamide metabolism in C. difficile is versatile.

Importance
The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked
to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The

cobamide (vitamin Bj,) metabolism of C. difficile has been underexplored, though it has seven
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metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show
that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of
cobamides and has alternative functions that can bypass some of its cobamide requirements.
Furthermore, C. difficile does not synthesize cobamides de novo, but produces them when given
cobamide precursors. Better understanding of C. difficile cobamide metabolism may lead to new

strategies to treat and prevent C. difficile-associated disease.
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Introduction

The human gut microbiota is a complex community composed of hundreds to thousands
of species of bacteria, archaea, and eukaryotic microbes (1). Members of this community
compete for nutrients such as carbon sources, but also release metabolites that benefit other
members. The exchange of B vitamins, particularly vitamin B, is thought to be prevalent in
many environments because most bacteria lack the ability to synthesize some of the cofactors
they require for enzyme catalysis (2—6), and instead must acquire them from other organisms (7).
Such nutrient cross-feeding interactions can influence bacterial metabolism in ways that can
affect not only the microbiota, but also host health (8, 9).

Clostridioides (Clostridium) difficile is a human intestinal pathogen that is among the
most common causes of nosocomial infections, with nearly 300,000 healthcare-associated cases
per year in the United States (10). C. difficile colonization of the gut is correlated with dysbiosis
of the gut microbiota (11). Its abilities to germinate from spores, proliferate in the gut, and cause
disease are impacted both positively and negatively by ecological and metabolic factors (12—14).
The global alteration of the gut metabolome following antibiotic treatment is correlated with
increased susceptibility to C. difficile infection, and recent work has linked changes in the
relative abundance of specific metabolites to changes in the microbiome using model systems
(11, 15-17). For example, succinate availability increases after disturbance of the microbiota,
allowing C. difficile expansion in a mouse model (18). Additionally, specific commensal bacteria
have been shown to produce compounds that stimulate C. difficile metabolism. In a bi-
association, Bacteroides thetaiotaomicron can break down host mucin and produce sialic acid,

which can be used by C. difficile for expansion in the gut (19). C. difficile can also induce other
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members of the microbiota to produce indole, which is thought to create a more favorable
environment for the pathogen by inhibiting competing microbes (20).

Some interactions with microbiota members have also been shown to be inhibitory to C.
difficile. Co-culturing with certain Bifidobacterium spp. on particular carbon sources reduces C.
difficile toxin production relative to monoculture (21). While primary bile acids produced by the
host promote C. difficile spore germination, Clostridium scindens and other 7a-dehydroxylating
Clostridia transform these compounds into secondary bile acids, which are inhibitory to C.
difficile (22, 23). The latter example illustrates that compounds in the same class can have
different effects on the disease state. Given the complexity of metabolic interactions in the
mammalian gut, many additional microbial metabolites likely influence the ability of C. difficile
to colonize and persist in the gut.

One class of metabolites that has not been explored for its ability to affect C. difficile
growth and virulence is cobamides, the vitamin By, (also called cobalamin) family of cofactors.
Cobamides are used in diverse microbial metabolisms including methionine synthesis,
deoxyribonucleotide synthesis, acetogenesis, and some carbon catabolism pathways. These
reactions are facilitated by fission of the Co-C bond to the cobamide upper ligand, which can be
a 5’-deoxyadenosyl group for radical reactions, a methyl group for methyltransferase reactions,
or a cyano group in the inactive vitamin form (24) (labeled as “R” in Fig. 1A). Over 80% of all
sequenced bacteria (25-27) and 80% of sequenced human gut bacteria (2, 28, 29) have one or
more cobamide-dependent enzymes, suggesting that cobamides are widely used cofactors across
microbial ecosystems. Strikingly, fewer than 40% of bacterial species are predicted to produce
cobamides de novo (2, 25-28), and therefore over half of bacteria that use cobamides must

acquire them from their environment. Cobamides vary in the structure of the lower ligand (Fig.
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1A, B), and organisms studied to date are selective in which cobamides they can use (28, 30-37).
Seven cobamides in addition to the cobamide precursor cobinamide (Cbi, Fig. 1C) have been
detected in the human gut (38). In an environment with plentiful, diverse cobamides and
cobamide precursors, a microbial species that requires a particular cobamide can either import
that cobamide, synthesize it de novo, chemically remodel available cobamides to the preferred
structure, or alter its need for the cobamide by using alternative pathways (8, 39).

The seven predicted cobamide-dependent enzymes encoded in the C. difficile genome are
involved in methionine synthesis, nucleotide metabolism, and carbon metabolism (Fig. 2). When
grown with amino acids and glucose as carbon and energy sources in vitro, C. difficile does not
require cobalamin supplementation (40). However, in model infection systems, cobamide-
dependent metabolism may be important for virulence and growth. For example, access to
ethanolamine catabolism may be important in modulating virulence, as deletion of EutA, the
reactivating factor required for activity of the cobamide-dependent ethanolamine ammonia lyase
(EutBC), in C. difficile strain 630 Aerm reduces the mean time to morbidity in a hamster model
(41). Additionally, metabolic models and transcriptomics (42, 43) suggest that the cobamide-
dependent Wood-Ljungdahl carbon fixation pathway is an important electron sink, and an
experimental study suggests that it may be used for autotrophic growth by some C. difficile
strains (44).

The observation that C. difficile can grow without added cobamides in vitro (40) suggests
that it may not require cobamides under those conditions, or that it can biosynthesize cobamides.
However, all sequenced strains of C. difficile are missing hemA and hemL, the first two enzymes
in the cobamide biosynthesis pathway required for production of the precursor 5-aminolevulinic

acid (ALA) (45) (Fig. 1C). Therefore, C. difficile is predicted to be able to produce a cobamide
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only when ALA is available, as has been observed in three other bacteria (25) (Fig. 2). In order
to use cobamide-dependent metabolisms, we predict that C. difficile requires cobamides or
precursors such as ALA from the gut. While ALA is an intermediate made in all tetrapyrrole-
producing organisms, including the host, cobamides are only produced by some bacteria and
archaea (46).

To address the importance of cobamides for C. difficile metabolism and to understand
how C. difficile acquires cobamides, we examined C. difficile 630 Aerm and mutant derivatives
in vitro under cobamide-dependent conditions. We found that the bacterium can use a
surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis, and
can use alternative nutrient sources or enzymes to fulfill its metabolic needs. In addition to
importing and using a variety of cobamides, when provided with ALA or the late intermediate
Cbi, C. difficile 630 Aerm can produce the cobamide pseudocobalamin, and can produce other
cobamides if provided an alternative lower ligand. Together, these results show that C. difficile is

versatile in its cobamide metabolism.

Results
C. difficile requires methionine or a cobamide for growth

To investigate cobamide-dependent metabolism in the model C. difficile strain 630 Aerm,
we sought to culture the organism in conditions that require specific cobamide-dependent
enzymes. The C. difficile genome encodes the cobalamin-dependent methionine synthase MetH,
but does not contain the cobalamin-independent alternative enzyme MetE. The absence of a

complete cobamide biosynthesis pathway suggests that C. difficile requires either methionine or


https://doi.org/10.1101/772582
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772582; this version posted September 19, 2019. The copyright holder for this preprint (which was

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

a cobamide in its growth medium. Previously, methionine was classified as a “growth-
enhancing,” but not essential, amino acid in a medium containing cyanocobalamin (vitamin B;5)
for seven of eight strains tested (40, 47). To test whether C. difficile can use cobamides for
methionine synthesis and to identify the specific cobamides that support its MetH-dependent
growth, we cultured C. difficile in a defined medium lacking methionine with a range of
concentrations of cyanocobalamin, Cbi, and eight other cyanylated cobamides that we purified.
C. difficile was unable to grow in this medium without cobamide or methionine addition (Fig.
3A), suggesting that, as predicted, it cannot produce cobamides de novo to support the activity of
MetH. Remarkably, unlike other bacteria that have been reported to use a limited number of
cobamides for methionine synthase activity (28, 48, 49), all of the cobamides and Cbi were able
to confer high growth yields to C. difficile at concentrations as low as 1 nM (Fig. 3A).
Methionine addition also supported growth, though higher concentrations were required than for

cobamides (Fig. 3B). We also observed robust growth with addition of ALA (Fig. 3C).

C. difficile growth with ribonucleotide reductase NrdJ requires a more restricted set of
cobamides

C. difficile genomes encode homologs of the cobalamin-dependent (class II)
ribonucleotide reductase (RNR) (nrdJ, CDIF630erm RS07280), as well as two cobalamin-
independent RNRs: an oxygen-dependent (class I) RNR (encoded by nrdE,
CDIF630erm_RS16325, and nrdF, CDIF630erm_RS16320) and an oxygen-sensitive (class III)
RNR (nrdD, CDIF630erm_RS00990 and nrdG, CDIF630erm_RS00995). In principle, any of
these three isozymes could be used for deoxyribonucleotide synthesis from ribonucleotides,

although under anaerobic conditions only the class II and class III RNRs are expected to
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function. Cobamide addition is not required for anaerobic growth of the parent strain C. difficile
630 Aerm ApyrE in a casamino acid medium (CDDM) with glucose, and adding cobamides or
cobamide precursors did not affect growth yield (Supplemental Fig. 1), suggesting that the class
III RNR, NrdDG, is functional under these conditions. To test whether the class II RNR, NrdJ, is
functional, we deleted the nrdD and nrdG genes while providing exogenous cobalamin, using the
allelic exchange system in a ApyrE background (50). This strain could grow only with cobalamin
addition, suggesting that NrdJ is functional and NrdEF is not under these growth conditions (Fig.
4A). To determine which cobamides it requires, the AnrdDG strain was grown with the same
cobamides and precursors as in Fig. 3. In contrast to MetH, NrdJ is more selective in the
cobamides it can use (Fig. 4A), as expected based on studies with other class Il RNRs (33, 36,
51, 52). There was little growth with [Cre]Cba, [Phe]Cba, and [5-OHBza]Cba (Fig. 4A).

Addition of ALA also supported NrdJ-dependent growth (Fig. 4B).

C. difficile produces pseudocobalamin from the precursor ALA via the chi genes

The observation that C. difficile could grow under cobamide-dependent conditions with
ALA or Cbi (Fig. 3A, C, Fig. 4) suggests that it can produce a cobamide from these precursors
using the cobamide biosynthetic genes encoded in its genome (25). To test this prediction, the
corrinoid fraction, which includes cobamides and late cobamide precursors including Cbi, was
extracted from the cell pellets of C. difficile 630 Aerm grown with either ALA or Cbi. Consistent
with our predictions, HPLC analysis of the extracted corrinoids showed that C. difficile produced
a cobamide only when ALA or Cbi was added (Fig. SA). Additionally, as predicted, corrinoid
analysis of a strain lacking the corrin ring biosynthesis genes chiKLJHGFTEDC demonstrated

that these genes are necessary for cobamide synthesis from ALA, but not Cbi (Fig. 5A). Because
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C. difficile lacks all known genes for biosynthesis of benzimidazoles and attachment of phenolic
lower ligands, it is predicted to be incapable of producing benzimidazolyl or phenolyl
cobamides, but may produce a purinyl cobamide (49, 53-59). Indeed, the major cobamide
present in C. difficile corrinoid extracts co-eluted with the purinyl cobamide pseudocobalamin
(Fig. 5A). The UV-Vis spectrum of the major cobamide was consistent with a pseudocobalamin
standard (Supplemental Fig. 2C). Mass spectrometry analysis verified that the major cobamide

extracted from cultures grown with ALA is pseudocobalamin (Supplemental Fig. 2A, B).

C. difficile can perform guided biosynthesis but does not remodel cobamides

Some bacteria can perform guided biosynthesis, a process in which an exogenously
provided, non-native lower ligand base is incorporated into a cobamide (32, 36, 48, 60, 61). To
test if C. difficile is capable of guided biosynthesis to produce cobamides other than its native
pseudocobalamin, either DMB (the lower ligand of cobalamin, Fig. 1A) or a related compound,
benzimidazole (Bza, Fig. 1B) was added to cultures containing either ALA or Cbi. Analysis of
corrinoid extracts showed that C. difficile could attach either of these exogenous lower ligands to
form cobalamin and [Bza]Cba, respectively, with both precursors (Fig. 5B). A small amount of
pseudocobalamin was also recovered in cultures containing Cbi with Bza (Fig. 5B).

Some bacteria and archaea are able to remodel cobamides by removing the lower ligand
and nucleotide loop with the amidohydrolase enzyme CbiZ and rebuilding the cobamide with a
different lower ligand (31, 62—64). We were unable to identify a chiZ homolog in the C. difficile
genome, and accordingly, we did not observe evidence of remodeling; when cobalamin, [2-
MeAde]Cba, or [Cre]Cba was provided to C. difficile, the same cobamides were recovered from

the cells (Fig. 6A).
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C. difficile requires btu FCD for efficient uptake of cobamides and Cbi

The presence of cobamides in the cellular fraction of cultures grown with either Cbi or a
cobamide at nanomolar concentrations (Fig. 5, 6A) suggested that C. difficile takes up Cbi and
cobamides via an active transporter. We identified a candidate cobalamin uptake operon
(btuFCD) downstream of a sequence annotated as a cobalamin riboswitch, suggesting that these
genes function in corrinoid import (27, 28, 65—70). No corrinoids could be detected in the
cellular fraction of the AbfuF'CD mutant grown with 10 nM Cbi or cobalamin (Fig. 6A). In
contrast, ALA uptake is apparently unaffected in the AbruF'CD mutant, as pseudocobalamin can
be recovered from the cellular fraction when ALA is provided (Fig. 6A). Furthermore, the
AbtuFCD mutant grew poorly in methionine-free medium even when Cbi or cobalamin was
added at concentrations 10° to 10*-fold higher than required for growth of the parental strain
(Fig. 6B). The ability of methionine or ALA to support growth remained unaffected by the
AbtuFCD mutation (Fig. 6B). Interestingly, genomic analysis identified strains of C. difficile that
contain a t/pB transposon insertion in bfuC, likely rendering the BtuFCD transporter
nonfunctional (Supplemental Fig. 3) (71). Of the genomes analyzed, the ¢/pB insertion in this
locus appears to be restricted to strains in the PCR-ribotype 027 (RT027) clade, including the
hypervirulent strain R20291, based on a multi-locus sequence typing (MLST) tree of C. difficile
strains (Supplemental Fig. 3, red labels). This observation suggests that unlike strain 630 Aerm
examined in this study, members of the RT027 clade may be unable to take up cobamides and

Cbi efficiently.
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Discussion

The potential of C. difficile to cause disease is closely linked to its ability to fill
ecological niches made available by gut microbiota dysbiosis (13), using a suite of metabolic
pathways to make use of newly available nutrient sources. C. difficile has an unusually high
number of cobamide-dependent metabolisms encoded in its genome (25), but their functions
have been underexplored. Here, we show that C. difficile is able to use many cobamides and
cobamide precursors in two of its seven cobamide-dependent pathways. The promiscuous use of
cobamides and the ability to bypass these cobamide-dependent metabolisms highlights the
metabolic flexibility of C. difficile.

The cobalamin-dependent methionine synthase, MetH, is the most abundant cobamide-
dependent enzyme in bacterial genomes (25) and is found in numerous organisms in all three
domains of life, including humans (24). Compared to the majority of other MetH homologs that
have been studied, our results indicate that the C. difficile MetH homolog is unusually
promiscuous in its cobamide selectivity. For example, several eukaryotic algae grew robustly
under MetH-dependent conditions with cobalamin, but did not grow with pseudocobalamin at
the same concentrations (33). The human gut commensal bacterium Bacteroides
thetaiotaomicron could use benzimidazolyl and purinyl cobamides for MetH-dependent growth,
but could not use phenolyl cobamides (28). An example of MetH selectivity in vitro was in
Spirulina platensis, where the purified enzyme bound its native cobamide, pseudocobalamin,
with a higher affinity than cobalamin (72). An exception to this observed selectivity is another
gut pathogen, Salmonella enterica, which can use its native cobamide, pseudocobalamin, in

addition to cobalamin, [Phe]Cba, and [Cre]Cba for MetH-dependent growth, although other
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cobamides were not tested (48, 49). The versatility of C. difficile’s cobamide use is notable given
the diversity of cobamides that have been detected in the gut (38).

In contrast to MetH, our growth experiments indicate that the selectivity of C. difficile’s
NrdJ is more similar to that of other organisms that rely on NrdJ for growth. For example,
Sinorhizobium meliloti was unable to grow with [Cre]Cba and grew poorly with
pseudocobalamin relative to its native cobamide, cobalamin (36); Lactobacillus leichmannii
could only use benzimidazolyl or purinyl cobamides (51); and Euglena gracilis grew well with
cobalamin and [Bza]Cba and poorly with pseudocobalamin, [5-OHBza]Cba, and [Cre]Cba (33,
52). Unlike MetH, the NrdJ enzyme requires cobamides that can adopt the “base-on”
configuration in which the lower ligand base is coordinated to the cobalt ion throughout the
catalytic cycle (24). Phenolyl cobamides are unable to adopt the base-on configuration, so their
inability to support growth in the NrdJ-dependent condition was expected. C. difficile 630 Aerm
also contains an active class III cobamide-independent RNR, NrdDG, which may be an
important strategy to maintain deoxyribonucleotide synthesis when cobamides are scarce.
However, in other species, under certain conditions the class II RNR provides an advantage over
other RNR classes, such as during oxidative stress (73), although the conditions where NrdJ
would provide an advantage for C. difficile have yet to be uncovered.

Seven different cobamides and the precursor Cbi have been detected in human feces (38).
In stool samples of individuals not taking cobalamin supplements, the average total corrinoid
present is approximately 1300 ng per gram feces, roughly equivalent to 1 pM (38). Cbi is found
at tens of ng per gram (38). Growth experiments under MetH and NrdJ-dependent conditions
showed that C. difficile 630 Aerm reached maximum growth yield with as little as 1 nM

cobamide or Cbi (Fig 3, 4). Based on the absence of corrinoids in the cellular fraction of a 630
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Aerm ApyrE AbtuF CD strain (Fig. 6), we infer that strains with an insertion in bfuC
(Supplemental Fig. 3), including the hypervirulent R20291 and CD196 strains (71), would
require cobamides or Cbi at extracellular concentrations higher than 100 uM if relying on
cobamide-dependent enzymes. This suggests that these strains may not be able to use the
cobamides or Cbi present in the gut.

Our results show that not only is C. difficile able to use multiple cobamides to support its
metabolism, but it can also use the early precursor ALA to produce pseudocobalamin. The ability
to use ALA to produce a cobamide, and thus not strictly rely on cobamide or Cbi uptake, could
be important to strains with a transposon insertion in the bfuC gene (70, 74). ALA concentrations
in the human gut have not been reported. However, we speculate that, similar to cobamides and
Cbi, ALA and possibly other early cobamide precursors could be provided by other members of
the microbiota. Alternatively, ALA could be provided by the host either through the diet or via
biosynthesis of heme, which also uses ALA as a precursor. Other commensal gut microbiota
have been reported to be able to salvage ALA (25), suggesting that ALA could be available in
the gut.

C. difficile is also able to incorporate non-native lower ligands to form benzimidazolyl
cobamides (guided biosynthesis). Free benzimidazole bases have been found in animal
gastrointestinal tracts such as rumen fluid and termite guts (75), but benzimidazole levels in the
human gut have not been measured. The cobamides used by C. difficile could therefore also vary
with the presence of different benzimidazole-producing organisms in the microbiota. Our results
show that pseudocobalamin and most benzimidazolyl cobamides support growth of C. difficile
equally for the two metabolisms we investigated in this study, but the cobamide preferences of

the other five cobamide-dependent metabolisms have not been investigated.
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We have identified cobamides and precursors that C. difficile can use in vitro, but which
cobamides or cobamide precursors it predominantly uses in the gut remains to be discovered.
Evidence from transcriptomics is ambiguous with respect to expression of genes encoding
cobamide-dependent enzymes or cobamide biosynthesis during infection, likely due to
differences in study design (15, 43, 76—78). Since both diet and the microbiota can contribute to
the cobamide profile in the gut (38, 79, 80), the availability of cobamides may vary significantly
across infection systems and affect the expression and use of cobamide biosynthesis and
cobamide-dependent pathways by C. difficile. In one study, hemB, which encodes the enzyme
that converts ALA to the next intermediate, porphobilinogen, was among the most highly
expressed genes in C. difficile strain VPI 104363 in a mouse model (43), suggesting that C.
difficile produces cobamides from ALA in the gut. How the cobamide content in the gut
environment changes during C. difficile infection is unknown, but since much of the cobamide
content in the lower gastrointestinal tract is produced by resident gut microbes (79, 80), it is
possible that cobamide abundances change during dysbiosis. Further in vivo studies are needed to
determine the extent to which cobamide metabolism is important to C. difficile associated

disease.

Materials and Methods
Bacterial strains and growth conditions

C. difficile 630 Aerm, an erythromycin-sensitive derivative of the isolate 630 (81), and C.
difficile 630 Aerm ApyrE, a derivative of 630 Aerm with a uracil auxotrophy (50), were streaked

from frozen stocks onto BHIS agar (82) before being transferred to Clostridium difficile defined
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medium (CDDM) containing casamino acids (83) and 8 g/L glucose. Agar plates and 96-well
plates containing liquid cultures were incubated at 37°C in an anaerobic chamber (Coy Labs)
containing 10% Ha, 10% CO,, and 80% N,. For C. difficile 630 Aerm ApyrE and derived strains,
5 pg/ml uracil was included in all defined media. For corrinoid extractions and NrdJ phenotype
experiments, strains were cultured in CDDM plus 8 g/L glucose. For MetH phenotype
experiments, CDDMK medium plus 8 g/L glucose without methionine was used. CDDMK
contains the same salts, trace metals, and vitamins as CDDM, but the casamino acids, tryptophan
and cysteine are replaced with the individual amino acids as follows: 100 mg/L histidine, 100
mg/L tryptophan, 100 mg/L glycine, 100 mg/L tyrosine, 200 mg/L arginine, 200 mg/L
phenylalanine, 200 mg/L threonine, 200 mg/L alanine, 300 mg/L lysine, 300 mg/L serine, 300
mg/L valine, 300 mg/L isoleucine, 300 mg/L aspartic acid, 400 mg/L leucine, 500 mg/L
cysteine, 600 mg/L proline, 900 mg/L glutamic acid (40). All liquid defined media were
prepared by boiling under 80% N»/20% CO, gas. After the pH stabilized between 6.8 and 7.2,
the medium was dispensed into stoppered tubes and autoclaved. Filter-sterilized glucose and
vitamins were added after autoclaving. Cultures in stoppered tubes were incubated at 37°C.

For MetH phenotype assays, C. difficile 630 Aerm was grown in CDDM, then washed
twice in CDDMK without methionine prior to inoculation in CDDMK at an optical density
(O.D.600) of 0.01 in a 96-well plate. For NrdJ phenotype assays, C. difficile 630 Aerm ApyrE
AnrdDG was grown in CDDM with 5 pg/ml uracil and 10 nM cyanocobalamin, and washed
three times in CDDM medium without cyanocobalamin prior to inoculation in CDDM at an
0.D.600 0of 0.01 in a 96 well plate. O.D.¢p0 was measured on a BioTek Synergy 2 plate reader after

23 to 24 hours of growth.

16


https://doi.org/10.1101/772582
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/772582; this version posted September 19, 2019. The copyright holder for this preprint (which was

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

ALA, Cbi and cyanocobalamin were purchased from Sigma Aldrich. Other cobamides

were purified from bacterial cultures as described in Men et al. (84)

Strain and plasmid construction

The allelic coupled exchange (ACE) system of Ng et al. was used for construction of C.
difficile mutant strains (50). Briefly, 500-1000 bp sequences flanking the target gene(s) (arms of
homology) in the C. difficile 630 Aerm genome (CP016318,

https://www.ncbi.nlm.nih.gov/nuccore/CP016318.1/) were amplified by PCR (Supplemental

Table 1) and then were cloned into pMTL-YN3 (Chain Biotech) by Gibson assembly (85) in E.
coli XL1-Blue. Plasmid inserts were sequenced by Sanger sequencing before transformation of
the plasmid into E. coli CA434 (Chain Biotech). Conjugation of E. coli CA434 and C. difficile
630 Aerm ApyrE was performed as described (86), except that C. difficile and E. coli were each
cultured for 5-8 hours prior to pelleting E. coli and mixing with the C. difficile recipient. After 16
hours growth on BHIS agar, the mixed cells were resuspended in 1 ml PBS, and 100 pl of the
suspension was plated on each of 5-7 plates of BHIS agar with added 10 pg/ml thiamphenicol,
250 pg/ml D-cycloserine, and 16 ng/ml cefoxitin. Colonies were purified at least twice by
streaking onto BHIS with 15 pg/ml thiamphenicol, 250 pg/ml D-cycloserine, and 16 pg/ml
cefoxitin, before counterselection on CDDM agar supplemented with 2 mg/L 5-fluoroorotic acid
(5-FOA) and 5 pg/ml uracil. The resulting colonies were purified by streaking at least twice on
the counterselection medium prior to screening by colony PCR for the deletion and the presence
of the C. difficile toxin gene tcdB (86). For the deletion of nrdDG, 10 nM cobalamin was added

to all media during the ACE procedure.

Corrinoid extraction and analysis
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C. difficile was grown in 50 ml CDDM plus 8 g/L glucose under 80% N»/20% CO,
headspace for 16-22 hours at 37°C prior to corrinoid extraction. Two cultures were combined for
each condition for a total volume of 100 ml for each extraction. Corrinoid extractions were
performed as described (31), except that cell pellets were autoclaved for 35 minutes and cooled
prior to addition of methanol and potassium cyanide. Two or more biological replicates were
performed for each condition.

High-performance liquid chromatography (HPLC) analysis was performed with an
Agilent Series 1200 system (Agilent Technologies, Santa Clara, CA) equipped with a diode array
detector with detection wavelengths set at 360 and 525 nm. For Fig. 5B and 6A samples were
injected onto an Agilent Zorbax SB-Aq column (5 pm, 4.6 x 150 mm) at 30°C, with 1 mL/min
flow rate. Compounds in the samples were separated with a gradient of 25 to 34% acidified
methanol in acidified water (containing 0.1% formic acid) over 11 min, followed by a 34 to 50%
gradient over 2 min, and 50 to 75% over 9 min. For Fig. 5A, samples were injected onto an
Agilent Eclipse Plus C18 column (5 pm, 9.6 x 250 mm) at 30 °C, with 2 mL/min flow rate.
Compounds in the samples were separated with a gradient of 10 to 42% acidified methanol in
acidified water over 20 min. The amount of standards that were injected were as follows: Cbi (1),
200 pmol; pseudocobalamin (2), 225 pmol; cobalamin (3), 50 pmol; [Bza]Cba (4), 114 pmol; [2-
MeAde]Cba (5), 114 pmol; [Cre]Cba (6), 151 pmol. 5% to 20% by volume C. difficile samples

were injected.

Supplemental material

Supplemental methods, figures, and tables are provided.
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Figure 1. Structures of cobamides and cobamide precursors. A. Structure of cobalamin (B;;). The
corrin ring, nucleotide loop, and lower ligand are labeled. B. Lower ligands of cobamides analyzed in this
study, with the three structural classes labeled. The lower ligand name, abbreviation for the cobamide
containing the lower ligand, and alternative names of the cobamide (when applicable) are indicated. C.
Cobamide precursors used in this study. R, upper ligand (-CN, -OH, -CH; or 5’-deoxyadenosyl).
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Figure 2. Predicted cobamide metabolism in C. difficile 630 Aerm. The cobamide biosynthesis
pathway is shown with a purple background, homologs of cobalamin-dependent enzymes in purple text,
cobalamin-independent isozymes in green text, and the transporter BtuFCD as a black rectangle.
Abbreviations: Cba, cobamide; Cbi, cobinamide; ALA, 5-aminolevulinic acid; rSAM, radical S-
adenosylmethionine; NDPs, ribonucleoside diphosphates; NTPs, ribonucleoside triphosphates; dNDPs,
deoxyribonucleoside diphosphates; dNTPs, deoxyribonucleoside triphosphates. Enzymes: MetH,
cobalamin-dependent methionine synthase; NrdEF, cobalamin-independent, aerobic (oxygen-requiring,
class I) ribonucleotide reductase (RNR); NrdDG, cobalamin-independent, anaerobic (oxygen-sensitive,
class III) RNR; NrdJ, cobalamin-dependent (class 1) RNR; QueG, epoxyqueuosine reductase; EutBC,
ethanolamine ammonia lyase; CFeSP, corrinoid iron-sulfur protein; OraSE, D-ornithine 4,5-aminomutase.
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666  Figure 3. C. difficile can use a broad range of cobamides for MetH-dependent growth. The O.D.4 of
667  C. difficile 630 Aerm cultures grown to saturation (22.5 hours) in CDDMK medium plus glucose without
668  methionine with the addition of A. cobamides or Cbi, B. methionine, and C. ALA is shown. The mean
669  and standard deviation of four biological replicates are shown in the bars and error bars, respectively.

670

671

27


https://doi.org/10.1101/772582
http://creativecommons.org/licenses/by-nc/4.0/

672
673

674
675
676
677

bioRxiv preprint doi: https://doi.org/10.1101/772582; this version posted September 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC 4.0 International license.

A nM added: l100 @10 W1 0.1|B
0.7 - .
0.6 - .
0.5 - T
G 0.4
o
0.3
0.2 1 I I l |
'
0.11 ﬂ T = 4 I I IIiH II
'S S 0 QO Q Q QO 0 0 Q ©
S U S P S S S S S
oS Q& i o‘\Q) N\ Qe? C <K
¢ L ¢ ¥
&

Compound added

Figure 4. C. difficile is selective in which cobamides it can use for NrdJ-dependent growth. The
0.D.¢o0 of C. difficile 630 Aerm ApyrE AnrdDG cultures grown to saturation (22.5 hours) in CDDM with
added uracil and glucose is shown for A. cobamides and Cbi, and B. ALA added. The mean and standard
deviation of three biological replicates are shown in the bars and error bars, respectively.
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Figure 5. HPLC analysis of corrinoid extracts from C. difficile cultures. A. HPLC analysis of
corrinoid extracts from cell pellets of C. difficile 630 Aerm (WT) and 630 Aerm ApyrE
AcbiKLJHGFTEDC grown to saturation in CDDM with glucose with either 100 nM ALA or 10 nM
dicyanocobinamide (Cbi) added. An asterisk (*) indicates the corrinoid peak validated by mass
spectrometry (Supplemental Fig. 2). B. HPLC analysis of corrinoid extracts of C. difficile 630 Aerm
grown with either 100 nM ALA or 10 nM Cbi and 100 nM lower ligand bases DMB or Bza. An Agilent
Eclipse Plus C18 column and an Agilent Zorbax SB-Aq column were used to separate corrinoid
extractions in panels A and B, respectively. Cbi (1), pseudocobalamin (2), cobalamin (3), and [Bza]Cba
(4) are shown as standards.
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690  Figure 6. C. difficile Abtu FCD mutant is impaired in cobamide and Cbi uptake. A. HPLC analysis of
691  corrinoid extracts from cell pellets of C. difficile 630 Aerm (WT) and C. difficile 630 Aerm ApyrE

692  AbtuFCD grown with 10 nM cobamides or 100 nM ALA. Cbi (1), pseudocobalamin (2), cobalamin (3),
693  [2-MeAde]Cba (5), [Cre]Cba (6) are shown as standards. B. Growth of C. difficile 630 Aerm ApyrE
694  AbtuFCD in MetH-dependent conditions. The O.D.gg of saturated cultures (23.5 hours) in CDDMK
695  without methionine plus glucose and uracil is plotted as a function of the amount of compound added.
696  Bars and error bars are the mean and standard deviation of three biological replicates.
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Strain or plasmid

Description

Source

Strains
Escherichia coli XL1-Blue
Escherichia coli CA434

Clostridioides difficile
630 Aerm
630 Aerm ApyrE
630 Aerm ApyrE AbtuFFCD
630 Aerm ApyrE
AcbiKLJHGFTEDC
630 Aerm ApyrE AnrdDG
Plasmids
R702
pMTL-YN3
pXLO001

pXL002

pXL003

hsd20(rB-, mB-, recA13,
rpsL20, leu, proA2, with IncPb
conjugative plasmid R702

Erythromycin sensitive strain
Strain CRG1496

Conjugation helper plasmid
Allelic exchange vector
pMTL-YN3 containing
btuFCD deletion construct
pMTL-YN3 containing
cbiKLJHGFTEDC deletion
construct

pMTL-YNS3 containing nrdDG
deletion construct

QB3 MacroLab
Chain Biotech(87)

(81)
(50)
This study
This study

This study
(87)
(50)
This study

This study

This study
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