

1 **Arginine-enriched mixed-charge domains provide cohesion for nuclear
2 speckle condensation**

3

4 Jamie A. Greig¹, Tu Anh Nguyen¹, Michelle Lee¹, Alex S. Holehouse², Ammon E.
5 Posey², Rohit V. Pappu², and Gregory Jedd^{1*}

6

7 ¹Temasek Life Sciences Laboratory & Department of Biological Sciences, The
8 National University of Singapore, Singapore 117604

9 ²Department of Biomedical Engineering and Center for Science & Engineering of
10 Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130,
11 USA

12

13 *Correspondence: gregory@tll.org.sg

14

15 **Abstract**

16 Low-complexity protein domains promote the formation of various biomolecular
17 condensates. However, in many cases, the precise sequence features governing
18 condensate formation and identity remain unclear. Here, we investigate the role of
19 intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle
20 condensation. Proteins composed exclusively of arginine/aspartic-acid dipeptide
21 repeats undergo length-dependent condensation and speckle incorporation.
22 Substituting arginine with lysine in synthetic and natural speckle-associated MCDs
23 abolishes these activities, identifying a key role for multivalent contacts through
24 arginine's guanidinium ion. MCDs can synergise with a speckle-associated RNA
25 recognition motif to promote speckle specificity and residence. MCD behaviour is
26 tuneable through net-charge: increasing negative charge abolishes condensation and
27 speckle incorporation. By contrast, increasing positive charge through arginine leads
28 to enhanced condensation, speckle enlargement, decreased splicing factor mobility,
29 and defective mRNA export. Together, these results identify key sequence
30 determinants of MCD-promoted speckle condensation, and link the speckle's dynamic
31 material properties with function in mRNA processing.

32

33

34

35 **Introduction**

36

37 Eukaryotic cells simultaneously execute and coordinate a vast array of complex
38 molecular reactions. These can be unfavorable, mutually incompatible, or require
39 special environmental conditions that necessitate segregation and organization in
40 subcellular organelles. Membrane-bound organelles attain their unique protein
41 composition and environment by manipulating the permeability of their delimiting
42 membrane. By contrast, ribonucleoprotein (RNP) bodies form through the
43 condensation of constituent proteins and RNA (Banani et al., 2017; Shin and
44 Brangwynne, 2017). Unlike membranous compartments, the constituents of these
45 biomolecular condensates are in a dynamic equilibrium with the surrounding
46 environment. As a result, membraneless organelles can readily form and dissolve in
47 response to cellular and physiological cues (Brangwynne et al., 2009; Nott et al., 2015;
48 Rai et al., 2018; Wippich et al., 2013). Well-established RNP bodies include nucleoli
49 (Boisvert et al., 2007; Brangwynne et al., 2011; Feric et al., 2016), nuclear speckles
50 (Spector and Lamond, 2011), paraspeckles (Fox et al., 2002), Cajal bodies (Cioce and
51 Lamond, 2005; Sawyer et al., 2017) and promyelocytic leukemia bodies (Dyck et al.,
52 1994; Lallemand-Breitenbach and de Thé, 2018) in the nucleus; and P granules
53 (Brangwynne et al., 2009; Seydoux, 2018), stress granules (Kedersha et al., 1999;
54 Protter and Parker, 2016), and P-bodies (Decker and Parker, 2012; Sheth and Parker,
55 2003) in the cytosol.

56 The formation of RNP bodies has been linked to liquid-liquid phase separation
57 (LLPS) of constituents (Elbaum-Garfinkle et al., 2015; Feric et al., 2016; Molliex et al.,
58 2015; Nott et al., 2015; Patel et al., 2015). Multivalent interactions among repetitive
59 protein-protein or protein-RNA interaction domains / motifs are the key determinants
60 of LLPS (Dennis, 2015; Fung et al., 2018). Multivalent contacts can be achieved with
61 tandem repeats of folded domains (Li et al., 2012), through low-complexity (LC)
62 intrinsically disordered regions (IDRs) (Halfmann, 2016; Lin et al., 2015; Mittag and
63 Parker, 2018), or a combination of the two (Mitrea et al., 2016; Zhang et al., 2015). In
64 these systems, individual contacts are relatively weak. However, with increasing
65 valence, the combined effect of many weak interactions overcome the entropic cost of
66 LLPS (Hyman et al., 2014). In many cases LC-IDRs have been shown to be necessary
67 and sufficient for LLPS. This raises key questions regarding the types of residues that
68 promote intermolecular contacts, and the extent to which these determine condensate

69 identity. Emerging evidence identifies a key role for intermolecular contacts based on
70 specifically patterned charged and aromatic residues (Brangwynne et al., 2015; Nott
71 et al., 2015; Pak et al., 2016; Wang et al., 2018).

72 Nuclear speckles concentrate various factors involved in the regulation of gene
73 expression, mRNA processing and export (Galganski et al., 2017; Spector and
74 Lamond, 2011). Like other condensates, speckles are highly dynamic (Phair and
75 Misteli, 2000), display droplet-like properties (Kim et al., 2019; Marzahn et al., 2016;
76 Misteli et al., 1997), and have both core and peripheral components (Fei et al., 2017).
77 In addition to protein components and nascent mRNAs, speckles also contain non-
78 coding RNA that is thought to regulate splicing factor activity and alternative splicing
79 (Carter et al., 1991; Hutchinson et al., 2007; Prasanth et al., 2010; Tripathi et al., 2010).
80 Speckles appear to assemble in part through the concerted action of a variety of LC-
81 IDRs. A number of these can be sufficient for nuclear speckle incorporation. Such
82 domains include: phospho-regulated arginine-serine (RS) dipeptide repeats found in
83 a number of splicing factors (Cáceres et al., 1997; Li and Bingham, 1991; Misteli et al.,
84 1998), domains enriched in basic-acidic dipeptides (Bishof et al., 2018), and histidine
85 rich tracts (Alvarez et al., 2003; Salichs et al., 2009). However, the overall molecular
86 basis for how LC-IDRs interact to promote speckle formation remains unclear.

87 Here, we examine low-complexity mixed-charge domains (MCDs), highly
88 enriched for positive and negatively charged amino acids. Synthetic sequences allow
89 a systematic examination of the effects of composition and patterning on MCD activity.
90 Our data show that multivalence and arginine-enrichment are key features governing
91 the related activities of condensation and speckle incorporation. MCD activity is
92 strengthened with increasing net-positive charge through arginine, and diminished
93 with increasing negative charge. Speckle identity and residence appear to be
94 determined by the combined effect of RNA recognition through folded domains and the
95 cohesive forces provided by MCDs. Expression of arginine-rich MCDs with net-
96 positive charge leads to enlargement of speckles, increased residence time of RS-
97 splicing factors and defects in mRNA export. Taken together, these results identify key
98 determinants governing the role of MCDs in nuclear speckle condensation. They
99 further show how altering the speckle's material properties can lead to dysfunction in
100 mRNA processing.

101

102

103 **Results**

104

105 **Mixed-charge domains (MCDs) undergo condensation and localize to nuclear
106 speckles**

107 We previously showed that an arginine and aspartic acid (RD)-enriched MCD
108 from the fungal SPA-5 (SPA-5^{MCD}) protein forms a viscoelastic hydrogel. In the fungus,
109 this activity is associated with the formation of cytoplasmic plugs that gate cell-to-cell
110 channels (Lai et al., 2012). To explore the role of such sequences in animal cells, we
111 expressed SPA-5^{MCD} as an mGFP-fusion in HeLa cells (SPA-5^{MCD}-mGFP). In this
112 context, SPA-5^{MCD}-mGFP accumulates in nuclear speckles as revealed by co-
113 localization with the speckle marker serine/arginine-rich splicing factor 1 (SRSF1)
114 (Figures 1A and S1A). SPA-5^{MCD} is enriched in RD dipeptide repeats. However, it also
115 contains other residues that could contribute to its behavior (Figure S1B). To isolate
116 the role of the RD repeats, we produced pure RD-MCDs of varying lengths (RD²⁰,
117 RD³⁰, RD⁴⁰, RD⁵⁰, RD⁶⁰) and expressed these as mGFP-fusions. RD²⁰-mGFP is
118 diffusely localized throughout the cytosol and nucleoplasm. By contrast, RD³⁰-mGFP
119 through RD⁶⁰-mGFP increasingly localize to speckles (Figures 1A, S1C and S1D).
120 Interestingly, unlike the shorter sequences, RD⁶⁰-mGFP also forms rods outside
121 speckles that exclude SRSF1 (Figures 1A and S1E). These data show that a
122 polypeptide composed purely of RD dipeptide repeats can promote repeat number-
123 dependent speckle incorporation.

124 To examine the influence of RD repeat valence on the behavior of purified
125 proteins, we produced the different length variants in *E. coli*. In this context, RD
126 repeats form inclusion bodies, and were therefore purified under denaturing conditions
127 before dialysis into a physiological buffer to allow condensation (see Materials and
128 Methods, Figure S1F). Following centrifugation at 100,000 x g, RD²⁰ and RD³⁰ are
129 found exclusively in the supernatant fraction (Figure 1B). By contrast, RD⁴⁰ through
130 RD⁶⁰ progressively shift into the pellet fraction. The pelleting material consists of
131 arrays of fibers that can be visualized using bright-field (BF) microscopy (Figures 1C
132 and S1G). Scanning electron microscopy further shows that fibers are composed of
133 bundles of fibrils (Figures 1C). By contrast, SPA-5^{MCD} assembles into multi-lobed
134 structures. Both SPA-5^{MCD} and RD⁵⁰ undergo condensation in the absence of
135 molecular crowding agents, and assemble to completion at 5 μ M (Figure 1D),

136 indicating that condensation can occur at typical cellular protein concentrations (Hein
137 et al., 2015). Quantification of *in vitro* assembly and *in vivo* speckle association reveals
138 similar length dependency (Figure 1E). Thus, RD repeat condensation and speckle
139 incorporation appear to be governed by the valence (number) of RD motifs.

140 To further examine MCD behavior, SPA-5^{MCD} and RD⁵⁰ were produced as
141 mGFP-fusions (Figure S1F). Proteins were purified in high salt, followed by dilution
142 into a low salt buffer to allow condensation. In this assay, both mGFP-RD⁵⁰ and mGFP-
143 SPA-5^{MCD} condense into spherical droplets as observed by fluorescence and BF
144 microscopy (Figure S1H). However, unlike the untagged proteins, this behavior
145 requires the addition of a molecular crowding agent (Polyethylene glycol at 10 % (w/v)),
146 suggesting that the mGFP moiety tends to counteract condensation. mGFP-RD⁵⁰
147 droplets are metastable, maturing into rods over time. Fluorescence recovery after
148 photobleaching (FRAP) of newly formed mGFP-RD⁵⁰ and mGFP-SPA-5^{MCD} droplets
149 is extremely limited, indicating that both condensates undergo an internal gelation
150 transition (Figure 1F).

151

152 **Naturally occurring MCDs promote nuclear speckle assembly**

153 To explore the functions of MCDs in mammalian cells, we searched the human
154 proteome for sequences of greater than 60 amino acids in length with a fraction of
155 charged residues (FCR) ≥ 0.7 and a positive to negative charge ratio from 1:0.7 to
156 1:1.3. (Table S1). The output from this search is enriched for the speckle gene
157 ontology (GO) term (Fold enrichment (FE) = 5.55, False discovery rate (FDR) =
158 8.89×10^{-9}). Because a number of speckle proteins contain arginine-serine (RS)
159 dipeptide repeats, which are regulated by phosphorylation (Colwill et al., 1996; Gui et
160 al., 1994; Zhou and Fu, 2013), we also conducted the search including known
161 phosphorylated serine residues as providers of negative charge (Table S1). This
162 produces a further enrichment for the speckle GO term (FE = 7.63, FDR = 1.04×10^{-27}).
163 We next selected groups of arginine (R)- or lysine (K)-enriched MCDs (R-MCDs
164 and K-MCDs) and examined their cellular localization as mGFP-fusions (Figures 2A,
165 2B, S2A-C and Table S2). R-MCDs from known nuclear speckle proteins, including
166 the U1snRNP subunit U1-70k (snRNP70) (Bringmann and Lührmann, 1986; Verheijen
167 et al., 1986) and the pre-mRNA cleavage and polyadenylation factor CPSF6
168 (Rüegsegger et al., 1998), are sufficient to promote speckle association. R-MCDs

169 found in proteins that have not been previously localized to speckles are also sufficient
170 for speckle incorporation. These include the polyadenylation factor FIP1L1 (Kaufmann
171 et al., 2004), and the RNA polymerase II elongation regulator NELF-E (Yamaguchi et
172 al., 1999). By contrast, K-MCDs from the nonsense mediated decay factor UPF2
173 (Lykke-Andersen et al., 2000) and the dentatorubral-pallidoluysian atrophy associated
174 protein RERE (Yanagisawa et al., 2000) are diffusely distributed throughout the cell,
175 while those from the chromatin remodelling factors NCOR1 and INO80 (Heinzel et al.,
176 1997; Jin et al., 2005) appear to promote nucleolar localization (Figure 2B). The R-
177 MCDs display varying tendencies towards condensate formation as pure proteins.
178 mGFP-U1-70k and mCherry-CPSF6 R-MCDs form droplets, while the mCherry-NELF-
179 E R-MCD forms fibrils. By contrast the mCherry-UPF2 K-MCD remains soluble under
180 all conditions examined (Figures 2C and S2D). All the R-MCDs co-assemble with
181 mGFP- or mCherry-RD⁵⁰ (Figure 2D). Taken together, these data suggest that, under
182 the conditions studied here, R-MCDs, but not K-MCDs form condensates. Their ability
183 to co-assemble with RD⁵⁰ further suggests that heterotypic R-MCD interactions
184 contribute to nuclear speckle formation.

185

186 **Arginine plays a critical role in MCD condensation and nuclear speckle 187 incorporation**

188 We next sought to examine R-MCD function in the full-length spliceosome
189 component U1-70k. U1-70k localizes to the speckles and foci corresponding to snRNP
190 assembly bodies known as nuclear GEMs (Stejskalová and Staněk, 2014; Verheijen
191 et al., 1986). In addition to the R-MCD examined above (MCD1), U1-70k contains a
192 second smaller R-MCD (MCD2) (Figure 3A). Deletion of MCD1, but not MCD2 results
193 in loss of speckle localization (Figures 3B and S2E). By contrast, R-MCD deletions do
194 not affect GEM incorporation, which is known to rely on an N-terminal domain
195 (Stejskalová and Staněk, 2014). To investigate the difference between the
196 guanidinium moiety in R and the amine in K, we created a variant in which the MCD
197 Rs are substituted with Ks. In the full-length protein, this change abolishes speckle
198 incorporation but not assembly into GEMs. (Figures 3B and S2F). R to K substitution
199 in MCD1-mGFP significantly diminishes its speckle incorporation while increasing
200 localization to the nucleolus (Figures 3C, 3D and S2G). R to K substitution in MCD1-
201 mGFP also abolishes its ability to undergo condensation in the *in vitro* assay (Figures
202 3E and S2D). Taken together, these data identify a key role for R in the U1-70k MCDs.

203 Data presented thus far suggest that within MCDs, R and K have fundamentally
204 different properties. To further investigate the role of different positive and negatively
205 charged amino acids, we returned to pure synthetic dipeptide repeats and generated
206 mGFP- and His-tagged versions of KD^{50} , KE^{50} , and RE^{50} . Both K-MCDs, KD^{50} and
207 KE^{50} , fail to condense and do not localize to speckles (Figures 4A-B and S3A-B). This
208 finding further corroborates the key role for the R guanidinium ion in MCD
209 condensation and speckle incorporation. With respect to the choice of the negatively
210 charged residue, RE^{50} undergoes condensation, but is not incorporated into speckles
211 (Figures 4A-B). Instead, it forms punctate foci in the cytosol and nucleoplasm. As
212 compared to pure RD repeat proteins, RE repeats condense at a lower critical length
213 (Figures 4C and S3E-G) and associate weakly with speckles at intermediate lengths
214 (Figures S3C-D). These data suggest that RE repeats favor self-association over the
215 formation of heterotypic contacts that promote their incorporation into nuclear speckles.
216 Unlike the fibrils formed by RD^{50} , RE^{50} forms multi-lobed condensates *in vitro* (Figure
217 4D).

218 R-MCDs sufficient for speckle association (Figure 2A) (Bishof et al., 2018) have
219 an average R/K ratio of 9 and an average E/D ratio of 1.38. To examine the behavior
220 of dipeptide repeats composed of mixtures of R and K, and D and E we randomly
221 generated four 100-residue dipeptide repeats that conform to either low (R/K=1.77) or
222 high R content (R/K=9). All the sequences that have low R-content (R-low) exhibit
223 weak speckle incorporation and condense poorly (Figures 4E-G and S4). By contrast,
224 sequences that have high R-content (R-high) exhibit superior speckle recruitment and
225 undergo condensation comparable to RD^{50} (Figures 4E-G and S4). These data
226 corroborate findings regarding the R-enrichment of natural speckle MCDs, and
227 suggest that MCDs generally require a high fraction of R for condensation and nuclear
228 speckle incorporation. In the context of pure dipeptide repeats, RE^{50} behaves quite
229 differently as compared to RD^{50} (Figures 4A-D). However, we note that when E is
230 modestly enriched over D, as is observed in naturally occurring MCDs, randomly
231 patterned mixed sequences show relatively uniform tendencies for both speckle
232 incorporation and condensation (Figures 4E-G and S4).

233

234 **RS-domains appear to be phosphorylation-regulated MCDs**

235 Arginine-serine (RS) domains are present in a variety of speckle-associated
236 proteins (Jeong, 2017; Shepard and Hertel, 2009) (Table S3). RS domains can be

237 sufficient to promote speckle incorporation (Cáceres et al., 1997), and are known to
238 undergo extensive serine phosphorylation (Colwill et al., 1996; Gui et al., 1994; Zhou
239 and Fu, 2013). Thus, RS domains appear to be R-MCDs whose net-charge can be
240 tuned through phosphorylation. To investigate the behavior of isolated RS dipeptide
241 repeats, we made synthetic RS sequences of 20-50 repeats. Upon expression as
242 mGFP-fusions in HeLa cells, all these sequences undergo a degree of
243 phosphorylation as revealed by phosphatase treatment (Figure S5A). RS²⁰-mGFP is
244 diffusely distributed through the nucleoplasm, and RS³⁰ and RS⁴⁰ form small foci in the
245 nucleoplasm that do not appear to be associated with speckles (Figures S5B-C). By
246 contrast, RS⁵⁰-mGFP co-localizes with the speckle marker SRSF1. However, it also
247 forms bright foci at the speckle periphery that exclude SRSF1 (Figure 5A). FRAP
248 experiments demonstrate that RS⁵⁰-mGFP bodies has extremely limited recovery on
249 photobleaching compared with RD⁵⁰-mGFP and the SRSF2 RS domain-mGFP, which
250 are highly dynamic (Figures 5B and 5G). RD⁵⁰ has a net-charge of zero. By contrast,
251 unphosphorylated RS domains have a high net-positive charge, which drops
252 progressively with increasing phosphorylation. Despite having fewer RS dipeptides
253 (27), the RS domain from SRSF2 is more highly phosphorylated than RS⁵⁰ (Figure
254 5C). Thus, RS domains appear to behave like phospho-tunable R-MCDs.

255

256 **Synergy between an R-MCD and RNA recognition motif enhance speckle 257 specificity**

258 A major question in the field of biomolecular condensates pertains to the
259 molecular basis of condensate identity. The R-MCDs from U1-70K, CPSF6 and
260 FIP1L1 exhibit varying degrees of incorporation into the nucleolus (Figure 2A). By
261 contrast, full-length U1-70K (Figure 3B) (Verheijen et al., 1986) and CPSF6 (Cardinale
262 et al., 2007) appear to be excluded from the nucleolus. RS-domain containing proteins
263 and most of the naturally occurring R-MCD containing proteins identified here possess
264 folded domains, among which RNA recognition motifs (RRMs) are the most common
265 (Figure S2A) (Jeong, 2017; Shepard and Hertel, 2009). To better understand the
266 interplay between R-MCDs and folded domains, we examined the behavior of the RNA
267 recognition motif (RRM) from the splicing factor SRSF2 alone and in combination with
268 RD⁵⁰ (Figure 5D). As compared to full-length SRSF2, its RRM (RRM^{SRSF2}) is weakly
269 incorporated into speckles and has no tendency towards enrichment in the nucleolus
270 (Cáceres et al., 1997) (Figures 5E-F). Interestingly, an RRM^{SRSF2}-RD⁵⁰ fusion protein

271 is significantly more speckle-enriched than either domain alone, attaining a degree of
272 enrichment comparable to full-length SRSF2 (Figures 5E-F). Moreover, the RRM^{SRSF2}-
273 RD⁵⁰ fusion protein is excluded from the nucleolus to the same degree as full-length
274 SRSF2 (Figures 5E-F). FRAP further reveals that the RRM^{SRSF2}-RD⁵⁰ fusion protein
275 is more tightly associated with speckles than either RD⁵⁰ or RRM^{SRSF2} alone (Figure
276 5G). Together, these findings indicate that RRM^ss and R-MCDs can work
277 synergistically to promote speckle residency.

278

279 **Increasing MCD net positive charge through arginine enhances speckle
280 cohesion leading to defects in mRNA export**

281 RD⁵⁰ has a net-charge of zero. However, naturally occurring R-MCDs tend to
282 have a net-positive charge (Figure 2A), and this appears correlated to their
283 incorporation into speckles and formation of condensates (Figures 2A and 2C). To
284 examine the effect of net-charge, we generated R- and K-MCDs that use a 1 to 1
285 mixture of D and E, and expressed these as mGFP-fusions (Figures 6A-B and S6A).
286 Starting with the net neutral MCD, regularly spaced substitutions for oppositely
287 charged residues allow the systematic variation of net-charge per residue from zero
288 to +0.1, +0.2 (or -0.1, -0.2) (Figure 6A). Increasing net-positive charge in the R-MCDs
289 progressively enhances speckle residency (Figure 6B). This is reflected in enlarged
290 speckles (Figure 6C), an increasing speckle to nucleoplasm signal ratio (Figure 6D),
291 and slower FRAP recovery (Figure 6E). By contrast, increasing the net-positive charge
292 in K-MCDs has little effect on speckle incorporation, but instead leads to increased
293 accumulation within the nucleolus (Figures 6B, 6D and 6F). Increasing the net-
294 negative charge of the R-MCD abolishes speckle incorporation, leading to diffuse
295 localization throughout the cell (Figure 6B). This suggests that negatively charged
296 residues counteract the condensation-promoting effect of arginine. *In vitro* behavior
297 further supports the idea that the speckle-residency of the R-MCD variants is directly
298 related to their propensity to undergo condensation. The R-MCD variant with a net-
299 charge per residue of -0.1 is unable to undergo condensation, even in low salt buffer.
300 By contrast, the net-neutral R-MCD shows modest activity, while the most robust
301 condensation and highest degree of salt-resistance is observed with the highest net-
302 positive charge variant (Figures 6G and S6B).

303 The patterning of charged residues has previously been shown to influence
304 electrostatically-mediated phase separation and can be quantified by the parameter

305 kappa (κ), which ranges between zero for fully mixed charges to one for fully
306 segregated charges (Das and Pappu, 2013; Lin and Chan, 2017; Pak et al., 2016).
307 Because net-charge per residue variants simultaneously vary net-charge and charge
308 patterning, we produced net-neutral charge segregated RD variants in which repeats
309 consisted of clusters of five (R5D5¹⁰) or seven (R7D7⁷) like-charged residues (Figure
310 S6C). Segregating charge in this manner leads to a modest enhancement in speckle
311 enrichment. However, a comparable nucleolar enrichment is also observed (Figures
312 S6D-G). Thus, while the linear segregation of oppositely charged residues within the
313 sequences of MCDs appears to promote condensation, the effect is not specific to
314 speckles and its magnitude is small compared to that achieved by increasing net-
315 charge through R.

316 We next examined the effect of R-MCD expression on the behavior of the RS-
317 domain containing splicing factors SRSF1, SRFS2 and SRSF3. Expression of net-
318 positive R-MCDs promotes speckle residency of all three (Figures 6B, 6H, S7A-B and
319 S7D-E). Overall the magnitude of this effect increases with increasing net-positive
320 charge. SRSF1 and SRSF3 display an increased speckle to nucleoplasm signal ratio
321 upon expression of R-MCD^{+0.1}. By contrast, a higher ratio is observed upon expression
322 of R-MCD^{+0.2}, and in this case, all three SRSFs are affected. Similarly, all three
323 proteins show slower FRAP recovery with R-MCD^{+0.2} expression, while expression of
324 R-MCD^{+0.1} only produces a significant effect on SRSF3 (Figures 6I, S7C and S7F).
325 Together, these results show that R-MCDs can control the material properties of
326 speckle condensates through heterotypic interactions that extend to RS-domain
327 containing proteins.

328 To determine the functional impact of expressing high-net charge R-MCD
329 variants, we used fluorescent in situ hybridization to localize total polyadenylated
330 (Poly(A)) mRNA with Cy5-oligo-dT³⁰ (Figure 7A). In cells expressing mGFP alone, or
331 the net-neutral R-MCD, Cy5-oligo-dT³⁰ signal is present in speckles and is uniform in
332 the cytosol. In this group of transformants, there appears to be little variation in the
333 overall staining pattern, which has a similar appearance in untransformed cells. By
334 contrast, in cells expressing net-positive R-MCDs, Cy5-oligo-dT³⁰ reveals significantly
335 higher levels of poly(A) mRNA in speckles as compared to untransformed cells, or
336 those expressing the net-neutral R-MCD (Figures 7A-B). Interestingly, accumulation
337 of mRNA in the nucleus appears to be accompanied by a concomitant decrease in

338 signal from the cytosol (Figure 7A). Moreover, the magnitude of this effect as
339 measured by the ratio of average signal density in the nucleus to that in the cytosol
340 correlates well with the expression level of net-positive R-MCD variants (Figure 7C).
341 As with the effect on condensation and speckle size, the variant with the highest net-
342 positive charge has the strongest effect. Together, these data show that increasing
343 speckle cohesion results in the aberrant accumulation of mRNA within speckles. The
344 loss of cytosolic mRNA signal further suggests significant defects in mRNA export.

345

346 **Discussion**

347 Despite considerable progress in understanding the molecular basis of
348 compartmentalization via biomolecular condensation (Gomes and Shorter, 2019;
349 Langdon et al., 2018; Nott et al., 2015; Pak et al., 2016; Wang et al., 2018), important
350 open questions remain. In particular, how LC-IDRs contribute to compartment
351 assembly and identity remains unclear. Here, we examine the influence of length,
352 composition and charge patterning on the behavior of intrinsically disordered mixed-
353 charge domains (MCDs). Using synthetic and natural MCDs, we show that R-
354 enrichment is a key feature underlying condensation and recruitment to nuclear
355 speckles (Figures 1A-B, 2A, 2C, 3B-E, 4A-B, 4E-G and 6B-D). By contrast, K-enriched
356 MCDs (K-MCDs) do not display a comparable propensity towards condensation
357 (Figures 2C, 3E, 4B, and 4G), and tend to promote nucleolar uptake (Figures 2B, 3C,
358 6B and 6F).

359 R and K are generally considered related through their positively charged side
360 chains. However, data presented here reveal fundamental differences. The R
361 guanidinium ion comprises three planar nitrogen groups; an arrangement that allows
362 simultaneous formation of charge-charge, pi-pi and cation-pi contacts. By contrast, the
363 K side chain amine is monovalent, leading to an inability to engage in pi-pi contacts,
364 and a weak tendency to form cation-pi contacts as compared to the R sidechain
365 (Armstrong et al., 2016; Chong et al., 2018; Gallivan and Dougherty, 1999; Vernon et
366 al., 2018). Distinctive interactions of R with aromatic residues (Bogaert et al., 2018;
367 Vernon et al., 2018; Wang et al., 2018) and RNA (Boeynaems et al., 2019) have also
368 been demonstrated in other condensates. As shown here for MCDs, R to K
369 substitution in the Nuage component Ddx4 (Vernon et al., 2018), and the
370 paraspeckle/stress granule protein FUS (Wang et al., 2018), significantly diminishes
371 their ability to form condensates. R to K substitution in C9orf72 derived proline-R
372 repeats results in the formation of less viscous condensates with RNA (Boeynaems et
373 al., 2019). Thus, R appears to play a fundamental context-specific role to promote the
374 formation of different biomolecular condensates.

375 Synthetic sequences provide a powerful tool to explore the relationship
376 between sequence composition, patterning, and phase behavior of IDRs. For pure RD
377 repeats, condensation and speckle incorporation activities respond similarly to
378 increasing repeat number (Figures 1A-B and 1E). Interestingly, unlike shorter variants,

379 RD⁶⁰-mGFP forms rod-shaped assemblies in the nucleus that exclude a marker of
380 nuclear speckles (Figures 1A and S1E). This suggests that at high valence, RD-repeat
381 sequences begin to favor self-association over the heterotypic contacts that drive them
382 into speckles. In other systems, R has been shown to contribute to condensate
383 formation through interactions with aromatic residues (Bogaert et al., 2018; Nott et al.,
384 2015; Wang et al., 2018). However, such interactions are not available in sequences
385 composed exclusively of positive and negatively charged residues. Moreover, the
386 inability of K to substitute for R, suggests that charge-charge interactions alone are
387 insufficient to promote condensation (Figures 3E and 4B). Interestingly, recent work
388 documents a water-stabilized like-charge complex between guanidinium ion pairs
389 (Hebert and Russell, 2019). Thus, R-R contacts may also contribute to MCD
390 condensation. Other candidates for stabilizing interactions involving R-residues are
391 likely to involve the apparent “Y-aromaticity” of R-residues, and hydrogen bonding to
392 backbone carbonyl groups (Borders et al., 1994; Chong et al., 2018). Resolving the
393 relative contributions of these different bonds will require further experimental and
394 theoretical work.

395 Expression of R-MCDs with a high net-positive charge through R leads to
396 enlarged speckles and increased residence time of R-MCDs, as well as the speckle
397 components SRSF1, SRSF2 and SRSF3 (Figures 6B-C, 6E, 6H-I and S7). These
398 observations, combined with the ability of RD⁵⁰ to co-assemble with naturally occurring
399 R-MCDs *in vitro* (Figure 2D), are consistent with a major role for extended heterotypic
400 R-MCD contacts in speckle condensation. Interestingly, recombinant SRSF1 and
401 SRSF2 have recently been shown to form condensates, which can incorporate the
402 RNA Polymerase II C-terminal domain (Guo et al., 2019). While the role of RS
403 domains and phosphorylation in this behavior remains unclear, this finding provides
404 additional evidence for the ability of SRSF proteins to engage in an extended
405 interaction network. The dynamic nature of speckles is likely to be intimately
406 associated with their function in mRNA processing and export (Misteli et al., 1997).
407 Indeed, the expression of high net-positive charge R-MCDs also leads to the aberrant
408 accumulation of polyadenylated mRNA in speckles and diminished levels in the
409 cytosol (Figure 7). Thus, increased cohesion of the speckles proteinaceous
410 constituents results in defective mRNA release or export. While the precise cause of

411 this defects remains to be determined, these results clearly indicate that altering the
412 material properties of the speckle condensate impairs normal function.

413 Increasing MCD negative charge abolishes speckle-incorporation and
414 condensation (Figures 6B, 6D and 6G). In the context of RS repeats, phosphoserine
415 appears to provide for a similar effect. Poorly phosphorylated pure RS repeats with
416 high net-positive charge terminally self-associate into aberrant nuclear bodies (Figures
417 5A, 5C and S5A-B). By contrast, the more highly phosphorylated RS domain from
418 SRSF2 is weakly speckle-incorporated and highly dynamic (Figures 5C and 5E-G).
419 Previous work suggests that the degree of phosphorylation of RS-splicing factors is
420 employed as a switch to regulate speckle association/assembly. Phosphorylation is
421 required for speckle residence (Keshwani et al., 2015; Lai et al., 2001; Ngo et al.,
422 2005). However, additional phosphorylation promotes exit from the speckle (Colwill et
423 al., 1996; Misteli et al., 1998; Velazquez-Dones et al., 2005). Further to this, the
424 DYRK3 kinase has recently been shown to disassembles speckles during mitosis (Rai
425 et al., 2018). Together, these data support a model where R-MCD activity is
426 determined by the balance between cohesion through enrichment for R and
427 dissolution promoted by the negatively charged residue, which can be provided by D,
428 E or is tuneable through phospho-serine.

429 R-MCDs identified here are found in proteins associated with diverse aspects
430 of mRNA processing. These include the central splicing factor U1-70k, poly-
431 adenylation factors CPSF6 and FIP1L1, and the RNA polymerase 2 regulator, NELF-
432 E. Previous work showed that U1-70k assembles into Alzheimer disease aggregates
433 (Diner et al., 2014), and coprecipitates with the splicing factors RBM25 and LUC7L3
434 through basic-acidic dipeptide-repeat domains, which share physicochemical
435 properties with R-MCDs examined here (Bishof et al., 2018). These data, combined
436 with data presented here, suggest that diverse proteins associated with mRNA
437 processing employ R-MCDs to promote speckle-incorporation and residence. SPA-5
438 was originally identified by machine learning as one of a group of cytosolic LC-IDR
439 containing proteins that undergo condensation to gate fungal cell-cell channels (Lai et
440 al., 2012). The finding that related LC-IDRs participate in speckle condensation in
441 animal cells suggests an interesting type of convergent evolution in which similar
442 sequences were selected to form condensates with dramatically different functions.

443 Isolated R-MCDs are incorporated primarily into nuclear speckles. However,
444 they also display varying degrees of weak nucleolar labelling (Figures 1A, 2A-B, 3C,

445 6B, 6F, S6D and S6F). This tendency appears to be related to high net-positive charge
446 through K (Figures 3C, 6B and 6F), or increased charge segregation (Figures S6C-F).
447 This finding is consistent with previous work showing that K-rich tracts are sufficient
448 for nucleolar uptake (Scott et al., 2010). K-MCDs do not appear to have a strong
449 tendency to undergo condensation (Figures 3E and 4B). Thus, nucleolar incorporation
450 of these sequences may occur through complex coacervation with negatively-charged
451 protein regions and/or RNA, as observed for other nucleolar constituents (Mitrea et al.,
452 2018; White et al., 2019). LC sequences based on R-residues that lack negative
453 charges, such as the GR/PR dipeptide repeats derived from *C9orf72* and RGG motifs
454 found in RNA binding proteins, also associate with the nucleolus (Feric et al., 2016;
455 Kwon et al., 2014; Lee et al., 2016). Thus, the mixed-charged context of the R-MCDs
456 appears to be an important determinant of speckle-specific incorporation.

457 Many membraneless organelles are RNP granules that function in distinct
458 aspects of RNA processing. Speckles (Shevtsov and Dundr, 2011), paraspeckles
459 (Clemson et al., 2009; Naganuma et al., 2012) and nucleoli (Berry et al., 2015; Falahati
460 et al., 2016) all appear to be seeded at sites where the RNAs they act upon are
461 produced. Recent work showing that a variety of condensate-forming IDRs can
462 synergize with an RRM domain in yeast P-body assembly (Procter et al., 2018) has
463 led to the proposal that RNA recognition by RRMs acts to seed condensate formation,
464 while LC-IDRs are generally promiscuous and provide binding energy to drive
465 condensation. In nuclear speckles, R-MCDs preferentially incorporate into speckles
466 over nucleoli (Figures 1A, 2A, 6B, 6D and 6F). Moreover, fusion of RD⁵⁰ to the RRM
467 from SRSF2 significantly enhances residence time and speckle-specific incorporation
468 as compared to either domain alone (Figures 5D-G). Thus, the RRM and R-MCDs
469 each appear to contribute to both cohesion and specificity. Together, these findings
470 lead to a model in which stereospecific recognition of RNAs by RRMs and the
471 unstructured interactions of R-MCDs synergize to tune speckle condensation,
472 composition and dynamics.

473 **Acknowledgments**

474 GJ, JAG, TAN and ML are supported by the Temasek Life Sciences Laboratory and
475 Singapore Millennium Foundation. The contributions of ASH, AEP, and RVP were
476 supported by funds from the US National Institutes of Health (5R01NS056114 and 1

477 R01NS089932), the Human Frontier Science Program (RGP0034/2017), and the St.
478 Jude Research Collaborative on membraneless organelles. Partial support for the
479 contributions of ASH come from the MOLSSI foundation.

480 **Author Contributions**

481 JAG and GJ conceived the project. JAG, ML and AEP performed experiments. TAN
482 and ASH performed bioinformatics analysis. All the authors analyzed the data. JAG
483 and GJ wrote the manuscript with input from all the authors.

484

485 **Declaration of Interests**

486 RVP is a member of the Scientific Advisory Board of Dewpoint Therapeutics Inc.
487 There are no competing financial or ethical conflicts to declare.

488

489 **Figure Legends**

490 Please see figures.

491 **Methods**

492

493 **Gene synthesis and expression**

494 Synthetic MCD sequences were codon randomized allowing equal probability for all
495 possible codons, and then synthesized as *NdeI-BamHI* fragments in pUC57
496 (GenScript). For expression in HeLa cells, sequences were sub-cloned into a modified
497 pEGFP-N1 vector (Clonetech) where the *NdeI* site in the CMV promoter was removed
498 and the A206K mutation introduced in eGFP to produce monomeric (mGFP)
499 (Zacharias et al., 2002). MCD-mGFP fusions were produced through standard
500 molecular biological techniques. Accessions and amplified regions for these
501 constructs can be found in Table S4. All domain deletions and mCherry-fusion proteins
502 were produced by overlap extension PCR, with mCherry-fusions subsequently cloned
503 into pcDNA3.1+ (ThermoFisher # V79020). For expression and purification from *E.*
504 *coli*, sequences were sub-cloned into a modified pET15b vector (Novagen #69661-
505 3CN) with a C-terminal Thrombin-6xHIS sequence. To purify proteins as N-terminal
506 mCherry or mGFP-fusions, a pET15b vector containing mGFP- or mCherry-*NdeI-*
507 *BamHI*-TEV-6xHIS was used.

508

509 **Mammalian cell culture**

510 HeLa cells were cultured in Dulbecco's modified eagle's medium (DMEM)
511 (ThermoFisher # 10566016) supplemented with penicillin streptomycin and glutamine
512 (ThermoFisher #10378016). For transfection, cells were cultured in 8-well microscopy
513 chamber slides (ThermoFisher #155411PK) or 24-well plates. Transient transfection
514 was carried out using lipofectamine 3000 (ThermoFisher) following the manufacturer's
515 instructions. 500 ng of plasmid DNA was used for 24-well plate transfections and
516 scaled appropriately for other culture dishes. Unless otherwise stated, cells were fixed
517 48 hours post transfection with 4% paraformaldehyde (Electron Microscopy Sciences
518 #15713S) in PBS for 15 minutes at room temperature. For imaging, cells were
519 mounted in 90% glycerol phosphate buffered saline (PBS).

520

521 **Immunoblotting**

522 HeLa cells grown in 24-well plates were washed four times with one volume of ice-
523 cold PBS, before incubating for on ice for 10 minutes in 60 µL RIPA buffer (50 mM
524 Tris pH 7.4. 150 mM NaCl, 1 % Triton X-100, 0.1 % SDS and 0.1% sodium

525 deoxycholate), supplemented with HaltTM Protease and Phosphatase Inhibitor cocktail
526 (ThermoFisher #78440). The cell lysate was centrifuged at 20,000 x g for 10 minutes
527 and the supernatant was boiled in loading dye. Phosphatase treatment was carried
528 out on boiled lysates using alkaline phosphatase (NEB #M0290) for at least one hour
529 at 37°C. Unless otherwise stated, 10 µL of sample was run on a 10% SDS-PAGE gel.
530 Proteins were transferred to nitrocellulose, which was subsequently blocked with 10%
531 Blotting-grade blocker (BioRad #1706404) in Tris buffered saline (50 mM Tris pH 7.4,
532 150 mM NaCl) with 0.1% Tween-20 (TBS-T). Primary antibodies were incubated in 2%
533 milk TBS-T for two hours at room temperature or overnight at 4°C. Mouse anti-GFP
534 (Roche 11814460001) was diluted 1:1000. Blots were washed three times for five
535 minutes with TBS-T at room temperature. Secondary antibody, sheep anti-mouse
536 HRP conjugate (GE #NA931), was diluted 1:8000 in 2% milk TBS-T and incubated for
537 one hour at room temperature. Blots were washed as above before incubating with
538 ECL reagents and imaging on a BioRad ChemiDocTM MP Imaging System. Imaging
539 was done at maximum resolution with 2x2 pixel binning and exposure determined by
540 the software.

541

542 **Computational identification of naturally occurring MCDs**

543 Protein sequences from the reviewed human proteome (Uniprot accession
544 AUP000005640) were searched for regions with a minimum FCR of 0.7 and
545 positive/negative charge ratio of 1:1±0.3 using a window size of 60 amino acids. To
546 consider phosphorylation, the same search was conducted, but with known
547 phosphorylated serine residues (<https://www.phosphosite.org>) considered as
548 contributors of negative charge. RS-domains were identified in an analogous manner,
549 with a window size of 60 amino acids, a fraction of 0.6 of serine + arginine, and with a
550 serine/arginine ratio of 1:1 ± 1. The script used for MCD identification can be found at
551 https://github.com/Anh-01-10-0000/Jedd_lab. Cellular component enrichment
552 analysis was performed using the tool provided by <http://geneontology.org/> with
553 accessions of proteins containing at least one MCD satisfying the criteria stated above.
554 Functional annotations for RS-domain proteins were generated using PantherDB (Mi
555 et al., 2019). MCD sequence features were analyzed using the package localCIDER
556 (Holehouse et al., 2017). The script used to identify RS domains can be found at
557 <https://github.com/alexholehouse/rscode>.

558

559 **Immunostaining**

560 Transiently transfected cells were cultured for 48 hours before washing once with PBS
561 then fixing with 2% paraformaldehyde, 4% sucrose in PBS for five minutes at room
562 temperature. Fixation was quenched with 100 mM glycine in PBS. Cells were
563 permeabilized with 0.25% Triton X-100 in PBS for 10 minutes before washing twice in
564 PBS. Blocking was carried out with 5% BSA, 5% normal goat serum and 0.05% Triton
565 X-100 in PBS at room temperature for at least one hour. Rabbit anti-Fibrillarin (Abcam,
566 ab5821) was diluted to 1:1000 in blocking solution and was incubated overnight at 4°C
567 in a humid chamber. Cells were washed three times for five minutes with PBS
568 containing 0.05% Triton X-100. The secondary antibody, goat anti-rabbit Dylight-405
569 (Thermo #35551), was diluted 1:1000 in blocking buffer and incubated with the cells
570 for one hour at room temperature in a humid chamber. Cells were washed as above
571 and then mounted in 90% glycerol-PBS for imaging. Cells were imaged as stated
572 above.

573

574 **Super-resolution Imaging**

575 Stimulated emission depletion (STED) imaging of RD⁶⁰-mGFP was carried out on a
576 Leica SP8 inverted microscope fitted with a 100x objective of N.A. 1.4. The 592 nm
577 STED laser was set at 60% power and the 488 nm white-light laser at 7% power with
578 a gain of 45%. 10 z-sections were taken over 1 μm with 16-line averages and a pixel
579 size of 20 nm. Subsequently images were deconvolved using Huygens Professional.
580 The compressed z-stack of all 10 sections is shown in Figure S1E.

581

582 **Imaging fixed mammalian cells**

583 Paraformaldehyde-fixed cells were imaged on a Leica SP8 inverted confocal
584 microscope with a 63x oil-immersion objective of N.A. 1.4. Images were acquired at
585 Nyquist sampling rates, with a 51 nm pixel size in 140 nm z-sections at a scan speed
586 of 400 Hz with 4x line averaging. For mGFP imaging, the fluorophore was excited at
587 488 nm with 5% laser power and the detector set to 500-550 nm at maximum 50%
588 gain. For mCherry Imaging, the fluorophore was excited at 587 nm and the detector
589 set to 600-650 nm with 50% gain. For staining using dylight405 the fluorophore was
590 excited at 405 nm with the detector set at 405-420 nm with 50% gain. For Cy5-oligo-
591 dT³⁰ staining the fluorophore was excited at 631 nm with the detector set at 650-700
592 nm at 40% gain. Images of nuclei are compressed z-stacks covering the entire nucleus

593 deconvolved using Huygens Professional (Scientific Volume Imaging) and processed
594 using ImageJ (<https://imagej.nih.gov/ij/>). For Figures S6A, S6D and 7A, single medial
595 sections are shown with 8x line averaging. For all quantification, single medial sections
596 at 8x line-averaging were taken from a minimum of 10 different cells.

597

598 **Fluorescence in-situ hybridization (FISH)**

599 Transiently transfected cells were cultured for 48 hours before fixation with 4%
600 paraformaldehyde in PBS for 15 minutes. Cells were permeabilized with 0.1% Triton
601 X-100 in 2x saline sodium-citrate (SSC) buffer for 15 minutes, before washing with 1
602 M Tris pH 8.0. Blocking was carried out with 0.005% BSA, 1 mg/ml yeast tRNA
603 (ThermoFisher #AM7119) in 2x SSC buffer. Cells were then washed once with 1 M
604 Tris pH 8.0 prior to hybridization. For probe hybridization, 1 ng/ul Cy5-oligo-dT30 was
605 incubated in the blocking buffer with the addition of 10% dextran sulphate and 25%
606 formamide for one hour at 37°C in a humid chamber. Cells were then washed twice
607 with 4xSSC buffer and once with 2xSSC buffer before mounting in 90% glycerol in
608 2xSSC. Single medial planes were imaged with 8x line averaging using Nyquist
609 sampling as above. Imaging settings were standardized on the +0.2 R-MCD
610 expressing cells, with the same settings used for all other cells. For quantification, the
611 nucleus and the cytosol were manually assigned from the oligo-dT signal.

612

613 **Quantification of speckle/nucleolar incorporation**

614 The speckle or nucleolar enrichment is calculated as the average signal density in the
615 speckle or nucleolus divided by the average density in the nucleoplasm. A 1:1 ratio is
616 taken to indicate no enrichment and is set to zero for the graphs. Images of co-
617 expressed mCherry-SRSF1 or Fibrillarin staining were thresholded to define a speckle
618 or nucleolus mask, respectively. The periphery of the nucleus was manually assigned.
619 An mCherry-SRSF1 mask was used to calculate the speckle area in Figure 6. In some
620 cases, Nucleoli were defined through a nucleoplasmic void defined by the speckle
621 marker. For Figure 3C, speckle and nucleolar signal are shown as a fraction of the
622 total nuclear signal. For Figure 1 and S1, mCherry-SRSF1 signal was used to define
623 speckles. five areas inside speckles and five areas in the nucleoplasm (total area of
624 $1.055\mu\text{m}^2$) were used to generate an average signal density for each compartment.
625 Enrichment was determined as defined above. 10 nuclei were analyzed for each
626 transfection. All statistical analysis was carried out with a student's t-test.

627

628 **Fluorescence recovery after photobleaching (FRAP)**

629 For *in vivo* FRAP, HeLa cells were transiently transfected in 8-well chamber slides for
630 48 hours. Cells were then washed in pre-warmed DMEM without phenol red (Gibco)
631 and incubated in this medium. Slides were incubated in a live-cell imaging (37°C, 5%
632 CO₂) stage top incubator (Tokai Hit) mounted on an Olympus FV3000 laser scanning
633 confocal microscope fitted with a 60x lens of N.A. 1.3. 20 frames were taken at
634 maximum acquisition speed for one-way scanning before nuclear speckles were
635 bleached with 50% laser power for one frame, then 130 subsequent frames were taken.
636 FRAP analysis was carried out using cellSens software (Olympus). Normalization was
637 carried out against frames 5-15 with background subtracted from outside of the
638 imaged cell. Half-times for recovery ($t^{1/2}$) were calculated using the initial plateau of
639 the recovery curve. Quantification was carried out from 10 separate experiments

640 For the FRAP of condensates formed *in vitro* (see below), proteins were diluted
641 to 10 µM with a final buffer composition of 10 mM Tris-HCl pH 7.4, 150 mM NaCl and
642 1 mg/ml BSA, before addition of PEG to a final concentration of 10%, unless otherwise
643 stated. Assemblies were left to form for one hour at room-temperature before imaging
644 on an Olympus FV3000 inverted microscope at 100x magnification N.A. of 1.4. Three
645 pre-bleach frames were taken before samples were bleached with 10% laser power
646 at maximum speed for one frame before following the recover every 10 seconds for
647 up to five minutes. The FRAP data were normalized as for the *in vivo* experiments,
648 with quantification taken from five separate experiments.

649

650 **Denaturing purification of MCDs**

651 MCD sequences were expressed as C-terminal Thrombin-6xHIS fusions in BL21 DE3
652 *E. coli*. Overnight grown cultures were diluted 1:20 into fresh LB medium at 30°C and
653 expression was induced with 0.5 mM Isopropylthiogalactoside (IPTG) once the culture
654 had reached an OD⁶⁰⁰ of 0.7. After four to five hours, cultures were harvested by
655 centrifugation at 3,000 x g for 15 minutes at 4°C, washed once with ice-cold PBS and
656 the pellets then frozen at -80°C. Pellets were re-suspended 8 M Urea, 100 mM
657 NaH₂PO₄ 10 mM Imidazole, 10 mM Tris pH8.0, before 10 rounds of sonication on ice
658 for 30 seconds at 30 W with 30 second intervals between. Insoluble material was
659 pelleted at 18,000 x g for 20 minutes at 4°C. The supernatant fraction was incubated
660 with HisPur Ni-NTA resin (Thermo #88223) in 20 mM Imidazole at 4°C for one hour

661 with gentle agitation. The Ni-NTA resin was then washed three times with 10 bead
662 volumes of lysis buffer containing 20 mM Imidazole, before elution in lysis buffer
663 containing 350 mM imidazole. Samples were concentrated in three or 10 kDa
664 molecular weight cutoff columns (Amicon #800010) before being flash frozen.

665

666 **Purification of mGFP/mCherry-fusion proteins**

667 Sequences were expressed with an N-terminal mGFP/mCherry and a C-terminal TEV-
668 6xHIS tag in BL21 DE3 *E. coli*. Stationary phase cultures were diluted 1:20 into fresh
669 LB media at 28°C, and expression was induced with 0.5 mM IPTG once the culture
670 had reached an OD⁶⁰⁰ of 0.7. Expression was carried out for 6-18 hours at 28°C
671 agitating the culture at 175 rpm. Cells were harvested, washed once with ice-cold PBS
672 and the pellets frozen at -80°C. Cell pellets were resuspended in approximately five
673 volumes of lysis buffer (50 mM NaH₂PO₄ pH 8, 1 M NaCl, 10 mM Imidazole, 2 mM
674 PMSF and protease inhibitor cocktail (Roche #4693132001). Cells were lysed by
675 sonication on ice for 12 x 30 seconds at 30 W with one minute on ice in between.
676 Insoluble material was pelleted at 18,000 x g for 20 minutes at 4°C. The supernatant
677 fraction was incubated with HisPur Ni-NTA resin (ThermoFisher #88223) in 20 mM
678 Imidazole at 4°C for 1 hour with gentle agitation. The bound resin was then washed 3
679 times with 10 volumes of lysis buffer containing 20 mM Imidazole, before elution in
680 lysis buffer containing 350 mM imidazole. Eluted fractions were concentrated in a 10
681 kDa molecular weight cutoff column (Amicon #800010), and the 6xHIS tag was
682 removed by TEV cleavage (AcTEV, ThermoFisher #12575015) overnight at 4°C. His-
683 cleaved proteins were further purified by size-exclusion chromatography on a
684 Superdex 75 10/300 (GE # 17517401) column attached to an AKTA Purifier fast
685 protein liquid chromatography device (GE #29148721) in a 50 mM tris pH 7.4, 1 M
686 NaCl buffer. Purified proteins were concentrated in this buffer and aliquots flash-frozen
687 before storage at -80°C.

688

689 ***In vitro* phase separation assays of MCDs**

690 Proteins were defrosted on ice and then diluted to the desired concentration in the
691 denaturing lysis buffer. 100 µL samples were placed in Slide-A-Lyzer mini dialysis
692 cups with a two kDa molecular weight cut-off (ThermoFisher #69553). Samples were
693 dialyzed against a 10 mM Tris pH 7.4 buffer with 150 mM NaCl unless otherwise stated.
694 Dialysis was left to proceed at room temperature for 24-48 hours before imaging or

695 downstream sample processing. For imaging, condensates were gently pipetted to
696 release them from the dialysis membrane and then visualized at 100x magnification
697 using a DIC filter on an Olympus BX51 microscope fitted with a CoolsnapHQ camera
698 (Photometrics) controlled by Metamorph. To determine the fraction of the protein that
699 had condensed, the contents of the cups was gently resuspended by pipetting and
700 transferred to a low-bind Eppendorf tube. 50 μ L of sample was centrifuged at 100,000
701 $\times g$ for 30 minutes at 4°C. The supernatant was removed and boiled in loading dye.
702 The pellet was resuspended in 50 μ L of dialysis buffer before boiling in loading dye.
703 Total post-dialysis (T), 100,000 $\times g$ supernatant (S) and 100,000 $\times g$ pellet (P) samples
704 were run on a 15% SDS-PAGE gel. The relative amounts in each fraction were
705 determined by staining with InstantBlue (Sigma #ISB1L). For quantitation, the gels
706 were imaged with a LiCor odyssey scanner. To obtain the percentage of condensed
707 material, the signal of band for the pellet fraction is represented as a percent of the
708 total. The averages from three independent experiments are shown.

709

710 ***In vitro* phase separation assays: mGFP/mCherry-fusion proteins**

711 Protein aliquots were defrosted on ice before centrifuging at 20,000 $\times g$ for 20 minutes
712 at 4°C to pellet any aggregated material. Samples were diluted in low-bind Eppendorf
713 tubes to 10 μ M with a final buffer composition of 10 mM Tris pH 7.4, 150 mM NaCl, 1
714 mg/ml Bovine serum albumin (BSA). To simulate macromolecular crowding,
715 polyethylene glycol (PEG) 3,350Da was added from a 50% stock to give the desired
716 concentration. Samples were mixed well by gentle pipetting and incubated for one
717 hour at room-temperature before imaging at 100x magnification on an Olympus BX51
718 Microscope. For production of figures, a maximum projection of five different areas is
719 shown. For the quantification shown in Figure 6G the condensates formed by dilution
720 were submitted to centrifugation at 100,000 $\times g$, with the total, supernatant and pellet
721 fractions being analyzed as described above. For co-assembly experiments (Figure
722 2D), both proteins were diluted to 10 μ M, with the same final buffer composition as
723 above. PEG 3,350 Da was added to 10% to simulate macromolecular crowding.
724 Samples were well mixed and left for one hour at room temperature before imaging
725 as above.

726

727 **Supplemental Information titles and legends**

728

729 Please see supplemental figures

730

731 **Tables with title and legends**

732

733 Table S1. MCDs in the human proteome.

734 Table S2. Sequence parameters of MCDs studied in Figure 2.

735 Table S3. Predicted RS proteins and GO enrichment analysis.

736 Table S4. Plasmids and protein accessions.

737

738 **References**

739

740 Alvarez, M., Estivill, X., de la Luna, S., 2003. DYRK1A accumulates in splicing speckles through
741 a novel targeting signal and induces speckle disassembly. *J. Cell Sci.* 116, 3099–3107.
742 <https://doi.org/10.1242/jcs.00618>

743 Armstrong, C.T., Mason, P.E., Anderson, J.L.R., Dempsey, C.E., 2016. Arginine side chain
744 interactions and the role of arginine as a gating charge carrier in voltage sensitive ion
745 channels. *Sci. Rep.* 6, 21759. <https://doi.org/10.1038/srep21759>

746 Banani, S.F., Lee, H.O., Hyman, A.A., Rosen, M.K., 2017. Biomolecular condensates:
747 organizers of cellular biochemistry. *Nat. Rev. Mol. Cell Biol.* 18, 285–298.
748 <https://doi.org/10.1038/nrm.2017.7>

749 Berry, J., Weber, S.C., Vaidya, N., Haataja, M., Brangwynne, C.P., 2015. RNA transcription
750 modulates phase transition-driven nuclear body assembly. *Proc. Natl. Acad. Sci. U. S.*
751 A. 112, E5237–5245. <https://doi.org/10.1073/pnas.1509317112>

752 Bishop, I., Dammer, E.B., Duong, D.M., Kundinger, S.R., Gearing, M., Lah, J.J., Levey, A.I.,
753 Seyfried, N.T., 2018. RNA-binding proteins with basic-acidic dipeptide (BAD) domains
754 self-assemble and aggregate in Alzheimer's disease. *J. Biol. Chem.* 293, 11047–
755 11066. <https://doi.org/10.1074/jbc.RA118.001747>

756 Boeynaems, S., Holehouse, A.S., Weinhardt, V., Kovacs, D., Van Lindt, J., Larabell, C., Van
757 Den Bosch, L., Das, R., Tompa, P.S., Pappu, R.V., Gitler, A.D., 2019. Spontaneous
758 driving forces give rise to protein-RNA condensates with coexisting phases and
759 complex material properties. *Proc. Natl. Acad. Sci. U. S. A.* 116, 7889–7898.
760 <https://doi.org/10.1073/pnas.1821038116>

761 Bogaert, E., Boeynaems, S., Kato, M., Guo, L., Caulfield, T.R., Steyaert, J., Scheveneels, W.,
762 Wilmans, N., Haeck, W., Hersmus, N., Schymkowitz, J., Rousseau, F., Shorter, J.,
763 Callaerts, P., Robberecht, W., Van Damme, P., Van Den Bosch, L., 2018. Molecular
764 Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity.
765 *Cell Rep.* 24, 529–537.e4. <https://doi.org/10.1016/j.celrep.2018.06.070>

766 Boisvert, F.-M., van Koningsbruggen, S., Navascués, J., Lamond, A.I., 2007. The
767 multifunctional nucleolus. *Nat. Rev. Mol. Cell Biol.* 8, 574–585.
768 <https://doi.org/10.1038/nrm2184>

769 Borders, C.L., Broadwater, J.A., Bekeny, P.A., Salmon, J.E., Lee, A.S., Eldridge, A.M., Pett,
770 V.B., 1994. A structural role for arginine in proteins: multiple hydrogen bonds to
771 backbone carbonyl oxygens. *Protein Sci. Publ. Protein Soc.* 3, 541–548.
772 <https://doi.org/10.1002/pro.5560030402>

773 Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J.,
774 Jülicher, F., Hyman, A.A., 2009. Germline P granules are liquid droplets that localize
775 by controlled dissolution/condensation. *Science* 324, 1729–1732.
776 <https://doi.org/10.1126/science.1172046>

777 Brangwynne, C.P., Mitchison, T.J., Hyman, A.A., 2011. Active liquid-like behavior of nucleoli
778 determines their size and shape in *Xenopus laevis* oocytes. *Proc. Natl. Acad. Sci. U. S.*
779 A. 108, 4334–4339. <https://doi.org/10.1073/pnas.1017150108>

780 Brangwynne, C.P., Tompa, P., Pappu, R.V., 2015. Polymer physics of intracellular phase
781 transitions. *Nat. Phys.* 11, 899–904. <https://doi.org/10.1038/nphys3532>

782 Bringmann, P., Lührmann, R., 1986. Purification of the individual snRNPs U1, U2, U5 and
783 U4/U6 from HeLa cells and characterization of their protein constituents. *EMBO J.* 5,
784 3509–3516.

785 Cáceres, J.F., Misteli, T., Sreaton, G.R., Spector, D.L., Krainer, A.R., 1997. Role of the
786 modular domains of SR proteins in subnuclear localization and alternative splicing
787 specificity. *J. Cell Biol.* 138, 225–238. <https://doi.org/10.1083/jcb.138.2.225>

788 Cardinale, S., Cisterna, B., Bonetti, P., Aringhieri, C., Biggiogera, M., Barabino, S.M.L., 2007.
789 Subnuclear localization and dynamics of the Pre-mRNA 3' end processing factor
790 mammalian cleavage factor I 68-kDa subunit. *Mol. Biol. Cell* 18, 1282–1292.
791 <https://doi.org/10.1091/mbc.e06-09-0846>

792 Carter, K.C., Taneja, K.L., Lawrence, J.B., 1991. Discrete nuclear domains of poly(A) RNA and
793 their relationship to the functional organization of the nucleus. *J. Cell Biol.* 115,
794 1191–1202. <https://doi.org/10.1083/jcb.115.5.1191>

795 Chong, P.A., Vernon, R.M., Forman-Kay, J.D., 2018. RGG/RG Motif Regions in RNA Binding
796 and Phase Separation. *J. Mol. Biol.* 430, 4650–4665.
797 <https://doi.org/10.1016/j.jmb.2018.06.014>

798 Cioce, M., Lamond, A.I., 2005. Cajal bodies: a long history of discovery. *Annu. Rev. Cell Dev.*
799 *Biol.* 21, 105–131. <https://doi.org/10.1146/annurev.cellbio.20.010403.103738>

800 Clemson, C.M., Hutchinson, J.N., Sara, S.A., Ensminger, A.W., Fox, A.H., Chess, A., Lawrence,
801 J.B., 2009. An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is
802 Essential for the Structure of Paraspeckles. *Mol. Cell* 33, 717–726.
803 <https://doi.org/10.1016/j.molcel.2009.01.026>

804 Colwill, K., Pawson, T., Andrews, B., Prasad, J., Manley, J.L., Bell, J.C., Duncan, P.I., 1996. The
805 Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their
806 intranuclear distribution. *EMBO J.* 15, 265–275.

807 Das, R.K., Pappu, R.V., 2013. Conformations of intrinsically disordered proteins are
808 influenced by linear sequence distributions of oppositely charged residues. *Proc.*
809 *Natl. Acad. Sci. U. S. A.* 110, 13392–13397.
810 <https://doi.org/10.1073/pnas.1304749110>

811 Decker, C.J., Parker, R., 2012. P-bodies and stress granules: possible roles in the control of
812 translation and mRNA degradation. *Cold Spring Harb. Perspect. Biol.* 4, a012286.
813 <https://doi.org/10.1101/cshperspect.a012286>

814 Dennis, J.W., 2015. Many Light Touches Convey the Message. *Trends Biochem. Sci.* 40, 673–
815 686. <https://doi.org/10.1016/j.tibs.2015.08.010>

816 Diner, I., Hales, C.M., Bishof, I., Rabenold, L., Duong, D.M., Yi, H., Laur, O., Gearing, M.,
817 Troncoso, J., Thambisetty, M., Lah, J.J., Levey, A.I., Seyfried, N.T., 2014. Aggregation
818 properties of the small nuclear ribonucleoprotein U1-70K in Alzheimer disease. *J.*
819 *Biol. Chem.* 289, 35296–35313. <https://doi.org/10.1074/jbc.M114.562959>

820 Dyck, J.A., Maul, G.G., Miller, W.H., Chen, J.D., Kakizuka, A., Evans, R.M., 1994. A novel
821 macromolecular structure is a target of the promyelocyte-retinoic acid receptor
822 oncoprotein. *Cell* 76, 333–343.

823 Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C.C.-H., Eckmann, C.R., Myong, S.,
824 Brangwynne, C.P., 2015. The disordered P granule protein LAF-1 drives phase
825 separation into droplets with tunable viscosity and dynamics. *Proc. Natl. Acad. Sci. U.*
826 *S. A.* 112, 7189–7194. <https://doi.org/10.1073/pnas.1504822112>

827 Falahati, H., Pelham-Webb, B., Blythe, S., Wieschaus, E., 2016. Nucleation by rRNA Dictates
828 the Precision of Nucleolus Assembly. *Curr. Biol.* CB 26, 277–285.
829 <https://doi.org/10.1016/j.cub.2015.11.065>

830 Fei, J., Jadaлиha, M., Harmon, T.S., Li, I.T.S., Hua, B., Hao, Q., Holehouse, A.S., Reyer, M., Sun,
831 Q., Freier, S.M., Pappu, R.V., Prasanth, K.V., Ha, T., 2017. Quantitative analysis of
832 multilayer organization of proteins and RNA in nuclear speckles at super resolution.
833 *J. Cell Sci.* 130, 4180–4192. <https://doi.org/10.1242/jcs.206854>

834 Feric, M., Vaidya, N., Harmon, T.S., Mitrea, D.M., Zhu, L., Richardson, T.M., Kriwacki, R.W.,
835 Pappu, R.V., Brangwynne, C.P., 2016. Coexisting Liquid Phases Underlie Nucleolar
836 Subcompartments. *Cell* 165, 1686–1697. <https://doi.org/10.1016/j.cell.2016.04.047>

837 Fox, A.H., Lam, Y.W., Leung, A.K.L., Lyon, C.E., Andersen, J., Mann, M., Lamond, A.I., 2002.
838 Paraspeckles: a novel nuclear domain. *Curr. Biol.* CB 12, 13–25.

839 Fung, H.Y.J., Birol, M., Rhoades, E., 2018. IDPs in macromolecular complexes: the roles of
840 multivalent interactions in diverse assemblies. *Curr. Opin. Struct. Biol.* 49, 36–43.
841 <https://doi.org/10.1016/j.sbi.2017.12.007>

842 Galganski, L., Urbanek, M.O., Krzyzosiak, W.J., 2017. Nuclear speckles: molecular
843 organization, biological function and role in disease. *Nucleic Acids Res.* 45, 10350–
844 10368. <https://doi.org/10.1093/nar/gkx759>

845 Gallivan, J.P., Dougherty, D.A., 1999. Cation-pi interactions in structural biology. *Proc. Natl.*
846 *Acad. Sci. U. S. A.* 96, 9459–9464. <https://doi.org/10.1073/pnas.96.17.9459>

847 Gomes, E., Shorter, J., 2019. The molecular language of membraneless organelles. *J. Biol.*
848 *Chem.* 294, 7115–7127. <https://doi.org/10.1074/jbc.TM118.001192>

849 Gui, J.F., Lane, W.S., Fu, X.D., 1994. A serine kinase regulates intracellular localization of
850 splicing factors in the cell cycle. *Nature* 369, 678–682.
851 <https://doi.org/10.1038/369678a0>

852 Guo, Y.E., Manteiga, J.C., Henninger, J.E., Sabari, B.R., Dall’Agnese, A., Hannett, N.M., Spille,
853 J.-H., Afeyan, L.K., Zamudio, A.V., Shrinivas, K., Abraham, B.J., Boija, A., Decker, T.-M.,
854 Rimel, J.K., Fant, C.B., Lee, T.I., Cisse, I.I., Sharp, P.A., Taatjes, D.J., Young, R.A., 2019.
855 Pol II phosphorylation regulates a switch between transcriptional and splicing
856 condensates. *Nature* 572, 543–548. <https://doi.org/10.1038/s41586-019-1464-0>

857 Halfmann, R., 2016. A glass menagerie of low complexity sequences. *Curr. Opin. Struct. Biol.*
858 38, 18–25. <https://doi.org/10.1016/j.sbi.2016.05.002>

859 Hebert, M.J., Russell, D.H., 2019. Hydration of Guanidinium Ions: An Experimental Search for
860 Like-Charged Ion Pairs. *J. Phys. Chem. Lett.* 10, 1349–1354.
861 <https://doi.org/10.1021/acs.jpclett.9b00268>

862 Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I.A., Weisswange, I.,
863 Mansfeld, J., Buchholz, F., Hyman, A.A., Mann, M., 2015. A human interactome in
864 three quantitative dimensions organized by stoichiometries and abundances. *Cell*
865 163, 712–723. <https://doi.org/10.1016/j.cell.2015.09.053>

866 Heinzel, T., Lavinsky, R.M., Mullen, T.M., Söderstrom, M., Laherty, C.D., Torchia, J., Yang,
867 W.M., Brard, G., Ngo, S.D., Davie, J.R., Seto, E., Eisenman, R.N., Rose, D.W., Glass,
868 C.K., Rosenfeld, M.G., 1997. A complex containing N-CoR, mSin3 and histone
869 deacetylase mediates transcriptional repression. *Nature* 387, 43–48.
870 <https://doi.org/10.1038/387043a0>

871 Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G., Pappu, R.V., 2017. CIDER:
872 Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered
873 Proteins. *Biophys. J.* 112, 16–21. <https://doi.org/10.1016/j.bpj.2016.11.3200>

874 Hutchinson, J.N., Ensminger, A.W., Clemson, C.M., Lynch, C.R., Lawrence, J.B., Chess, A.,
875 2007. A screen for nuclear transcripts identifies two linked noncoding RNAs
876 associated with SC35 splicing domains. *BMC Genomics* 8, 39.
877 <https://doi.org/10.1186/1471-2164-8-39>

878 Hyman, A.A., Weber, C.A., Jülicher, F., 2014. Liquid-Liquid Phase Separation in Biology.
879 *Annu. Rev. Cell Dev. Biol.* 30, 39–58. <https://doi.org/10.1146/annurev-cellbio-100913-013325>

880 Jeong, S., 2017. SR Proteins: Binders, Regulators, and Connectors of RNA. *Mol. Cells* 40, 1–9.
881 <https://doi.org/10.14348/molcells.2017.2319>

882 Jin, J., Cai, Y., Yao, T., Gottschalk, A.J., Florens, L., Swanson, S.K., Gutiérrez, J.L., Coleman,
883 M.K., Workman, J.L., Mushegian, A., Washburn, M.P., Conaway, R.C., Conaway, J.W.,
884 2005. A mammalian chromatin remodeling complex with similarities to the yeast
885 INO80 complex. *J. Biol. Chem.* 280, 41207–41212.
886 <https://doi.org/10.1074/jbc.M509128200>

887 Kaufmann, I., Martin, G., Friedlein, A., Langen, H., Keller, W., 2004. Human Fip1 is a subunit
888 of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. *EMBO
889 J.* 23, 616–626. <https://doi.org/10.1038/sj.emboj.7600070>

890 Kedersha, N.L., Gupta, M., Li, W., Miller, I., Anderson, P., 1999. RNA-binding proteins TIA-1
891 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian
892 stress granules. *J. Cell Biol.* 147, 1431–1442. <https://doi.org/10.1083/jcb.147.7.1431>

893 Keshwani, M.M., Aubol, B.E., Fattet, L., Ma, C.-T., Qiu, J., Jennings, P.A., Fu, X.-D., Adams,
894 J.A., 2015. Conserved proline-directed phosphorylation regulates SR protein
895 conformation and splicing function. *Biochem. J.* 466, 311–322.
896 <https://doi.org/10.1042/BJ20141373>

897 Kim, J., Han, K.Y., Khanna, N., Ha, T., Belmont, A.S., 2019. Nuclear speckle fusion via long-
898 range directional motion regulates speckle morphology after transcriptional
899 inhibition. *J. Cell Sci.* 132. <https://doi.org/10.1242/jcs.226563>

900 Kwon, I., Xiang, S., Kato, M., Wu, L., Theodoropoulos, P., Wang, T., Kim, J., Yun, J., Xie, Y.,
901 McKnight, S.L., 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli,
902 impede RNA biogenesis, and kill cells. *Science* 345, 1139–1145.
903 <https://doi.org/10.1126/science.1254917>

904 Lai, J., Koh, C.H., Tjota, M., Pieuchot, L., Raman, V., Chandrababu, K.B., Yang, D., Wong, L.,
905 Jedd, G., 2012. Intrinsically disordered proteins aggregate at fungal cell-to-cell
906 channels and regulate intercellular connectivity. *Proc. Natl. Acad. Sci. U. S. A.* 109,
907 15781–15786. <https://doi.org/10.1073/pnas.1207467109>

908 Lai, M.C., Lin, R.I., Tarn, W.Y., 2001. Transportin-SR2 mediates nuclear import of
909 phosphorylated SR proteins. *Proc. Natl. Acad. Sci. U. S. A.* 98, 10154–10159.
910 <https://doi.org/10.1073/pnas.181354098>

911 Lallemand-Breitenbach, V., de Thé, H., 2018. PML nuclear bodies: from architecture to
912 function. *Curr. Opin. Cell Biol.* 52, 154–161.
913 <https://doi.org/10.1016/j.ceb.2018.03.011>

914 Langdon, E.M., Qiu, Y., Ghanbari Niaki, A., McLaughlin, G.A., Weidmann, C.A., Gerbich, T.M.,
915 Smith, J.A., Crutchley, J.M., Termini, C.M., Weeks, K.M., Myong, S., Gladfelter, A.S.,
916 2018. mRNA structure determines specificity of a polyQ-driven phase separation.
917 *Science* 360, 922–927. <https://doi.org/10.1126/science.aar7432>

918 Lee, K.-H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin,
919 M., Messing, J., Molliex, A., Maxwell, B.A., Kim, N.C., Temirov, J., Moore, J., Kolaitis,
920

921 R.-M., Shaw, T.I., Bai, B., Peng, J., Kriwacki, R.W., Taylor, J.P., 2016. C9orf72
922 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less
923 Organelles. *Cell* 167, 774–788.e17. <https://doi.org/10.1016/j.cell.2016.10.002>

924 Li, H., Bingham, P.M., 1991. Arginine/serine-rich domains of the su(wa) and tra RNA
925 processing regulators target proteins to a subnuclear compartment implicated in
926 splicing. *Cell* 67, 335–342.

927 Li, P., Banjade, S., Cheng, H.-C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V.,
928 King, D.S., Banani, S.F., Russo, P.S., Jiang, Q.-X., Nixon, B.T., Rosen, M.K., 2012. Phase
929 transitions in the assembly of multivalent signalling proteins. *Nature* 483, 336–340.
930 <https://doi.org/10.1038/nature10879>

931 Lin, Y., Protter, D.S.W., Rosen, M.K., Parker, R., 2015. Formation and Maturation of Phase-
932 Separated Liquid Droplets by RNA-Binding Proteins. *Mol. Cell* 60, 208–219.
933 <https://doi.org/10.1016/j.molcel.2015.08.018>

934 Lin, Y.-H., Chan, H.S., 2017. Phase Separation and Single-Chain Compactness of Charged
935 Disordered Proteins Are Strongly Correlated. *Biophys. J.* 112, 2043–2046.
936 <https://doi.org/10.1016/j.bpj.2017.04.021>

937 Lykke-Andersen, J., Shu, M.D., Steitz, J.A., 2000. Human Upf proteins target an mRNA for
938 nonsense-mediated decay when bound downstream of a termination codon. *Cell*
939 103, 1121–1131.

940 Marzahn, M.R., Marada, S., Lee, J., Nourse, A., Kenrick, S., Zhao, H., Ben-Nissan, G., Kolaitis,
941 R.-M., Peters, J.L., Pounds, S., Errington, W.J., Privé, G.G., Taylor, J.P., Sharon, M.,
942 Schuck, P., Ogden, S.K., Mittag, T., 2016. Higher-order oligomerization promotes
943 localization of SPOP to liquid nuclear speckles. *EMBO J.* 35, 1254–1275.
944 <https://doi.org/10.15252/embj.201593169>

945 Mi, H., Muruganujan, A., Ebert, D., Huang, X., Thomas, P.D., 2019. PANTHER version 14:
946 more genomes, a new PANTHER GO-slim and improvements in enrichment analysis
947 tools. *Nucleic Acids Res.* 47, D419–D426. <https://doi.org/10.1093/nar/gky1038>

948 Misteli, T., Cáceres, J.F., Clement, J.Q., Krainer, A.R., Wilkinson, M.F., Spector, D.L., 1998.
949 Serine phosphorylation of SR proteins is required for their recruitment to sites of
950 transcription in vivo. *J. Cell Biol.* 143, 297–307.
951 <https://doi.org/10.1083/jcb.143.2.297>

952 Misteli, T., Cáceres, J.F., Spector, D.L., 1997. The dynamics of a pre-mRNA splicing factor in
953 living cells. *Nature* 387, 523–527. <https://doi.org/10.1038/387523a0>

954 Mitrea, D.M., Cika, J.A., Guy, C.S., Ban, D., Banerjee, P.R., Stanley, C.B., Nourse, A., Deniz,
955 A.A., Kriwacki, R.W., 2016. Nucleophosmin integrates within the nucleolus via multi-
956 modal interactions with proteins displaying R-rich linear motifs and rRNA. *eLife* 5.
957 <https://doi.org/10.7554/eLife.13571>

958 Mitrea, D.M., Cika, J.A., Stanley, C.B., Nourse, A., Onuchic, P.L., Banerjee, P.R., Phillips, A.H.,
959 Park, C.-G., Deniz, A.A., Kriwacki, R.W., 2018. Self-interaction of NPM1 modulates
960 multiple mechanisms of liquid-liquid phase separation. *Nat. Commun.* 9, 842.
961 <https://doi.org/10.1038/s41467-018-03255-3>

962 Mittag, T., Parker, R., 2018. Multiple Modes of Protein-Protein Interactions Promote RNP
963 Granule Assembly. *J. Mol. Biol.* 430, 4636–4649.
964 <https://doi.org/10.1016/j.jmb.2018.08.005>

965 Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., Taylor,
966 J.P., 2015. Phase separation by low complexity domains promotes stress granule

967 assembly and drives pathological fibrillization. *Cell* 163, 123–133.
968 <https://doi.org/10.1016/j.cell.2015.09.015>

969 Naganuma, T., Nakagawa, S., Tanigawa, A., Sasaki, Y.F., Goshima, N., Hirose, T., 2012.
970 Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear
971 paraspeckles. *EMBO J.* 31, 4020–4034. <https://doi.org/10.1038/emboj.2012.251>

972 Ngo, J.C.K., Chakrabarti, S., Ding, J.-H., Velazquez-Dones, A., Nolen, B., Aubol, B.E., Adams,
973 J.A., Fu, X.-D., Ghosh, G., 2005. Interplay between SRPK and Cdk5/Sty kinases in
974 phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in
975 ASF/SF2. *Mol. Cell* 20, 77–89. <https://doi.org/10.1016/j.molcel.2005.08.025>

976 Nott, T.J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T.D., Bazett-
977 Jones, D.P., Pawson, T., Forman-Kay, J.D., Baldwin, A.J., 2015. Phase transition of a
978 disordered nuage protein generates environmentally responsive membraneless
979 organelles. *Mol. Cell* 57, 936–947. <https://doi.org/10.1016/j.molcel.2015.01.013>

980 Pak, C.W., Kosno, M., Holehouse, A.S., Padrick, S.B., Mittal, A., Ali, R., Yunus, A.A., Liu, D.R.,
981 Pappu, R.V., Rosen, M.K., 2016. Sequence Determinants of Intracellular Phase
982 Separation by Complex Coacervation of a Disordered Protein. *Mol. Cell* 63, 72–85.
983 <https://doi.org/10.1016/j.molcel.2016.05.042>

984 Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnle, M., Hein, M.Y., Stoynov, S., Mahamid,
985 J., Saha, S., Franzmann, T.M., Pozniakovski, A., Poser, I., Maghelli, N., Royer, L.A.,
986 Weigert, M., Myers, E.W., Grill, S., Drechsel, D., Hyman, A.A., Alberti, S., 2015. A
987 Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease
988 Mutation. *Cell* 162, 1066–1077. <https://doi.org/10.1016/j.cell.2015.07.047>

989 Phair, R.D., Misteli, T., 2000. High mobility of proteins in the mammalian cell nucleus.
990 *Nature* 404, 604–609. <https://doi.org/10.1038/35007077>

991 Prasanth, K.V., Camiolo, M., Chan, G., Tripathi, V., Denis, L., Nakamura, T., Hübner, M.R.,
992 Spector, D.L., 2010. Nuclear organization and dynamics of 7SK RNA in regulating
993 gene expression. *Mol. Biol. Cell* 21, 4184–4196. <https://doi.org/10.1091/mbc.E10-02-0105>

995 Protter, D.S.W., Parker, R., 2016. Principles and Properties of Stress Granules. *Trends Cell
996 Biol.* 26, 668–679. <https://doi.org/10.1016/j.tcb.2016.05.004>

997 Protter, D.S.W., Rao, B.S., Van Treeck, B., Lin, Y., Mizoue, L., Rosen, M.K., Parker, R., 2018.
998 Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP
999 Granule Assembly. *Cell Rep.* 22, 1401–1412.
1000 <https://doi.org/10.1016/j.celrep.2018.01.036>

1001 Rai, A.K., Chen, J.-X., Selbach, M., Pelkmans, L., 2018. Kinase-controlled phase transition of
1002 membraneless organelles in mitosis. *Nature* 559, 211–216.
1003 <https://doi.org/10.1038/s41586-018-0279-8>

1004 Rüegsegger, U., Blank, D., Keller, W., 1998. Human pre-mRNA cleavage factor Im is related
1005 to spliceosomal SR proteins and can be reconstituted in vitro from recombinant
1006 subunits. *Mol. Cell* 1, 243–253.

1007 Salichs, E., Ledda, A., Mularoni, L., Albà, M.M., de la Luna, S., 2009. Genome-wide analysis of
1008 histidine repeats reveals their role in the localization of human proteins to the
1009 nuclear speckles compartment. *PLoS Genet.* 5, e1000397.
1010 <https://doi.org/10.1371/journal.pgen.1000397>

1011 Sawyer, I.A., Hager, G.L., Dundr, M., 2017. Specific genomic cues regulate Cajal body
1012 assembly. *RNA Biol.* 14, 791–803. <https://doi.org/10.1080/15476286.2016.1243648>

1013 Scott, M.S., Boisvert, F.-M., McDowall, M.D., Lamond, A.I., Barton, G.J., 2010.
1014 Characterization and prediction of protein nucleolar localization sequences. *Nucleic
1015 Acids Res.* 38, 7388–7399. <https://doi.org/10.1093/nar/gkq653>

1016 Seydoux, G., 2018. The P Granules of *C. elegans*: A Genetic Model for the Study of RNA-
1017 Protein Condensates. *J. Mol. Biol.* 430, 4702–4710.
1018 <https://doi.org/10.1016/j.jmb.2018.08.007>

1019 Shepard, P.J., Hertel, K.J., 2009. The SR protein family. *Genome Biol.* 10, 242.
1020 <https://doi.org/10.1186/gb-2009-10-10-242>

1021 Sheth, U., Parker, R., 2003. Decapping and decay of messenger RNA occur in cytoplasmic
1022 processing bodies. *Science* 300, 805–808. <https://doi.org/10.1126/science.1082320>

1023 Shevtsov, S.P., Dundr, M., 2011. Nucleation of nuclear bodies by RNA. *Nat. Cell Biol.* 13,
1024 167–173. <https://doi.org/10.1038/ncb2157>

1025 Shin, Y., Brangwynne, C.P., 2017. Liquid phase condensation in cell physiology and disease.
1026 *Science* 357, eaaf4382. <https://doi.org/10.1126/science.aaf4382>

1027 Spector, D.L., Lamond, A.I., 2011. Nuclear Speckles. *Cold Spring Harb. Perspect. Biol.* 3,
1028 a000646–a000646. <https://doi.org/10.1101/cshperspect.a000646>

1029 Stejskalová, E., Staněk, D., 2014. The splicing factor U1-70K interacts with the SMN complex
1030 and is required for nuclear gem integrity. *J. Cell Sci.* 127, 3909–3915.
1031 <https://doi.org/10.1242/jcs.155838>

1032 Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S.M., Bennett, C.F.,
1033 Sharma, A., Bubulya, P.A., Blencowe, B.J., Prasanth, S.G., Prasanth, K.V., 2010. The
1034 nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by
1035 modulating SR splicing factor phosphorylation. *Mol. Cell* 39, 925–938.
1036 <https://doi.org/10.1016/j.molcel.2010.08.011>

1037 Velazquez-Dones, A., Hagopian, J.C., Ma, C.-T., Zhong, X.-Y., Zhou, H., Ghosh, G., Fu, X.-D.,
1038 Adams, J.A., 2005. Mass spectrometric and kinetic analysis of ASF/SF2
1039 phosphorylation by SRPK1 and Clk/Sty. *J. Biol. Chem.* 280, 41761–41768.
1040 <https://doi.org/10.1074/jbc.M504156200>

1041 Verheijen, R., Kuijpers, H., Vooijs, P., Van Venrooij, W., Ramaekers, F., 1986. Distribution of
1042 the 70K U1 RNA-associated protein during interphase and mitosis. Correlation with
1043 other U RNP particles and proteins of the nuclear matrix. *J. Cell Sci.* 86, 173–190.

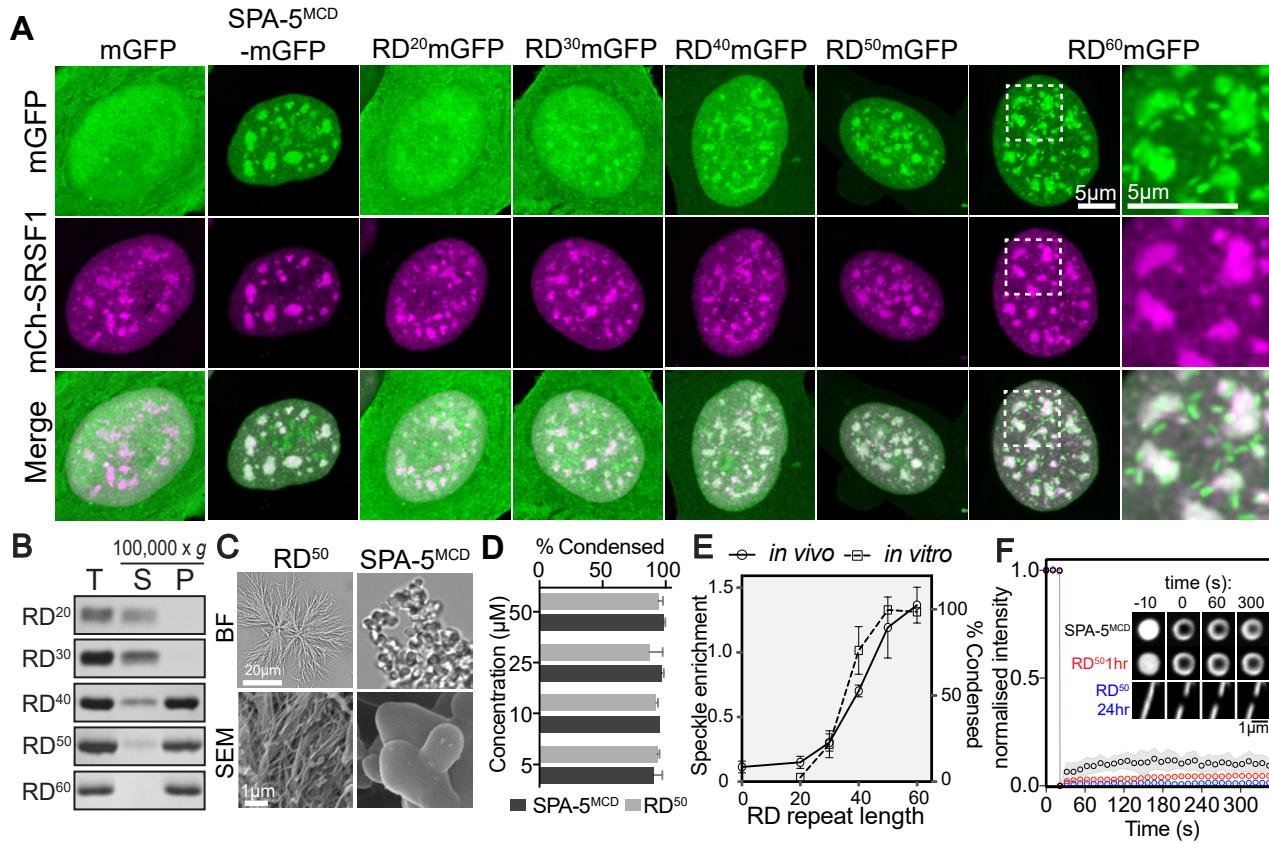
1044 Vernon, R.M., Chong, P.A., Tsang, B., Kim, T.H., Bah, A., Farber, P., Lin, H., Forman-Kay, J.D.,
1045 2018. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.
1046 eLife 7. <https://doi.org/10.7554/eLife.31486>

1047 Wang, J., Choi, J.-M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S.,
1048 Lemaitre, R., Pozniakovsky, A., Drechsel, D., Poser, I., Pappu, R.V., Alberti, S., Hyman,
1049 A.A., 2018. A Molecular Grammar Governing the Driving Forces for Phase Separation
1050 of Prion-like RNA Binding Proteins. *Cell* 174, 688–699.e16.
1051 <https://doi.org/10.1016/j.cell.2018.06.006>

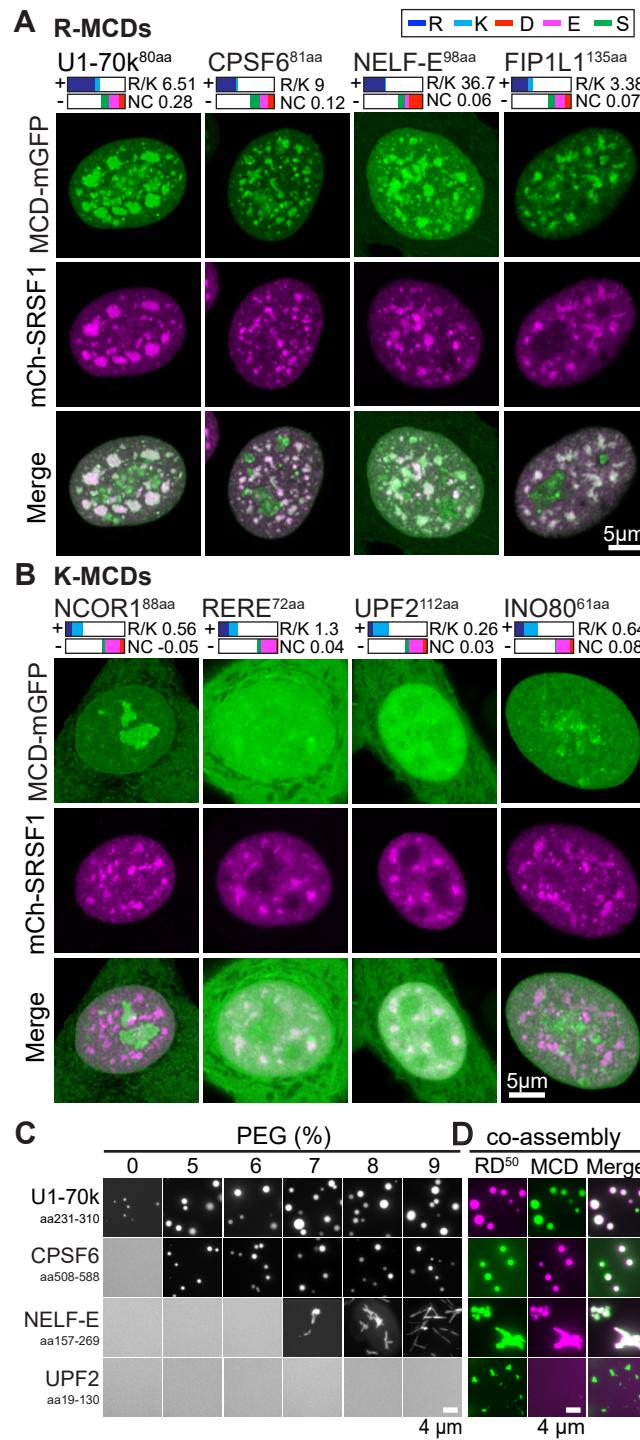
1052 White, M.R., Mitrea, D.M., Zhang, P., Stanley, C.B., Cassidy, D.E., Nourse, A., Phillips, A.H.,
1053 Tolbert, M., Taylor, J.P., Kriwacki, R.W., 2019. C9orf72 Poly(PR) Dipeptide Repeats
1054 Disturb Biomolecular Phase Separation and Disrupt Nucleolar Function. *Mol. Cell* 74,
1055 713–728.e6. <https://doi.org/10.1016/j.molcel.2019.03.019>

1056 Wippich, F., Bodenmiller, B., Trajkovska, M.G., Wanka, S., Aebersold, R., Pelkmans, L., 2013.
1057 Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to
1058 mTORC1 signaling. *Cell* 152, 791–805. <https://doi.org/10.1016/j.cell.2013.01.033>

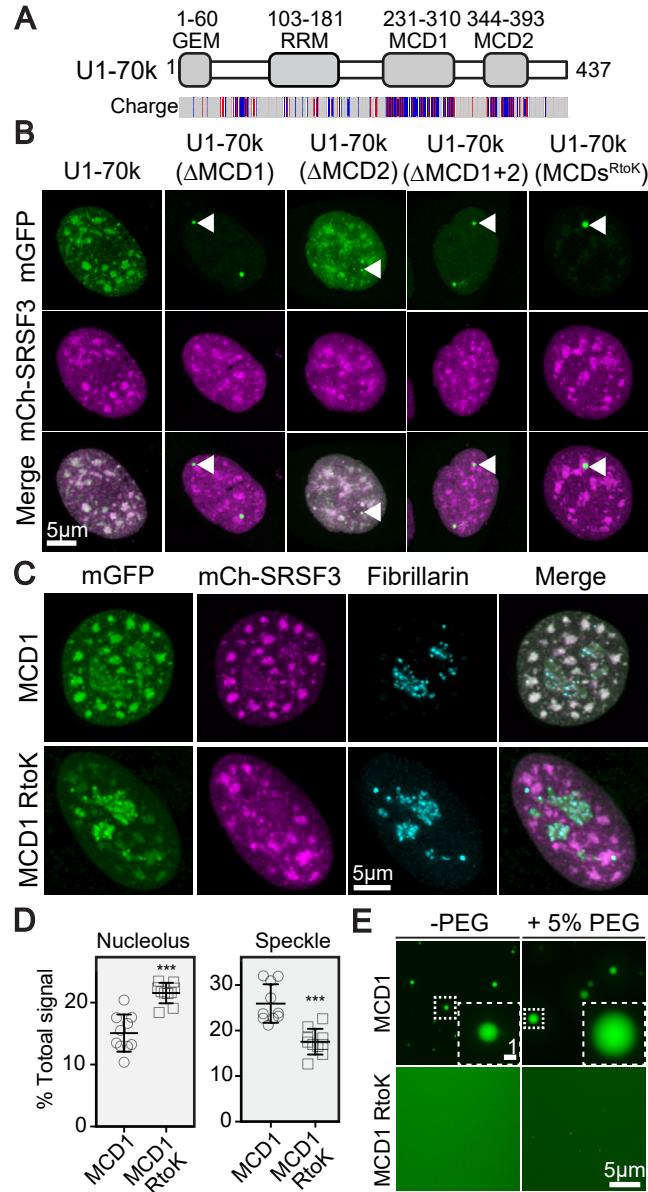
1059 Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimoto, S., Hasegawa, J., Handa,
1060 H., 1999. NELF, a multisubunit complex containing RD, cooperates with DSIF to
1061 repress RNA polymerase II elongation. *Cell* 97, 41–51.

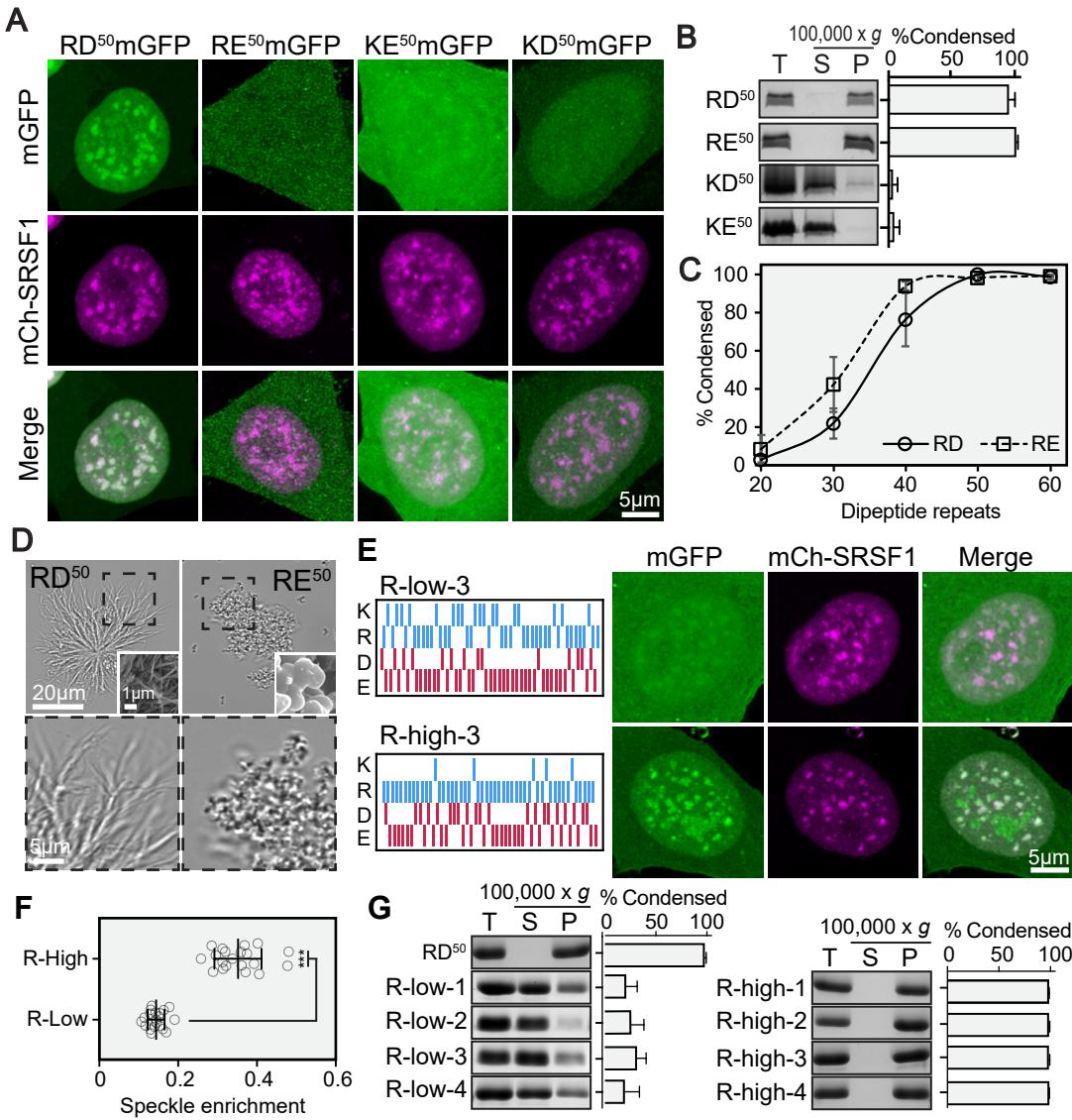

1062 Yanagisawa, H., Bundo, M., Miyashita, T., Okamura-Oho, Y., Tadokoro, K., Tokunaga, K.,
1063 Yamada, M., 2000. Protein binding of a DRPLA family through arginine-glutamic acid
1064 dipeptide repeats is enhanced by extended polyglutamine. *Hum. Mol. Genet.* 9,
1065 1433–1442.

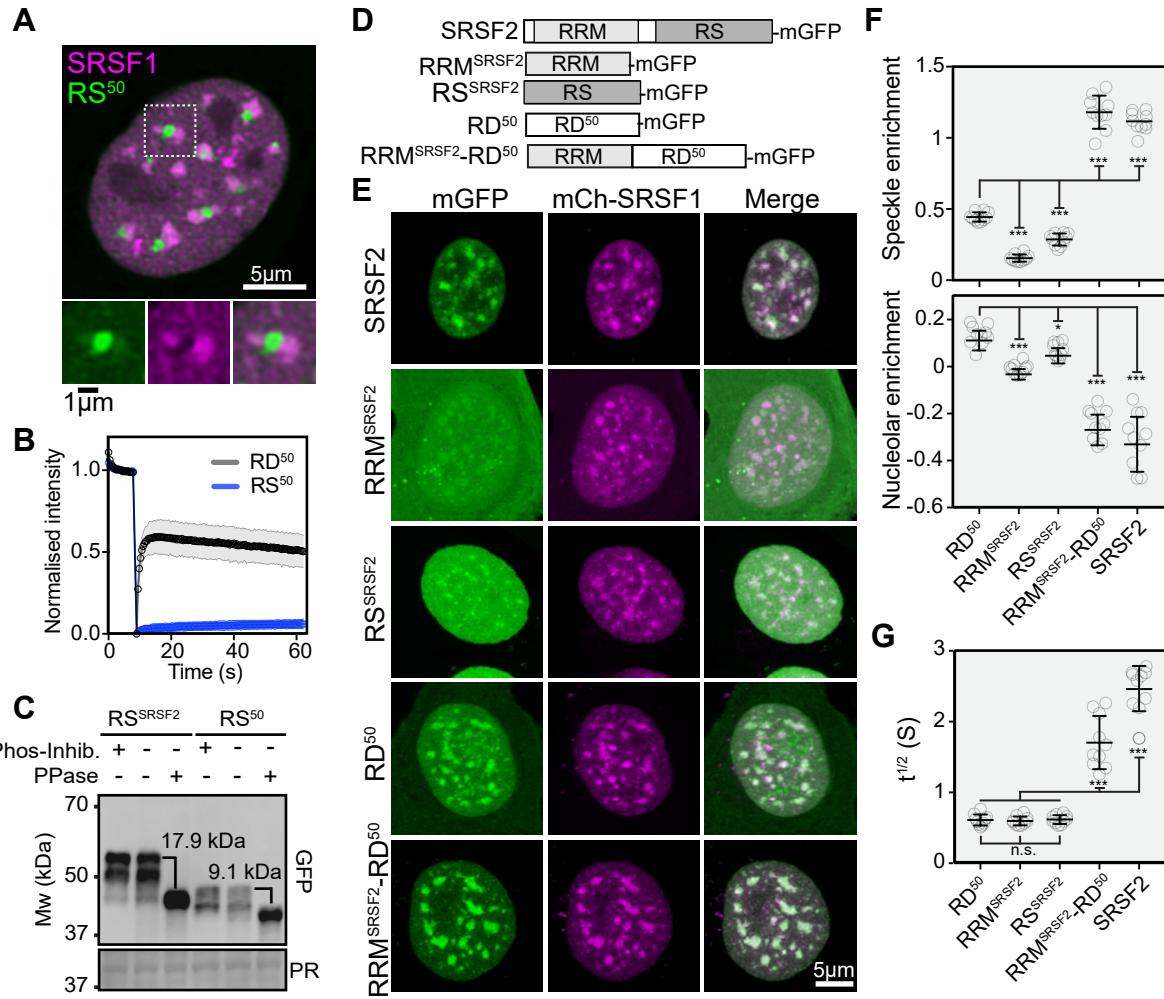
1066 Zacharias, D.A., Violin, J.D., Newton, A.C., Tsien, R.Y., 2002. Partitioning of lipid-modified
1067 monomeric GFPs into membrane microdomains of live cells. *Science* 296, 913–916.
1068 <https://doi.org/10.1126/science.1068539>

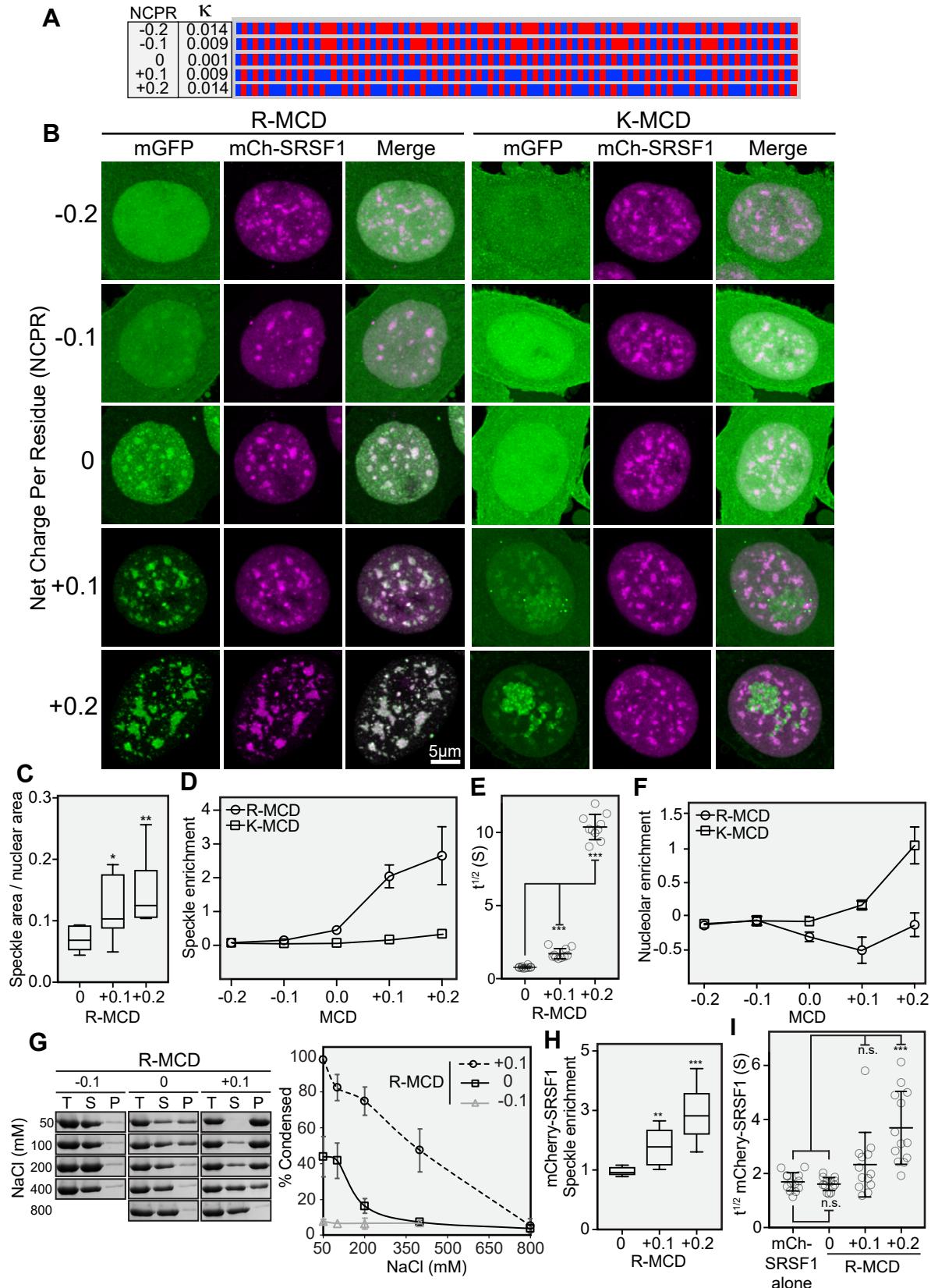

1069 Zhang, H., Elbaum-Garfinkle, S., Langdon, E.M., Taylor, N., Occhipinti, P., Bridges, A.A.,
1070 Brangwynne, C.P., Gladfelter, A.S., 2015. RNA Controls PolyQ Protein Phase
1071 Transitions. *Mol. Cell* 60, 220–230. <https://doi.org/10.1016/j.molcel.2015.09.017>

1072 Zhou, Z., Fu, X.-D., 2013. Regulation of splicing by SR proteins and SR protein-specific
1073 kinases. *Chromosoma* 122, 191–207. <https://doi.org/10.1007/s00412-013-0407-z>


1074


Figure 1. RD-dipeptide repeats associate with nuclear speckles and undergo condensation in a length-dependent manner. **A.** Representative images of nuclei in cells expressing the indicated mGFP-fusions. mCherry-SRSF1 identifies speckles. **B.** *in vitro* condensation of RD dipeptide length variants. Condensates are found in the pellet fraction following centrifugation at 100,000 x g. Total (T), supernatant (S) and pellet (P) fractions are shown. **C.** The appearance of SPA-5^{MCD} and RD⁵⁰ condensates is shown by bright field (BF) (upper panels) and scanning electron microscopy (SEM) images (lower panels). **D.** Quantification of the percentage of total SPA-5^{MCD} and RD⁵⁰ that pellet following condensation at the indicated protein concentrations. **E.** Quantification of speckle enrichment (*in vivo*) and condensation (*in vitro*) for the indicated RD variants reveals similar length-dependency. The degree of condensation is quantified as the fraction of pelleting material as compared to the total input. Average values are derived from three experiments as shown in part B. Speckle enrichment is the average speckle signal density divided by the average nucleoplasmic signal density, with the value of one set to zero. **F.** FRAP recovery curves for the indicated condensates. Insets show images of representative recoveries at the indicated time points. Figure S1 contains related information.


Figure 2. Naturally occurring R-MCDs associate with nuclear speckles and undergo phase separation as pure proteins. **A.** Images of representative nuclei for cells expressing the indicated R-MCD mGFP-fusions. mCherry-SRSF1 identifies speckles. Colocalization is shown in the Merge panel. For each protein, MCD length is identified in superscript. Colored boxes present the relative amino acid contribution of positively (+) and negatively (-) -charged amino acids and serine as identified in the legend. R/K ratio and net-charge (NC) are indicated. **B.** Images of representative nuclei for cells expressing the indicated K-MCD mGFP-fusions. mCherry-SRSF1 identifies speckles. Refer to A for legend description. **C.** *in vitro* phase separation of purified mGFP/mCherry-MCD fusions at the indicated PEG concentration. Condensates are identified by fluorescence microscopy. **D.** Co-assembly of MCDs from part C with mGFP/mCherry-RD⁵⁰, identified as above. Figures S2A-D contain related information.


Figure 3. Arginine in U1-70k MCDs promotes nuclear speckle incorporation and condensate formation. **A.** Diagram of human U1-70k shows the position of the MCDs, RNA recognition motif (RRM), and GEM incorporation domain. The position of charged amino acids is shown in the lower panel. Blue: positively charged residues, Red: negatively charged residues. **B.** Images of representative nuclei from cells expressing the indicated U1-70k-mGFP variants. mCherry-SRSF3 identifies speckles. Arrowheads point to the GEM body. **C.** Images of representative nuclei from cells expressing the indicated mGFP-fusions. Fibrillarin staining identifies nucleoli. **D.** Quantification of the speckle and nucleolar signal as a fraction of the total nuclear signal for the mGFP-fusions shown in part C. *** p<0.0001. **E.** Fluorescence microscopy reveals the tendency of purified MCD1 and the MCD1 R to K variant-mGFP fusions to form condensates in the presence (+) and absence (-) of 5% PEG. The dashed box identifies the region that is shown magnified in the inset. Figures S2D-G contain related data.

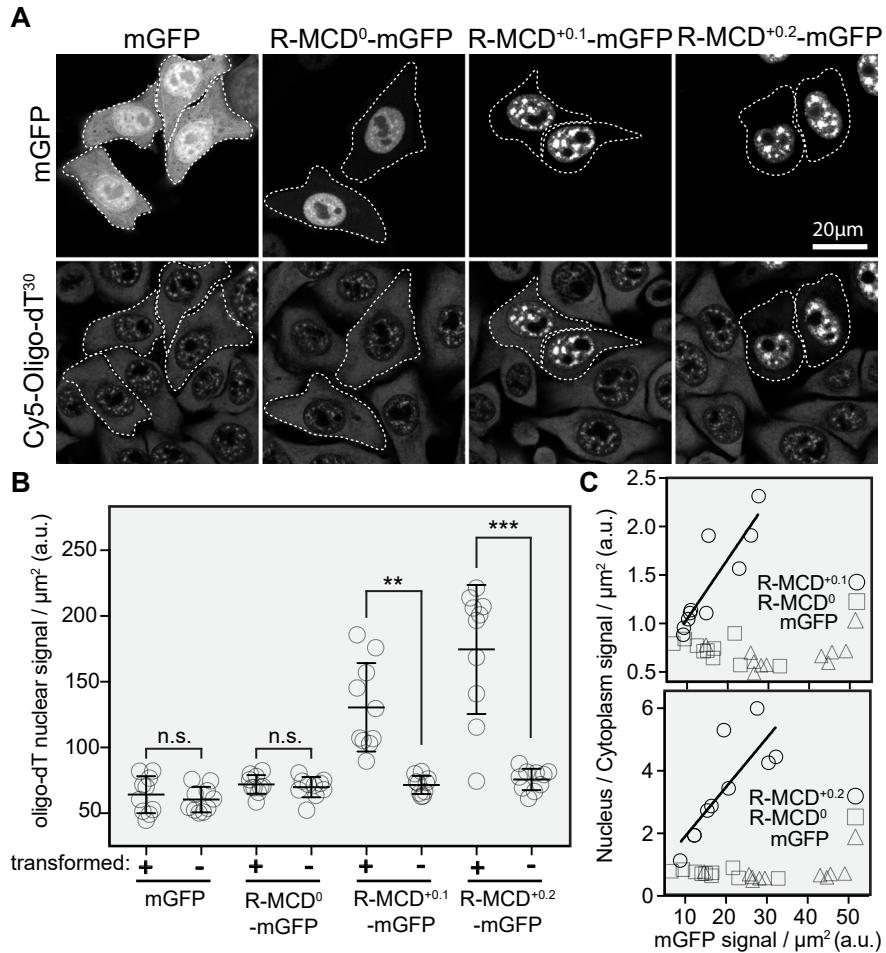

Figure 4. R is essential for condensation and nuclear speckle incorporation of MCDs. A. Images of representative nuclei from cells expressing the indicated mGFP-fusions. mCherry-SRSF1 identifies speckles. **B.** The indicated dipeptide repeat sequences were assayed for condensation as in Figure 1B. **C.** Quantification of length-dependent condensation for the indicated RD and RE repeat variants as in Figure 1E. **D.** BF images of the indicated condensates. Insets show SEM images. Dashed boxes indicate regions shown at higher magnification in the lower panels. **E.** Behaviour of randomized mixed-charge dipeptide repeat variants conforming to R-low and R-high R/K ratios. Diagrams on the left depict the position of the indicated amino acid residues. Images on the right are of representative nuclei from cells expressing the indicated R-low (upper panels) and R-high variant (lower panels). mCherry-SRSF1 identifies speckles. Figure S4 contains full analysis of four R-low and R-high variants. **F.** Quantification of speckle enrichment for the indicated sequence variants as in Figure 1E. *** p<0.0001. Data are derived from the full set of R-low and R-high variants. **G.** Quantification of *in vitro* condensation for the indicated MCD variants. Total (T), supernatant (S) and pellet (P) fractions are shown. Figures S3 and S4 contain all related data.

Figure 5. An RRM synergizes with an RS domain or R-MCD to specify nuclear speckle incorporation. **A.** Image of a representative nuclei in a cell expressing RS⁵⁰-mGFP. Dashed box indicates the region magnified below. mCherry-SRSF1 identifies speckles. **B.** Limited FRAP recovery of RS⁵⁰-mGFP nuclear bodies as compared to RD⁵⁰-mGFP in speckles. **C.** Western blot comparing the migration of phosphatase (PPase) treated (+) and untreated (-) RS⁵⁰-mGFP (RS⁵⁰) with the RS domain from SRSF2 fused to mGFP (RS^{SRSF2}). The difference in migration provides an estimate of the degree of phosphorylation, which is indicated in kDa. Ponceau red (PR) staining provides a loading control. **D.** Diagram showing the names and domain structure of the indicated mGFP-fusions. **E.** Images of representative nuclei from cells expressing the indicated mGFP-fusions. mCherry-SRSF1 identifies speckles. **F.** Quantification of the speckle- (upper panel) and nucleolar-enrichment (lower panel) of the indicated mGFP-fusions, as in Figure 1E. Nucleolar-enrichment is the average nucleolar signal density divided by the average nucleoplasmic signal density, with the value of one set to zero. **G.** FRAP of speckles labelled with the indicated mGFP-fusions. The half-times for recovery along with standard deviation are shown. For all quantification: *p<0.01, *** p<0.0001.

Figure 6. Increasing MCD net-positive charge through R enhances nuclear speckle cohesion. **A.** Diagram of the charge distribution in sequences designed to vary net-charge per residue (NCPR) between -0.2 and +0.2. Blue: positively charged residues, Red: negatively charged residues. The extent of charge mixing is indicated with the kappa (κ) value. **B.** Images of representative nuclei from cells expressing the indicated mGFP-fusions. mCherry-SRSF1 identifies speckles. **C.** Quantification of the fraction of nuclear area occupied by speckles for cells expressing the indicated R-MCD net-charge variants. **D.** Quantification of speckle enrichment for the indicated MCD net-charge variants, as in Figure 1E. **E.** Half-times of FRAP recovery for the indicated R-MCD net-charge variant labelled speckles. **F.** Quantification of nucleolar enrichment for the indicated net-charge variants, as in Figure 5F. **G.** *In vitro* condensation assays of the indicated R-MCD net-charge variants. Proteins were diluted to 10 μ M at the indicated salt concentration and condensation was quantified by centrifugation as in Figure 1B. The left panels show SDS-PAGE analysis of a representative experiment. The graph to the right show's quantification of the average values from three independent experiments. **H.** Speckle enrichment of mCherry-SRSF1 upon co-expression of the indicated R-MCD charge variants. Quantification as in Figure 1E. **I.** Half-times of FRAP recovery for mCherry-SRSF1 labelled speckles on co-expression of the indicated R-MCD. For all quantification: ** $p<0.001$, *** $p<0.0001$. Figures S5 and S6 contain related data.

Figure 7. Increasing speckle cohesion leads to retention of polyadenylated mRNAs in the nucleus. A. Images of cells expressing mGFP alone or the indicated R-MCD charge variant fused to mGFP. A field of cells is shown to allow comparison between transformed and untransformed cells. Upper panels show mGFP fluorescence. Lower panes reveal staining of polyadenylated mRNA with Cy5-Oligo-dT³⁰. The dotted white lines identify the periphery of transformed cells. **B.** Quantification of average density of nuclear polyadenylated mRNA upon expression of the indicated mGFP fusions. For each transformation, transformed (+) and untransformed (-) cells are compared. **C.** Quantification of the average density of nuclear to cytosolic mRNA upon expression of the indicated R-MCDs. The ratio is shown as a function of the level of R-MCD-mGFP fusion protein expression (x-axis). Values derived from expression of mGFP alone and the net-neutral R-MCD are shown on each graph for comparison.