

1 Title: Hydrodynamic regime drives flow reversals in suction feeding larval fishes during early
2 ontogeny

3 Krishnamoorthy Krishnan¹, Asif Shahriar Nafi¹, Roi Gurka¹, Roi Holzman^{2,3}

4

5 1) School of Coastal and Marine Systems Science, Coastal Carolina University, Conway,
6 SC, 29526.

7 2) School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

8 3) The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, Israel.

9 * Corresponding author: Roi Holzman <holzman@tauex.tau.ac.il>

10

11 Keywords: *Sparus aurata*, Reynolds numbers, feeding kinematics

12

13

14

15

16 **Abstract**

17 Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges
18 that stem from their minute size, and from the hydrodynamic regime in which they dwell.
19 This regime of intermediate Reynolds numbers (Re) was shown to affect the swimming of
20 larval fish and impede their ability to capture prey. Numerical simulations indicate that the
21 flow fields external to the mouth in younger larvae result in shallower spatial gradients,
22 limiting the force exerted on the prey. However, observations on feeding larvae suggest that
23 failures in prey capture can also occur during prey transport, although the mechanism
24 causing these failures is unclear. We combine high-speed videography and numerical
25 simulations to investigate the hydrodynamic mechanisms that impede prey transport in
26 larval fishes. Detailed kinematics of the expanding mouth during prey capture by larval
27 *Sparus aurata* were used to parameterize age-specific numerical models of the flows inside
28 the mouth. These models reveal that, for small larvae that slowly expand their mouth, not
29 all the fluid that enters the mouth cavity is expelled through the gills, resulting in flow
30 reversal at the mouth orifice. This efflux at the mouth orifice was highest in the younger
31 ages, but was also high (>8%) in slow strikes produced by larger fish. Our modeling explains
32 the observations of “in-and-out” events in larval fish, where prey enters the mouth but is
33 not swallowed. It further highlights the importance of prey transport as an integral part in
34 determining suction feeding success.

35

36

37

38 **Introduction**

39 Most marine fish reproduce by broadcasting small (~1 mm in diameter) eggs into the open
40 ocean, providing no parental care from the hatching larvae (Blaxter, 1988; Cowen, 2002;
41 Houde, 1987). Typically, larvae deplete their yolk sac after a couple of days (usually 3-7,
42 depending on temperature and environmental conditions) and resort to feed autonomously
43 to gain the necessary resources to complete their development (Blaxter, 1988; Cowen,
44 2002; Houde, 1987). Despite the staggering variation in body size and life history strategies,
45 the small eggs and larvae, and the lack of parental care, are nearly ubiquitous across marine
46 fish (Barneche et al., 2018). Consequently, fish larvae are the smallest self-sustaining
47 vertebrates. Almost all larval fishes feed in the pelagic realm using “suction feeding”, a
48 characteristic behavior in which fish sequentially open their mouth, expand their buccal
49 cavity and open the opercula covers to generate a unidirectional flow of water that carries
50 their prey into the mouth (Day et al., 2015; Holzman et al., 2015).

51 In the wild, larval fish suffer dramatic mortality rates (Hjort, 1914; Houde, 1987). It is
52 estimated that >90% of the brood is eradicated during the “critical period”, extending from
53 the time of first feeding until the larvae is ready to settle in its juvenile habitat. During this
54 period, larval fish undergo dramatic morphological and developmental changes, including
55 the ossification of the cranium and vertebrae, the degradation of the fin fold and
56 development of fin rays, as well as the continuous growth and development of the eyes
57 (Blaxter, 1988; Kavanagh and Alford, 2003). Concomitantly, coordination and motor pattern
58 change and improve (Westphal and O’Malley, 2013). The physical growth of the larvae,
59 coupled with the development of stronger muscles that support faster movements lead to
60 an ontogenetic transition in the ways larvae interact with their fluid environment (China and
61 Holzman, 2014; Holzman et al., 2015). Being small and slow, young larvae live in a domain of

62 intermediate Reynolds numbers (*Re*), in which viscous forces are non-negligible compared
63 to inertial ones. This hydrodynamic regime was shown to impede the feeding rates of larval
64 fishes, with 8 Days Post Hatch (DPH) *Sparus Aurata* larvae failing to capture non-evasive
65 prey in ~80% of their feeding strikes (China and Holzman, 2014). Manipulations of the
66 viscosity of the medium in which larvae fed demonstrated that the feeding rates of larvae
67 were determined primarily by the hydrodynamic environment, described by the Reynolds
68 numbers that characterized the feeding events (China and Holzman, 2014; Holzman et al.,
69 2015). Older larvae (13 and 23DPH) that fed in a viscous medium displayed feeding rates
70 equivalent to those of the 8DPH larvae in unmanipulated water. Larvae that were raised in
71 mediums with increased viscosity expressed elevated levels of hunger-related
72 neuropeptides (Koch et al., 2018) and suffered higher mortality rates (Yavno and Holzman,
73 2018). Furthermore, the probability of executing successful prey-acquisition strikes
74 increased with increasing *Re* number calculated for the suction feeding strike (China et al.,
75 2017). Transition into higher *Re* also improves the larvae's ability to capture highly evasive
76 prey such as copepods (Jackson and Lenz, 2016; Sommerfeld and Holzman, 2019; Yaniv et
77 al., 2014).

78 Observations using high-speed videos indicate that one of the reasons for failure in
79 prey acquisition strikes is the occurrence of "in-and-out" events, in which prey is carried into
80 the mouth by the suction flows, but is expelled before the mouth is closed (China et al.,
81 2017; Holzman et al., 2015). The suction flows in these "in-and-out" events were
82 characterized by lower *Re* compared to those in successful events. Furthermore "in-and-
83 out" strikes were initiated from a further distance and were slower compared to
84 unsuccessful events in which the prey did not even enter the mouth (China et al., 2017). A
85 flow visualization study reported flow reversals in larval zebrafish, that occurred in smaller

86 larvae at the time when the mouth started closing (Pekkan et al., 2016). This is in sharp
87 contrast to adult fish, in which flow reversals are rare and minor (Jacobs and Holzman,
88 2018). However, the extent of these flow reversals across species and developmental stages
89 are unclear, as well as the hydrodynamic conditions under which they occur.

90 Here, we used computational fluid dynamics (CFD) to investigate the fluid dynamics
91 of suction feeding larval fish. Following Yaniv et al (Yaniv et al., 2014), we constructed a
92 model of an expanding buccal cavity, which incorporates an anterior-to-posterior wave of
93 buccal expansion (Bishop et al., 2008) over time. Our modeling included the opening of the
94 opercula covers at the posterior end of the mouth, a hallmark feature of suction feeding in
95 fishes, which generate unidirectional flows into the mouth while it is closing (Van
96 Wassenbergh, 2015). The model was parametrized based on observed strike kinematics of
97 *Sparus aurata* larvae ranging from first feeding to metamorphosis. Using these kinematics,
98 we quantified the flow speeds and the influx and efflux into the mouth and out of the gills
99 for six larval ages. We then characterized the extent of flow reversals, the flow conditions in
100 which they occur, and the role of hydrodynamics and kinematics (behavior) in driving these
101 flow reversals.

102

103 **Methods**

104 *Study organisms*

105 We reanalyzed high-speed videos of suction feeding gilthead sea-bream larvae
106 (*Sparus aurata* Linnaeus, 1758) feeding on Rotifers (*Brachionus rotundiformis*; ~0.16 mm in
107 length), from dataset previously used in China and Holzman, 2014 and China et al., 2017. *S.*
108 *aurata* is a pelagic spawner, hatching at ~3.5 mm. Feeding initiates at ~5 days post hatching
109 (DPH) at a body length of ~4 mm. Larvae reach the stage of flexion at ~21-24 DPH, at a

110 length of 7-10 mm, depending on conditions. *Brachionus rotundiformis* is a species of
111 planktonic rotifer, actively swimming at $\sim 0.2 \text{ mm s}^{-1}$. Prey swimming speed is an order of
112 magnitude slower than the swimming speed of the larvae, and their escape response is
113 considered weak (China and Holzman, 2014; China et al., 2017). Rotifers are universally used
114 as the standard first-feeding food in the mariculture industry.

115 *High-speed videos*

116 Suction feeding events of larval fish were recorded using high speed video (500 and
117 1000 frames per second) as described in (China and Holzman, 2014; China et al., 2017). In
118 these experiments, fish swam freely in an aquarium, and their orientation with respect to
119 the camera included lateral, dorsal and ventral views. From the larger dataset of prey
120 acquisition strikes we selected 63 clips in which we could clearly track the kinematics of
121 mouth opening as well as either the hyoid (using lateral view of the fish) or the opercula
122 (using dorsal or ventral views) throughout prey acquisition strike. Clips were selected for
123 fish at the ages of 8, 12-13, 17-18, 22-25, 30 and 35-37 DPH (hereafter 8, 13, 18, 23, 30 and
124 37 DPH; 4-14 clips per age group). From the lateral view videos, we measured the time of
125 mouth opening and closing, maximal mouth diameter, the time of initiation and peak hyoid
126 displacement and its maximal excursion, and the time of opercula opening and closing
127 (when clearly visible). From the dorsal and the ventral view videos, we measured the time of
128 the mouth opening and closing, the time of initiation and peak opercula displacement and
129 its maximal excursion, and the corresponding parameters at the base of the opercula (1st gill
130 arch). To enable comparisons between different ages and strikes, we standardized the times
131 of hyoid and opercula excursions by the time to peak gape opening (TTPG) in each clip, and
132 their excursions by peak gape. Not all the parameters were visible in all the clips, resulting in
133 a sparse matrix that was $\sim 60\%$ full. We averaged the timing and excursion parameters for

134 each landmark, regressed them against larval age and used the predicted values from the
135 regression to generate characteristic kinematics for each age (table 1).

136 *Geometry of the modeled buccal cavity*

137 We build on a previous model of mouth cavity expansion suggested by (Bishop et al.,
138 2008; Yaniv et al., 2014), but added the opening of the opercular slits, a hallmark of suction
139 feeding across fishes (Van Wassenbergh, 2015). In brief, the model was composed of three
140 compartments of constant axial lengths, L_1 , L_2 and L_3 (Fig. 1). These compartments
141 represented the region from the mouth opening to the anterior hyoid (L_1), the region
142 spanning the anterior to posterior length of the hyoid (L_2) and the region posterior to the
143 hyoid extending to the opening of the esophagus (L_3). Mouth cavity expansion was
144 simulated as time-dependent changes in the radii (R_1 , R_2 , R_3 , and R_4) of the bases of the
145 compartments, parametrized according to the observed kinematics of the corresponding
146 landmarks in our larvae (see above). The radius R_1 represents the radius of the gape. The
147 lengths B_1 , B_2 and B_3 of the lateral surfaces of each compartment varied with time to fit the
148 length variations of the radii R_1 , R_2 and R_3 . We simulated mouth expansion for six larval ages
149 (8, 13, 18, 23, 30 and 37 DPH) with increasing gape diameter and mouth lengths. Internal
150 dimensions of L_1 , L_2 and L_3 were 25%, 30% and 45% of the total mouth cavity length L , and
151 mouth radii before mouth expansion were set to 2.5% for R_1 and R_4 , and 5% for R_2 - R_3 (Yaniv
152 et al., 2014).

153 The pattern of mouth opening was simulated by varying the radii $R(t)$ of each mouth
154 section (R_1 - R_4) using the following time-dependent exponential function (Eq. 1; modified
155 from (Müller et al., 1982)):

$$156 R(t) = R_0 + (R_{max} - R_0) \left[\frac{t-t_0}{(t_{max}-t_0)} \exp \left(1 - \frac{t_0-t}{(t_{max}-t_0)} \right) \right]^2 \quad (\text{Eq. 1})$$

157 Here, $R_0 = R(t=0)$, t_0 is the time when R first deviates from R_0 and t_{max} is the time
158 when R is maximal ($R=R_{max}$). Note that the radius of each mouth section can have different
159 R_0 , t_0 , R_{max} and t_{max} values (Table 1; Fig 3).

160 Feeding events used to parametrized our model were acquired using manually
161 triggered high-speed cameras, a method which might be biased towards capturing more
162 noticeable events i.e. faster or greater in excursion(China et al., 2017). Thus, they might
163 have represented higher- performance strikes. To investigate the effect of low-effort strikes
164 on the flow dynamics, we run our numerical simulations (see below) for the 23, 30, and 37
165 DPH cases using the observed geometry but with the expansion kinematics and the relative
166 timing of the 8 DPH case (time to peak gape of 57.3 ms, and time to peak $R_2 - R_4$ of 70.3, 73.1
167 and 78.8 ms, respectively for all three models; Table 1).

168 *Computational approach*

169 To simulate the fluid dynamics of the buccal cavity and characterize the flow moving
170 in and out of the mouth cavity, a simplified model of an axi-symmetrical mouth cavity was
171 designed. The boundaries of the mouth cavity in the simulations presents a simplified
172 structure that has a cylindrical wall surrounding the cavity and unclosed inlet and outlet
173 edges at the right and left ends, respectively. The cylindrical wall sections are comprised of
174 three length sections that are flexibly connected, and their individual movement was
175 prescribed by the measured kinematics as explained in the kinematics section. To represent
176 the body of the fish and supplement the function of the gills, a streamlined elongated body
177 with a length similar to mouth length was designed downstream the buccal cavity. The body
178 had a small protruding part inside the cavity outlet, with a small ($\sim 10^{-3}$ mm) gap from the
179 buccal walls at $t = 0$. At $t > 0$ the mouth started expanding, drawing the fluid in through the

180 gape, followed by the opening of the gap (the gills) based on the prescribed kinematics for
181 R_4 .

182 The mouth cavity was immersed in a fluid-filled rectangular domain, and it was
183 placed at the center of the domain. The rectangular fluid domain has six boundaries: inlet at
184 the right end, outlet at the left end and four walls (at the top, bottom, far and near) such
185 that uniform flow was formed to move in the domain from right to left. Water at standard
186 atmospheric condition was used as fluid material in the domain. A velocity inlet boundary
187 condition was used at the inlet with water flowing at 13 mm s^{-1} and pressure-outlet
188 boundary condition with standard atmospheric pressure was set at the domain outlet. The
189 top, bottom, far and near walls of the fluid domain, as well as the walls of the mouth cavity
190 were represented with no-slip boundary condition. As the inlet and outlet of the mouth
191 cavity were left unclosed, it is expected for the fluid to flow in and out of the mouth cavity
192 naturally depending on its kinematics. To ensure that the domain size does not interfere
193 with the flow inside and around the mouth cavity, the domain had sufficiently larger
194 dimensions: approximately 30 times the mouth cavity length along the X-direction (flow
195 direction) and 80 times the peak mouth opening radius along the Y-direction for each DPH
196 cases.

197 The flow field due to expansion of the mouth cavity model was governed by the
198 continuity and momentum conservation equations for incompressible viscous laminar fluid
199 flow in the absence of body force (Ferziger and Peric, 2001). General governing equations
200 for an unsteady, viscous laminar flow is given below.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0,$$
$$\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{V},$$

201 where ρ is fluid density, \mathbf{V} is the velocity vector, p is the pressure and ν is the kinematic
202 viscosity of the fluid. The flow governing equations were solved using finite volume based
203 commercial software package ANSYS fluent (ANSYS, Canonsburg, Pennsylvania). Mouth
204 cavity model was designed and meshed using ANSYS workbench (ANSYS, Canonsburg,
205 Pennsylvania). Unstructured (triangular shape) mesh method was chosen to discretize the
206 domain, the cavity and its boundaries. Relatively finer meshes were built inside and around
207 the mouth cavity while coarser meshes were used in the domain away from the cavity. To
208 simulate the expansion of the mouth cavity, dynamic mesh method was utilized. The
209 dynamic meshing corresponds to changing of the mesh geometry over time and space
210 based on the prescribed kinematics of the cavity. The kinematic motion of the mouth cavity
211 was prescribed within the fluent solver using the user defined function
212 'DEFINE_GRID_MOTION' (Ansyst, 2009; Van Wassenbergh, 2015). This procedure was
213 performed using a user defined function that was compiled and assigned to each length
214 sections of the mouth cavity. Local cell re-meshing method was chosen to re-mesh the mesh
215 grids for every two timesteps based on minimum and maximum cell length and maximum
216 skewness parameters of each cell. To solve the flow equations, a SIMPLE scheme (Ansyst,
217 2009) was employed to carry out the pressure-velocity calculations. Spatial discretization
218 was assigned with second order least square cell-based gradients method whilst a first order
219 implicit method was used for time discretization. The complete numerical solution was
220 obtained by ensuring that the convergence criteria of 10^{-4} for the continuity and the flow
221 speed components are attained. Before proceeding with the final simulations, mesh
222 convergence study was carried out to confirm stable solution is achieved and the mesh does
223 not influence the solution. For instance, for the 8 DPH case, we built three different meshes
224 with approximately, 90,000 cells, 140,000 cells and 300,000 cells. Mesh validation was

225 performed by comparing peak flow speed at both inlet and outlet for each mesh cases and
226 observed less than 1% variation between mesh 2 and 3. Then mesh with 140,000 cells was
227 chosen for the further simulation. Irrespectively for all the DPH cases the movement of
228 mouth cavity was simulated for 280 ms with 2,800 timesteps (each 10^{-4} s).

229 Flow speed at the inlet and outlet at each time step was calculated as the average of
230 flow speed across it. Correspondingly, peak flow speed was the flow speed at the time of
231 maximal mouth opening. Flow rates were defined as the product of flow speed and the
232 circular area of the inlet and outlet. Peak flow rate was flow rate at the time of maximal
233 mouth opening. Reynolds number (Re) was calculated as

$$Re = \frac{\nu L}{\nu}$$

234 where ν is flow speed ($m s^{-1}$), ν is the kinematic viscosity of the fluid ($m^2 s^{-1}$) and L is the
235 characteristic length scale (m). We used the swimming speed of the larvae as the
236 characteristic speed and the buccal length as the characteristic length.

237 Reynolds number was developed to characterize the flow in the case of steady flow
238 within a long rigid tube with a fixed (time independent) radius. However, the suction flow is
239 controlled by the rapid time-dependent motion of the cavity walls, and is characterized by
240 strong temporal flow patterns, which needs to be considered. We therefore propose to use
241 the Womersley number, α^2 which was formulated for pulsating flows mainly associated
242 with cardiovascular systems (Womersley, 1955), and is calculated as:

$$\alpha^2 = \frac{\omega L^2}{\nu}$$

243 where ω is the characteristic angular frequency (s^{-1}), ν is the kinematic viscosity of the fluid
244 ($m^2 s^{-1}$) and L is a characteristic length scale (gape; m). The Womersley number relates the
245 pulsation flow frequency to viscous effects. Here, the angular frequency is calculated using

246 the time it takes the larvae to fully open its mouth (TTPG) such that $\omega = 2\pi/TTPG$. Note
247 that we used different (although correlated) characteristic lengths for the Womersley and
248 Reynolds, referring to buccal length and gape, respectively.

249

250 **Results**

251 To facilitate the comparison between fish species in which the growth rates can differ, we
252 hereafter report on the scaling of suction feeding kinematics and dynamics with buccal
253 length. As larvae mature from 8 DPH to 37 DPH, the length of the buccal cavity and the
254 diameter of the mouth increase by about two-fold (Fig 2; Table 1). Concomitantly, the time
255 to peak gape decreases by a factor of ~3.6 from an average of 57.3 ms at 8 DPH to 15.6 at
256 37 DPH. By and large, the kinematics observed in *S. aurata* larvae yielded unidirectional
257 flows in our CFD models, i.e. fluid entering the mouth at the gape (inlet; Fig 5A) and exiting
258 through the gills (outlet; Fig 5B). As previously reported (Yaniv et al., 2014), peak flow
259 speeds at the mouth inlet ($U_{peak}(gape)$) increased with increasing buccal length (i.e. age; L),
260 following the exponential relationship $U_{peak}(gape) = -0.56 * \exp(3.39 L)$; (Fig 6A). Peak flow
261 speed was 28.3 mm s^{-1} for the 8 DPH case and increased to 49.8 and 136.2 mm s^{-1} for the 23
262 and 37 DPH cases. Correspondingly, Re increases by an order of magnitude (from 23 at 8
263 DPH to 218 at 37 DPH).

264 Similarly, peak flow rate at the mouth inlet ($Q_{peak}(gape)$) increased with increasing
265 buccal length from $0.58 \text{ mm}^3 \text{ s}^{-1}$ for the 8 DPH case to 2.96 and $8.37 \text{ mm}^3 \text{ s}^{-1}$ for the 23 and
266 37 DPH cases, following an exponential relationship $Q_{peak}(gape) = -0.021 * \exp(3.71 L)$ (Fig 6c).
267 Peak flow rate at the outlet $Q_{peak}(\text{gills})$ increased with increasing buccal length from 0.13
268 $\text{mm}^3 \text{ s}^{-1}$ for the 8 DPH case to 0.93 and $2.26 \text{ mm}^3 \text{ s}^{-1}$ for the 23 and 37 DPH cases, following
269 an exponential relationship $Q_{peak}(\text{gills}) = -0.0056 * \exp(3.7 L)$.

270 While the observed kinematics in all cases (8-37 DPH) resulted in a net influx into the
271 gape (inlet), we observed considerable efflux (flow reversals) around the time of mouth
272 closure (Fig 5B). These flow reversals were most pronounced for models depicting suction
273 feeding in young (8 and 13 DPH) ages, where efflux out of the gape was ~10% and ~3% of
274 the influx into the cavity, respectively (Fig 6). Efflux decreased sharply for the cases of 18-37
275 DPH (Fig 6). Plotting the Reynolds versus Womersley numbers for all our cases (Fig 7)
276 indicated that efflux at the mouth (flow reversals) was > 3% of the influx for the smaller
277 larvae, characterized by $Re < 50$ and $a^2 < 4$. Furthermore, running the model for the 23, 30
278 and 37 DPH cases using the observed morphology excursions but the kinematics of the 8
279 DPH case yielded high efflux (~7-8%), similar to the ones obtained for the 8 DPH case (Fig 7).

280

281 **Discussion**

282 In this study, we used computational fluid dynamics (CFD) to investigate the fluid dynamics
283 of suction feeding larval fish. Using observed strike kinematics of *Sparus aurata* larvae
284 ranging from first feeding to metamorphosis to parametrize the model, we quantified the
285 flow speeds and the influx and efflux into the mouth and out of the gills for six larval ages.
286 As larvae grow, their buccal cavity elongated and its radii increase, and it expands faster (Fig
287 2, Table 1). These kinematics leads to an increase in the maximal flow speed and flow rate
288 observed at the orifice (Fig 5, 6). While most of the fluid entrained in the cavity is evacuated
289 through the gills, we observed high efflux of water flowing outwards from the gape (Fig 5,7).
290 These flows occurred predominantly in the models characterized by $Re < 50$ and $a^2 < 4$, but
291 also in our larger models during slow mouth opening. Overall, our results show that the
292 inability of larval fish to capture prey may result from (at least) two hydrodynamic
293 mechanisms: (1) their suction force do not exert sufficient force to draw the prey into the

294 mouth (Yaniv et al., 2014), and (2) flow reversals may carry the prey outside as the mouth
295 closes if the prey did not get deep enough into the mouth (this study; (China et al., 2017;
296 Holzman et al., 2015)).

297 Previous observations of larval feeding on non-evasive prey indicate the prevalence of
298 “in-and-out” events where prey that entered the mouth was expelled before the mouth
299 closed (China et al., 2017; Holzman et al., 2015). The probability of these “in-and-out”
300 events increased in suction feeding events characterized by low Re (<20), compared to
301 successful events characterized by higher Re of >40 (China et al., 2017). This observation is
302 in agreement with our results, indicating the prevalence of high efflux (flow reversals) under
303 low Re , a condition characterizing younger larvae or older larvae that execute low-effort
304 strikes. Furthermore, flow reversal in the models occurred later in the strike, as the mouth
305 was closing. This timing corresponds to the observation of the “in-and-out” events, and the
306 fact that they were initiated from a further distance compared to unsuccessful events in
307 which the prey did not enter the mouth at all (China et al., 2017). A flow visualization study
308 reported flow reversals in larval zebrafish, occurring in when the mouth starts closing
309 (Pekkan et al., 2016). However, that study did not report the hydrodynamic or kinematic
310 correlates were associated with their occurrence. For larger fish that operate at higher Re
311 ($Re >55$ for 75% of >400 PIV measurements; (Jacobs and Holzman, 2018)) such flow
312 reversals were extremely rare. In general, whether prey transport during suction feeding
313 can hinder feeding success is rarely demonstrated.

314 Reynolds number is commonly used to characterize the suction flow field for adults
315 and well as larval fishes (China and Holzman, 2014; China et al., 2017; Hernández, 2000;
316 Holzman et al., 2015). Reynolds number provides the ratio between inertia and viscous
317 forces; as Reynolds increase, inertia forces are considered dominated over viscous ones and

318 vice versa. Reynolds number is frequently used to determine if the flow is laminar or
319 turbulent (Denny and Wethey, 2001; Vogel, 1994) and for specific configurations, critical
320 Reynolds numbers were proposed. However, given the nature of the flow within the buccal
321 cavity, we suggest that Reynolds might not convey all the information needed to
322 characterize the fluid phenomena. Reynolds number was developed to characterize the flow
323 in the case of steady flow within a long rigid tube with a fixed (time independent) radius.
324 However, the suction flow is a pressure driven flow, controlled by the rapid time-dependent
325 motion of the cavity walls (Day et al., 2015). Hence, the boundary conditions change as the
326 cavity opens and close over a short period of time, indicating that suction feeding is not only
327 a pressure driven phenomena but also a transient one. Therefore, one should consider, in
328 addition to the inertia and viscous effects, the temporal ones. Furthermore, to characterize
329 a suction feeding event based on Re , one should choose a characteristic lengths and speed
330 out of several possible options: for example one could justify using peak gape, or gape at
331 the time of peak flow speed, or mean gape, and that choice would change the calculated Re .
332 We therefore proposed to use the Womersley number, α^2 which was formulated for
333 pulsating flows mainly associated with cardiovascular systems (Womersley, 1955). While it
334 is acknowledged that, for the case of suction feeding the repetition rate is low (i.e. unlike
335 cardiovascular systems, the time between consecutive suction events is relatively long), the
336 temporal parameter is dominant. Admittedly, Reynolds and Womersley numbers for
337 different cases can be correlated because in some instances the length scales (gape and
338 mouth length) are correlated, as well as the suction flow speed can be correlated with gape
339 size and TTPG (Jacobs and Holzman, 2018), however we advise that future studies of suction
340 feeding dynamics report the relevant Womersley number for their case. We re-analyzed
341 data from (China et al., 2017) and found that failed strikes were characterized by mean

342 $\alpha^2 = 1.01 \pm 0.5$, “in and out” events had $\alpha^2 = 1.31 \pm 0.46$ and successful strikes had

343 $\alpha^2 = 2.16 \pm 1.33$, supporting the usefulness of α^2 to understand larval feeding.

344 We suggest that the flow reversals stem from the boundary layer that develops near

345 the mouth’s walls, slowing the flow through the mouth. To approximately calculate the

346 boundary layer thickness (δ_{BL}) inside the mouth cavity and to illustrate its trend as a

347 function of the mouth length and DPH, we utilized Blasius’s boundary layer theory for low-

348 viscosity flow over a long plate (Falkneb and Skan, 1931). While several assumptions of the

349 Blasius’s solution were not met in our case (e.g. steady flow over long flat plate with no

350 pressure gradients along the flow direction), this solution should reasonably predict the

351 trend in the thickness of the boundary layer. According to this solution, the boundary layer

352 thickness is approximated as:

$$\delta_{BL} = \frac{5.0}{\sqrt{Re_L}}$$

353 where Re_L is the Reynolds number based on the length of semi-infinite plate. In our case,

354 we choose to estimate the boundary later thickness over the second axial length (L_2) of the

355 mouth cavity at an instant after the peak mouth opening where the L_2 is almost flat and

356 parallel to the downstream flow. We identified the time instant for the case of each DPH

357 such as 80.4 ms, 80.4 ms, 77.5 ms, 71.7 ms, 51.5 ms, and 34.4 ms for 8, 13, 18, 23, 30, and

358 37 DPH, respectively. At a given time, the flow velocity of the region inside the cavity over

359 the length, L_2 alone was averaged and this averaged flow velocity and the length, L_2 was

360 used to calculate the Reynolds number (Re_L). As expected, the thickness of the boundary

361 layer decreased with increasing age. The degree of efflux exponentially increased as a

362 function of the ratio between boundary layer thickness and gape diameter, suggesting that

363 the development of slower flows near the cavity walls and the mouth openings could be
364 responsible for the flow reversal.

365 Previous measurements (Pekkan et al., 2016), modeling (Yaniv et al., 2014) and
366 estimations based on buccal dynamics (China et al., 2017) reported peak suction flows
367 ranging \sim 1-40 mm s $^{-1}$, for range of buccal length parameters (i.e. gape diameter)
368 corresponding to the current study. While PIV measurements and CFD simulations of larval
369 fish represent a limited sample of individuals, high-speed videos suggest that the variation
370 in peak flow speed among individuals can be substantial (China et al., 2017). Similarly, PIV
371 studies on adult fish indicate broad variation in peak flow speed for repeated strikes by the
372 same individuals (Day et al., 2015; Holzman et al., 2008; Jacobs and Holzman, 2018). Such
373 variation was not included in our study. Moreover, we base our modeling based on feeding
374 events acquired using manually triggered high-speed cameras, and it is more likely that an
375 observer operating it will notice and trigger an event when it is faster and greater in
376 excursion. Thus, one should use the flow velocities estimated in our study as an example of
377 high, rather than average, larval performance.

378

379

380 **References**

- 381 **Ansyst, F.** (2009). *12.0 Theory Guide*. 5.5. Ansys Inc.
- 382 **Barneche, D. R., Burgess, S. C. and Marshall, D. J.** (2018). Global environmental drivers of
383 marine fish egg size. *Glob. Ecol. Biogeogr.* **27**, 890–898.
- 384 **Bishop, K. L., Wainwright, P. C. and Holzman, R.** (2008). Anterior-to-posterior wave of
385 buccal expansion in suction feeding fishes is critical for optimizing fluid flow velocity
386 profile. *J. R. Soc. Interface* **5**, 1309–16.
- 387 **Blaxter, J. H. S.** (1988). 1 Pattern and Variety in Development. *Fish Physiol.* **11**, 1–58.
- 388 **China, V. and Holzman, R.** (2014). Hydrodynamic starvation in first-feeding larval fishes.
389 *Proc. Natl. Acad. Sci. U. S. A.* **111**, 8083–8.
- 390 **China, V., Levy, L., Liberzon, A., Elmaliach, T. and Holzman, R.** (2017). Hydrodynamic
391 regime determines the feeding success of larval fish through the modulation of strike
392 kinematics. *Proc. R. Soc. B Biol. Sci.* **284**,.
- 393 **Cowen, R. K.** (2002). Chapter 7 - Larval Dispersal and Retention and Consequences for
394 Population Connectivity. In *Coral Reef Fishes. Dynamics and Diversity in a Complex
395 Ecosystem* (ed. Sale, P. F.), pp. 149–170. San Diego: Academic press.
- 396 **Day, S. W., Higham, T. E., Holzman, R. and Van Wassenbergh, S.** (2015). Morphology,
397 Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes. *Integr. Comp.
398 Biol.* **55**, 21–35.
- 399 **Denny, M. and Wethey, D.** (2001). Physical processes that generate patterns in marine
400 communities. In *Marine Community Ecology* (ed. Bertness, M. D.), Gaines, S. D.), and
401 Hay, M. E.), pp. 3–37. Sunderland, MA (USA): Sinauer Associates.
- 402 **Falkneb, V. M. and Skan, S. W.** (1931). LXXXV. *Solutions of the boundary-layer equations.*
403 *London, Edinburgh, Dublin Philos. Mag. J. Sci.* **12**, 865–896.

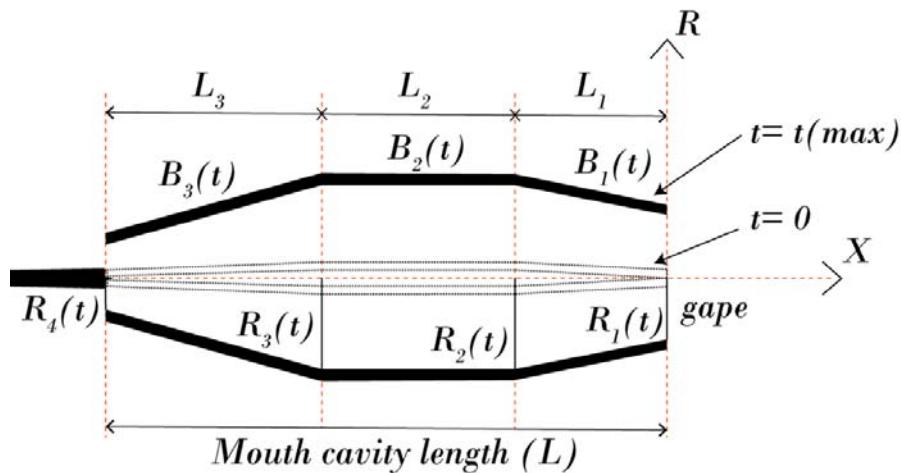
- 404 **Ferziger, J. H. and Peric, M.** (2001). *Computational methods for fluid dynamics*. Springer.
- 405 **Hernández, L. P.** (2000). Intraspecific scaling of feeding mechanics in an ontogenetic series
406 of zebrafish, *Danio rerio*. *J. Exp. Biol.* **203**, 3033–43.
- 407 **Hjort, J.** (1914). Fluctuations in the great fisheries of northern Europe. *Rapp. Pa-V. Reun.*
408 *Cons. Perm. Int. Explor. Mer* **19**, 1–228.
- 409 **Holzman, R., Collar, D. C., Day, S. W., Bishop, K. L. and Wainwright, P. C.** (2008). Scaling of
410 suction-induced flows in bluegill: morphological and kinematic predictors for the
411 ontogeny of feeding performance. *J. Exp. Biol.* **211**, 2658–68.
- 412 **Holzman, R., China, V., Yaniv, S. and Zilka, M.** (2015). Hydrodynamic Constraints of Suction
413 Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes. *Integr.*
414 *Comp. Biol.* **55**, 48–61.
- 415 **Houde, E. D.** (1987). Fish Early Life Dynamics and Recruitment Variability. In *American*
416 *Fisheries Society Symposium*, pp. 2: 17-29.
- 417 **Jackson, J. M. and Lenz, P. H.** (2016). Predator-prey interactions in the plankton: larval fish
418 feeding on evasive copepods. *Sci. Rep.* **6**, 33585.
- 419 **Jacobs, C. and Holzman, R.** (2018). Conserved spatio-temporal patterns of suction-feeding
420 flows across aquatic vertebrates: a comparative flow visualization study. *J. Exp. Biol.*
421 **221**, 1:11.
- 422 **Kavanagh, K. D. and Alford, R. A.** (2003). Sensory and skeletal development and growth in
423 relation to the duration of the embryonic and larval stages in damselfishes
424 (Pomacentridae). *Biol. J. Linn. Soc.* **80**, 187–206.
- 425 **Koch, L., Shainer, I., Gurevich, T. and Holzman, R.** (2018). The Expression of agrp1, A
426 Hypothalamic Appetite-Stimulating Neuropeptide, Reveals Hydrodynamic-Induced
427 Starvation in a Larval Fish. *Integr. Org. Biol.* **1**,

- 428 **Pekkan, K., Chang, B., Uslu, F., Mani, K., Chen, C. Y. and Holzman, R.** (2016).
- 429 Characterization of zebrafish larvae suction feeding flow using PIV and optical
- 430 coherence tomography. *Exp. Fluids* **57**,
- 431 **Sommerfeld, N. and Holzman, R.** (2019). The interaction between suction feeding
- 432 performance and prey escape response determines feeding success in larval fish. *J. Exp.*
- 433 *Biol.* **222**, jeb204834.
- 434 **Van Wassenbergh, S.** (2015). A Solution Strategy to Include the Opening of the Opercular
- 435 Slits in Moving-Mesh CFD Models of Suction Feeding. *Integr. Comp. Biol.* **55**, 62–73.
- 436 **Vogel, S.** (1994). *Life in moving fluids: the physical biology of flow. Second edition.* Princeton
- 437 University Press.
- 438 **Westphal, R. E. and O'Malley, D. M.** (2013). Fusion of locomotor maneuvers, and improving
- 439 sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish. *Front*
- 440 *Neural Circuits* **7**, 108.
- 441 **Womersley, J. R.** (1955). Method for the calculation of velocity, rate of flow and viscous
- 442 drag in arteries when the pressure gradient is known. *J. Physiol.* **127**, 553–563.
- 443 **Yaniv, S., Elad, D. and Holzman, R.** (2014). Suction feeding across fish life stages: flow
- 444 dynamics from larvae to adults and implications for prey capture. *J. Exp. Biol.* **217**,
- 445 3748–57.
- 446 **Yavno, S. and Holzman, R.** (2018). Do viscous forces affect survival of marine fish larvae?
- 447 Revisiting the 'safe harbour' hypothesis. *Rev. Fish Biol. Fish.* **28**, 201–212.
- 448

449 Table 1: kinematics characteristics of larval fish used to parametrize the numerical model

Age (DPH)	Buccal cavity length (mm)	Maximal gape diameter (mm)	Swimming speed (mm/s)	Time to peak gape (s)	Re _L	inlet		outlet		$\frac{\text{Efflux}}{\text{influx}}$ at inlet (%)
						Peak flow speed (mm/s)	Peak flow rate (mm ³ /s)	Peak flow speed (mm/s)	Peak flow rate (mm ³ /s)	
Observed kinematics										
8	0.81	0.11	8.1	57.3	22.8	28.3	0.58	8.50	0.13	10.1
13	1.06	0.15	10.6	50.1	24.4	23.1	1.37	11.1	0.35	3.1
18	1.23	0.17	12.3	42.9	44.1	35.9	2.24	14.3	0.61	1.3
23	1.36	0.19	13.6	35.7	67.6	49.8	2.96	17.3	0.93	0.34
30	1.50	0.21	15.0	25.7	121.3	81.3	5.22	17.4	1.12	0.26
37	1.61	0.23	16.1	15.6	218.2	136.2	8.36	30.9	2.26	0.06
Low effort strikes										
23	1.36	0.19	13.6	57.3	55.2	40.7	2.6	12.6	0.62	8.2
30	1.50	0.21	15.0	57.3	72	48.2	3.8	13.6	0.73	8.0
37	1.61	0.23	16.1	57.3	81.2	50.7	4.7	15.2	1.01	7.4

450


451

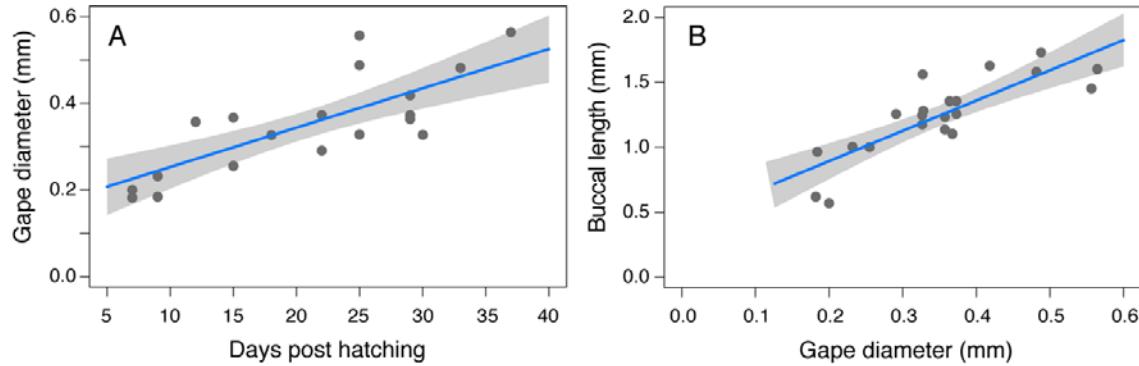
452

453 Fig. 1: A schematic description of the model geometry. Solid black bars indicate the location
454 of the buccal walls under maximal expansion, light shaded ones show the buccal walls at
455 rest (minimal volume). The mouth is modeled as three attached cones that expand
456 sequentially. L1-L3 correspond to the length of the three cones, whereas R1-R4 is the time-
457 dependent radii of the cones. R1 is the gape (inlet). An increase in R4 represents the
458 opening of the gill slits.

459

460

461


462

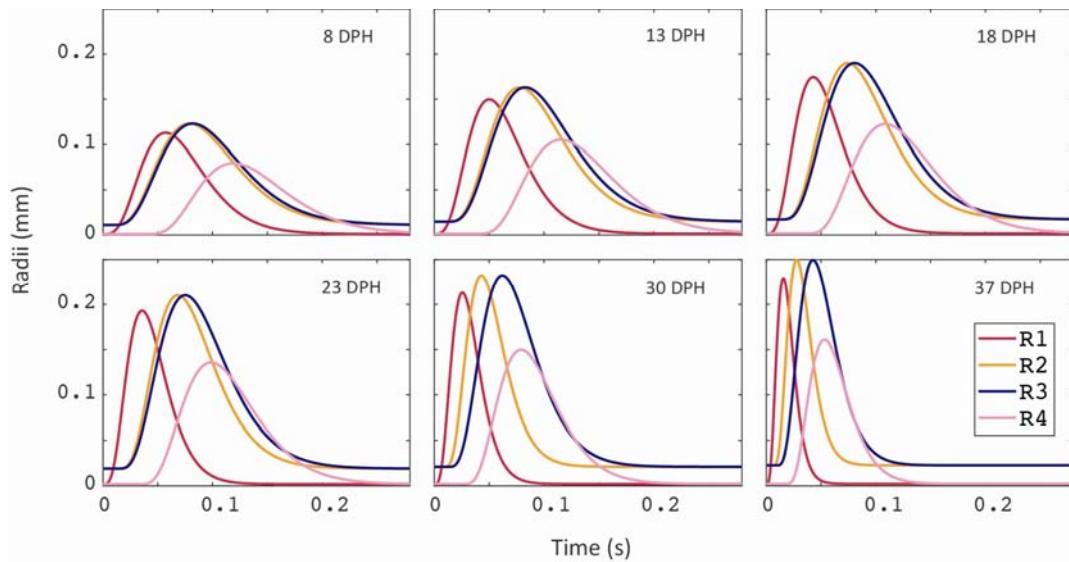
463

464

465 Fig 2. The relationships between age and gape diameter (A) and between gape diameter
466 and buccal length (B) in *Sparus aurata* larvae ranging 8-37 DPH (n=22 individuals). Blue lines
467 depict a linear regression between the two parameters ($R^2 = 0.55$ and 0.65 for A and B
468 respectively, $P < 0.001$ for both).

469

470

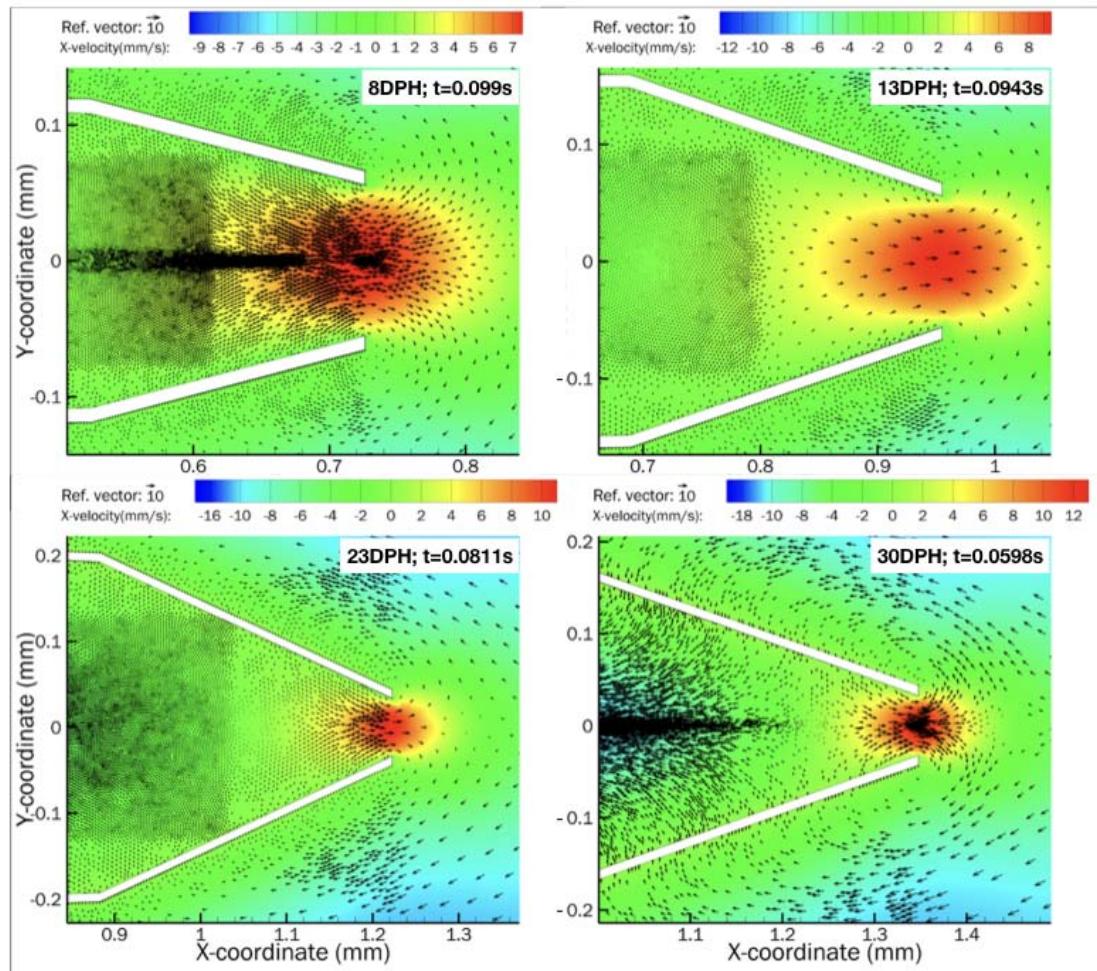

471

472

473

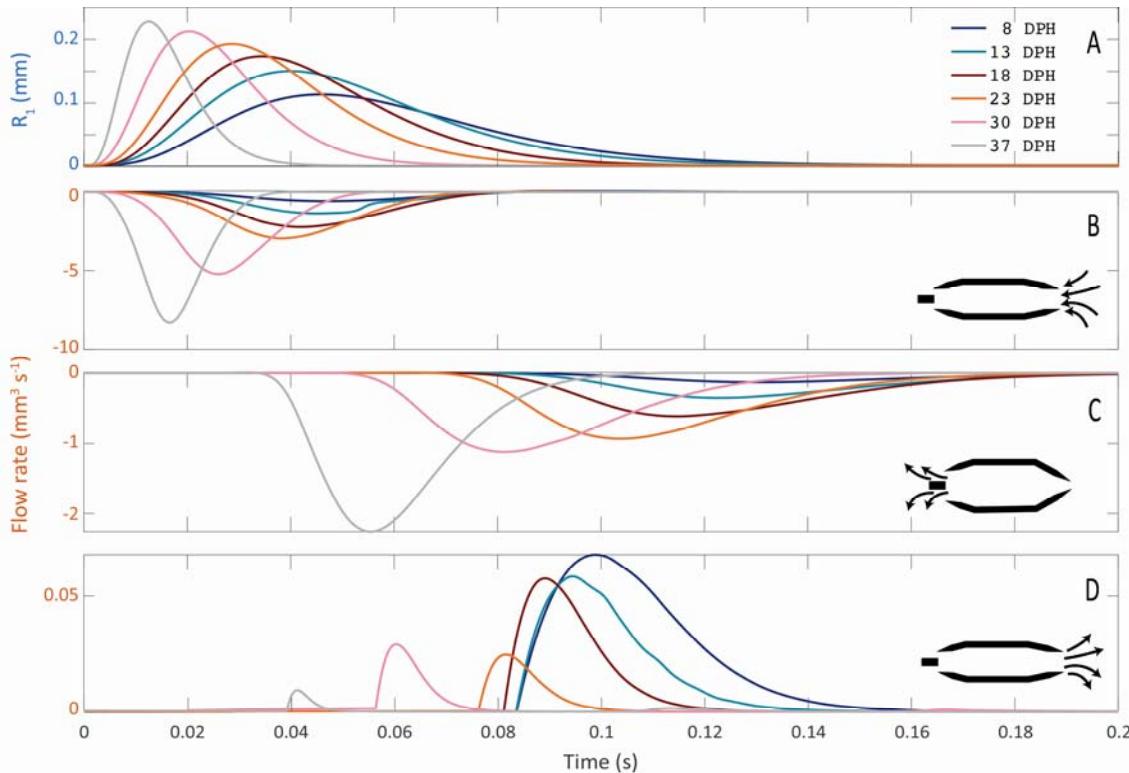
474 Fig 3. Buccal expansion kinematics across *S. aurata* ontogeny. Plots depict the radii of R₁-R₄
475 as a function of time for 8, 13, 18, 23, 30 and 37 DPH larvae. Note that as larvae grow the
476 overall time from mouth opening (R₁) to the closing of the gills (R₄) decreases, whereas the
477 radii (and correspondingly buccal volume) increase. Furthermore, the timing of peak radius
478 for each one of the mouth sections R₁-R₄ changes through larval growth.

479



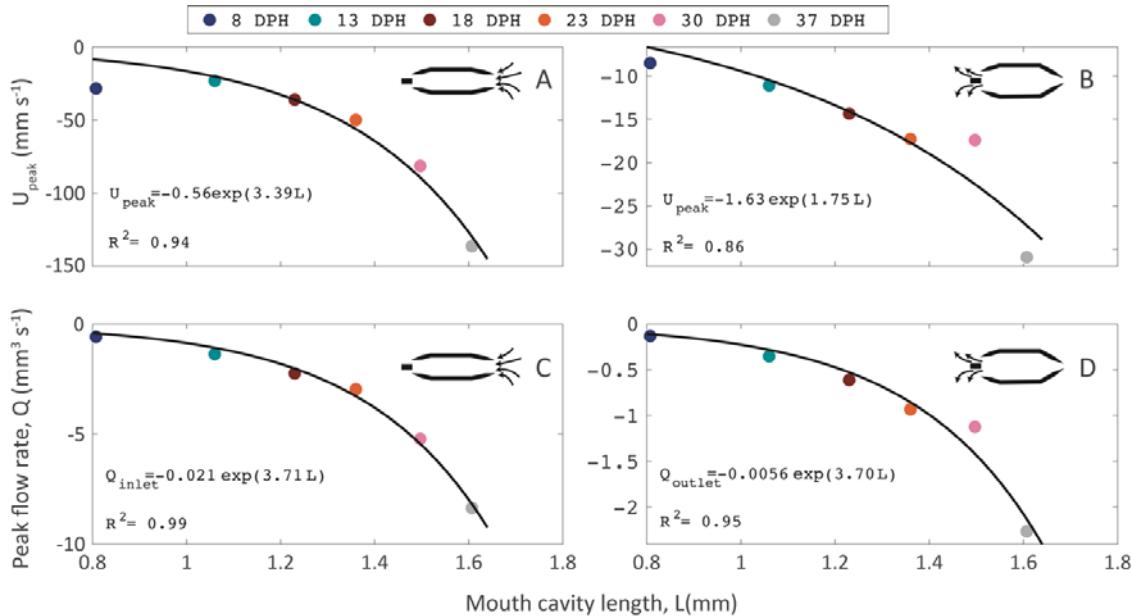
480

481


482 Fig 4: vector maps showing peak flow reversal for CFD models of 8, 13, 23, and 30 DPH
483 larvae. Vector maps for each age were saved at the time when efflux (flux into the orifice)
484 was maximal. Different x, y and speed scale are used in the four panels, however green
485 color consistently represents low (and zero) flows. Also note that gape size at peak efflux
486 decreases with increasing age.

487

488
489

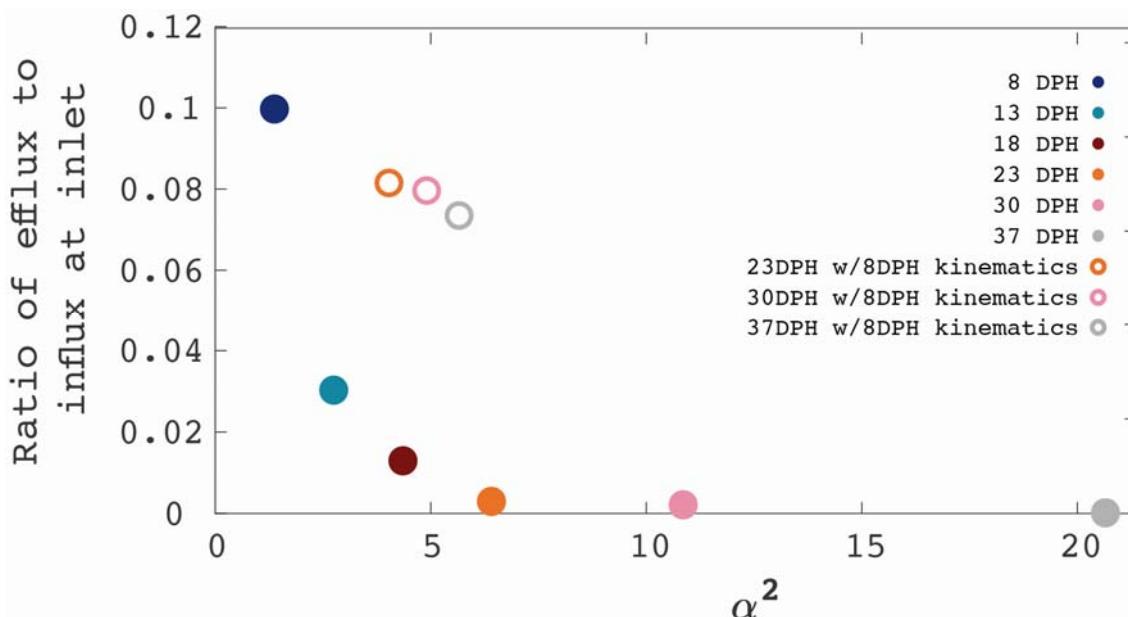

490 Fig. 5: Gape size and flow rates as a function of time. Drawn are (A) the radius of R_1 (gape)
491 size), (B) the influx into the mouth inlet (gape), (C) the efflux out of the gills and (D) the
492 efflux out of the mouth inlet. As larvae grow, the influx at the gape and efflux at the gill
493 increase, however the efflux at the gape (flow reversals; positive flow rate) decreases. Note
494 the different scales and units for the Y-axes in A-D.

495

496

497 Fig 6: Scaling of peak flow speeds (A, B) and flow rates (C, D). Left column (A, C) depicts the
498 inlet, right column (B, D) depicts outlet. Black lines represent exponential fits. Colors depict
499 the different ages.

500


501

502

503 Fig 7: Hydrodynamic characterization of flow reversals. (A) the ratio of efflux to influx at the
504 inlet (gape) decays as Womersley number decrease, and is most prominent at $\alpha^2 < 4$,
505 indicating that flow reversals occur under conditions where viscous effects dominate over
506 temporal (wall movements) effects. Full symbols represent the observed kinematics; open
507 symbols represent larger models where peak excursion and time to peak excursions were
508 similar to the 8DPH case, representing “low-effort” strikes.

509

510

511

512

513

514