

1 Evaluation of rice wild relatives as a source of traits for adaptation to 2 iron toxicity and enhanced grain quality

3 Birgit Bierschenk^{a, \$}, Melle Tilahun Tagele^{a, \$}, Basharat Ali ^{a, b}, MdAshrafuzzaman^{a, c}, Lin-Bo Wu ^a,
4 Matthias Becker ^a, Michael Frei ^{a, #}

5 a. Institute for Crop Science and Resource Conservation (INRES), University of Bonn, Germany

6 b. Department of Agronomy, University of Agriculture Faisalabad, Pakistan

7 c. Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology,
8 Bangladesh

9

10 \$ These authors contributed equally to the work.

11

12 # Corresponding author

13 INRES, University of Bonn

14 Katzenburgweg 5

15 53115 Bonn

16 +49 228 732881

17 mfrei@uni-bonn.de

19

Abstract

20 Rice wild relatives (RWR) constitute an extended gene pool that can be tapped for the breeding of novel
21 rice varieties adapted to abiotic stresses such as iron (Fe) toxicity. Therefore, we screened 75 *Oryza*
22 genotypes including 16 domesticated *O. sativas*, one *O. glaberrima*, and 58 RWR representing 21
23 species, for tolerance to Fe toxicity. Plants were grown in a semi-artificial greenhouse setup, in which
24 they were exposed either to control conditions, an Fe shock during the vegetative growth stage (acute
25 treatment), or to a continuous moderately high Fe level (chronic treatment). In both stress treatments,
26 foliar Fe concentrations were characteristic of Fe toxicity, and plants developed foliar stress symptoms,
27 which were more pronounced in the chronic Fe stress especially toward the end of the growing season.
28 Among the genotypes that produced seeds, only the chronic stress treatment significantly reduced
29 yields due to increases in spikelet sterility. Moreover, a moderate but non-significant increase in grain Fe
30 concentrations, and a significant increase in grain Zn concentrations were seen in chronic stress. Both
31 domesticated rice and RWR exhibited substantial genotypic variation in their responses to Fe toxicity.
32 Although no RWR strikingly outperformed domesticated rice in Fe toxic conditions, some genotypes
33 scored highly in individual traits. Two *O. meridionalis* accessions were best in avoiding foliar symptom
34 formation in acute Fe stress, while an *O. rufipogon* accession produced the highest grain yields in both
35 chronic and acute Fe stress. In conclusion, this study provides the basis for using interspecific crosses for
36 adapting rice to Fe toxicity.

37 Keywords: Biofortification, breeding, crop wild relatives, food security, mineral toxicity, *Oryza*

39 **Introduction**

40 Crop wild relatives (CWR) are widely regarded as a rich source of genetic variation for the improvement
41 of domesticated crops, which can be tapped more effectively than ever before due to the progress in
42 CWR genomics [1,2]. Rice is one of the most important cereal crops in the world in terms of annual
43 production and provides the staple food for around half of the world's population [3]. Two domesticated
44 rice species are widely grown: *Oryza sativa* L., which was domesticated from the wild progenitors *O.*
45 *rufipogon* and *O. nivara* in Asia around 10, 000 years ago [4,5] and *Oryza glaberrima* Steud., which was
46 independently domesticated from the wild progenitor *Oryza barthii* in West Africa around 3000 years
47 ago [6]. In addition, archeological evidence suggest that rice wild relatives (RWR) originating from South
48 America, such as *O. glumaepatula* underwent a process of domestication in the mid-Holocene by Native
49 South Americans, but were abandoned later on when immigrants from Europe changed the fate of the
50 continent and its inhabitants to a great extent [7]. The whole *Oryza* genus, which can be regarded as a
51 primary, secondary and tertiary gene pool for rice breeding, contains 24 species [8]. It can be further
52 classified into four complexes of closely related species with the same genome groups, between which
53 fertile crossing is possible [9,10]. These are the *O. sativa* complex comprising the diploid AA species
54 (Supplementary Table S1), the *O. officinalis* complex, the *O. granulata* complex and the *O. ridleyi*
55 complex [11]. In addition *O. sativa* f. *spontanea* or 'weedy rice' can be found in rice growing regions all
56 over the world [12] and likely represents a hybrid between cultivated rice varieties and the closely
57 related RWR *O. rufipogon* or *O. nivara*, but it can also result from spontaneous mutations of *O. sativa*
58 varieties or crosses between them [13].

59 Often, RWR are seen as weeds and thus as a major problem for rice cultivation, but they also bear a lot
60 of potential, as *Oryza* species are distributed around the globe in very different environments, and their
61 genome therefore might harbor adaptive genes to several biotic and abiotic stresses. Some of these

62 adaptive traits were previously used to develop commercial varieties. Breeding of male sterile rice lines,
63 which is required for the commercial production of hybrids, was originally only possible with the
64 cytoplasm of *O. sativa* f. *spontanea* [14], and those hybrids were still planted on nearly half of the rice
65 planting area of China in 2006 [15]. In 1974 the first rice varieties containing resistance genes to the
66 grassy stunt virus from *Oryza nivara* were released [14]. Crosses with *O. officinalis* lead to cultivars with
67 resistance to brown plant hoppers, of which three were released in Vietnam [14]. Several other
68 resistances of RWR against pests, pathogens and abiotic stresses and even yield improving traits have
69 been identified but not yet been taken advantage of [8,9,14]. In some cases fertile crosses with *O. sativa*
70 were accomplished. A resistance gene against bacterial blight from *O. longistaminata* was crossed into
71 popular varieties [16], although the progenies were not established as commercial varieties. Crosses
72 with the remote relative *O. brachyantha* were successful, even though the desired resistance to yellow
73 stem borer could not be preserved [17]. Abiotic stresses constitute another category of yield constraints
74 that may be mitigated by the use of RWR in breeding. *O. officinalis* has been proven as useful to address
75 heat stress, because in a cross with *O. sativa* early-morning flowering lead to higher fertility due to the
76 avoidance of high midday temperatures [18]. A cold tolerant *O. rufipogon* genotype contained several
77 interesting resistance loci [19]. *O. coarctata* is used as a model to understand salt tolerance in rice, and
78 successful crosses with the modern rice variety IR56 exist [8,20]. Aluminum tolerance in acidic soils from
79 *O. rufipogon* was previously dissected into quantitative trait loci [21]. Other potential fields of
80 application of RWR in tolerance breeding include drought and submergence [8]. Up to date not much is
81 known about the chemical and nutritional grain composition of RWR and genetic factors that might be
82 of use for grain quality breeding, although this approach may hold great potential [22].

83 Fe toxicity is one of the major mineral disorders affecting rice production, especially in parts of West
84 Africa, Southeast Asia, Madagascar and the South of Brazil [23]. It frequently occurs because rice-
85 growing soils are inherently rich in Fe, but more importantly the flooding of paddy soils leads to

86 microbial reduction processes that release abundant soluble Fe²⁺ (ferrous Fe) [23,24]. When excessive
87 Fe is taken up into rice plants it leads to the formation of oxidative stress via the Fenton reaction [25],
88 visible leaf bronzing symptoms [26], and eventually yield losses due to reduced growth and increased
89 spikelet sterility [27,28]. Fe toxicity either occurs as an acute stress during the vegetative stage, when
90 abundant amounts of Fe are mobilized from adjacent slopes due to heavy rainfall, or as a chronic stress
91 with a more gradual build-up of high Fe concentrations in soil solution [23,28]. As farmers have very few
92 management options to address Fe toxicity, the breeding of Fe tolerant rice varieties represents the
93 most promising strategy of adapting rice production to high Fe soils. A large number of genetic
94 screening and genome mapping experiments have been conducted in the past to identify donors and
95 loci that can be used for the breeding of tolerant germplasm [26,29,30]. These studies have revealed
96 that Fe tolerance is a complex trait controlled by a large number of small and medium effect loci rather
97 than large effect quantitative trait loci [26,30]. Moreover, the progress in breeding is hampered by
98 limited consistency between different screening experiments and lack of genetic variation for certain
99 desirable traits, such as the ability to translocate large amounts of Fe to the grains despite Fe toxicity
100 [28]. Another limitation is that to date no RWR have been evaluated regarding their potential to
101 contribute to Fe tolerance breeding.

102 Therefore, the present study was undertaken to explore traits of RWR that could be exploited for the
103 breeding of Fe tolerant rice. Due to the recent report of genome sequences for thirteen RWR [5], and
104 the availability of mapping populations derived from interspecific crosses of rice (e.g. [31] this is a timely
105 approach that could lead to the fast discovery of novel genes for rice breeding and thus contribute to
106 diversification and adaptation. Specifically, we hypothesized that (i) the variation observed in RWR for
107 adaptation to chronic and acute Fe stress may exceed the variation observed in domesticated rice; (ii)
108 despite low agronomic value RWR may possess specific traits that can be used in adaptive breeding; and

109 (iii) when grown in high Fe conditions RWR may possess grain quality traits that differ from those
110 observed in domesticated rice.

111 **Materials and Methods**

112 **Plant material**

113 Seeds of 60 rice accessions were provided by the International Rice Research Institute (IRRI) in Los
114 Baños, the Philippines. They consisted of 20 wild species of the *Oryza* genus with different countries of
115 origin, one cross of *O. glaberrima* and *O. barthii* and two *O. sativa* varieties, for which crosses with wild
116 relatives have been made (IRRI 154 and Curinga). In addition, 15 accessions of cultivated rice species (*O.*
117 *sativa* and one *O. glaberrima*) that had previously been screened in Fe toxicity experiments [26,32,33]
118 were added from the seed stocks of the Institute of Crop Science and Resource Conservation (INRES).

119 **Germination**

120 Where necessary, seeds dormancy was broken by placing seeds in an oven at 50°C for three days. Thirty
121 seeds of each accession were then placed on a floating mesh in a germination box with about two liters
122 of deionized water, making sure that the grains were not fully covered by the water. The seeds were
123 incubated in darkness at a temperature of 33°C. After three days the first seeds germinated and were
124 transferred to a germination tray floating on deionized water containing 10 µM Ferric sodium EDTA (Fe-
125 Na-EDTA) and 0.5 mM calcium chloride (CaCl). The box was placed in a greenhouse until the seedlings
126 were about 8 cm high. Solutions were exchanged every two days.

127 **Experimental setup and growing conditions**

128 The experiment was conducted in a greenhouse at Campus Klein-Altendorf, which is an agricultural trial
129 station of the University of Bon from May to October 2017. Six polders of 2 x 6 m dimension with a soil

130 depth of about 50 cm were utilized for an experimental approach simulating acute and chronic iron
131 toxicity as described previously [28]. Two independent polders each were used for the three treatments
132 chronic iron stress, acute iron stress and control. Within each polder four sub-replicates containing all
133 accessions were planted. The polders were ploughed and leveled manually and then kept flooded. As
134 complete randomization was not recommendable due to unmanageable complexity, every accession
135 was assigned a random number from 1 to 75 and this sequence was planted in a row. In every sub-
136 replication the sequence started with a different number leading to a semi-randomized setup. Seedlings
137 were planted with a spacing of 20 cm to each other and 10 cm to the borders. Every planting position
138 was marked with a wooden stick to avoid confusions because of missing plants. Therefore, one polder
139 consisted of 300 plants. In summary, the experiment was conducted as a two-factorial design (iron-
140 treatment and genotype) with two true replicates per treatment (independent polders) and four semi-
141 randomized sub-replicates in every polder.

142 The soil type in the polders was a clay silt with about 5 % smectite, 16 % vermiculite, 69 % illite and 10 %
143 kaolinite, originating from a Luvisol on deep loess with an organic carbon content of 1.2 % and a pH
144 between 6 and 7 [43]. Average day and night time temperatures were 28°C and 18.4°C respectively, the
145 average relative humidity was 76.4% and the average CO₂ concentration was 553 ppm.

146 All polders were watered regularly at least once a week. One hundred fifty g of potassium phosphate
147 (K₂HPO₄) dissolved in water were applied to every polder. This corresponds to a concentration of about
148 6 g m⁻² (60 kg ha⁻¹) of potassium and 2.2 g m⁻² (22 kg ha⁻¹) of phosphorus. The same method was used to
149 apply nitrogen in the form of urea. The application was split: 78 g were given five weeks after
150 transplanting (WAT) together with the potassium phosphate, while another 78 g were applied nine WAT
151 leading to a total application of 6 g m⁻² (60 kg ha⁻¹) of nitrogen. As some accessions began to lodge in the
152 reproductive phase the plants were supported with tonkin sticks. Perforated polypropylene bags, so
153 called crispac-bags (305 x 450 mm, perforation diameter 0.5 mm, vendor Baumann Saatzuchtbedarf

154 GmbH, Waldenburg, Germany) were wrapped around ripening panicles to avoid seed shattering of wild
155 rice accessions. The insecticide 'Perfekthion' (BASF, Ludwigshafen, Germany; active compound
156 dimethoate) was sprayed on the plants due to an infestation with *Lissorhoptrus* ssp. 5 weeks after
157 transplantation. Predatory mites (*Phytoseiulus persimilis* and *Amblyseiuscalifornicus*) were applied
158 during the reproductive phase to control mite infestation.

159 **Iron treatment**

160 Iron treatment was started six weeks after transplanting (WAT). A total of 10 kg of iron(II) sulfate
161 heptahydrate ($\text{FeSO}_4 \times 7\text{H}_2\text{O}$) was applied to the iron treatment polders. Five kg were applied six and
162 seven WAT to obtain an approximate concentration of 1500 mg l^{-1} of reduced iron in the upper soil
163 solution in acute polders, while 1 kg was given to chronic polders every week until 16 WAT to reach a
164 concentration of 200 to 300 mg l^{-1} [28]. An even distribution of all the chemicals was ensured by diluting
165 the powders in water and applying it with a watering can.

166 **Collection of data during growth**

167 Leaf bronzing score was determined at one-week interval by visual observation of bronzing symptoms
168 on the two youngest fully developed leaves of two tillers per plant. The percentage of leaf area affected
169 by iron-induced symptoms was scored on a scale from 0-10 (in which 0 means no visual symptom and 10
170 indicates dead leaves) [26].

171 Leaves for iron analyses were sampled at 116 days after transplanting from genotypes selected based on
172 contrasting symptom development at that stage. From each selected plant, the third youngest leaf was
173 taken, dried, and subjected to Fe analyses as described below.

175 **Harvest**

176 Harvest took place 24 and 27 WAT. In the first round all plants with mature panicles were harvested.

177 Three weeks later, the remaining plants were harvested. Plants were cut close to the soil surface, the

178 height was measured, the number of tillers and panicles was counted, the panicles were put into a

179 crispac-bag and the straw biomass was folded to a bundle.

180 Straw biomass was dried at 60°C for at least 4 days and then weighed. The panicles were dried at 40°C

181 for at least 4 days, then the seeds were detached from the spikes. Grain samples were weighed, and

182 then two batches of 20 unfilled grains were counted and weighed. Unfilled grains were separated from

183 the filled ones by winnowing and blowing. The filled grains were weighed and again two batches of 20

184 filled grains were counted and weighed. With this data the number of seeds per panicle, the thousand

185 kernel weight (TKW) and the percentage of unfilled grains could be determined. In order to avoid errors

186 due to the presence of awns in some accessions, two times 20 awns of three samples of all accessions

187 with strongly developed awns were separated from grains, counted and weighed. The mean weight of

188 awns was used to correct the weight calculations of these accessions as awns were removed along with

189 the unfilled grains. The harvest index was calculated from the weight of filled grains in relation to the

190 whole plant biomass in percent.

191 **Seed analysis**

192 All RWR that produced seeds were included in the grain analyses, as well as the only *O. glaberrima*, and

193 *Oryza sativa* Dom Sofid, IR 72, IRRI 154 and Curinga. Two samples per polder equaling four samples per

194 treatment were chosen of every genotype. For dehusking of the seeds a Mixer Mill (MM 2000,

195 manufacturer RETSCH, Haan, Germany) was used. The grinding jars made of polytetrafluorethen (PTFE)

196 were filled to three quarters with sample material and different numbers of small (7 mm), medium

197 (10 mm) and large (12 mm) grinding balls made of agate were used to ensure that the samples had no

198 contact with Fe or Zn containing material. It was not possible to conduct the dehusking under
199 standardized conditions as the seed properties differed widely between species and accession.
200 Therefore, conditions were calibrated for every accession to protect the pericarp, aleurone layer and
201 embryo as much as possible to produce brown rice. For grinding the agate balls were exchanged with
202 one 20 mm PTFE Ball with a steel core, and all seeds were ground at speed 70 for one minute. All
203 samples were dried again afterwards for 2 days at 60°C to ensure complete dryness.

204 Phytate analysis followed the procedure described by [34] and was adjusted to microplate format. For
205 the Wade reagent, 18 mg of iron(III) chloride (FeCl_3) and 350 mg of sulfosalicylic acid dihydrate (SSA · 2
206 H_2O) were dissolved in 100 ml of deionized water. Of every sample of finely ground seeds, two times
207 50 mg were weighed into 2 mm Eppendorf-tubes to obtain two analytical replicates. After adding 1 ml of
208 3.5 % hydrochloric acid (HCl) all samples were stirred with a rotator (RS-RR 5, manufacturer Phoenix
209 Instrument, Garbsen, Germany) at 40 rpm for 1 h at room temperature. Centrifugation of samples was
210 carried out with a MIKRO 200 R (manufacturer Hettich, Buckinghamshire, England) at 21382 g for
211 10 minutes at 20°C. Two times 5 μl of every sample was each mixed with 145 μl of distilled water and
212 50 μl of wade reagent in a well-plate and the absorbance taken at 500 nm. The phytate concentration
213 was calculated with a standard curve ranging from 0 to 10 μg phytate using the microplate analysis
214 software Gen5 (developer BioTek, Winooski, VT, USA).

215 For iron and zinc determination in seeds, the ground material was first solubilized with a PDS-6 Pressure
216 Digestion System (manufactured by Loftfields Analytical Solutions, NeuEichenberg, Germany). 250 mg \pm
217 9 mg of every sample were weighed into one PTFE beaker each and the precise weight was noted. One
218 blank and one standard of 250 mg MSC certified carrot reference material (NCSZC73031, China National
219 Analysis Center for Iron & Steel, Beijing, China) was integrated in every set of 24 beakers. Four ml of
220 nitric acid (65 %) was added to every sample. The samples were heated in an oven (VO400,

221 manufactured by Memmert, Schwabach, Germany) for 7 h at 180°C. The cooled samples were filled up
222 with deionized water to a volume of 25 ml and filtered through ashless filter paper (MN640 m,
223 Ø125 mm, manufactured by Macherey-Nagel, Düren, Germany). Absorption was measured at 213.8 nm
224 for Zn and 248.3 nm for Fe with an atomic absorption spectrometer (model 11003, manufactured by
225 PerkinElmer, Waltham, MA, USA). A blank was subtracted from the measured values and the mineral
226 concentration of every sample was calculated by using fitting standard solutions.

227 For the phytate/mineral molar ratios, the measured concentrations were divided by their molar mass
228 (phytate 660.04 g mole⁻¹; Fe 55,845 g mole⁻¹; Zn 65.38 g mole⁻¹).

229 **Data analysis**

230 Statistical analyses were conducted using the statistical software SAS 9.4 (SAS institute Inc., Cary, NC,
231 USA). For all parameters the general linear model (GLM procedure) with least square means and Tukey-
232 Kramer adjustment for multiple comparisons was calculated for the factors genotype, treatments and
233 their interaction. For selected traits a comparison between the two groups 'cultivated genotypes' (*O.*
234 *sativa* and *O. glaberrima*) and 'wild genotypes' (all non-cultivated species) in the different treatments
235 was undertaken by two-way analysis of variance (ANOVA).

237 **Results**

238 Plants treated with Fe started to develop foliar symptoms of Fe toxicity soon after the first Fe
239 application six and seven WAT. In the acute stress treatment, the peak of symptom formation was
240 reached at eight WAT, while in the chronic stress treatment, the average symptom level continued to
241 rise until 14 WAT (Table 1). From eleven WAT, the average symptom level was significantly higher in the
242 chronic stress treatment compared to the acute stress treatment (Table 1). Significant genotypic
243 differences in symptom formation occurred on all sampling days (Table 1) and were reflected in a broad
244 range of responses of individual genotypes in terms of average LBS across all sampling days (Figure 1). In
245 both stress conditions, the most sensitive genotypes were RWR, but on the other hand, some RWR also
246 ranked among the most tolerant genotypes, especially in the acute Fe stress. Here, the two most
247 tolerant accessions were from the species *O. meridionalis* (Figure 1a). On the other hand, in the chronic
248 Fe stress, the most tolerant genotypes were *O. sativas*. These had previously been described as Fe
249 tolerant *i.e.* FL483 [26] and Kitrana 508 [32]. Apart from that, there was no clear pattern regarding the
250 tolerance of domesticated and wild rice species, as both groups exhibited a broad range of differential
251 responses.

252 **Figure 1: Leaf bronzing score of domesticated rice varieties and rice wild relatives in acute (a) and**
253 **chronic (b) Fe toxicity stress. Mean values and standard errors across nine sampling days, two**
254 **experimental and four sub-replicates are plotted. White bars represent domesticated varieties while**
255 **grey bars represent wild relatives**

257 Table 1: ANOVA results and treatment mean values for traits determined during the vegetative growth
258 of wild and domesticated rice species exposed to acute or chronic iron toxicity

Variable	Weeks after transplanting	ANOVA results (Pr>F)			Means (Treatment)		
		Treatment	Genotype	Interaction	Control	Acute	Chronic
Leaf Bronzing Score	8	0.7452	0.0001	0.0317	n.d.	1.8	1.6
	9	0.9057	0.0011	0.5599	n.d.	1.5	1.8
	10	0.4714	<0.0001	0.4562	n.d.	1.2	3.5
	11	<0.0001	0.0001	0.9903	n.d.	0.9 ^b	2.6 ^a
	12	0.0304	<0.0001	0.0782	n.d.	1.1 ^b	4.2 ^a
	13	0.0136	<0.0001	0.6220	n.d.	1.1 ^b	3.5 ^a
	14	0.0711	<0.0001	0.0101	n.d.	1.0	4.7
	15	0.0489	<0.0001	0.0843	n.d.	1.0 ^b	4.2 ^a
	16	0.0349	<0.0001	0.0008	n.d.	1.0 ^b	4.3 ^a
Foliar Fe concentration (mg kg ⁻¹)	16	<0.0001	0.0016	0.0160	272 ^c	790 ^b	1177 ^a

259 Mean values not sharing the same superscript letter within one line differ significantly from each other
260 at P < 0.05. n.d. = not determined.

262 Foliar Fe analyses of selected genotype at 16 WAT demonstrated that even in the acute Fe stress, where
263 Fe was applied already six and seven WAT, most genotypes had values exceeding 300 mg kg⁻¹, which is
264 widely accepted as the threshold for Fe toxicity [35]. Average values were significantly higher in the
265 chronic stress treatment compared to the acute stress (Table 1). While the highest Fe levels in control
266 conditions occurred in *O. sativas* (Fig. 2a), the opposite was seen in chronic Fe stress (Fig. 2c). In
267 contrast, RWR accessions had the lowest Fe concentrations in all three conditions, suggesting efficient
268 Fe exclusion mechanisms.

269 **Figure 2: Foliar Fe concentrations of selected domesticated rice varieties and rice wild relatives in**
270 **control conditions (a) acute (b) and chronic (c) Fe toxicity stress. Mean values and standard errors are**
271 **plotted (n= 3-9). White bars represent domesticated varieties while grey bars represent wild relatives.**

272
273 At harvest we determined shoot morphology and straw biomass of all plants, and analyzed grain yield
274 and quality data for those accessions, in which a sufficient number of replicated plants produced seeds.
275 This was true for most of the domesticated rice accessions, but only ten RWR. The Fe stress treatments
276 did not negatively affect straw biomass and plant morphological traits, in which a rather positive effect
277 was seen especially in the acute Fe treatment (Table 1). In contrast, grain yield was negatively affected
278 in the chronic Fe treatment, but not in the acute Fe treatment (Table 2). In both Fe treatments, the
279 sterility rate and the harvest index were significantly negatively affected compared to the control (Table
280 2). Analyses of the grain yield responses of individual genotypes revealed that most accessions had
281 slightly enhanced grain yield in the acute Fe treatment (Figure 3a). In contrast, grain yield was negatively
282 affected in most accessions in the chronic Fe treatment, except for two *O. sativas* (Dom Sofid and
283 Kitrana 508) and one RWR (*O. rufipogon*), which had the highest grain yield among all accession that
284 produced seeds. As opposed to the cultivated rice accessions, the group of RWR did not respond to Fe
285 treatment with an increase in sterility (Figure 4).

286 Table 2: ANOVA results and treatment mean values for yield and grain quality traits of wild and domesticated rice species exposed to acute or
 287 chronic iron toxicity

Variable	ANOVA results ($Pr > F$)			Means (Treatment)		
	Treatment	Genotype	Interaction	Control	Acute	Chronic
Straw yield ($g\ plant^{-1}$)	<0.0001	<0.0001	0.029	54.7 ^b	70.5 ^a	59.2 ^b
Plant height (cm)	<0.0001	<0.0001	<0.0001	167.6 ^b	177.4 ^a	176.6 ^a
Tiller number	<0.0001	<0.0001	0.0116	12.0 ^b	14.95 ^a	12.6 ^b
Grain yield ($g\ plant^{-1}$)	<0.0001	<0.0001	0.8394	18.9 ^b	23.6 ^a	15.2 ^c
Panicle number	<0.0001	<0.0001	0.2228	9.7 ^b	12.8 ^a	10.6 ^b
Seeds per panicle	0.9189	<0.0001	<0.0001	132.5	131.3	129.2
Spikelet sterility (%)	<0.0001	<0.0001	<0.0001	50.1 ^a	55.9 ^b	62.2 ^c
Thousand kernel weight (g)	<0.0001	<0.0001	<0.0001	20.8 ^a	20.4 ^a	19.3 ^b
Harvest Index (%)	<0.0001	<0.0001	0.5422	27.9 ^a	23.3 ^b	18.4 ^c
Grain Fe concentration ($mg\ kg^{-1}$)	0.2584	0.0299	0.1963	31.5	32.3	39.0
Grain Zn concentration ($mg\ kg^{-1}$)	<0.0001	<0.0001	<0.0001	25.6 ^b	28.3 ^{ab}	30.8 ^a
Phytate ($mg\ g^{-1}$)	0.007	<0.0001	<0.0001	9.7 ^a	10.4 ^b	9.6 ^a
Phytate/Fe molar ratio	0.14	0.0197	0.234	40.4	39.5	29.7
Phytate/Zn molar ratio	0.007	<0.0001	0.0003	38.0 ^b	36.3 ^b	31.6 ^a

288 Treatment means with different superscript letters in the same line indicate significant difference ($p < 0.05$).

289

290

291 **Figure 3: Grain yields of selected domesticated rice varieties and rice wild relatives in acute (a) and**
292 **chronic (b) Fe toxicity stress compared to control conditions. The grey bars indicate the negative**
293 **(directed towards the left) or positive (directed towards the right) difference from the control. Mean**
294 **values and standard errors (n=2-8) are plotted. Asterisk indicates a significant difference from the**
295 **control at P<0.05.**

296

297 **Figure 4: Sterility rates of cultivated and wild rice species in control conditions, acute and chronic Fe**
298 **toxicity. Mean values and standard errors are plotted (n=33-115). Bars not sharing the same letter**
299 **differ from each other at P<0.05 by Tukey's HSD test.**

300

301 Grain Fe concentrations were slightly elevated in the Fe treatment but the differences from the control
302 were not significant (Table 2). In contrast, grains produced in the chronic Fe treatment had elevated Zn
303 concentration and lower phytate /Zn molar ratio, and grains produced in the acute Fe treatment had
304 elevated phytate concentrations (Table 2). Comparison of grain quality traits in selected accessions
305 revealed that the *O. sativa* Dom Sofid had the highest Fe concentration, whereas two RWR showed the
306 highest Zn levels (Fig. 5b), which were also associated with high phytate levels (Figure 5c). Very low
307 phytate level occurred in an *O. spontanea* accession.

308 **Figure 5: Brown rice mineral concentrations of selected domesticated rice varieties and rice wild**
309 **relatives averaged across different treatments. (a) Fe concentration; (b) Zn concentration; (c) Phytate**
310 **concentration. Mean values and standard errors (n=5-12) are plotted. Bar not sharing the same letters**
311 **differ significantly from each other by Tukey HSD test.**

313 **Discussion**

314 The treatments in the present study (acute and chronic Fe stress) were conceived in order to simulate
315 two types of Fe stress typically occurring in the field. Acute Fe toxicity frequently occurs in inland valleys
316 during heavy rainfall events, leading to a transient peak of interflow of reduced Fe from adjacent slopes
317 into the rice field. This type of Fe stress is wide-spread for example in West Africa [23]. On the other
318 hand, chronic Fe stress occurs on naturally Fe rich soils in which Fe stress builds up more gradually
319 during the growing season upon flooding. This type of stress often occurs on acid sulfate soils or
320 Ferralsols and is widespread in Southeast Asia, the South of Brazil or Madagascar [23]. The semi-artificial
321 experimental setup used in this study was tested previously with six *Oryza sativa* varieties differing in Fe
322 tolerance [28]. Similar to that previous study, acute Fe stress lead to the development of stress
323 symptoms, but did not negatively affect biomass and grain yields (Table 2). In contrast, stress symptoms
324 were more pronounced in chronic Fe stress, which also led to significant reductions in grain yield (Table
325 2), largely due to higher spikelet sterility (Figure 4). Therefore, our study confirms previous observations
326 that plants respond differently to chronic and acute Fe stress on a physiological level [36], or in terms of
327 yield [28], and that plants can compensate for early Fe stress comparatively well. The phenomenon of
328 positive growth responses to mild metal stresses has been termed as 'hormesis' [37], and may occur due
329 to physiological processes including the activation of antioxidants and complex signaling pathways. In
330 contrast, the grain yield losses due to enhanced sterility in the chronic Fe treatment may be a
331 consequence of oxidative stress in reproductive organs. High levels of Fe lead to the Fenton reaction, in
332 which ferrous Fe reacts with hydrogen peroxide to form ferric Fe, hydroxide and the hydroxyl radical
333 [25,38]. The hydroxyl radical is an extremely harmful molecule which cannot be effectively scavenged by
334 the plants' antioxidant system [39].

335 Genetic variation in adaptive traits is the prerequisite for the breeding of new varieties with enhanced
336 tolerance to Fe toxicity. In this study, both domesticated and wild rice species showed substantial
337 variation in all observed traits. Foliar stress symptoms are often used as a secondary trait indicating Fe
338 tolerance, as it has shown relatively good correlation with important agronomical traits such as grain or
339 biomass yield in field experiments [27], and they can be scored for a large number of plants in
340 comprehensive screening experiment. For this trait, the most sensitive genotypes in both stress
341 conditions were all RWR (Figure 1). This high level of Fe sensitivity compared to domesticated rice may
342 be explained with the fact that RWR often grow in non-permanently flooded soils, therefore lacking
343 adaptive mechanisms such as Fe exclusion, which becomes relevant in permanently flooded conditions,
344 where soluble Fe is abundantly available. Rice domestication and breeding has been accompanied by
345 the development of irrigation infrastructure and the permanent flooding of rice soils, making adaptation
346 to high amounts of soluble Fe a trait that breeders may unintentionally have selected for in cultivated
347 rice varieties. Nevertheless, extremely low LBS of some RWR, especially *O. meridionalis* accessions
348 (Figure 1a) indicate that specific RWR do possess adaptive genes which can supplement the gene pool
349 for adaptive rice breeding. The high level of adaptation of this particular species may have an
350 evolutionary background as it is often found at the edges of freshwater lagoons, temporary pools and
351 swamps of the Northern territories of Australia [40], where Fe-rich soils such as Ferrosols occur [41]. As
352 a member of the *O. sativa* complex with an AA genome, *O. meridionalis* represents an easily accessible
353 gene pool, and crosses with *O. sativa* have previously been reported [31].

354 Foliar Fe levels in both Fe stress treatments were mostly above 300 mg kg⁻¹, which is considered to be
355 the threshold for Fe toxicity [35]. However, one *O. alta* accession maintained very low foliar Fe level in
356 the acute Fe stress (Figure 2b). It is doubtful whether this occurred due to an active Fe exclusion
357 mechanism such as Fe oxidation in the rhizosphere [26,42]. More likely, Fe was 'diluted' as this species
358 reached an average height of 316 cm and thus produced a lot of biomass for each of its few tillers (3.7

359 tillers on average). This plant architecture is not desirable in rice breeding, thus *O. alta* may not be a
360 suitable donor of Fe tolerance traits. The low Fe levels observed in two RWR (*O. barthii* and *O. nivara*) in
361 chronic Fe stress (Figure 2c) appear more promising, especially as these two species form part of the AA
362 genome group with lower crossing barriers towards *O. sativa* or *O. glaberrima*.

363 The analysis of grain yields was to some extent compromised by the fact that many RWR did not set
364 seeds within the experimental period. Factors contributing to this phenomenon include long vegetation
365 cycles, specific light and day length requirements, and self-incompatibility of many of the RWR [40].
366 Although experimental conditions including climate were controlled within a range that supports the
367 growth of most *Oryza* species, the large heterogeneity of screened genotypes is difficult to compensate
368 or adequately address by standardized climatic conditions. Among the ten RWR that produced seeds,
369 four showed higher yields in the chronic Fe stress than in the control, even though the overall yield
370 response across all screened genotypes was significantly negative in this treatment (Figure 3). This
371 positive yield response was not unique to RWR, as it also occurred in some *O. sativa* accession that had
372 previously been described as Fe tolerant [28,32], but the overall highest grain yield was seen in an *O.*
373 *rufipogon* accession (Figure 3b), and increases in spikelet sterility due to chronic Fe stress occurred in
374 cultivated rice varieties rather than RWR (Figure 4).

375 The concentrations of essential mineral nutrients in rice grains are a matter of concern because
376 nutritional deficiencies in Fe and Zn are very widespread [43,44]. Enriching rice grains in these elements
377 ('biofortification' [45]) is therefore seen as one out of several possible strategies to combat mineral
378 disorders in human diets. On the other hand, low phytate levels in cereal grains are desirable from a
379 nutritional perspective as this P-storage compound forms insoluble complexes with Fe and Zn thereby
380 limiting the bioavailability of these elements in human diets [46]. Our present study confirms previous
381 findings in domesticated rice varieties [28] that growing rice in high Fe conditions does not significantly
382 increase grain Fe concentrations in rice grains of most genotypes (Table 2), despite substantial increases

383 in Fe concentrations in vegetative tissue (Figure 2). This indicates that rice plants possess physiological
384 barriers protecting reproductive tissue from Fe levels that could cause oxidative stress and consequently
385 sterility. The regulation of metal transporters responsible for the loading of metals from mother plant
386 tissues such as seed coats into filial tissues [47] could be such a mechanism. On the other hand, average
387 Zn concentration was enhanced in plants grown in chronic Fe stress (Table 2), which could be due to a
388 concentration effect, which occurs when plants grown under stress form less biomass or yield with the
389 same amount of available mineral elements[48]. Irrespective of the treatment and genotype, phytate/Fe
390 and phytate/Zn molar ratios were in a range indicating relatively poor bioavailability [49], which is
391 characteristic of unrefined cereals evaluated individually, and not as part of a diverse diet. While the
392 RWR did not stand out with extraordinarily high nutritional value, positive features were seen especially
393 in terms of high Zn concentration (Figure 5b) and low phytate concentration (Figure 5c).

394 **Conclusion**

395 We screened a broad range of RWR for adaptive and grain quality traits when grown in Fe toxic
396 conditions, and compared them to domesticated varieties that had been pre-selected to include some
397 with a previously-known high level of tolerance. None of the RWR drastically outperformed the
398 domesticated varieties, which is partly due to their poor agronomic traits. Nevertheless, RWR exhibited
399 promising performance in individual traits such as low symptom formation (*O. meridionalis*), high grain
400 yield (*O. rufipogon*) or low grain phytate (*O. spontanea*). Chromosomal segment substitution lines of
401 interspecific crosses in *O. sativa* background [31] are available, facilitating future in-depth physiological
402 analyses in more uniform screening experiments due to lower morphological and phenological diversity
403 of such crosses as compared to the very diverse material screened in this study. The availability of
404 genome sequences of RWR [5] provides an additional powerful resources for the discovery of genes
405 underlying some of the adaptive traits identified in this study. Therefore, this study provided an

406 important first step in expanding the gene pool towards RWR for the breeding of rice varieties adapted
407 to Fe toxicity.

408 **Acknowledgements**

409 This study was financially supported by the Foundation *fiat panis*. The authors wish to thank the gene
410 bank of the International Rice Research Institute (IRRI) for providing seeds, and Dr. Hannes Dempewolf
411 from the Global Crop Diversity Trust in Bonn (Germany) for inspiring this study.

412

414 **References**

415 [1]. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool
416 for crop improvement. *Plant Biotechnol J* 14: 1070-1085. doi: 10.1111/pbi.12454.

417 [2]. Mammadov J, Buyyrapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018)
418 Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and
419 Abiotic Stresses. *Fronti Plant Sci9*. doi: 10.3389/fpls.2018.00886.

420 [3]. GRiSP, Global Rice Science Partnership (2013) Rice Almanac, 4th edition. International Rice Research
421 Institute, Los Banos (Philippines).

422 [4]. Huang XH, Kurata N, Wei XH, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ,
423 Zhou CC, Fan DL, Weng QJ, Zhu CR, Huang T, Zhang L, Wang YC, Feng L, Furuumi H, Kubo T,
424 Miyabayashi T, Yuan XP, Xu Q, Dong GJ, Zhan QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q,
425 Qian Q, Li JY, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice.
426 *Nature* 490: 497-501.doi: 10.1038/nature11532.

427 [5]. Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, Wei
428 S, Wang J, Liao Y, Wang M, Jacquemin J, Becker C, Kudrna D, Zhang J, Londono CEM, Song X, Lee
429 S, Sanchez P, Zuccolo A, Ammiraju JSS, Talag J, Danowitz A, Rivera LF, Gschwend AR, Noutsos C,
430 Wu C-c, Kao S-m, Zeng J-w, Wei F-j, Zhao Q, Feng Q, El Baidouri M, Carpentier M-C, Lasserre E,
431 Cooke R, Rosa Farias Dd, da Maia LC, dos Santos RS, Nyberg KG, McNally KL, Mauleon R,
432 Alexandrov N, Schmutz J, Flowers D, Fan C, Weigel D, Jena KK, Wicker T, Chen M, Han B, Henry
433 R, Hsing Y-iC, Kurata N, de Oliveira AC, Panaud O, Jackson SA, Machado CA, Sanderson MJ, Long
434 M, Ware D, Wing RA (2018) Genomes of 13 domesticated and wild rice relatives highlight
435 genetic conservation, turnover and innovation across the genus *Oryza*. *Nat Genet* 50: 285-296.
436 doi: 10.1038/s41588-018-0040-0.

437 [6]. Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju
438 JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M,
439 Kim W, Sanchez P, Ndjiondjop M-N, Sanni K, Long M, Carney J, Panaud O, Wicker T, Machado
440 CA, Chen M, Mayer KFX, Rounsley S, Wing RA (2014) The genome sequence of African rice
441 (*Oryzaglaberrima*) and evidence for independent domestication. *Nat Genet* 46: 982. doi:
442 10.1038/ng.3044

443 [7]. Hilbert L, Neves EG, Pugliese F, Whitney BS, Shock M, Veasey E, Zimpel CA, Iriarte J (2017) Evidence
444 for mid-Holocene rice domestication in the Americas. *Nat EcolEvol* 1: 1693-1698. doi:
445 10.1038/s41559-017-0322-4.

446 [8]. Menguer PK, Sperotto RA, Ricachenevsky FK (2017) A walk on the wild side: *Oryza* species as source
447 for rice abiotic stress tolerance. *Genet MolBiol* 40: 238-252. doi: 10.1590/1678-4685-gmb-2016-
448 0093.

449 [9]. Jena KK (2010) The species of the genus *Oryza* and transfer of useful genes from wild species into
450 cultivated rice, *O. sativa*. *Breed Sci* 60: 518-523. doi: 10.1270/jsbbs.60.518.

451 [10]. Sweeney M, McCouch S (2007) The complex history of the domestication of rice. *Ann Bot* 100: 951-
452 957. doi: 10.1093/aob/mcm128.

453 [11]. Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the *Oryza* genus. *CurrOpin Plant Biol* 6:
454 139-146. doi:10.1016/S1369-5266(03)00009-8.

455 [12]. Prathepha P (2011) Microsatellite analysis of weedy rice (*Oryza sativa* f. *spontanea*) from Thailand
456 and Lao PDR. *Aust J Crop Sci* 5: 49-54.

457 [13]. Cao QJ, Lu BR, Xia H, Rong J, Sala F, Spada A, Grassi F (2006) Genetic diversity and origin of weedy
458 rice (*Oryza sativa* f. *Spontanea*) populations found in North-eastern China revealed by simple
459 sequence repeat (SSR) markers. *Ann Bot* 98: 1241-1252. doi: 10.1093/aob/mcl210.

460 [14]. Brar DS, Khush GS (1997) Alien introgression in rice. *Plant MolBiol* 35: 35-47. doi:
461 10.1023/a:1005825519998.

462 [15]. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: A survey of
463 developments over the last 20 years. *Euphytica* 156: 1-13. doi: 10.1007/s10681-007-9363-0.

464 [16]. Tu J, Ona I, Zhang Q, Mew TW, Khush GS, Datta SK (1998) Transgenic rice variety 'IR72' with Xa21 is
465 resistant to bacterial blight. *TheorAppl Genet* 97: 31-36. doi: 10.1007/s001220050863.

466 [17]. Narain A, Kar MK, Kaliaperumal V, Sen P (2016) Development of monosomic alien addition lines
467 from the wild rice (*Oryzabrachyantha* A. Chev. et Roehr.) for introgression of yellow stem borer
468 (*Scirpophagaincertulas* Walker.) resistance into cultivated rice (*Oryza sativa* L.). *Euphytica* 209:
469 603-613. doi: 10.1007/s10681-016-1633-2.

470 [18]. Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M
471 (2010) A genetic resource for early-morning flowering trait of wild rice *Oryza officinalis* to
472 mitigate high temperature-induced spikelet sterility at anthesis. *Ann Bot* 106: 515-520. doi:
473 10.1093/aob/mcq124.

474 [19]. Mao DH, Yu L, Chen DZ, Li LY, Zhu YX, Xiao YQ, Zhang DC, Chen CY (2015) Multiple cold resistance
475 loci confer the high cold tolerance adaptation of Dongxiang wild rice (*Oryzaruifipogon*) to its
476 high-latitude habitat. *Theor Appl Genet* 128: 1359-1371. doi: 10.1007/s00122-015-2511-3.

477 [20]. Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement
478 of Salinity Stress Tolerance in Rice: Challenges and Opportunities. *Agronomy* 6. doi:
479 10.3390/agronomy6040054.

480 [21]. Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of
481 the QTL for aluminum tolerance introgressed from the new source, *Oryza rufipogon* Griff., into
482 indica rice (*Oryza sativa* L.). *Theor Appl Genet* 106: 583-593. doi: 10.1007/s00122-002-1072-4.

483 [22]. Ricachenevsky FK, Sperotto RA (2016) Into the wild: *Oryza* species as sources for enhanced nutrient
484 accumulation and metal tolerance in rice. *Front Plant Sci* 7. doi: 10.3389/fpls.2016.00974.

485 [23]. Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. *J Plant Nutr*
486 *Soil Sci* 168: 558-573. doi: 10.1002/jpln.200520504.

487 [24]. Sahrawat KL (2005) Iron Toxicity in Wetland Rice and the Role of Other Nutrients. *J Plant Nutr* 27:
488 1471-1504. doi: 10.1081/pln-200025869.

489 [25]. Wu L-B, Ueda Y, Lai S-K, Frei M (2017) Shoot tolerance mechanisms to iron toxicity in rice (*Oryza*
490 *sativa* L.). *Plant Cell Environ* 40: 570-584. doi: 10.1111/pce.12733.

491 [26]. Wu L-B, Shhadi M, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological
492 analysis of tolerance to acute iron toxicity in rice. *Rice* 7: 8.

493 [27]. Audebert A, Fofana M (2009) Rice yield gap due to iron toxicity in West Africa. *Journal of Agronomy*
494 and *Crop Sci* 195: 66-76. doi: 10.1111/j.1439-037X.2008.00339.x.

495 [28]. Frei M, Tetteh RN, Razafindrazaka AL, Fuh MA, Wu L-B, Becker M (2016) Responses of rice to
496 chronic and acute iron toxicity: genotypic differences and biofortification aspects. *Plant Soil* 408:
497 149-161. doi: 10.1007/s11104-016-2918-x.

498 [29]. Dufey I, Hiel MP, Hakizimana P, Draye X, Lutts S, Kone B, Drame KN, Konate KA, Sie M, Bertin P
499 (2012) Multi-environment Quantitative Trait Loci Mapping and Consistency across Environments
500 of Resistance Mechanisms to Ferrous Iron Toxicity in Rice. *Crop Sci* 52: 539-550. doi:
501 10.2135/cropsci2009.09.0544.

502 [30]. Dufey I, Mathieu A-S, Draye X, Lutts S, Bertin P (2014) Construction of an integrated map through
503 comparative studies allows the identification of candidate regions for resistance to ferrous iron
504 toxicity in rice. *Euphytica*: 1-11. doi: 10.1007/s10681-014-1255-5.

505 [31]. Arbelaez JD, Moreno LT, Singh N, Tung CW, Maron LG, Ospina Y, Martinez CP, Grenier C, Lorieux M,
506 McCouch S (2015) Development and GBS-genotyping of introgression lines (ILs) using two wild

507 species of rice, *O. meridionalis* and *O. rufipogon*, in a common recurrent parent, *O. sativacv*.

508 Curinga. Mol Breed 35: 81. doi: 10.1007/s11032-015-0276-7.

509 [32]. Matthus E, Wu L-B, Ueda Y, Hoeller S, Becker M, Frei M (2015) Loci, genes, and mechanisms
510 associated with tolerance to ferrous iron toxicity in rice (*Oryza sativa* L.). TheorAppl Genet 128:
511 2085-2098. doi: 10.1007/s00122-015-2569-y.

512 [33]. Sikirou M, Saito K, Dramé KN, Saidou A, Dieng I, Ahanchédé A, Venuprasad R (2016) Soil-based
513 screening for iron toxicity tolerance in rice using pots. Plant Prod Sci 19: 489-496. doi:
514 10.1080/1343943X.2016.1186496.

515 [34]. Vaintraub IA, Lapteva NA (1988) Colorimetric determination of phytate in unpurified extracts of
516 seeds and the products of their processing. Anal Biochem 175: 227-230. doi: 10.1016/0003-
517 2697(88)90382-x.

518 [35]. Dobermann A, Fairhurst. T. (2000) Rice - Nutrient Disorders and Nutrient Management. Potash &
519 Phosphate Institute (PPI), Potash and Phosphate Institute of Canada (PPIC) and International
520 Rice Research Institute (IRRI).

521 [36]. Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S, Lefevre I (2012) Combined
522 transcriptomic and physiological approaches reveal strong differences between short- and long-
523 term response of rice (*Oryza sativa*) to iron toxicity. Plant Cell Environ 35: 1837-1859. doi:
524 10.1111/j.1365-3040.2012.02521.x.

525 [37]. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in
526 plants? Plant Sci 212: 15-25. doi: <https://doi.org/10.1016/j.plantsci.2013.07.012>.

527 [38]. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in
528 plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:
529 137-147. doi: 10.1023/a:1004375732137.

530 [39]. Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal
531 transduction. *Annu Rev Plant Biol* 55: 373-399.

532 [40]. Vaughan DA (1994) The Wild relatives of Rice - A Genetic Resources Handbook. IRRI, Manila,
533 Philippines.

534 [41]. Cogle AL, Keating MA, Langford PA, Gunton J, Webb IS (2011) Runoff, soil loss, and nutrient
535 transport from cropping systems on Red Ferrosols in tropical northern Australia. *Soil Res* 49: 87-
536 97. doi: 10.1071/sr10069.

537 [42]. Engel K, Asch F, Becker M (2012) Classification of rice genotypes based on their mechanisms of
538 adaptation to iron toxicity. *J Plant Nutr Soil Sci* 175: 871-881. doi: 10.1002/jpln.201100421.

539 [43]. Camaschella C (2015) Iron-deficiency anemia. *N Engl J Med* 372: 1832-1843. doi:
540 doi:10.1056/NEJMra1401038.

541 [44]. Sandstead HH (2013) Human Zinc Deficiency: Discovery to Initial Translation. *Adv Nutr* 4: 76-81. doi:
542 10.3945/an.112.003186.

543 [45]. Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N,
544 Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP,
545 Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH (2016)
546 Biofortifiedindica rice attains iron and zinc nutrition dietary targets in the field. *Sci Rep* 6: 19792.
547 doi: 10.1038/srep19792

548 [46] . Raboy V (2002) Progress in breeding low phytate crops. *J Nutr* 132: 503S-505S.

549 [47]. Olsen LI, Hansen TH, Larue C, Osterberg JT, Hoffmann RD, Liesche J, Kramer U, Surble S, Cadarsi S,
550 Samson VA, Grolimund D, Husted S, Palmgren M (2016) Mother-plant-mediated pumping of zinc
551 into the developing seed. *Nat Plants* 2: 16036. doi: 10.1038/nplants.2016.36.

552 [48]. Wang Y, Frei M (2011) Stressed food - The impact of abiotic environmental stresses on crop quality.
553 *AgroEcosyst Environ* 141: 271-286. doi: 10.1016/j.agee.2011.03.017.

554 [49]. Gibson RS, Bailey KB, Gibbs M, Ferguson EL (2010) A review of phytate, iron, zinc, and calcium
555 concentrations in plant-based complementary foods used in low-income countries and
556 implications for bioavailability. Food Nutr Bull 31: S134-146. doi:
557 10.1177/15648265100312s206.

558 **Supporting Information**

559 Supplementary Table S1: List of germplasm used in the screening experiment

560

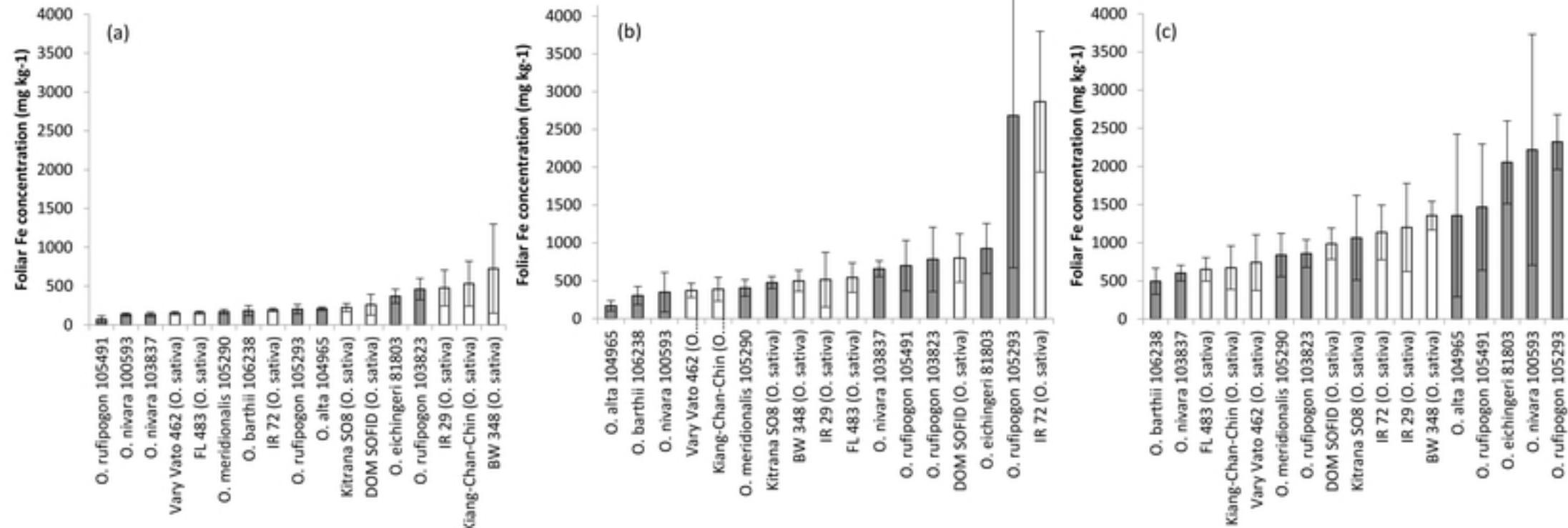
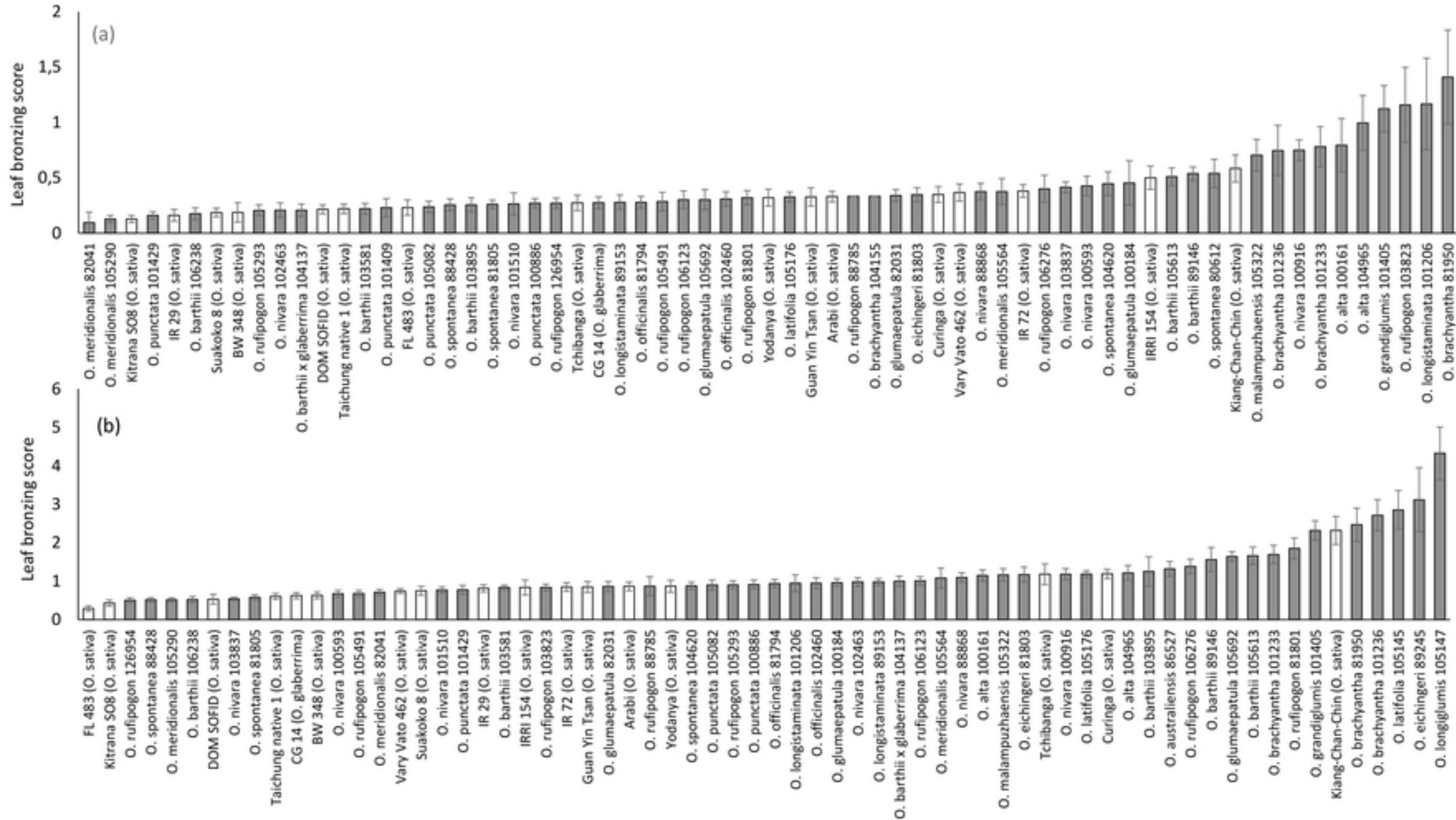



Figure 2

Figure 1

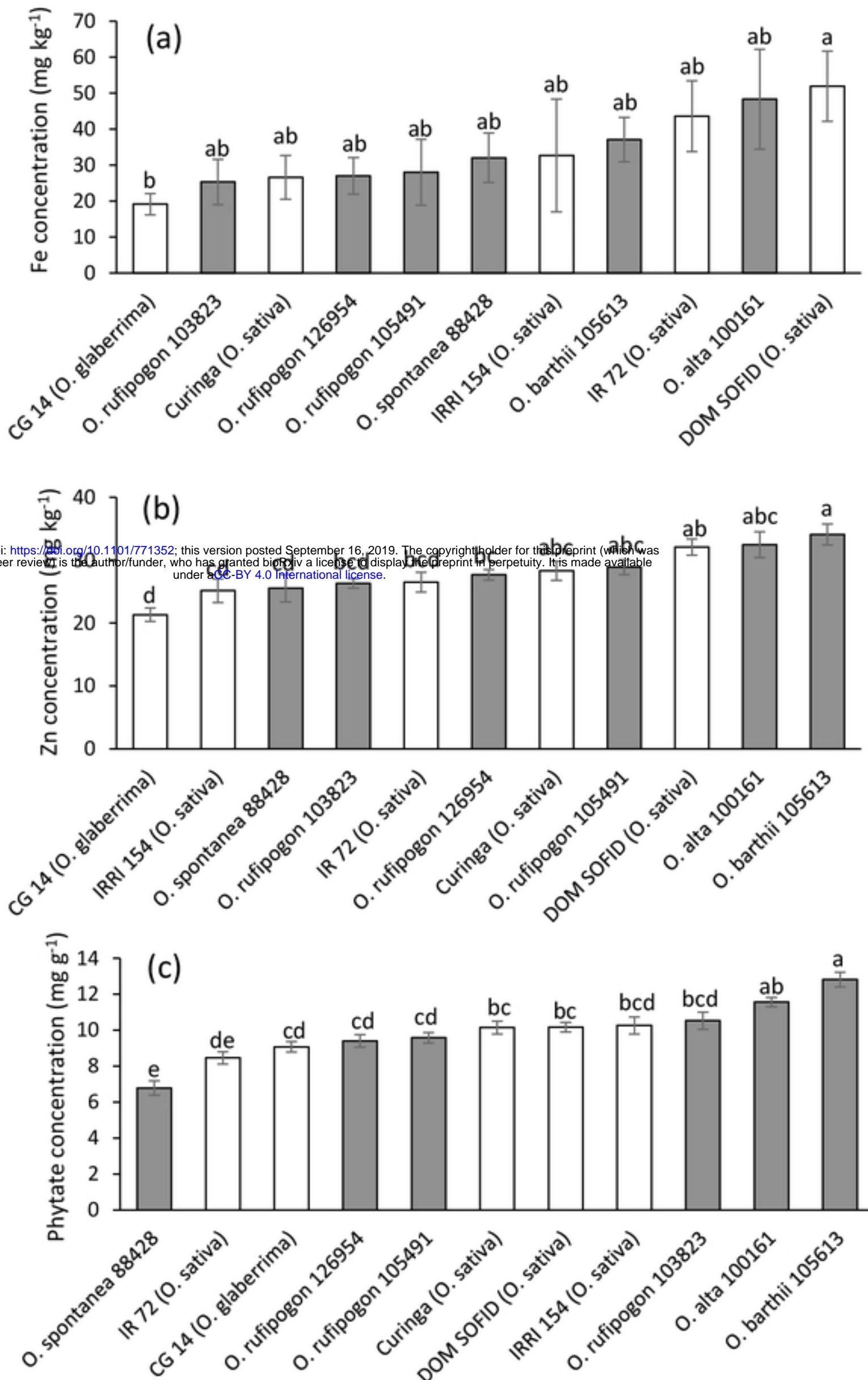


Figure 5

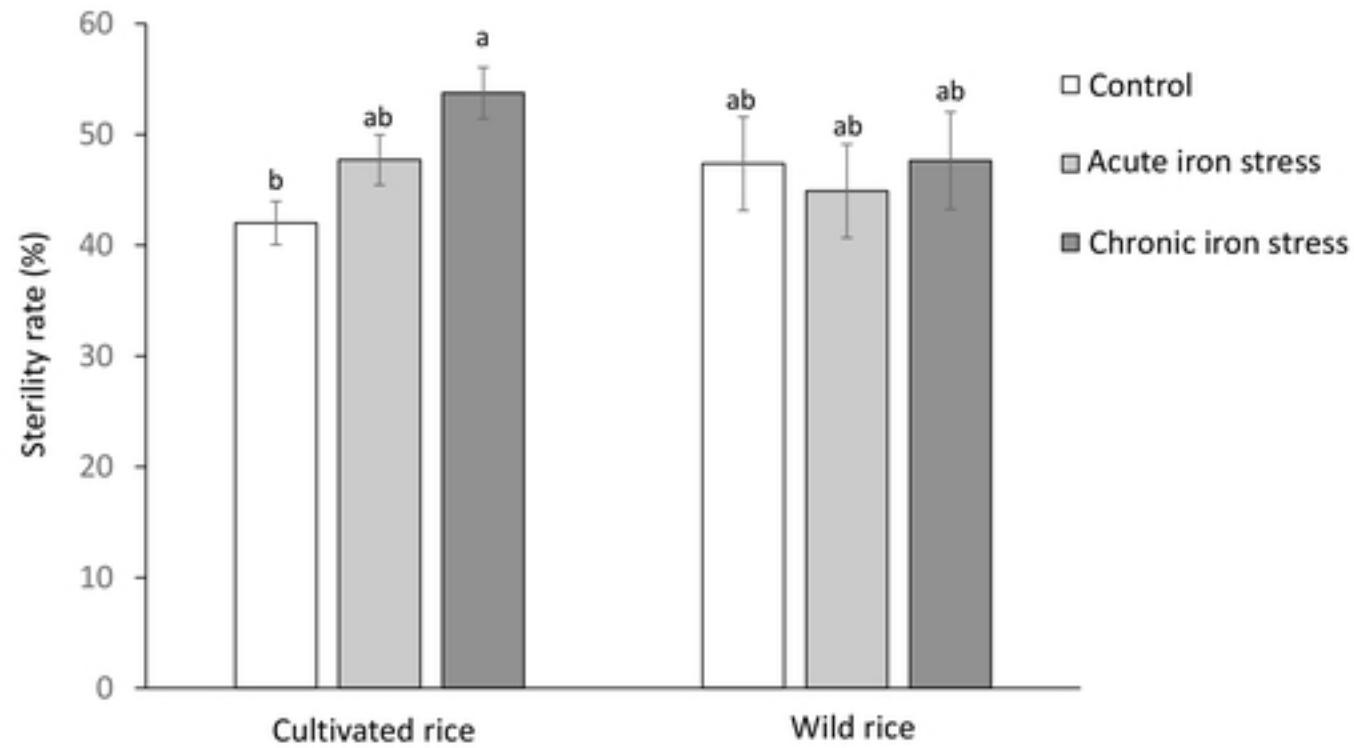
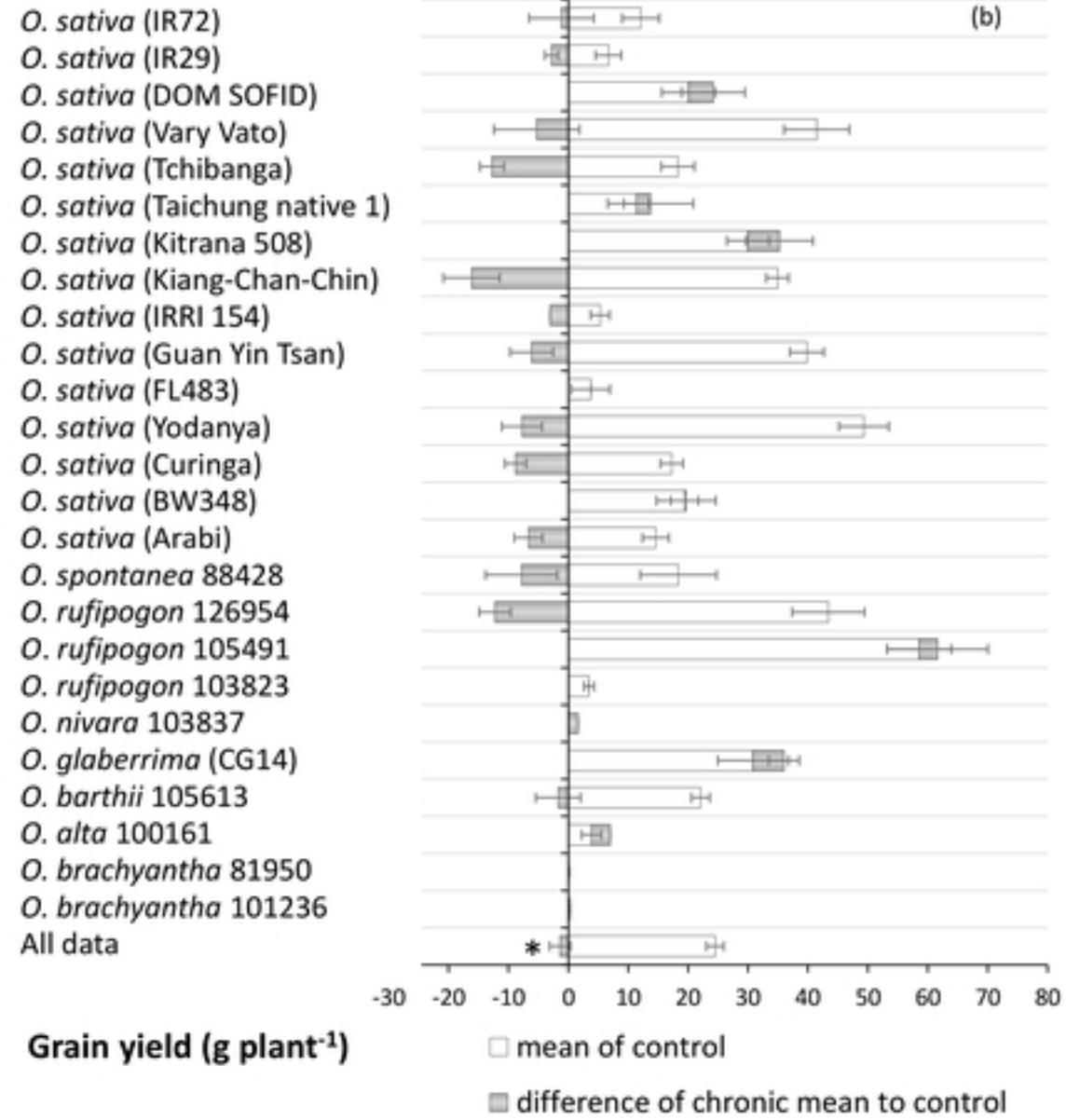
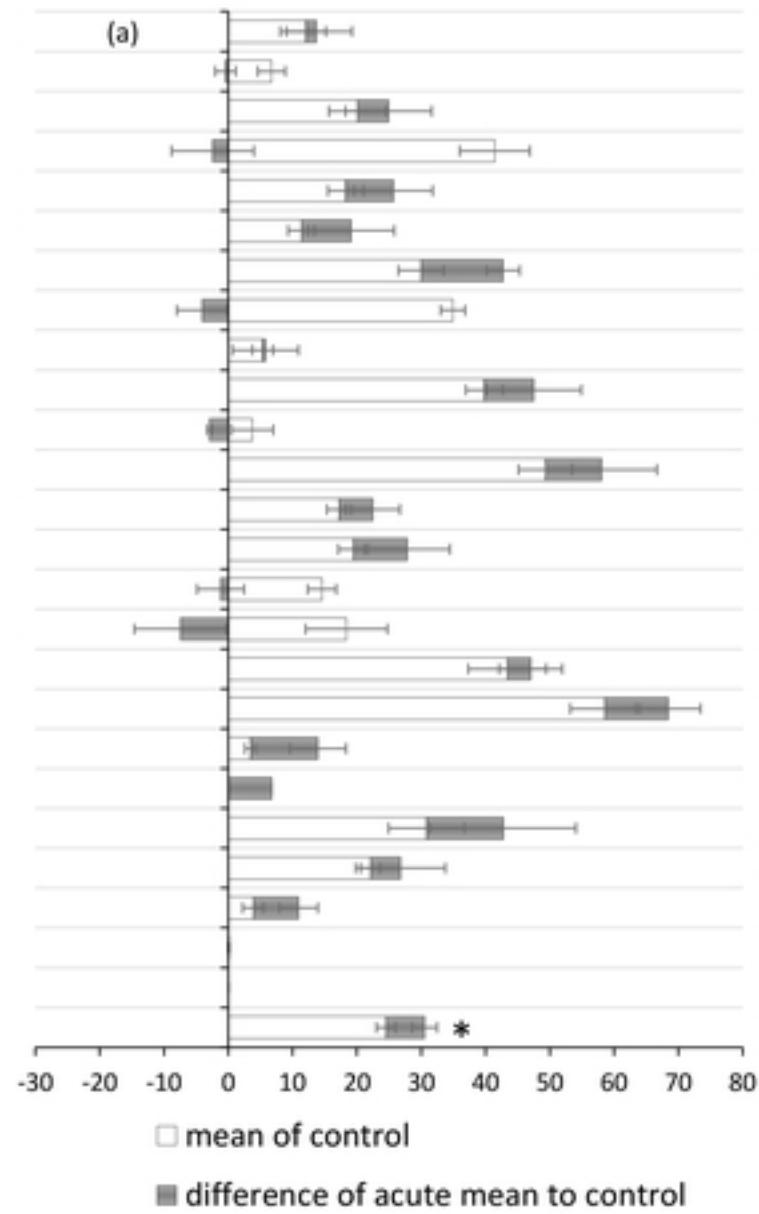




Figure 4

Figure 3

