

1 **1 Seminal quality and global proteomic analysis of spermatozoa from captive Amazon squirrel
2 monkeys (*Saimiri collinsi* Osgood, 1916) during the dry and rainy seasons**

3

4 Danuza Leite Leão^{1,2*}, Sheyla Farhayldes Souza Domingues^{1,2,3}, Patrícia da Cunha Sousa¹, Wlaisa
5 Vasconcelos Sampaio^{1,2}, Fábio Roger Vasconcelos⁴, Arlindo Alencar Moura⁴, Regiane Rodrigues
6 dos Santos¹, Morten Skaugen⁵, Irma Caroline Oskam⁶

7

8 ¹ Laboratory of Wild Animal Biotechnology and Medicine, Federal University of Pará, Belém, Pará,
9 Brazil

10 ² Federal Rural University of the Amazon, Belém, Pará, Brazil

11 ³ Faculty of Veterinary Medicine, Federal University of Pará, Castanhal, Pará, Brazil

12 ⁴ Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará,
13 Fortaleza, Ceará, Brazil

14 ⁵ Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences,
15 Ås, Norway

16 ⁶ The Animal Production Experimental Center, Norwegian University of Life Sciences, Ås, Norway

17

18 *Corresponding author:

19 E-mail: danleao.88@gmail.com

20

21 **Short title:** Differential expression of *Saimiri collinsi* sperm proteins during the dry and rainy
22 seasons

23 **Abstract**

24 The squirrel monkey (*Saimiri collinsi*), a Neotropical primate endemic to the Amazon in Brazil, is
25 used as a biological model for reproductive research on the genus *Saimiri*. Although this animal is
26 known to exhibit reproductive seasonality, nothing is known about the differences in its seminal
27 quality, sperm protein composition, or sperm protein profile between the breeding (dry) and non-
28 breeding (rainy) seasons. Thus, the aims of this study were to evaluate the quality of *S. collinsi*
29 semen during the dry and rainy seasons and to describe the global sperm proteomics and expression
30 variations in the sperm proteins during the two seasons. Aside from the pH, there was no difference
31 in the seminal quality between the dry and rainy seasons. The study approach based on bottom-up
32 proteomics allowed the identification of 2343 proteins present in the sperm samples throughout
33 these two seasons. Of the 79 proteins that were differentially expressed between the two seasons, 39
34 proteins that were related to spermatogenesis, sperm motility, capacitation, fecundation, and defense
35 systems against oxidative stress were upregulated in the dry season. Knowledge on the sperm
36 proteins provides crucial information for elucidating the underlying mechanisms associated with
37 sperm functionality. Thus, our results help to advance our understanding of the reproductive
38 physiology of *S. collinsi*, providing valuable information for the improvement of protocols used in
39 assisted reproduction techniques for the conservation of endangered *Saimiri* species.

40

41

42

43 Introduction

44 The squirrel monkey (*Saimiri collinsi*), a Neotropical primate endemic to the Amazon in
45 Brazil [1], is commonly used as an experimental model for reproductive research on the genus
46 *Saimiri* [2-4]. According to the International Union for Conservation of Nature's Red List of
47 Threatened Species, two *Saimiri* species are ranked as vulnerable (*Saimiri oerstedii* and *Saimiri*
48 *vanzolini*) and one species as almost threatened (*Saimiri ustus*) to extinction [5].

49 Primates of the genus *Saimiri* exhibit reproductive seasonality. In the free-living animals, the
50 breeding season (mating) and births occur during the dry season and rainy season, respectively.
51 Supposedly, the rainy season is when there is more food available for the newborn [6-8]. However,
52 *Saimiri* monkeys that are held in captivity without variations in their environment and food supply
53 express less of a seasonality pattern by continuing to mate and reproduce throughout the year [9].
54 Because of the conflicting observations between free-range and captive individuals, it is obvious
55 that the effects of environmental factors (e.g., rainfall, temperature, photoperiod, and food supply)
56 on reproductive seasonality need to be more fully understood [9-11].

57 Although studies on the squirrel monkey have already shown correlations between
58 reproductive seasonality and spermatogenesis (*Saimiri sciureus*) [12] and the gonadal hormones (*S.*
59 *sciureus*) [13], only one study has reported the seasonal influence on seminal quality (*S. sciureus*)
60 [14]. However, nothing is known about the protein composition of spermatozoa in these Neotropical
61 primates, or of the differences in the sperm protein profile between the breeding and non-breeding
62 seasons. In domestic animals, proteomic studies have shown the upregulation and downregulation of
63 expression of some sperm proteins when the breeding and non-breeding seasons are compared [15].

64 Mammalian male fertility depends on physiological events that begin with spermatogenesis
65 and culminate with successful adhesion/signaling between the sperm membrane and the
66 extracellular coat of the oocyte, followed by adhesion/fusion between the oocyte and sperm
67 membranes during fertilization in the female reproductive tract [16, 17]. Proteins expressed by
68 spermatozoa and those from the seminal plasma that bind to the sperm plasma membrane render the
69 spermatozoa capable of fertilizing a mature oocyte [18, 19]. Studies in animals and humans have
70 described sperm proteins that have significant associations with sperm motility (i.e., L-lactate
71 dehydrogenase and dynein heavy chain 1 (DNAH1)) [20, 21], sperm capacitation (i.e., clusterin,
72 spermadhesin, and mitochondrial peroxiredoxin-5) [22, 23], and fertility (i.e., enolase 1, ropporin-
73 1-like protein (ROPN1), and Izumo sperm–egg fusion 1 (IZUMO1)) [24, 25].

74 In non-human primates, sperm proteomics has been carried out only in Old World primates
75 for characterization of the sperm protein profile [18, 26-29]. Although these studies have been
76 carried out in the genus *Macaca*, which also exhibits reproductive seasonality [30], nothing is
77 known about the changes that may occur in the sperm protein profile during the non-breeding and
78 breeding seasons, and the influence of these changes on the seminal quality of these animals.
79 Knowledge about the absence, presence, underexpression, or overexpression of these sperm proteins
80 could help to further our understanding of the mechanisms behind the reduction in the fertilization
81 ability of sperm [19, 31].

82 Defining the sperm protein profiles of *Saimiri collinsi* in the breeding (dry season) and non-
83 breeding (rain season) seasons may provide us with a better understanding about the reproductive
84 physiology of these animals, as well as whether the sperm cells could be used in assisted
85 reproduction techniques throughout the year rather than being restricted only to the breeding period.

86 Therefore, the aims of this study were to (i) evaluate the quality of *S. collinsi* semen during the dry
87 and rainy seasons, (ii) describe the global sperm proteomics in *S. collinsi*, (iii) describe the
88 variations of the proteins in sperm collected during the dry and rain seasons, and (iv) evaluate the
89 potential correlation between the expression of the sperm proteins and the seminal quality in *S.*
90 *collinsi*.

91

92 **Methods**

93 **Study design**

94 We conducted a global proteomic analysis of spermatozoa collected from adult squirrel
95 monkeys (*S. collinsi*) throughout an entire year, in the Brazilian Amazon. The seminal coagulum
96 was collected monthly by electroejaculation and liquefied in a powdered coconut water extender
97 (ACP-118; ACP Biotecnologia, Fortaleza, Ceará, Brazil). After 1 h in the ACP-118 extender, the
98 viable sperm cells were separated on Percoll density gradient media and washed. Then, the sperm
99 proteins were extracted and subjected to tryptic digestion, followed by liquid chromatography-
100 tandem mass spectrometry. Statistics and computational biology were used for the identification of
101 the proteins and their relative abundance, categorization of the proteins, and *in silico* analysis of the
102 protein network.

103

104 **Animal ethics statement**

105 The animal study was approved by the Ethical Committee in Animal Research (Approval
106 No. 02/2015/CEPAN/IEC/SVS/MS) and by the System of Authorization and Information in

107 Biodiversity (SISBIO/ICMBio/MMA No. 47051-2), and carried the license of the Convention on
108 International Trade in Endangered Species of Wild Fauna and Flora (CITES/IBAMA/Permit No.
109 17BR025045-DF). All procedures were performed under the supervision of a veterinarian.

110

111 **Animals**

112 *S. collinsi* males (N = 4) that originated from the Marajó Archipelago (0°58'S and 49°34'W)
113 and were maintained in captivity at the Centro Nacional de Primatas, Brazil (1°22'58"S and
114 48°22'51"W) were used for the semen collection. The average age of the animals was 15 years. The
115 external genitalia of each animal were evaluated and an andrology examination (i.e., inspection and
116 palpation of the testes to verify the size, consistency, and symmetry) was performed.

117

118 **Housing conditions**

119 The animals were housed collectively in cages (4.74 m × 1.45 m × 2.26 m), with 12 h of
120 natural light each day. The mixed animal groups typically consisted of three males and three
121 females and their juvenile offspring. The region is defined by the Köppen-Geiger climate
122 classification system as having a tropical rainforest climate (AF), with an average annual
123 temperature of 28°C (maximum of 32°C and minimum of 24°C) [32]. The animals were fed fresh
124 fruits, vegetables, commercial pellet chow specific for Neotropical non-human primates (18%
125 protein, 6.5% fiber; Megazoo, Minas Gerais, Brazil), and cricket larvae (*Zophobas morio*).
126 Vitamins, minerals, and eggs were supplied once a week, and water was available *ad libitum*.

127

128 **Body weight, testicular biometry, and semen collection**

129 Semen was collected monthly from June 2015 to May 2016, every morning before feeding,
130 making up a total of 48 semen collections (12 per animal). For the semen collection, physical
131 restraint of each animal was performed by a trained animal caretaker wearing leather gloves, and all
132 animals were anesthetized with ketamine hydrochloride (20 mg/kg; intramuscularly (IM);
133 Vетанаркол, König S.A., Avellaneda, Argentina) and xylazine hydrochloride (1 mg/kg; IM; Kensol,
134 König S.A.) and monitored by a veterinarian. After anesthesia, the animals were weighed using a
135 weight balance, and the testicular length, width, height, and circumference were measured using a
136 universal caliper. The testicular volume was calculated according to the method described by
137 Oliveira et al. [4]. After the animal had been placed in dorsal recumbency, the genital region was
138 sanitized with a mild soap and distilled water (1:10) and the prepuce was retracted for a more
139 efficient cleaning of the penis with saline solution. The animal was then stimulated according to the
140 rectal electroejaculation procedure described by Oliveira et al. [2-4]. In brief, an electroejaculator
141 (Autojac-Neovet, Uberaba, Brazil) rectal probe was smeared with a sterile lubricant gel (KY Jelly,
142 Johnson & Johnson Co., Arlington, TX, USA) and introduced into the rectum (~2.5 cm deep) and
143 electrical stimuli were then delivered. The stimulation session consisted of three series (7 and 8
144 min), composed of 35 electrical stimuli (12.5 and 100 mA), with an interval of 30 s between the
145 series. The ejaculates (liquid and coagulated fractions) were collected into microtubes (1.5 mL).

146

147

148

149 **Semen evaluation**

150 The 1.5-mL conical microtubes containing the semen were placed in a water bath at 37°C
151 immediately after collection for evaluation of the seminal volume, color, and viscosity. The volumes
152 of the liquid and coagulated fractions were evaluated in a graduated tube, with the aid of a pipette.
153 The appearance was assessed subjectively for color (colorless, yellowish, or whitish) and opacity
154 (opaque or transparent) [2-4]. The seminal pH was measured with a pH strip (Merck
155 Pharmaceuticals, Darmstadt, Germany).

156 The sperm motility, vigor, and morphology were evaluated according to the methods
157 described by Oliveira et al. [2-4]. For evaluation of the normal sperm morphology and plasma
158 membrane integrity, a smear sample was prepared by adding 5 µL of 1% eosin (Vetec, Rio de
159 Janeiro, Brazil) and 5 µL of 1% nigrosine (Vetec, Rio de Janeiro, Brazil) to 5 µL of semen on a
160 prewarmed (37°C) glass slide. The sperm concentration was determined in a Neubauer chamber
161 after the dilution of 1 µL of semen in 99 µL of 10% formalin solution. The plasma membrane
162 functionality was assessed with the hypoosmotic swelling test after the dilution of 5 µL of semen in
163 45 µL of hypoosmotic solution (0.73 g of sodium citrate, 1.35 g of fructose, and 100 mL of
164 ultrapure water; pH 7.2 and 108 mOsm/L). After a 45-min incubation in a water bath (37°C), 10 µL
165 of this solution was placed on a prewarmed (37°C) glass slide and covered with a coverslip, and at
166 least 200 spermatozoa were counted to determine the number with coiled tails (indicative of
167 spermatozoa with a functional plasma membrane). All evaluations were performed under a light
168 microscope (E400; Nikon, Tokyo, Japan) at a magnification of 100×. The semen was assessed
169 directly both after collection (fresh) and after dilution in ACP-118.

170

171 **Sperm separation and freeze-drying**

172 Owing to the occurrence of seminal coagulation in *S. collinsi*, the semen sample was diluted
173 1:1 in ACP-118 (300 mOsm/kg and pH 6.42), incubated in a water bath (Biomatic, Porto Alegre,
174 Rio Grande do Sul, Brazil) at 37°C for 1 h, and then separated on 45%/90% Percoll gradient media
175 (centrifugation at 10,000 g, 15 min, 12°C). Thereafter, the samples were washed in Tris-NaCl
176 medium (centrifugation at 8000 g, 5 min, 12°C), and the separated sperm fraction (pellet) was
177 stored in microtubes, together with Tris-NaCl and a protease inhibitor (1:1000; P8340 catalog,
178 Sigma-Aldrich, St. Louis, MO, USA), in liquid nitrogen or a -80°C freezer. For lyophilization, the
179 frozen sperm samples were placed in a freeze dryer (FreeZone 2.5 Liter Benchtop Freeze Dry
180 System; Labconco, Kansas City, MO, USA) for 10 h at a temperature of -55°C and vacuum
181 pressure of 0.025 mbar.

182

183 **Liquid chromatography-mass spectrometry**

184 Each individual dried sperm sample was resuspended in 50 µL of lysis buffer (0.1 M Tris-Cl
185 (pH 8.0), 4% sodium dodecyl sulfate, and 10 mM dithiothreitol) and centrifuged at 5000 g for 1 h at
186 4°C. The supernatant was reserved for the preparation of suspension samples for bottom-up
187 proteomic analysis with tryptic digestion, using the method established by Zougman et al. [33]. The
188 extracted peptides were analyzed on an UltiMate 3000 RSLCnano/Q-Exactive system (Thermo
189 Fisher Scientific, Bremen, Germany) that was set up with a Nanospray Flex ion source. The tryptic
190 peptides (~1 µg loaded) were separated on a 50 cm × 75 µm (i.d.) column (Thermo Fisher
191 Scientific) using a 120 min gradient of 12–45% acetonitrile. The mass spectrometry (MS) and

192 tandem mass spectrometry (MS/MS) data were recorded using a standard data-dependent
193 acquisition method, with the following conditions: *m/z* range of 300–1600; Automatic Gain Control
194 targets of 3×10^6 (MS) and 5×10^4 (MS/MS); resolutions of 70 K (MS) and 35 K (MS/MS);
195 dynamic exclusion set to 20 s, and normalized collision energy set to 28. Xcalibur software (v. 3.1;
196 Thermo Fisher Scientific) was used to evaluate the raw data, which were converted to *mgf* format
197 (for Mascot database searching) using the MS convert module of ProteoWizard (v. 3.0.9016). The
198 Mascot (v. 2.6) searches were performed on an in-house server against an online *Saimiri boliviensis*
199 *boliviensis* (Bolivian squirrel monkey) database (National Center for Biotechnology Information,
200 Bethesda, MD, USA). MaxQuant software (v. 1.6.1.0) [34] was used for the label-free
201 quantification.

202

203 Protein categorization

204 The protein information obtained by Mascot was analyzed using the STRuctural Analysis
205 Programs (STRAP) for searching annotations of proteins. STRAP automatically obtains Gene
206 Ontology (GO) terms associated with proteins in an identification list of results based on homology
207 search analysis using various freely accessible databases [335].

208

209 *In silico* protein network analysis

210 Protein–protein networks were retrieved from the STRING database (v. 10.0), which
211 consists of known and predicted protein interactions collected from direct (physical) and indirect
212 (functional) associations. The database quantitatively integrates interaction data from four sources: a

213 genomic context, high-throughput experiments, co-expression data, and previous knowledge from
214 research publications [36]. The STRING program was set to show no more than 10 interactions and
215 medium confidence. Pathways not described for *S. boliviensis boliviensis* were analyzed using those
216 for other non-human primate species and *Homo sapiens*.

217

218 **Statistical analysis**

219 All seminal quality data are expressed as the mean \pm standard error of the mean and were
220 analyzed using the StatView 5.0 program (SAS Institute Inc., Cary, NC, USA). Data were checked
221 for normality using the Kolmogorov-Smirnov test. The effects of the dry and rainy seasons on the
222 seminal quality were evaluated by analysis of variance, and differences were determined with
223 Fisher's protected least significant difference *post hoc* test. A *p* value of <0.05 was considered as
224 being statistically significant. With regard to the differences in protein expression between the dry
225 and rainy seasons, the protein concentration data were logarithmically transformed and two-sample
226 tests were performed using Perseus software (v. 1.6.1.1; Max Planck Institute of Biochemistry,
227 Planegg, Germany).

228

229

230

231

232

233

234 **Results**

235 **Characteristics of the Amazon monkeys and semen**

236 The body weights of the male monkeys and their total testicular volumes were significantly
237 higher in the rainy season (883.15 ± 14.50 g and 2.42 ± 0.11 cm³, respectively) than in the dry
238 season (816.10 ± 6.85 g and 1.91 ± 0.13 cm³) (Table 1). Semen collection was successful in 42 of
239 the 48 attempts (88%) because four ejaculates did not contain sperm; of these, 39 samples were used
240 for the experiments. The highest percentage of ejaculates in both the liquid and coagulated fractions
241 was 59%. With regard to the semen color and opacity, 10% of the samples were colorless, 33%
242 were whitish, 57% were yellowish, 46% were transparent, and 54% were opaque. There was a
243 statistical difference ($p = 0.0002$) in the seminal pH between the dry (7.96 ± 0.10) and rainy ($7.30 \pm$
244 0.11) seasons in the liquid fraction (fresh sample). With regard to the other seminal parameters,
245 there were no changes in the seminal volume, total sperm count, and sperm motility, vigor, plasma
246 membrane functionality, and integrity as well as in the normal sperm regardless of the period of the
247 year (dry or rainy season) (Table 1).

248

249 **Table 1. Mean (\pm SEM) values of the body weight, testicular volume (cm³), and seminal
250 parameters of *Saimiri collinsi* during the dry (breeding) and rainy (non-breeding) seasons.**

251

252 *Plasma membrane functionality (PMF; %)

253 **Plasma membrane integrity (PMI; %)

254

255

256 **Sperm proteomics**

257 The study approach based on bottom-up proteomics allowed the identification of 2343
258 proteins in the sperm samples (Supporting Information S1 Table). Of the total proteins identified,
259 223 were determined to participate in important reproductive events, such as spermatogenesis (67
260 proteins), sperm motility (42 proteins), capacitation/acrosome reaction (20 proteins), and
261 fertilization (32 proteins) (Supporting Information S2 Table).

262 On the basis of the GO analysis, the proteins were grouped according to biological process,
263 molecular function, and cellular component (i.e., localization) classes (Fig 1). In the cellular
264 component class, most of the proteins identified were associated with the cytoplasm (12.3%),
265 cytoskeleton (9.4%), and nucleus (8.9%) (Fig 1A). The most common biological processes
266 associated with the proteins were cellular processes (41.6%), regulation (17.6%), and metabolic
267 processes (11.4%) (Fig 1B). Binding (42.8%) and catalytic activity (42.9%) corresponded to the
268 most frequent molecular functions for the proteins (Fig 1C).

269

270 **Fig 1. Gene Ontology annotation of the cellular component (A), biological process (B), and**
271 **molecular function (C) classes of identified *Saimiri collinsi* sperm proteins analyzed by**
272 **STRAP.** The Gene Ontology terms were obtained from the UniProtKB database.

273

274 We also identified 79 sperm proteins that were differentially expressed between the dry
275 (breeding season) and rainy seasons (non-breeding season). Of these, 39 were upregulated in the dry
276 season, with the main protein functions being for enzymatic activity (i.e., deoxyguanosine kinase

277 and matrix metalloproteinase-7), cellular regulation (i.e., amine oxidase and serine protease 30-like),
278 and immune system processes (i.e., heat shock 70 kDa protein 1A/1B and clusterin) (Table 2 and
279 Supporting Information S3 Table). With regard to proteins that participate in important events in
280 reproduction, 10 that were increased during the dry season were related to spermatogenesis (i.e., cat
281 eye syndrome critical region protein 5, heat shock-related 70 kDa protein 2 (Hsp70.2/HSPA2), and
282 peroxidase (GPX4), sperm motility (i.e., ADP/ATP translocase 4, ROPN1L, and tektin-5),
283 capacitation (i.e., ROPN1L), and fecundation (i.e., sperm surface protein Sp17 (SPA17)), or were
284 important defense systems against oxidative stress (i.e., nucleoside diphosphate kinase homolog 5
285 and catalase).

286

287 **Table 2. Upregulation or downregulation of sperm protein expression (µg/mL) in *Saimiri***
288 ***collinsi* during the rainy (non-breeding) and dry (breeding) seasons.**

289

290 *In silico* protein network analysis indicated that the proteins that were upregulated during the
291 dry (breeding) season, such as ROPN1L, phospholipid hydroperoxide glutathione, HSPA2, and
292 SPA17, interacted with 10 other proteins. Among these interactions, only ROPN1L and
293 phospholipid hydroperoxide glutathione interacted with each other (Fig 2).

294

295 **Fig 2. Protein interaction analysis. Proteins were analyzed with the wed-based STRING**
296 **software. Analyzed proteins were: a- Ropporin-1-like; b- Phospholipid hydroperoxide**
297 **glutathione; c- Heat shock proteins 70kDa protein 2; d- Sperm surface protein Sp17. Different**

298 line color represents the types of evidence for the association. Green textming; black
299 coexpression; blue databases; and pink experiments. AKAP3 A-kinase anchor protein 3;
300 SPA17 Sperm surface protein Sp17; CABYR Calcium-binding tyrosine phosphorylation-
301 regulated protein; RHPN1 Rhophilin-1; RSPH3 Radial spoke head protein 3 homolog;
302 CCDC63 Coiled-coil domain-containing protein 63; TRPV6 Transient receptor potential
303 cation channel subfamily V member 6; DNALI1 Axonemal dynein light intermediate
304 polypeptide 1; TEKT3 Tektin-3; CFAP36 Cilia- and flagella-associated protein 36; GSR
305 Glutathione reductase, mitochondrial; GRSF1 G-rich sequence factor 1; GSS Glutathione
306 synthetase; SOD2 Superoxide dismutase [Mn], mitochondrial; GSTO2 Glutathione S-
307 transferase omega-2; GGT7 Glutathione hydrolase 7; GGT1 Glutathione hydrolase 1
308 proenzyme; SOD1 Superoxide dismutase [Cu-Zn]; GGT5 Glutathione hydrolase 5
309 proenzyme; GGT6 Glutathione hydrolase 6; DNAJB6 DnaJ (Hsp40) homolog, subfamily B,
310 member 6; DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1; HSPH1 Heat shock
311 105kDa/110kDa protein 1; DNAJC7 DnaJ (Hsp40) homolog, subfamily C, member 7;
312 GRPEL1 GrpE-like 1, mitochondrial (E. coli); HSPA9 Heat shock 70kDa protein 9
313 (mortalin); HSPA1A Heat shock 70kDa protein 1A; HSPA8 Heat shock 70kDa protein 8;
314 HSP90AA1 Heat shock protein 90kDa alpha (cytosolic), class A member 1; DNAJB12 DnaJ
315 (Hsp40) homolog, subfamily B, member 12 (409 aa); ROPN1 Rhophilin associated tail protein
316 1 (212 aa); AKAP3 A kinase (PRKA) anchor protein 3; ROPN1L Rhophilin associated tail
317 protein 1-like (230 aa); AKAP14 A kinase (PRKA) anchor protein 14; ZPBP Zona pellucida
318 binding protein; EFCAB7 EF-hand calcium binding domain 7 (629 aa); GAS2L2 Growth

319 **arrest-specific 2 like 2; RASL10A RAS-like, family 10, member A; GAS2L1 Growth arrest-**
320 **specific 2 like 1; PRSS50 Protease, serine, 50.**

321

322 **Discussion**

323 **Proteins associated with spermatogenesis and sperm motility**

324 In *S. collinsi*, it was possible to verify the upregulation of important proteins that participated
325 in spermatogenesis and sperm motility in the dry season (breeding season), such as ROPN1L,
326 HSPA2, cat eye syndrome critical region protein 5, and phospholipid hydroperoxide glutathione. In
327 mice, the loss of ROPN1L impairs sperm motility, cAMP-dependent protein kinase
328 phosphorylation, and fibrous sheath integrity [37]. ROPN1L is a sperm flagellar protein that binds
329 A-kinase anchoring protein (AKAP) 3 and 4, which are primary components of the sperm fibrous
330 sheath. The fibrous sheath is a flagellar cytoskeletal structure unique to sperm that surrounds the
331 outer dense fibers and axoneme [37, 38]. The degradation of AKAP3 and subsequent
332 dephosphorylation of tyrosine result in sperm capacitation [39].

333 Heat shock proteins (HSPs) are chaperone proteins that are expressed in response to cell
334 stress [40, 41]. Several HSP family members are expressed in the sperm, such as HSP 70 kDa
335 (HSP70), which appears in the acrosome membranes. HSP 60 kDa (HSP60) is located primarily in
336 the sperm midpiece, in association with the mitochondria, whereas HSP 90-alpha (HSP90AA1) is
337 located in the sperm flagellum [42]. HSP60, HSP70, and HSP90AA1 are known components of
338 sperm in different species, such as humans [43], rams [44], bulls, stallions, cats, and dogs [45]. The
339 acrosomal HSP70 has a role in gamete interaction and fertilization [46], whereas HSP90AA1

340 expression has been correlated with the resistance of sperm to freezing [47, 48] since this protein is
341 characterized as a ubiquitous molecular chaperone that provides protection and protein folding
342 during thermal stress and resistance against cell oxidative stress [49].

343 HSPA2, which is a molecular chaperone that assists in the folding, transport, and assembly
344 of proteins in the cytoplasm, mitochondria, and endoplasmic reticulum and is a testis-specific
345 member of the 70-kDa family [50], has been suggested to be crucially involved in spermatogenesis
346 and meiosis [51]. In humans, the downregulation of HSPA2 mRNA was observed in testes with
347 abnormal spermatogenesis, and the protein expression was high in normal spermatogenesis and low
348 in spermatogenesis arrest [52]. Human HSPA2 was shown to regulate the expression of the sperm
349 surface receptors involved in sperm-oocyte recognition [53], and its depression in the testes was
350 also associated with spermatogenic impairment and the fertilization rate in men with azoospermia
351 who were treated with intracytoplasmic sperm injections [54].

352 Sperm motility is driven mainly by the energy produced by the mitochondria present in the
353 intermediate piece of the male gamete [55]. However, the axoneme is another important cellular
354 component that is directly associated with sperm motility. The dynein heavy chains have been
355 annotated as subunits of the axonemal dynein complexes, which are multisubunit axonemal ATPase
356 complexes that generate the force for cilia motility and govern the beat frequency [56]. DNAH1 is
357 related to spermatogenesis and cell proliferation [57]. In humans, mutations in DNAH1 cause
358 multiple morphologic abnormalities of the sperm flagella, leading to male infertility [21]. The radial
359 spoke proteins play a key role in regulating dynein activity and flagellar motility [58, 59].

360 In this context, Imai et al. [60] showed that the failure to express phospholipid
361 hydroperoxide glutathione peroxidase (GPX4) caused human male infertility, with 30% of men

362 diagnosed with oligoasthenozoospermia showing a significant decrease in the level of the enzyme.
363 Those authors also found a significantly lower number of spermatozoa in the semen and
364 significantly lower motility of the spermatozoa than those seen in fertile men. GPX4 is an
365 intracellular antioxidant that directly reduces peroxidized phospholipids and is strongly expressed in
366 the mitochondria of the testis and spermatozoa. In bulls, GPX4 is considered a unique marker for
367 seminal quality analysis owing to the direct correlation between the selenoperoxidase and the
368 progressive motility of the sperm [61].

369

370 **Capacitation and the acrosome reaction**

371 The acrosome, which is a membrane-bound exocytotic vesicle that is located over the
372 anterior portion of the nucleus, contains the hydrolytic enzymes that are required for the acrosome
373 reaction, binding of the zona pellucida (ZP), penetration through the ZP, and sperm–egg membrane
374 fusion, all of which are indispensable events during the fertilization process [62]. In the acrosome
375 membrane (internal and external membranes), the sperm acrosome membrane-associated family
376 (i.e., SPACA3, SPACA1, and SPACA4) [63, 64] are sperm surface membrane proteins that may be
377 involved in the adhesion and fusion of the sperm to the egg prior to fertilization [65]. SPACA1 and
378 SPACA3 are localized in the acrosomal matrix, including the principal segment and equatorial
379 segment, and are proteins characterized as membrane antigens [63, 65, 66]. SPACA1 may be
380 involved in sperm fusion with the oölemma, since treatment of human sperm with the anti-SPACA1
381 antibody prevented sperm penetration into zona-free hamster eggs [63]. Fujihara et al. [67]
382 demonstrated that the SPACA1 protein was indispensable for the normal shaping of the sperm heads

383 during spermiogenesis in mice. In humans, this protein was identified as a sperm membrane antigen,
384 with a molecular mass ranging from 32 to 34 kDa [63].

385

386 **Sperm–egg fusion**

387 Membrane fusion is a key event in the fertilization process that culminates in the merger of
388 the male–female gamete membranes and cytoplasm and fusion of the genomes, thereby initiating
389 embryonic development [68]. In humans, a change in the expression of the sperm proteins may be a
390 major cause of subfertility in men with normozoospermia [69]. In this context, research has been
391 focusing on the identification of the key molecular players and their functions, and several proteins
392 in the egg or the spermatozoa have been found to be essential for fertilization.

393 Until now, IZUMO1 has been found to be the essential protein on the sperm side for the
394 fusion process. As a testis-specific protein, IZUMO was discovered on the equatorial segment of the
395 acrosome-reacted mouse spermatozoa through proteomic analysis of the antigen recognized by the
396 monoclonal anti-mouse sperm antibody [70]. IZUMO is present in both mouse (~56 kDa protein)
397 and human (~38 kDa protein) sperm [71]. In mice, immunization with the IZUMO protein caused a
398 contraceptive effect in females, which was due to the significantly inhibited fusion of sperm to the
399 zona-free mouse eggs with the anti-PrimeB antibody. However, no effect on sperm motility was
400 observed [72]. IZUMO2, IZUMO3, and IZUMO4 have significant homology with the N-terminal
401 domain of IZUMO1 [73]. Inoue et al. [24] showed the interaction between angiotensin-converting
402 enzyme-3 located on the sperm acrosomal cap and IZUMO1 in the fertilization process. However, it
403 was reported that angiotensin-converting enzyme-3 disappears from the membrane after the
404 acrosome reaction. Nevertheless, the *in silico* protein interaction analysis of IZUMO1 revealed its

405 association with the CD9 molecule, folate receptor 4 (delta) homolog (mouse), folate receptor 1
406 (adult), folate receptor 2 (fetal), SPACA1, SPACA4, IZUMO family member 4, zona pellucida
407 binding protein 2, and metallopeptidase domain 2.

408 After the acrosome reaction, the C-terminal calmodulin domain (20 kDa) of SPA17 (located
409 on the external side of the sperm plasma membrane) is proteolytically cleaved to 17 kDa and then
410 binds to the extracellular matrix of the oocyte. This C-terminus of SPA17 plays a role in cell–cell
411 adhesion [74, 75]. In our study, SPA17 was shown to be upregulated during the dry season,
412 implying that this protein could also be involved in the fertilization processes in the breeding season
413 of *S. collinsi*.

414 Our results on the seminal quality also showed that proteomics is an important
415 complementary tool for use toward understanding and elucidating the influence of seasonality on
416 the sperm cells in *S. collinsi*, since it was not possible to verify this influence by classic seminal
417 analysis for this species. Additionally, it is important to mention that the results of the seminal
418 parameters analyzed (viz., appearance, semen volume, pH, and sperm concentration, motility, vigor,
419 and morphology) were similar to those previously reported for fresh Amazon squirrel monkey
420 sperm (liquid fraction) and sperm from the coagulated fraction after dilution in ACP-118 [2-4].
421 However, this was the first time that a comparison of these parameters during the dry and rainy
422 seasons was performed for this species.

423 Although the seminal pH was higher in the dry season, it was slightly alkaline during both
424 seasons and similar to the range reported elsewhere for *S. collinsi* (pH 6.5–8.0) [2-4] as well as for
425 the Neotropical primates *Alouatta caraya* (pH 8.1) [76], *Ateles geoffroyi* (pH 8.0) [77], *Callithrix*
426 *jacchus* (pH 7.4–7.6) [78, 79], *Callithrix penicillata* [80], and *Callimico goeldii* (pH 6.1) [81]. In

427 women, the acidic vaginal environment is toxic to sperm because the optimal pH for sperm viability
428 ranges from 7.0 to 8.5, and a reduction in sperm motility is seen at a pH of less than 6.0. However,
429 during human sexual intercourse, the vaginal epithelium produces a transudate that lubricates the
430 vagina and elevates the vaginal pH to 7.0 [82]. This physiological modification to accommodate the
431 alkaline pH of semen temporarily protects the spermatozoa and creates an optimal environment in
432 the cervix for sperm motility [83].

433 It is worth mentioning that measurement of the seminal pH in our study was only possible
434 with the liquid fraction, as it was necessary to dilute the coagulated fraction in order to establish its
435 pH value. The ACP-118 extender used for non-human primates, including species of the genus
436 *Saimiri* [2-4], has a pH (6.5) that is compatible to the liquid fraction of *S. collinsi* semen. ACP-118
437 is composed of different bioactive enzymes (e.g., phosphatase, catalase, and dehydrogenase), which
438 may support coagulum liquefaction. This extender also contains ascorbic acid and polyphenol
439 oxidases, which are antioxidants that maintain the sperm quality during and after incubation [84,
440 85]. In this way, the ACP-118 composition may have affected the quality of the *S. collinsi* sperm,
441 since there was no difference in the sperm parameters analyzed between the dry and rainy seasons.
442 Thus, our results showed that the ACP-118 extender used for coagulum liquefaction was able to
443 maintain similar sperm qualities in both seasonal periods.

444

445

446

447

448

449 **Conclusions**

450 The present study is a comprehensive overview of the sperm proteome in the Amazon
451 squirrel monkey, and is the broadest inventory (investigation) of the sperm proteome in the genus
452 *Saimiri* as well as in Neotropical primates thus far. The knowledge acquired about the sperm
453 proteins is a significant step forward in helping toward our understanding of the reproductive
454 biology of the genus *Saimiri*, as it provides crucial information for the elucidation of the underlying
455 mechanisms associated with sperm function. In this way, our study amplifies the advances in
456 biotechnological research on animal reproduction for the conservation of endangered species, and
457 provides a reference for similar studies on other Neotropical primates. Nevertheless, further studies
458 should be carried out to verify the differences in the patterns of protein expression throughout the
459 year in other species of the genus *Saimiri*.

460

461 **Acknowledgments**

462 The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
463 - Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Projeto
464 Universal 01-2016/ Processo No. 421649/2016-0) for their financial support. We would also like to
465 thank the National Primate Center (Conselho Executivo das Normas-Padrão, Brazil) and Norwegian
466 University of Life Sciences (Norway) for the technical support provided during this research.

467

468

469 **References**

470 1. Mercês MP, Paula WS, Júnior JSS. New records of *Saimiri collinsi* Osgood, 1916 (Cebidae,
471 Primates), with comments on habitat use and conservation. *Mammalia*. 2017; 85: 1-5.

472

473 2. Oliveira KG, Leão DL, Almeida DV, Santos RR, Domingues SF. Seminal characteristics and
474 cryopreservation of sperm from the squirrel monkey, *Saimiri collinsi*. *Theriogenology*. 2015; 84:
475 743-749.

476

477 3. Oliveira KG, Santos RR, Leão DL, Brito AB, Lima JS, Sampaio WV, et al. Cooling and
478 freezing of sperm from captive, free-living and endangered squirrel monkey species.
479 *Cryobiology*. 2016a; 72: 283-289.

480

481 4. Oliveira KG, Santos RR, Leão DL, Queiroz HL, Paim FP, Vianez-Júnior JLSG, et al.
482 Similarities in testicular and seminal aspects in four squirrel monkeys' species. *Theriogenology*.
483 2016b; 86: 879-887.

484

485 5. Boubli, J.P., Rylands, A.B., 2008. *Samiri vanzolinii*. In IUCN 2011. IUCN Red List of
486 Threatened Species, Version 2011.2. Diponible in www.iucnredlist.org Acessed in 20/11/2015

487

488 6. Wolf RH, Harrison RM, Martin TW. A review of reproductive patterns of New World monkeys.
489 *Lab Anim Sci*. 1975; 25: 814-821.

490

491 7. Lindburg DG. Seasonality of reproduction in primates. In: Mitchell G, Erwin J, editors.
492 Comparative primate biology: behavior, cognition, and motivation. New York: Alan R. Liss.
493 1987; pp. 167-218.

494

495 8. Logdberg B. Methods for timing of pregnancy and monitoring of fetal body and brain growth in
496 squirrel monkeys. *J Med Primatol.* 1993; 22: 374-379.

497

498 9. Trevino HS. Seasonality of reproduction in captive squirrel monkeys (*Saimiri Sciureus*). *Am J*
499 *Primatol.* 2007; 69: 1001-1012.

500

501 10. Du Mond FV. The squirrel moneky in a seminatural environment. In: Rosenblum LA, Cooper
502 RW. *The Squirrel Monkey.* New York: London: Academic Press; 1968. pp 87-145.

503

504 11. Harrison RM, Dukelow WR. Seasonal adaptation of laboratory maintained squirrel monkeys
505 (*Saimiri sciureus*). *J Med Primatol.* 1973; 2: 277-283.

506

507 12. Du Mond FV, Hutchinson TC. Squirrel monkey reproduction: the "fatted" male phenomenon
508 and seasonal spermatogenesis. *Science.* 1967; 158: 1067-1070.

509

510 13. Mendoza SP, Lowe EL, Resko JR, Levine S. Seasonal variations in gonadal hormones and
511 social behavior in squirrel monkeys. *Physiol Behav.* 1978; 20: 515-522.

512

513 14. Chen JJ, Smith ER, Gray GD, Davidson JM. Seasonal changes in plasma testosterone and
514 ejaculatory capacity in squirrel monkeys (*Saimiri sciureus*). *Primates*. 1981; 22: 253-260.

515

516 15. van Tilburg MF, Salles MGF, Silva MM, Moreira RA, Moreno FB, Monteiro-Moreira ACO, et
517 al. Semen variables and sperm membrane protein profile of Saanen bucks (*Capra hircus*) in dry
518 and rainy seasons of the northeastern Brazil (3°S). *Int J Biometeorol* 2015; 59: 561-573.

519

520 16. Sutovsky P. Sperm-egg adhesion and fusion in mammals. *Expert Rev Mol Med*. 2009; 11:e11.

521

522 17. Ashrafpour A, Karsani SA, Nathan S. Mammalian sperm fertility related proteins. *Int J Med
523 Sci*. 2013; 10: 1649-1657.

524

525 18. Zhou T, Wang G, Chen M, Zhang M, Guo Y, Yu C, et al. Comparative analysis of macaque and
526 human sperm proteomes: Insights into sperm competition. *Proteomics*. 2015; 15: 1564-1573.

527

528 19. Agarwal A, Bertolla RP, Samanta L. Sperm proteomics: potential impact on male infertility
529 treatment. *Expert Rev Proteomics*. 2016; 13: 285-296.

530

531 20. Légaré C, Droit A, Fournier F, Bourassa S, Force A, Cloutier F, et al. Investigation of male
532 infertility using quantitative comparative proteomics. *J Proteome Res*. 2014; 13: 5403-5414.

533

534 21. Khelifa MB, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M, et al. Mutations in
535 DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple
536 morphological abnormalities of the sperm flagella. *Am J Hum Genet.* 2014; 94: 95-104.

537

538 22. Rahman MS, Kwon WS, Pang MG. Prediction of male fertility using capacitation-associated
539 proteins in spermatozoa. *Mol Reprod Dev.* 2017; 84: 749-759.

540

541 23. Hernández-Silva G, López-Araiza JFE, López-Torres AS, Larrea F, Torres-Flores V, Chirinos
542 M. Proteomic characterization of human sperm plasma membrane associated proteins and their
543 role in capacitation. *Andrology.* 2019; 1-10.

544

545 24. Inoue N, Kasahara T, Ikawa M, Okabe M. Identification and disruption of sperm-specific
546 angiotensin converting enzyme-3 (ACE3) in mouse. *PLoS One.* 2010; 5: e10301.

547

548 25. Park YJ, Kwon WS, Oh SA, Pang MG. Fertility-related proteomic profiling bull spermatozoa
549 separated by Percoll. *J Proteome Res.* 2012; 11: 4162-4168.

550

551 26. Srivastav A. Maturation-dependent glycoproteins containing both N- and O-linked
552 oligosaccharides in epididymal sperm plasma membrane of rhesus monkeys (*Macaca mulatta*). *J*
553 *Reprod Fertil.* 2000; 119: 241-252.

554

555 27. Skerget S, Rosenow M, Polpitiya A, Petritis K, Dorus S, Karr T. The Rhesus macaque (*Macaca*
556 *mulatta*) sperm proteome. *Mol Cell Proteomics*. 2013; 12: 3052-3067.

557

558 28. Kawase O, Cao S, Xuan X. Sperm membrane proteome in wild Japanese macaque (*Macaca*
559 *fuscata*) and Sika deer (*Cervus nippon*). *Theriogenology*. 2015; 83: 95-102.

560

561 29. Liu X, Jin SH, Liu XX, Wang WJ, Liu FJ. Proteome profiling of the sperm maturation milieu in
562 the rhesus monkey (*Macaca mulatta*) epididymis. *Reprod Fertil Dev*. 2016; 28: 732-741.

563

564 30. Zamboni L, Conaway CH, Van Pelt L. Seasonal changes in production of semen in free-ranging
565 rhesus monkey. *Biol Reprod*. 1974; 11: 251-267.

566

567 31. Jodar M, Soler-Ventura A, Oliva R. Semen proteomics and male infertility. *J Proteom*. 2017;
568 162: 125-134.

569

570 32. Kotttek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate
571 classification updated. *Meteorol Z*. 2006; 15: 259-263.

572

573 33. Zougman A, Selby PJ, Banks RE. Suspension trapping (STrap) sample preparation method for
574 bottom-up proteomics analysis. *Proteomics*. 2014; 14: 1006-1010.

575

576 34. Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox, J. Visualization of LC-MS/MS
577 proteomics data in MaxQuant. *Proteomics*. 2015; 15: 1453-1456.

578

579 35. Bhatia VN, Perlman DH, Costello CE, McComb ME. Software Tool for Researching
580 Annotations of Proteins (STRAP): Open-Source Protein Annotation Software with Data
581 Visualization. *Anal Chem*. 2009; 81: 9819-9823.

582

583 36. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the
584 repeatedly occurring neighbourhood of a gene. *Nucleic Acids Res*. 2000; 28: 3442-3444.

585

586 37. Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. Loss of R2D2 proteins ROPN1 and
587 ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity.
588 *Biol Reprod*. 2013; 88: 1-10.

589

590 38. Eddy EM, Toshimori K, O'Brien DA. Fibrous sheath of mammalian spermatozoa. *Microsc Res*
591 *Tech*. 2003; 61: 103-115.

592

593 39. Vizel R, Hillman P, Ickowicz D, Breitbart H. AKAP3 degradation in sperm capacitation is
594 regulated by its tyrosine phosphorylation. *Biochim Biophys Acta*. 2015; 1850: 1912-1920.

595

596 40. Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. *Cell Mol*
597 *Life Sci*. 2005; 62: 670-684.

598

599 41. Mortensen CJ, Choi YH, Ing NH, Kraemer DC, Vogelsang MM, Hinrichs K. Heat shock protein
600 70 gene expression in equine blastocysts after exposure of oocytes to high temperatures in vitro
601 or in vivo after exercise of donor mares. *Theriogenology*. 2010; 74: 374-383.

602

603 42. Naaby-Hansen S, Herr JC. Heat shock proteins on the human sperm surface. *J Reprod Immunol*.
604 2010; 84: 32-40.

605

606 43. Miller D, Brough S, Al-Harbi O. (1992). Characterization and cellular distribution of human
607 spermatozoal heat shock proteins. *Hum Reprod*. 1992; 7: 637-645.

608

609 44. van Tilburg MF, Rodrigues MAM, Moreira RA, Moreno FB, Monteiro-Moreira ACO, Cândido,
610 MJ, et al. Membrane-associated proteins of ejaculated sperm from Morada Nova rams.
611 *Theriogenology*. 2013; 79: 1247-1261.

612

613 45. Volpe S, Galeati G, Bernardini C, Tamanini C, Mari G, Zambelli D, et al. Comparative
614 immunolocalization of heat shock proteins (HSP)-60, -70, -90 in boar, stallion, dog and cat
615 spermatozoa. *Reprod Dom Anim*. 2008; 43: 385-392.

616

617 46. Spinaci M, Volpe S, Bernardini C, Ambrogi M, Tamanini C, Seren E, et al. Immunolocalization
618 of heat shock protein 70 (HSP 70) in boar spermatozoa and its role during fertilization. *Mol*
619 *Reprod Dev*. 2005; 72: 534-541.

620

621 47. Casas I, Sancho S, Ballester J, Briz M, Pinart E, Bussalleu E, et al. The HSP90AA1 sperm
622 content and the prediction of the boar ejaculate freezability. Theriogenology. 2010; 74: 940-950.

623

624 48. Wang S, Wang W, Xu Y, Tang M, Fang J, Sun H, et al. Proteomic characteristics of human
625 sperm cryopreservation. Proteomics. 2010; 14: 298-310.

626

627 49. Fukuda A, Osawa T, Oda H, Tanaka T, Toyokuni S, Uchida K. Oxidative stress response in
628 iron-induced acute nephrotoxicity: enhanced expression of heat shock protein 90. Biochem
629 Biophys Res Commun. 1996; 219: 76-81.

630

631 50. Huszar G, Stone K, Dix D, Vigue L. Putative creatine kinase Misoform in human sperm is
632 identified as the 70-kilodalton heat shock protein HspA2. Biol Reprod. 2000; 63: 925-932.

633

634 51. Zhu D, Dix DJ, Eddy EM. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse
635 spermatocytes. Development. 1997; 124: 3007-3014.

636

637 52. Son WY, Han CT, Hwang SH, Lee JH, Kim S, Kim, YC. Repression of hspA2 messenger RNA
638 in human testes with abnormal spermatogenesis. Fertil Steril. 2000; 73: 1138-1144.

639

640 53. Redgrove KA, Anderson AL, McLaughlin EA, O'Bryan MK, Aitken RJ, Nixon B. Investigation
641 of the mechanisms by which the molecular chaperone HSPA2 regulates the expression of sperm

642 surface receptors involved in human sperm-oocyte recognition. *Mol Hum Reprod.* 2013; 19:
643 120-135.

644

645 54. Tian Y, Zhang F, Zhang X, Li L, Wang L, Shi B, et al. Depression of HspA2 in human testis is
646 associated with spermatogenic impairment and fertilization rate in ICSI treatment for
647 azoospermic individuals. *J Assist Reprod Genet.* 2014; 31: 1687-1693.

648

649 55. Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in
650 energy production for human sperm motility. *Int J Androl.* 2012; 35: 109-124.

651

652 56. Castleman VH, Romio L, Chodhari R, Hirst RA, Castro SC, Parker KA, et al. Mutations in
653 radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with
654 central-microtubular-pair abnormalities. *Am J Hum Genet.* 2009; 84: 197-209.

655

656 57. Meng Y, Zhang W, Zhou J, Liu M, Chen J, Tian S, et al. Genome-wide analysis of positively
657 selected genes in seasonal and non-seasonal breeding species. *PLoS One.* 2015; 10: e0126736.

658

659 58. Smith EF, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that
660 regulate flagellar motility. *Cell Motil Cytoskeleton.* 2004; 57: 8-17.

661

662 59. Wemmer KA, Marshall WF. Flagellar motility: all pull together. *Curr Biol.* 2004; 14: R992–
663 R993.

664

665 60. Imai H, Suzuki K, Ishizaka K, Ichinose S, Oshima H, Okayasu I, et al. Failure of the expression
666 of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile
667 males. *Biol Reprod.* 2001; 64:674-683.

668

669 61. Stradaioli G, Sylla L, Monaci M, Maiorino M. Phospholipid hydroperoxide glutathione
670 peroxidase in bull spermatozoa provides a unique marker in the quest for semen quality analysis.
671 *Theriogenology.* 2009; 72: 91-98.

672

673 62. Hardy DM, Oda MN, Friend DS, Huang TT Jr. A mechanism for differential release of
674 acrosomal enzymes during the acrosome reaction. *Biochem J.* 1991; 275: 759-766.

675

676 63. Hao Z, Wolkowicz MJ, Shetty J, Klotz K, Bolling L, Sen B, et al. SAMP32, a testis-specific,
677 isoantigenic sperm acrosomal membrane-associated protein. *Biol Reprod.* 2002; 66: 735-744.

678

679 64. Ogura Y, Takagishi Y, Harayama H. Changes in the distribution and molecular mass of boar
680 sperm acrosome-associated 1 proteins during the acrosome reaction; their validity as indicators
681 for occurrence of the true acrosome reaction. *Anim Reprod Sci.* 2016; 172: 94-104.

682

683 65. Mandal A, Klotz KL, Shetty J, Jayes FL, Wolkowicz MJ, Bolling LC, et al. SLLP1, a unique,
684 intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. *Biol Reprod.*
685 2003; 68: 1525-1537.

686

687 66. Kishida K, Harayama H, Kimura F, Murakami T. Individual differences in the distribution of
688 sperm acrosome associated 1 proteins among male patients of infertile couples; possible their
689 impacts on outcomes of conventional *in vitro* fertilization. *Zygote*. 2016; 24: 654-661.

690

691 67. Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. SPACA1-deficient male mice are
692 infertile with abnormally shaped sperm heads reminiscent of globozoospermia. *Development*.
693 2012; 139: 3583-3589.

694

695 68. Yanagimachi R. Sperm-egg fusion. *Curr Top Membr Trans*. 1998; 32: 3-43.

696

697 69. Xu W, Hu H, Wang Z, Chen X, Yang F, Zhu Z, et al. Proteomic characteristics of spermatozoa
698 in normozoospermic patients with infertility. *J Proteome Res*. 2012; 75: 5426-5436.

699

700 70. Inoue N, Yamaguchi R, Ikawa M, Okabe M. Sperm-egg interaction and gene manipulated
701 animals. *Soc Reprod Fertil Suppl*. 2007; 65: 363-371.

702

703 71. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is
704 required for sperm to fuse with eggs. *Nature*. 2005; 434: 234-238.

705

706 72. Wang M, Lv Z, Shi J, Hu Y, Xu C. Immunocontraceptive potential of the Ig-like domain of
707 Izumo. *Mol Reprod Dev.* 2009; 76: 794-801.

708

709 73. Ellerman D, Pei J, Gupta S, Snell W, Myles D, Primakoff P. Izumo is a part of a multiprotein
710 family whose members form large complexes on mammalian sperm. *Mol Reprod Dev.* 2009;
711 76: 1188-1199.

712

713 74. Wen Y, Richardson RT, Widgren, EE, O'Rand MG. Characterization of Sp17: A ubiquitous
714 three domain protein that binds heparin. *Biochem J.* 2001; 357: 25-31.

715

716 75. Frayne J, Hall L. A re-evaluation of sperm protein 17 (Sp17) indicates a regulatory role in an A-
717 kinase anchoring protein complex, rather than a unique role in sperm-zona pellucida binding.
718 *Reproduction.* 2002; 124: 767-774.

719

720 76. Valle RR, Guimarães MABV, Muniz JAPC, Barnabe RC, Vale WG. Collection and evaluation
721 of semen from captive howler monkeys (*Alouatta caraya*). *Theriogenology.* 2004; 62: 131-138.

722

723 77. Hernández-López L, Cerdá-Molina AL, Páez-Ponce D, Mondragón- Ceballos R. The seminal
724 coagulum favours passage of fast-moving sperm into the uterus in the black-handed spider
725 monkey. *Reproduction.* 2008;136: 411-421.

726

727 78. Ceballos R. The seminal coagulum favours passage of fast-moving sperm into the uterus in the
728 black-handed spider monkey. *Reproduction*. 2008; 136: 411-421.

729

730 79. Valle RR, Valle CM, Nichi M, Muniz JAPC, Nayudu PL, Guimarães MABV. Semen
731 characteristics of captive common marmoset (*Callithrix jacchus*): a comparison of a German
732 with a Brazilian colony. *J Med Primatol*. 2014; 43: 225-30.

733

734 80. Arakaki PR, Nichi M, Monteiro FOB, Muniz JAPC, Guimarães MABV, Valle RDRD.
735 Comparison of semen characteristics and sperm cryopreservation in common marmoset
736 (*Callithrix jacchus*) and black-tufted-ear marmoset (*Callithrix penicillata*). *J Med Primatol*.
737 2019; 48: 32-42.

738

739 81. Arakaki PR, Carvalho FM, Castro PHG, Muniz JAPC, Valle RDRD. Collection, evaluation, and
740 coagulum dissolution of semen from Goeldi's Monkey, *Callimico goeldii*. *Folia Primatol*. 2017;
741 88: 334-343.

742

743 82. Nakano FY, Leão RBF, Esteves SC. Insights into the role of cervical mucus and vaginal pH in
744 unexplained infertility. *MedicalExpress* 2015; 2: 1-8.

745

746 83. Mishra AK, Kumar A, Swain DK, Yadav S, Nigam R. Insights into pH regulatory mechanisms
747 in mediating spermatozoa functions. *Vet World*. 2018; 11: 852-858.

748

749 84. Oliveira KG, Miranda SA, Leão DL, Brito AB, Santos RR, Domingues SFS. Semen coagulum
750 liquefaction, sperm activation and cryopreservation of capuchin monkey (*Cebus apella*) semen
751 in coconut water solution (CWS) and TES-TRIS. *Anim Reprod Sci.* 2011; 123: 75-80.

752

753 85. Leão DL, Miranda AS, Brito AB, Lima JS, Santos RR, Domingues, SFS. Efficacious long-term
754 cooling and freezing of *Sapajus apella* semen in ACP-118®. *Anim Reprod Sci.* 2015; 159: 118-
755 123.

756

757 **Supporting information**

758 **S1 Table. Spectral count of *Saimiri collinsi* sperm protein throughout an entire year (.XLS).**

759 **S2 Table. Sperm proteins of *Saimiri collinsi* that participate in important reproductive events
760 (.XLS).**

761 **S3 Table. Two-sample tests of the sperm protein concentrations in *Saimiri collinsi* during the
762 dry and rainy seasons.**

763

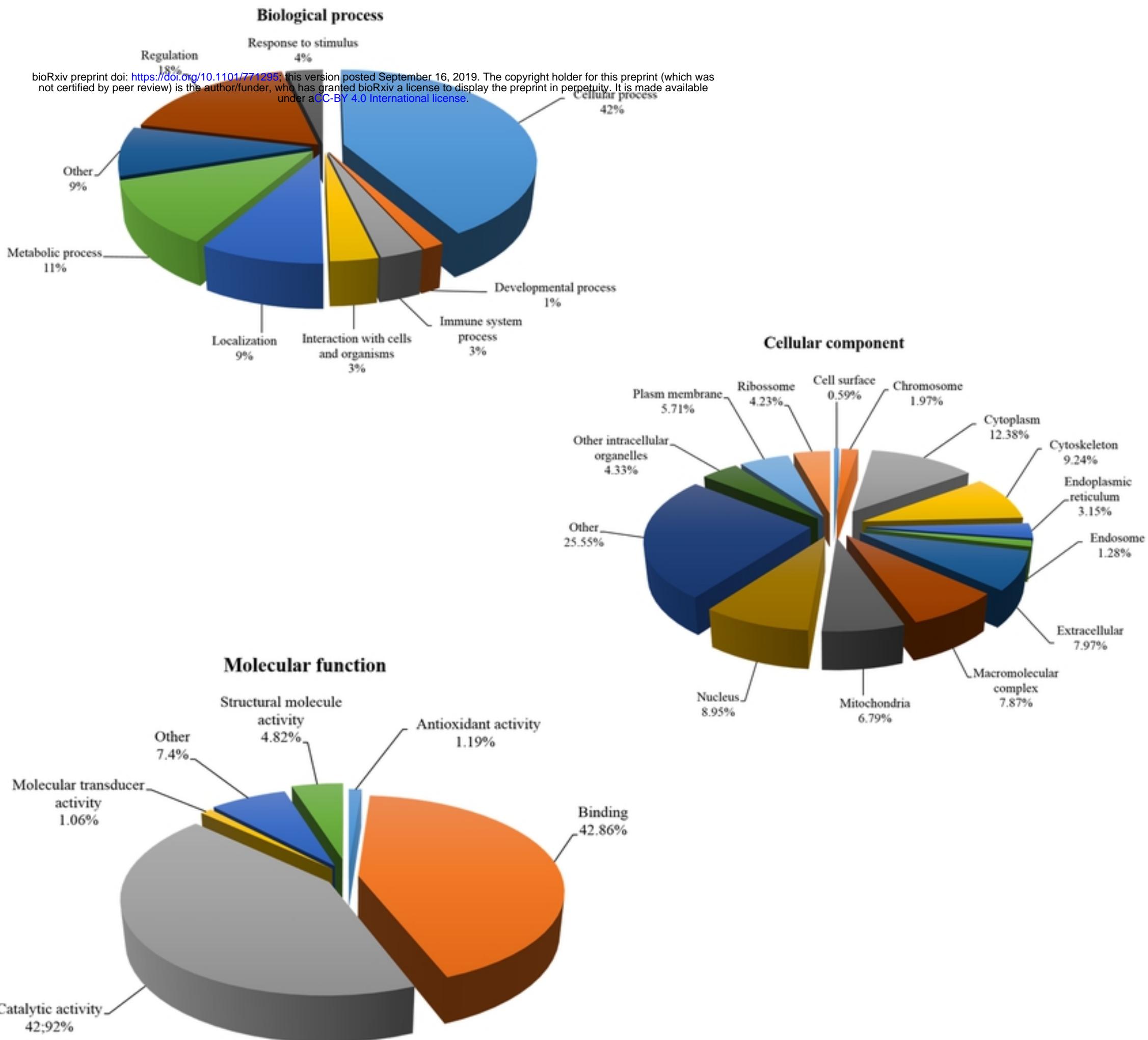
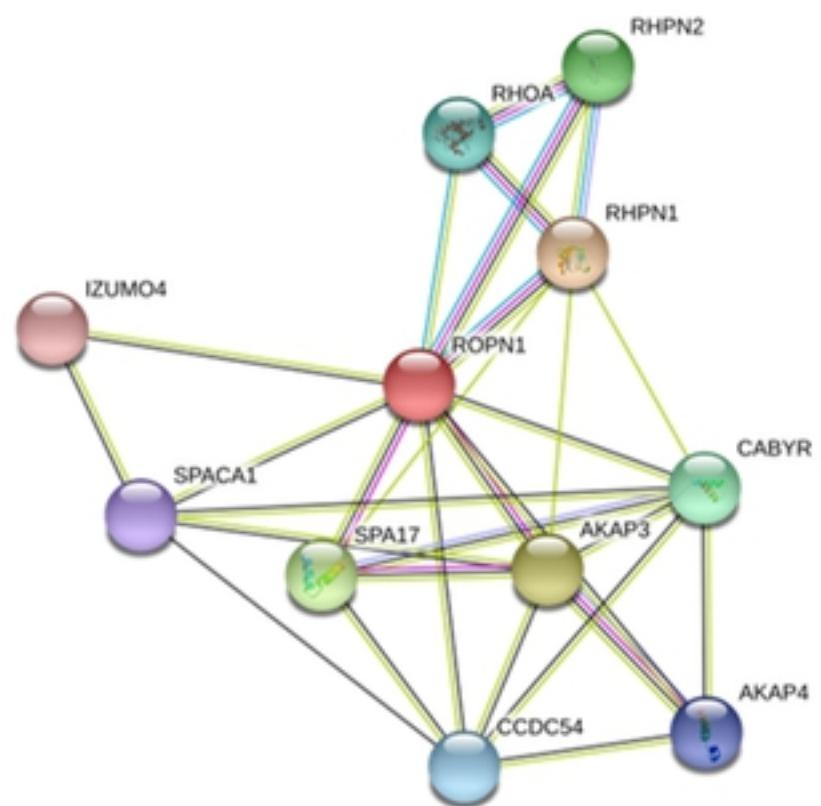
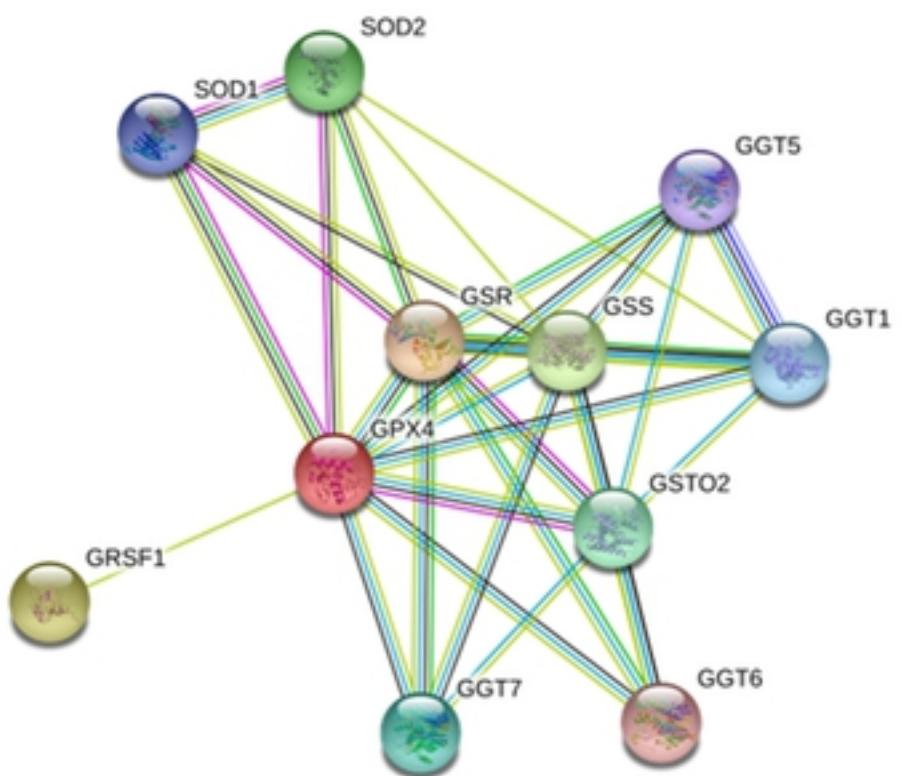
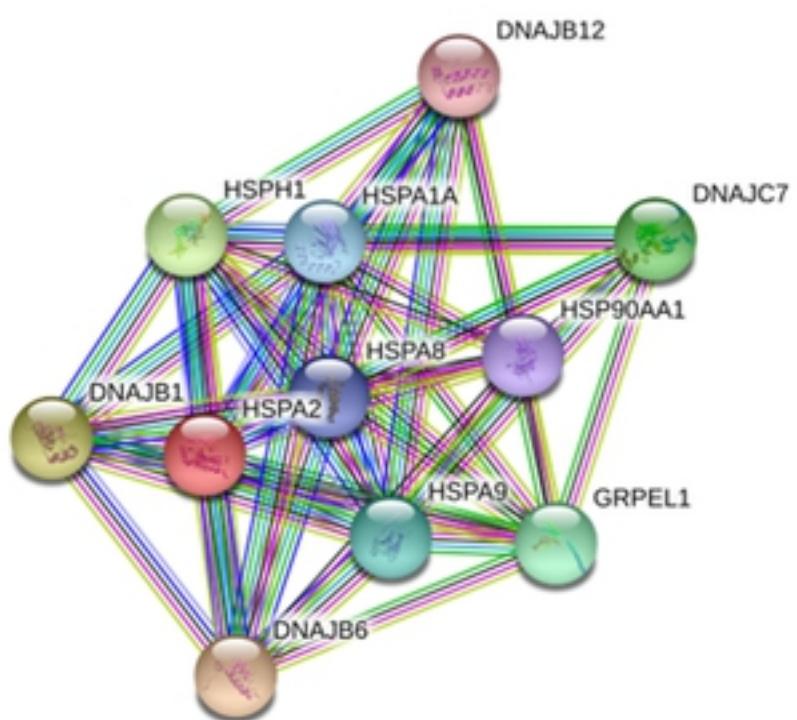
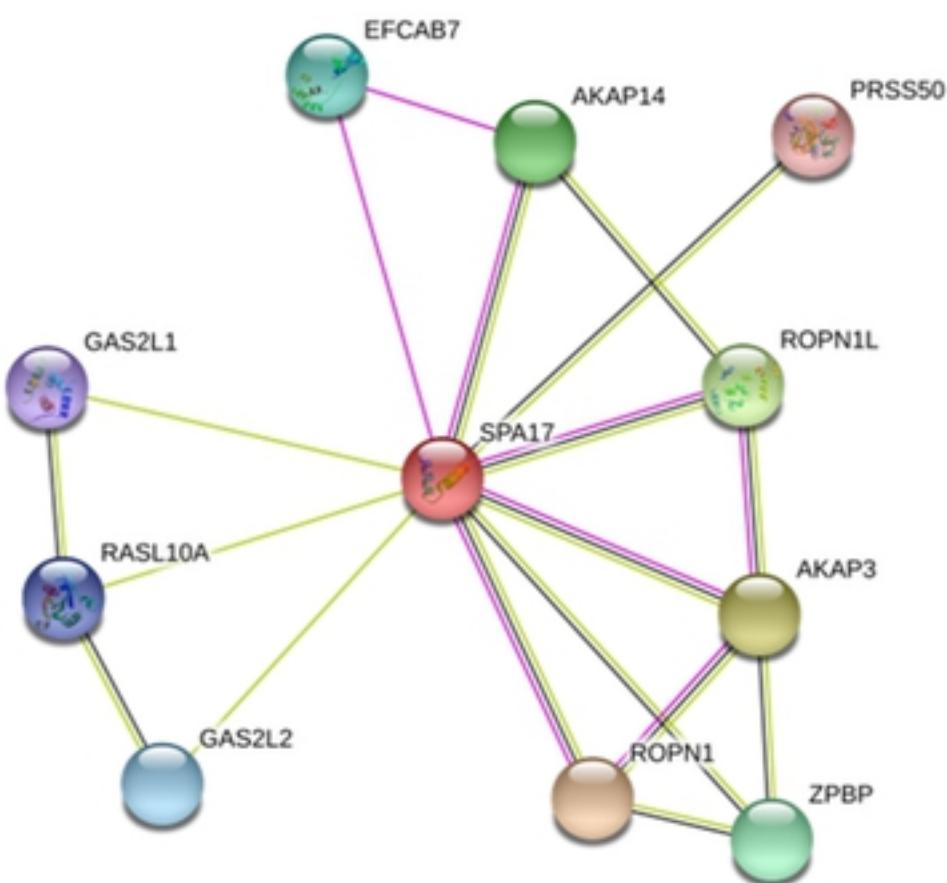






Figure 1

A**B****C****D****Figure 2**

Table 1: Mean (\pm SEM) values of the body weight, testicular volume (cm³), and seminal parameters of *Saimiri collinsi* during the dry (breeding) and rainy (non-breeding) seasons.

	Dry season	Rain season	P-value
Body weight (g)	816.10 \pm 6.85	883.15 \pm 14.50	0.0002
Testicular volume (cm³)			
Right testicular volume	0.95 \pm 0.06	1.19 \pm 0.07	0.02
Left testicular volume	0.96 \pm 0.07	1.22 \pm 0.08	0.03
Total testicular volume	1.91 \pm 0.13	2.42 \pm 0.11	0.01
Fresh sample			
Seminal parameters			
pH	7.96 \pm 0.10	7.30 \pm 0.11	0.0002
Seminal volume (μL)	114.70 \pm 16.93	145.29 \pm 28.14	0.35
Total sperm count (x 10 ⁶ /ml)	14,196 \pm 3,08	19,036 \pm 8,89	0.67
Motility	63 \pm 7.56	80 \pm 5.39	0.76
Vigour	3.4 \pm 0.28	3.85 \pm 0.28	0.23
*PMF ¹	74.81 \pm 7.17	73.71 \pm 4.67	0.87
PMI ²	64 \pm 5.45	59.28 \pm 6.94	0.59
Normal sperm	71.40 \pm 2.85	71.64 \pm 5.34	0.83
After dilution in ACP-118			
Seminal parameters			
Motility	44.18 \pm 7.82	63.46 \pm 7.99	0.10
Vigour	3 \pm 0.24	3.15 \pm 0.29	0.89
*PMF	67 \pm 4.14	73.60 \pm 8.41	0.46
**PMI	77.66 \pm 3.74	67.76 \pm 7.62	0.26
Normal sperm	72.58 \pm 2.71	70.75 \pm 5.14	0.76

*Plasma membrane functionality (PMF; %)

**Plasma membrane integrity (PMI; %)

Table 2. Upregulation or downregulation of sperm protein expression (μg/mL) in *Saimiri collinsi* during the rainy (non-breeding) and dry (breeding) seasons.

Protein function	Accession Number	Rain season	Dry season	P-value	
Cell adhesion					
T-complex protein 11 homolog isoform X1	XP_010332353.1	-0.0418158	-0.0646175	-0.0228018	Downregulation
Transport					
Metaxin-2	XP_003921884.1	-0.110764	-0.1303	-0.0195369	Downregulation
AP-1 complex subunit gamma-1 isoform X2	XP_003939997.1	0.00478612	-0.00957221	-0.0143583	Downregulation
Desmoglein-1	XP_003924808.1	-0.233383	-0.259419	-0.0260363	Downregulation
Cytochrome c oxidase subunit 4 isoform 1	XP_010331988.1	0.154676	0.178389	0.0237126	Upregulation
ADP/ATP translocase 4	XP_003927767.1	0.188749	0.233035	0.0442863	Upregulation
Solute carrier family 2, facilitated glucose transporter member 3 isoform X2	XP_010338156.1	0.204773	0.164742	-0.0400316	Downregulation
Enzymatic action					
Inactive hydroxysteroid dehydrogenase-like protein 1	XP_003922852.1	0.0530542	0.00802451	-0.0450296	Downregulation
Nucleoside diphosphate kinase homolog 5	XP_003933998.1	0.0517683	0.0970006	0.0452323	Upregulation
Deoxyguanosine kinase	XP_003922648.1	-0.0198231	0.00259574	0.0224188	Upregulation
Beta-hexosaminidase subunit alpha	XP_003929709.1	-0.0187426	0.0282641	0.0470066	Upregulation
Neutrophil elastase	XP_010330763.1	-0.0881865	-0.0872099	0.000976637	Downregulation
Cathepsin G	XP_003924684.1	0.000703451	-0.0432964	-0.0439998	Downregulation
NADH dehydrogenase subunit 4	YP_006493379.1	-0.018066	-0.00610582	0.0119601	Downregulation
ATPase inhibitor, mitochondrial	XP_003944631.1	-0.08326	-0.133093	-0.049833	Upregulation
Matrilysin	XP_003923823.1	-0.0658871	-0.0392313	-0.0658871	Upregulation
Catalase	XP_003920025.1	-0.0442755	-0.021024	0.0266558	Upregulation

Alcohol dehydrogenase class-3	XP_003929577.2	-0.110761	-0.120986	-0.0102248	Upregulation
Pyruvate dehydrogenase phosphatase catalytic subunit 1 isoform X1	XP_010347702.1	-0.111713	-0.0830047	0.0287079	Downregulation
Phospholipase A1 member A isoform X1	XP_003935462.1	-0.0228687	-0.0505345	-0.0276657	Downregulation
L-lactate dehydrogenase A-like 6A	XP_010348467.1	-0.0667417	-0.0488062	0.0179355	Upregulation
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 isoform X2	XP_003930467.1	0.0514503	0.0460828	-0.00536754	Downregulation
Glutaredoxin-3	XP_010331632.1	-0.00368504	0.0240983	0.0277833	Upregulation
Fructose-bisphosphate aldolase A	XP_010339012.1	0.244215	0.275165	0.0309499	Upregulation
L-lactate dehydrogenase C chain isoform X1	XP_003919941.1	0.331268	0.293222	-0.0380465	Downregulation
ATP synthase subunit alpha, mitochondrial	XP_003924745.1	0.289526	0.253334	-0.0361922	Downregulation
Nicotinamide mononucleotide adenylyltransferase 3 isoform X1	XP_010328728.1	-0.0188498	-0.0614076	-0.0425578	Downregulation
Carboxypeptidase A5	XP_010341383.1	0.175417	0.155398	-0.0200193	Downregulation
Epididymis-specific alpha-mannosidase	XP_003934701.1	-0.0246382	-0.00485184	0.0197863	
Metabolic process					
Prosaposin isoform X3	XP_003921884.1	-0.0257112	-0.0655105	-0.0397993	Upregulation
Apolipoprotein E	XP_010349445.1	0.00325406	-0.0301955	-0.0334496	Downregulation
Prostaglandin E synthase 3	XP_003945090	-0.00495669	0.00443556	0.00939225	Upregulation
Glutathione S-transferase Mu 3	XP_010342304.1	0.301758	0.262642	-0.0391165	Downregulation
Signal Transduction					
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1	XP_010348645.1	0.0070466	-0.00720209	-0.0142487	Downregulation
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	XP_010344866.1	-0.331463	-0.290751	0.0407123	Upregulation
Succinate-semialdehyde dehydrogenase,	XP_003927461.1	-0.0770785	-0.0849022	-0.00782367	Upregulation

mitochondrial

Regulation

Histone deacetylase 11 isoform X1	XP_010335234.1	0.0196068	0.0254748	0.005868	Upregulation
Putative alpha-1-antitrypsin-related protein	XP_010337932.1	-0.0468411	-0.0630148	-0.0161737	Downregulation
Adenylyl cyclase-associated protein 1 isoform X1	XP_010345853.1	0.0995165	0.124495	0.024978	Upregulation
Gasdermin-A	XP_003942931.1	-0.306126	-0.342276	-0.0361497	Upregulation
Serine/threonine-protein phosphatase PP1-beta catalytic subunit	XP_010350608.1	0.0431037	0.023024	-0.0200797	Downregulation
Serine/threonine-protein phosphatase PP1-gamma catalytic subunit	XP_003932298.1	0.127303	0.162706	0.0354028	Upregulation
Serine protease 30-like	XP_010337384.1	0.107069	0.130249	0.0231806	Upregulation
Amine oxidase	XP_003939638.1	-0.0154437	0.0185325	0.0339763	Upregulation
Ropporin-1-like	XP_010350743.1	0.200637	0.218699	0.0180613	Upregulation
Probable C-mannosyltransferase DPY19L2 isoform X1	XP_003930783.1	0.28643	0.242708	-0.0437227	Downregulation
Cat eye syndrome critical region protein 5	XP_010331313.1	-0.0809455	-0.0461215	0.034824	Upregulation
Actin-related protein T2	XP_003939685.1	0.0629516	0.0138987	-0.0490529	Downregulation

Immune system process

Clusterin	XP_003937256.1	-0.0631874	-0.051801	0.0113864	Upregulation
Saoe class I histocompatibility antigen, A alpha chain-like	XP_010331157.1	0.0015255	-0.00101701	-0.00254251	Downregulation
Heat shock cognate 71 kDa protein	XP_003923627.1	-0.0294348	-0.0662507	-0.036815	Downregulation
Heat shock 70 kDa protein 13	XP_003934369.1	-0.214329	-0.231181	-0.0168523	Downregulation
Heat shock 70 kDa protein 1A/1B	XP_010330550.1	0.110054	0.0649447	-0.0451095	Upregulation
Heat shock-related 70 kDa protein 2	XP_003924476.1	-0.0426444	0.0048713	0.0475157	Upregulation

Heat shock protein HSP 90-alpha-like	XP_010331234.1	0.200363	0.215513	0.0151495	Upregulation
26S proteasome non-ATPase regulatory subunit 6	XP_003940262.1	-0.126224	-0.173192	-0.0469682	Downregulation
Mucin-7	XP_003931974.1	0.00693327	-0.0291519	-0.0360851	Downregulation
T-complex protein 1 subunit gamma	XP_010346914.1	0.0982317	0.1061	0.00786838	Upregulation
26S proteasome non-ATPase regulatory subunit 11	XP_003933069.1	-0.00172181	0.00344362	0.00516543	Upregulation
Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	XP_003944526.1	0.247381	0.295112	0.0477303	Upregulation
Binding					
Fatty acid-binding protein, epidermal	XP_003940229.1	-0.178573	-0.1364	0.0421733	Upregulation
BPI fold-containing family A member 1	XP_003932174.1	0.0510516	0.0562223	0.00517074	Upregulation
Pancreatic secretory granule membrane major glycoprotein GP2 isoform X2	XP_010339045.1	0.0359252	0.0129086	-0.0230166	Upregulation
ATP-dependent RNA helicase DDX3X isoform X2	XP_010333111.1	0.059067	0.0213557	-0.0377113	Downregulation
EF-hand calcium-binding domain-containing protein 5	XP_003931501.1	0.0106187	0.0144026	0.0037839	Upregulation
Barrier-to-autointegration factor-like protein	XP_003933224.1	-0.107591	-0.141747	-0.0341563	Downregulation
Fascin-3	XP_003921070.1	0.031443	-0.00888356	-0.0403266	Downregulation
Sperm surface protein Sp17	XP_010332707.1	-0.00367783	-0.00266121	0.00101662	Upregulation
IQ domain-containing protein F5-like	XP_003936750.1	-0.0514445	-0.00810819	0.0433363	Downregulation
Plasma membrane calcium-transporting ATPase 4 isoform X1	XP_010347205.1	0.0938473	0.0803806	-0.0134667	Downregulation
Coiled-coil domain-containing protein 136	XP_010341530.1	0.0791321	0.0806699	0.00153776	Downregulation
Structural					
40S ribosomal protein S13	XP_003919926.1	0.349783	0.3246	-0.0251828	Downregulation
Actin-like protein 10	XP_003932104.1	-0.112513	-0.0969337	0.015579	Downregulation

40S ribosomal protein S11	XP_003940405.1	0.00987448	-0.0294448	-0.0393193	Downregulation
Outer dense fiber protein 2 isoform X5	XP_010349590.1	0.258377	0.297718	0.0393412	Upregulation
Tektin-5	XP_003938786.1	0.192894	0.2234	0.0305061	Upregulation
Tektin-3	XP_003929310.1	0.156527	0.146821	-0.00970651	Downregulation
Dynein heavy chain 8, axonemal	XP_010332512.1	0.0487448	0.0329032	0.028147	Downregulation
Dynein heavy chain 12, axonemal	XP_010345476.1	0.0791321	0.0806699	-0.0158416	Upregulation