bioRxiv preprint doi: https://doi.org/10.1101/770966; this version posted September 16, 2019. The copyright holder for this preprint (which was

O© 00 N O U1 » W N

e o N o e e N S Y
O 0O N O U1 A W N R O

N
(=)

W W W DN N DN DN N DD DN DD
N PR © O 0 N O U1 oB» W N -

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

Haplotype-based inference of the distribution of fithess

effects

Diego Ortega-Del Vecchyo'?, Kirk E. Lohmueller®** and John Novembre®®

1 International Laboratory for Human Genome Research, National Autonomous University of
Mexico, Santiago de Querétaro, Querétaro, 76230, México.

2 Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA 90095,
United States of America.

3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
90095, United States of America.

4 Department of Human Genetics, David Geffen School of Medicine, University of California,
Los Angeles, CA, 90095, United States of America.

5 Department of Human Genetics, University of Chicago, Chicago, lllinois, 60637, United States
of America.

6 Department of Ecology and Evolution, University of Chicago, Chicago, lllinois, 60637, United

States of America.

*dortega@liigh.unam.mx (DO-DV); jnovembre@uchicago.edu (JN)

Abstract

Recent genome sequencing studies with large sample sizes in humans have discovered a vast
quantity of low-frequency variants, providing an important source of information to analyze how
selection is acting on human genetic variation. In order to estimate the strength of natural
selection acting on low-frequency variants, we have developed a likelihood-based method that
uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency
variants. We show that in some non-equilibrium populations (such as those that have had
recent population expansions) it is possible to distinguish between positive or negative selection
acting on a set of variants. With our new framework, one can infer a fixed selection intensity
acting on a set of variants at a particular frequency, or a distribution of selection coefficients for
standing variants and new mutations. We apply our method to the UK70K phased haplotype
dataset of 3,781 individuals and find a similar proportion of neutral, moderately deleterious, and

deleterious variants compared to previous estimates made using the site frequency spectrum.
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We discuss several interpretations for this result, including that selective constraints have

remained constant over time.

Introduction

The distribution of fitness effects for new mutations (DFE) is one of the most important
determinants of molecular evolution. The DFE is a probability distribution that quantifies the
proportion of new mutations having a certain selection coefficient s, where s can take positive or
negative values depending on whether the allele is under positive or negative selection. The
DFE determines current levels of genetic variation, since the frequencies of the alleles under
selection depend on their selection coefficient (Sawyer & Hartl 1992; Hartl et al. 1994;
Bustamante et al. 2001), and alleles under selection change the genetic variation at linked sites
due to the effects of linked selection (Maynard Smith & Haigh 1974; Charlesworth et al. 1993).
The DFE is also a key feature in the evolution of complex phenotypic traits (Lohmueller 2014a;
Simons et al. 2014; Mancuso et al. 2015), since the association between the selection
coefficients and the effect of mutations on a complex trait is an important determinant of the
genetic architecture of a trait (Eyre-Walker 2010). Due to the impact of the DFE on levels of
genetic and phenotypic variation, properly inferring the DFE is essential to many fundamental
problems such as validating predictions of the nearly neutral theory (Kimura & Crow 1964; Crow
1972; Ohta 1992), understanding changes in the deleterious segregating variation observed in
different populations (Gazave et al. 2013; Lohmueller 2014b; Henn et al. 2015; Brandvain &
Wright 2016; Gravel 2016; Simons & Sella 2016; Koch & Novembre 2017), elucidating the
factors that influence changes on the DFE between species (Martin & Lenormand 2006;
Charlesworth & Eyre-Walker 2007; Serohijos & Shakhnovich 2014; Tenaillon 2014; Rice et al.
2015; Huber et al. 2017), and inferring the amount of adaptive evolution between species
(Gossmann et al. 2012; Galtier 2016; Zhen et al. 2018).

Broadly, two lines of research have been developed to infer a DFE. One is based on
experimental approaches and the other one is based on the analysis of population genetic
variation at putatively neutral and deleterious sites. The main experimental approaches taken
with viruses, bacteria and yeast are site-directed mutagenesis experiments in target regions
(Bataillon & Bailey 2014) and mutation-accumulation experiments (Halligan & Keightley 2009).
They are useful because they can obtain information about the DFE including advantageous and
deleterious mutations; that said, advantageous mutations tend to be rare or not found in results

from experimental approaches (Halligan & Keightley 2009; Lind et al. 2010; Jacquier et al. 2013;
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Bataillon & Bailey 2014) with some exceptions (Sanjuan et al. 2004; Dickinson 2008). The types
of probability distributions that have provided a good fit to the DFE of deleterious mutations on
site-directed mutagenesis experiments are a gamma distribution (Domingo-Calap et al. 2009;
Lind et al. 2010; Jacquier et al. 2013), a unimodal distribution with a similar shape to a gamma
distribution (Sanjuan et al. 2004; Domingo-Calap et al. 2009; Peris et al. 2010), and a bimodal
distribution with one part of the probability mass on nearly neutral mutations and the other one
on the highly deleterious mutations (Hietpas et al. 2011). However, the data still points to a
bimodal DFE with mutations being either neutral or very deleterious in the maijority of the studies
where other unimodal simpler distributions provided the best fit to the data (Sanjuan et al. 2004;
Domingo-Calap et al. 2009; Peris et al. 2010; Jacquier et al. 2013). This highlights that the DFE
might have a more complex form than the simpler probability distributions typically used to fit
data. In mutation-accumulation experiments, a gamma distribution is typically assumed for the
DFE of deleterious mutations, since there is little information to distinguish between alternative
distributions (Halligan & Keightley 2009).

The other main approach is to use population genetic variation data to estimate the DFE
with information from the site frequency spectrum (SFS) on putatively neutral and deleterious
sites (Sawyer & Hartl 1992; Williamson et al. 2005; Keightley & Eyre-Walker 2007; Boyko et al.
2008; Gutenkunst et al. 2009; Kim et al. 2017). An interesting extension has recently been
developed to take SFS information and divergence data from an outgroup to infer the DFE from
the population where the SFS data was taken along with the rate of adaptive molecular evolution
based on the divergence data (Tataru et al. 2017). Two other extensions have been taken to
model the correlation between the fithess effects of multiple nonsynonymous alleles at a
particular position (Ragsdale et al. 2016) and to calculate the joint DFE between pairs of
populations (Fortier et al. 2019). The first step in these approaches is to inter the demographic
scenario that fits the SFS at putatively neutral sites, which typically are chosen to be variants at
synonymous sites. The DFE is then inferred from putatively deleterious sites of interest, typically
nonsynonymous sites, while taking the demographic scenario into account. Some species
where these approaches have been applied to infer the DFE include humans (Eyre-Walker et al.
2006; Boyko et al. 2008; Li et al. 2010; Huber et al. 2017; Kim et al. 2017), mouse
(Kousathanas & Keightley 2013; Halligan et al. 2013) and Drosophila (Kousathanas & Keightley
2013; Huber et al. 2017). Studies that compare the fit of different probability distributions argue
in favor of a DFE of deleterious nonsynonymous mutations on humans that follows either 1) a
gamma distribution (Boyko et al. 2008; Kim et al. 2017) or 2) a combination of a point mass at

neutrality plus a gamma distribution (Kim et al. 2017). Those two studies infer a leptokurtic DFE
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100  with a proportion of nearly neutral mutations (s < 10-5) of 18.3%-26.3%, and moderate to strong
101  deleterious mutations (s > 10-3) of 46.6%-57.4%.

102 One drawback of current methods that estimate the DFE using population genetic
103 variation is that they ignore all linkage information. No attempt has been made to exploit the
104 information from linked genetic variation to estimate the DFE despite the fact that many studies
105 have analyzed how both deleterious (Charlesworth et al. 1993, 1995; Hudson & Kaplan 1995;
106 Nordborg et al. 1996; Nicolaisen & Desai 2013; Cvijovi¢ et al. 2018) and advantageous variants
107 (Maynard Smith & Haigh 1974; Kaplan et al. 1989; Braverman et al. 1995; Nielsen 2005)
108 decrease linked genetic variation. Further, linked genetic variation has been effectively used to
109 infer the age of particular variants (Slatkin & Rannala 1997; Tishkoff et al. 2007; Chen & Slatkin
110  2013; Mathieson & McVean 2014; Chen et al. 2015; Nakagome et al. 2016; Ormond et al. 2016;
111  Albers & McVean 2018), the time to the common ancestor of a positively selected allele (Smith
112 et al. 2018), the time since fixation of an advantageous allele (Przeworski 2003), the selection
113 coefficient of an allele (Slatkin 2001, 2008; Coop & Griffiths 2004; Tishkoff et al. 2007; Chen &
114  Slatkin 2013; Chen et al. 2015; Ormond et al. 2016) and to detect loci under positive selection
115 (Kim & Stephan 2002; Sabeti et al. 2002, 2007; Wang et al. 2006; Voight et al. 2006; Williamson
116 etal 2007; Tang et al. 2007; Pavlidis et al. 2010; Li 2011; Ferrer-Admetlla et al. 2014; Garud et
117 al. 2015; Field et al. 2016; Huber et al. 2016). Since there has been so much success in
118 understanding how selection changes the linked variation around individual variants, it should
119 be feasible to pool the haplotype information from many variants putatively under selection at a
120  certain frequency fto infer the distribution of fitness effects DFE; of variants at a frequency f.
121 Here we propose a new approach to infer DFE;. We note that DFEy is different from the
122  distribution of fitness effects of new mutations entering the population, which we call the DFE.
123  Natural selection acts to increase the frequency of advantageous variants and to decrease the
124 frequency of deleterious variants, causing a difference between DFE and DFEf. The relationship
125  between DFE; and DFE is one of the topics we will address in this study.

126 Recent large population genomic datasets such as the UK710K (Walter et al. 2015), the
127  Netherlands Genome Project (Francioli et al. 2014) and the Haplotype Reference Consortium
128 (McCarthy et al. 2016) provide an unprecedented source of haplotype information to quantify
129  both the DFE; and the DFE. These datasets have started to be exploited to understand the
130 impact of selection on variants under selection at a certain frequency. For example, Kiezun et
131 al. (2013) found that, conditioning on the variants having a certain frequency fin the population,

132 nonsynonymous variants have more extended linkage disequilibrium with neighboring neutral
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133  variation compared to synonymous variants on data from the Netherlands Genome Project. This
134 isin line with Takeo Maruyama'’s results showing that deleterious variants at a certain frequency
135 have a younger age compared to neutral variants (Maruyama 1974), implying that there is less
136 variation on haplotypes carrying deleterious variants.

137 Building on previous work to estimate the strength of selection acting on advantageous
138 variants (Slatkin 2001; Chen & Slatkin 2013), we propose an approach to provide a point
139 estimate of the population-scaled selection coefficient or a distribution of fitness effects acting
140  on a set of variants at a particular frequency f ( DFEs). We infer the strength of natural selection
141 using pairwise haplotypic identity-by-state lengths (the length in one direction along a pair of
142 haplotypes carrying a focal allele to the first difference between the pair of haplotypes). For
143  each pair j of haplotypes we define the observed length as L. The length can be measured in
144  both directions along the chromosome extending outward from the focal allele. We show that
145 these lengths can be used to distinguish between alleles under positive and negative selection
146  in several non-equilibrium demographic scenarios. Further, we show how the DFE; can be used
147  to infer the DFE. The resulting method can help improve the understanding of how selection is
148 influencing, for instance, the low-frequency variants present in a population. We apply our
149 method to the UKT10K dataset, and we estimate a similar proportion of neutral, moderately
150 deleterious and deleterious variants compared to SFS-based approaches.

151

152 Results

153

154 A method for inference of the population-scaled selection coefficient based on haplotype
155  variation

156

157  Our analysis is based on a set of x haplotype pairs carrying a derived allele at a frequency fin
158 the population. We compute the pairwise identity by state length L; for every haplotype pair,
159  which is defined as the distance from the derived allele to the first difference between a pair of
160 haplotypes. For computational simplicity, we bin the chromosome under analysis into a set of S
161 discrete non-overlapping windows W = {w;,w,, ..., ws} that extend to the side of the derived
162 allele. Thus, for a set of n haplotype pairs carrying an allele, our analysis is based on which
163  window the first difference appears in for each pair (L = {L; € wy,, L, € wy,, L3 € wy,, ..., L, €

164  wq }). We define s4, ..., s, as integers between 1 and S indicating the windows in which each
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165 length falls (Figure 1). We can calculate a length L; both upstream and downstream of each

166 derived allele in a sample of n allele carriers from alleles at a frequency fin a number A of loci,

167 and observe a total number x = 2 X A X (721) of L length values.

168
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178
179

180 For our inference procedure, we will consider each L; independently and so we

181 momentarily refer generically to a single observed length as L. The parameter we wish to infer is
182 the population scaled selection coefficient 4Ns. That parameter is defined in terms of the
183 effective population size N from the most ancient epoch in the demographic scenario D. It is also
184  possible to define the population scaled selection coefficient in terms of the most recent epoch.

185 If the population size of the most recent epoch is Nk, then the population scaled selection
186  coefficient in the most recent time is equal to 4%5.

187 The likelihood of a particular population scaled selection coefficient, 4Ns, conditioned on
188 the allele frequency fand a certain demographic scenario D, from a single observed length L
189 can be expressed as:

190

191  L(4Ns,f,D|L € w;) = [ P(L € w;|H,)P(H;|4Ns, f,D)dH; (1)

192

193 where H; is a particular allele frequency trajectory. The integration over the space of allele
194  frequency trajectories H; is challenging. One possible approach to do the integration over the
195  space of H;is to perform forward-in-time simulations of alleles under the Poisson Random Field
196 model and retain the trajectories of alleles that end at a frequency fin the present. However,
197 this approach is ineffective because we will end up simulating the trajectories of many alleles
198 that do not end up at a frequency fin the present. To overcome this, we integrate over the
199 space of allele frequency trajectories H; using an importance sampling approach. We also

200 compute P(L € w;|H;) using a Monte Carlo approximation (see Methods).
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201 We then apply this likelihood function to the complete collection of observed lengths L to
202  calculate a composite likelihood function for 4Ns:

203

204  L(4Ns,f,D|L) =]1}-, L(4Ns,f,D|L; € wi;) (2)
205

206  An estimator of 4Ns can be obtained by maximizing this composite likelihood function, which
207  here we do simply by using a grid search over a range of candidate values (see Methods).

208 To build an understanding of the inference problem and the method’s performance, we
209 first assessed the impact of selection on allele frequency trajectories, pairwise coalescent times,
210 and haplotype identity-by-state-lengths, and then assessed the performance of the estimator.
211  We do this first for a constant-size demographic history and then time-varying population sizes.
212

213  Evaluation of population-scaled selection coefficient inference for constant population
214  sizes

215
216  We investigated performance using forward-in-time simulations under the Poisson Random

217  Field (PRF) framework. Specifically, we used PReFerSim (Ortega-Del Vecchyo et al. 2016) to
218 obtain 10,000 alleles frequency trajectories with a present-day sample allele frequency of p=1%
219  for 5 different values of selection (4Ns = 0, -50, -100, 50, 100) in a sample of 4,000 chromosomes
220 (see Methods).

221 Using the 10,000 recorded allele frequency trajectories for each selection value 4Ns, we
222  calculated the mean allele frequency across many generations going backwards into the past to
223  obtain an average frequency trajectory for 1% frequency alleles (Figure 2A). As expected, the
224 average allele frequency trajectory for neutral alleles (4Ns = 0) is higher for a longer duration
225  going backwards in time compared to alleles under natural selection. Alleles under the same
226  absolute strength of selection have the same average allele frequency trajectory, regardless of
227  whether the allele is under positive or negative selection. The distribution of ages is shifted
228 towards younger values for higher absolute values of 4Ns and with increasingly smaller
229 standard deviation (Figure 2B), and Maruyama’s theoretical results accurately predict the mean
230 age estimates observed in the simulations (Supplementary Table 1).

231 We computed the distribution of pairwise coalescent times T, analytically (see
232  Supplementary Methods) across different values of 4Ns. We found that alleles under higher
233 absolute values of 4Ns have a more recent average value of Tz, and their distribution of T; has a

234  smaller standard deviation (Figure 2C). We calculated the distribution of L for each 4Ns value
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235 using simulations assuming a constant recombination rate p = 4Nr = 100 and a constant
236  mutation rate # = 4Nu = 100 for a region of 250 kb. Alleles under the same absolute strength of
237  selection have almost identical distributions of L (Figure 2D). This is in line with the fact that T-
238 is younger in alleles under stronger selection coefficients, implying that there will be fewer
239 mutations between haplotypes sharing the allele and, therefore, higher average values of L

240  (Figure 2E).
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244  Figure 2.- Properties of alleles sampled at a 1% frequency under different strengths of
245 natural selection in a constant size population (N = 10,000). We obtained 10,000 frequency
246 trajectories for 1% frequency alleles under different strengths of selection using forward-in-time
247  simulations under the PRF model. We used those frequency trajectories to calculate: A) The
248 mean allele frequency at different times in the past, in units of generations, to obtain an average
249  frequency trajectory; B) The probability distribution of allele ages; C) The probability distribution
250 of pairwise coalescent times T.. Below B) and C), we show a dot with two whiskers extending at
251  both sides of the dot. The dot represents the mean value of the distribution and the two
252  whiskers extend one s.d. below or above the mean. The whisker that extends one s.d. below
253  the mean is constrained to extend until max(mean — s.d. ,0). D) Probability distribution of L. We
254  define L by taking the physical distance in basepairs next to the allele across 5 non-overlapping
255  equidistant windows of 50 kb, with an extra window ws indicating that there are no differences in
256 the 250 kb next to the allele. In this demographic scenario, the alleles under a higher absolute
257  strength of selection have younger ages and younger T; on average. The fact that alleles under
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258 higher strengths of selection have younger average T- values implies that those alleles tend to
259  have larger L values as shown in D) and E).
260 We next used the simulations to test our method’s ability to estimate the strength of

261 selection. We found that for alleles where, for instance 4Ns is -50, the estimated values of
262  selection tend to be equally distributed around values of -50 or 50 (Figure 3A). A similar result
263 is seen for the 4Ns values equal to 100. This reinforces that in a constant size population one
264 can only provide reasonable estimates of the absolute strength of natural selection. Indeed,
265 when we display the estimated absolute value of the strength of selection, we see that our
266  method produces nearly unbiased estimates (Figure 3B).
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268 Figure 3.- Estimation of the strength of natural selection in a constant population size
269 model using 10,000 realized values of L from 10,000 pairs of haplotypes, where each
270  pair was sampled from an independent loci in 1% frequency alleles. A) Estimated selection
271 values. B) Estimated selection magnitudes (absolute values of 4Ns). ‘Real 4Ns values’ refers to
272 the 4Ns values used in the simulations, while ‘Estimated 4Ns values’ refers to the values
273  estimated by our method. The dashed lines are placed on values that match 4Ns values used in
274  the simulations. The median value of the estimates of 4Ns is shown with a solid line. The green
275 lines in A) and B) indicate estimated values of 4Ns, where there are 100 estimated values for the
276  five 4Ns values inspected. Each estimated 4Ns value uses 10,000 L values.

277

278  Evaluation of inference performance for non-equilibrium demographic scenarios

279
280  Following our analysis for constant-size populations, we next analyzed the shape of the average

281 allele frequency trajectory in a population expansion scenario (Figure 4A) for 1% frequency
282  alleles with different 4Ns values. Unlike in the constant population size scenario, we found
283  distinct average allele frequency trajectories for alleles under positive or negative selection
284  (Figure 4B): alleles under positive selection on average had increased in frequency moving

285 forward in time, while alleles under negative selection on average had increased in frequency
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before the expansion and then decreased after the expansion due to the increased selection
efficacy in the large population. The ages of alleles under the strongest absolute values of
selection tend to be younger, and alleles with the same /4Ns/ value but different 4Ns value differ
in the mean and standard deviation of their allele ages (Figure 4C). The distributions of pairwise
coalescent times for allele carriers show concordant patterns (Figure 4D): alleles under the
stronger positive selection had, on average, younger T: values than negatively selected alleles
of the same magnitude. Further, when we contrasted the T. distribution of the negatively
selected alleles inspected (4Ns = -50, -100), we saw that their mean T value did not differ
much, and their biggest difference was due to a slightly smaller standard deviation in the most
deleterious allele (Figure 4D).

We next used our method to infer the strength of selection for this expansion scenario
and found that it can provide approximately unbiased estimates of the sign and strength of
selection (Figure 5, using 10,000 realized values of L from 10,000 pairs of haplotypes at
independent loci). This does not mean we can differentiate between positive and negative
selection in all non-equilibrium models. The power to do so will be dependent on the parameters
of the non-equilibrium demography being studied. As an example, in an ancient bottleneck
scenario we find there are no significant differences in the distribution of T between alleles that
have the same absolute strength of selection, indicating that we would not be able to
differentiate between alleles under positive or negative selection under this demographic model

(Supplementary Figure S1).
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Figure 4.- Properties of alleles sampled at a 1% frequency under different strengths of
selection in a population expansion scenario. A) Population expansion model analyzed. B)
Mean allele frequency at different times in the past, in units of generations. Note that alleles
under the same absolute strength of selection (4Ns) have very different average allele
frequency trajectories, in contrast to the constant population size scenario (Fig 2); C) Probability
distribution of allele ages and D) Probability distribution of pairwise coalescent times T.. The dot

10
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315 and whiskers below C) and D) represent the mean value of the distribution and the two whiskers
316 extend at both sides of the mean until max(mean +- s.d. ,0).

Inference of Selection in a
Population Expansion Model
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319 Figure 5.- Estimation of the strength of natural selection in a population expansion model
320 for 1% frequency alleles. The green lines indicate one estimated value of 4Ns. ‘Real 4Ns
321 values’ indicate the 4Ns values used in the simulations and ‘Estimated 4Ns values’ refers to the
322  values estimated by our method. The median value of the estimates of 4Ns is shown with a
323  solid line. The recombination rate in the simulated 250 kb region for the most recent epoch was
324 setequalto p = 4Nr = 1,000 and the mutation rate was set equal to 8 = 4Nu = 1,000.

325

326 A method for inference of the distribution of fitness effects for variants found at a
327  particular frequency (“DFE;")

328

329  Our composite likelihood framework is extendible to find the distribution of fitness effects DFE,
330 for a set of variants at a particular frequency £. This distribution, which we denote as DFEy, is
331 different from the canonical DFE, which represents the distribution of fithess effects of new
332  mutations that recently entered the population. To parameterize the DFE; we use a discretized,

333 partially collapsed gamma distribution following studies that use a gamma distribution (Boyko et
334 al. 2008; Kim et al. 2017). We parameterize the gamma component with two parameters that
335 represent the shape a and scale 5. We discretize the distribution to cover only integer values of
336  4Ns for computational reasons, and then collapse the probabilities for all values greater than a
337 threshold 4Ns value (which we denote as 1) to a single point mass. The point mass probability is

338 necessary to facilitate the integration over 4Ns values when computing £(a,8,D, f|L € w;). We
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339  denote the resulting distribution as DFE¢(a, ). In practice, we explore different values of a and

340 B while keeping the value of 7 fixed to a large value (i.e 300), effectively representing strongly
341  selected variants (see Methods).

342 The likelihood of having a certain distribution of identity by state lengths L given a
343  demographic scenario D, a variant at a frequency fand two parameters a« and g is equal to:

344

345 L(a,B,D,fIL€w;) = [, _ P(L € w;|4Ns, f,D)P(4Ns|a, B) d4Ns (3)
346  Where P(L € w;|4Ns, f,D) = L(4Ns, f,D|L € w;) and was introduced in equation 1.

347

348 Testing the inference of the distribution of fithess effects for variants found at a
349  particular frequency (“DFE;")

350 We tested if the distribution of haplotype lengths L can be used to estimate the parameters that
351 define the distribution of fitness effects of variants at a particular frequency. We used
352  distributions of 100,000 L values obtained via simulations under the constant population size
353  and population expansion demographic model from the past sections under two distributions of
354 fitness effect of new mutations estimated in different species: one from humans (shape = 0.184;
355 scale = 319.8626; N = 1000) (Boyko et al. 2008) and another one from mice (shape = 0.11;
356 scale =8636364; N =1000000) (Halligan et al. 2013).

357 We found that the estimated parameters of the shape (a) and scale (B) of the DFE of
358 1% frequency variants in a sample of 4,000 chromosomes have considerable variation (Figure
359 6A,B). However, the estimated shape and scale of the DFE; typically imply the correct mean
360 value of the DFEf (estimates lie along the red-dashed lines in Figure 6). This can be better seen
361 in Supplementary Figure S2. We found that the estimated DFE; parameters on constant
362  population sizes define a DFE; with a mean 4Ns value that, on average, is almost equal to the
363 mean 4Ns value found across 50,000 simulated 1% frequency variants. In a population
364  expansion scenario (Figure 6C,D), the estimated DFE; parameters imply a DFE; with a mean
365  4Ns value that is slightly lower than the actual mean 4Ns value, and with considerably higher

366  variance in the estimated mean (Supplementary Figure S2).
367
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369 Figure 6.- MLEs of the parameters that define the distribution of fitness effect for variants
370 at a 1% frequency. We tested if our method was capable of estimating the parameters of the
371  DFEy of variants at a particular frequency in two demographic models and two DFE’s. The shape
372 (@) and scale () parameters define the compound DFE; distribution. Each black dot represents

373 the a and B parameter estimated using a set of 100,000 L values simulated independently. The
374 dotted red line represents a combination of shape and scale parameters from a gamma
375 distribution that give an identical mean 4Ns value to the mean 4Ns value of the underlying
376  DFEy. The grid of scale parameters explored goes from (0.01, 0.02, ..., 0.3) and the grid of shape

377  parameters explored goes from (5, 10, ..., 350).
378

379

380 Method for inferring the distribution of fitness effects of new mutations (DFE) from the
381 distribution of fithess effects for variants at a particular frequency (DFEf)

382

383  The distribution of fitness effects of variants at a particular frequency (DFEy) is related to the

384 distribution of fitness effects of new variants DFE by equation 4 (see Methods for more detail):

Py (sjlf,D) Py(f|D)
4
Py (flsjD) (4)

385  Pyu(sjID) = Py(s;) =

386
387  where s; is an interval of 4Ns values [4Ns, 4Ns;). sp and s; define two different selection

388 coefficients. We used a set of non-overlapping intervals s = {[4Nsy, 4Ns1), [4Ns4, 4Ns)), [4Ns,

389 4Ns 3)... , [4Ns 4, 4Ns )} = { $1,52,83,...,Sp }. Y is a vector of the parameters
390 Y = {1, 9Y3, ..., P, } that define the DFE.
391 The probabilities Py, (sj|f, D) over all the intervals in s define the distribution of fitness

392  effects of variants at a particular frequency DFEf over a set of discrete bins. After inferring the
393  DFEy using our composite likelihood method, we can calculate Py (s;|f, D) from the inferred
394 DFE;. On the other hand, Py(s;|D) = Py(s;) since the demographic scenario D does not
395  change the proportion of new variants in a selection interval s;. Pw(sj) defines the proportion of
396 new mutations inside a s; interval. It is equal to the DFE over a set of discrete intervals s;.

397 Regarding the other two probabilities shown in the equation, Py, (f|D) can be estimated by
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398 measuring the proportion of variants at a certain frequency f given D and a set of parameters ¥
399 that define the DFE. Py (f|sj, D) can be computed via simulations (see Supplementary Text for
400  more details).

401
402 Testing inference of the distribution of fitness effects of new mutations DFE from the

403  distribution of fitness effects of variants at a particular frequency (DFEy)

404
405 We estimated the distribution of fitness effects of new mutations, i.e. the DFE, in a population

406  expansion scenario given the distribution of fitness effects DFEf of a set of variants at a 1%
407  frequency (Figure 7 — Boyko Human DFE; and Supplementary Figure S3 — Human DFE with a
408  scale value that is 20 times smaller). We see that the inferred and real Py(s;) values match
409  using equation (4), with some slight discrepancies that could be due to either using a s; bin that
410 is not small enough or small inaccuracies in the estimated probabilities of Py, (s;|f, D), Py (f|D)
411  or Py(fl|sj, D). We also note that variants at a 1% frequency tend to be less deleterious
412  compared to new variants based on the comparison of the distributions Py (s;|f, D) against
413 Py(s;j). Additionally, we used our DFE; estimates from Figure 6 to estimate Py(s;). The Py (s;)

414 estimates are accurate, but display a larger variance under the population expansion scenario

415 compared to the constant size scenario (Supplementary Figure S4).

416
T m Real Py(s))
_ m |Inferred Py(s))
> S ] 0O Py(sjlf, D)
=
5 §-
®
Qo 3.
O 3
—
o 3]
0-5 50-55 100-105 >150
417 4Ns
418

419 Figure 7.- Inference of the distribution of fitness effects of new mutations from the
420 distribution of fitness effects of variants at a certain frequency in deleterious variants.
421 The DFE follows a gamma distribution with shape and scale parameters equal to 0.184 and
422  1599.313, respectively. This is equal to the gamma distribution inferred by Boyko et al. (2008)
423  after adjusting the population sizes to the population expansion demographic model used. The
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424  demographic model has a population that grows from 5,000 to 50,000 individuals in the last 100
425 generations (see also Figure 4A). ‘Real P,,,(s]-)’ refers to the probability of having a 4Ns value in
426  a certain interval s; given the distribution of fitness effects of new mutations with parameters .
427  ‘Py(s;jlf, D)’ is the probability of having a 4Ns value in an interval s; given the distribution of

428 fitness effects DFE with parameters ¥ and the demographic scenario D in f= 1% frequency
429  variants. We calculated Py(sj|f,D) from a set of ~ 40,000 4Ns 1% variants obtained via

430 PReFerSim simulations under the DFE and the population expansion scenario (see
431  Supplementary Text). ‘Inferred P,,,(s]-)’ is an estimate of the probability of having a 4Ns value in
432 a certain interval s; given the distribution of fitness effects of new mutations with parameters
433  using Py(s;lf, D) and equation 4. The selection coefficient s refers exclusively to the action of

434  deleterious variants in this plot.
435

436  Application: Inference of the distribution of fithess effects of 1% frequency variants in
437 the UK10K dataset

438
439  We inferred the distribution of fithess effects of the 273 1% + 0.05% frequency variants at non-

440 CpG nonsynonymous sites that are more than 5 Mb away from the centromere or telomeres in
441 the phased UK10K haplotype reference panel. The panel was statistically phased with Shapeit2
442  (Delaneau et al. 2013b), which previous analyses have shown produces a low haplotype
443  phasing error (switch error rate approximately < 2.0%) for low-frequency alleles (Delaneau et al.
444  2013a). Our method assumes that phasing errors will be similar in the nonsynonymous and
445  synonymous variants, implying that differences in the distribution of L will be due to selection
446 instead of phasing errors. We discarded a set of related individuals along with other individuals
447  with no clear European ancestry from the haplotype panel, as previously defined (Walter et al.
448 2015). In the end, we obtained a set of 3,621 individuals (7,242 haplotypes) from the UK10K
449  haplotype panel.

450 We used an ABC algorithm to infer the demographic scenario that explains the
451  distribution of L for the 152 non-CpG synonymous variants at a 1% + 0.05% frequency that are
452 more than 5 Mb away from the centromere or telomeres (see Supplementary Methods,
453  Supplementary Figure S5). CpG sites were removed before estimating L around the non-CpG
454  synonymous sites. We removed CpG sites by excluding sites preceded by a C or followed by a
455 G (McVicker et al. 2009). Due to computational reasons, in the ABC method we scaled the
456  population size down by a factor of five while increasing the mutation rate u, selection coefficient
457 s and recombination rate r by the same factor of five to keep 4Ns, ® = 4Nu and p = 4Nr
458 constant. That same scaling was used in all the simulations described in this section and in our

459 inference of selection in the UK10K data. We will refer to the inferred scaled model as the
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460 ‘scaled UK10K model’ and we will refer to the model without the scaling as the ‘UK70K model’.
461 We find that in the upstream and downstream 250 kb regions surrounding the 152 synonymous
462 1% frequency variants and the 273 nonsynonymous 1% frequency sites there is a similar
463  proportion of exonic sites (Mann-Whitney U test p-value = 0.876), PhastCons element sites
464 (Mann-Whitney U test p-value = 0.299), and the average strength of background selection
465 (Mann-Whitney U test p-value = 0.605) based on the B values (McVicker et al. 2009). The
466  distributions of B values indicate that similar strengths of background selection are acting on the
467 synonymous and nonsynonymous sites, and should reduce genetic variation similarly on
468 regions surrounding both categories of sites. Therefore, the demographic model we inferred for
469 the synonymous variants can be used to model the evolution of the nonsynonymous variants
470  since the reduction in genetic variation due to background selection is similar on the haplotypes
471  surrounding both types of variants (Supplementary Figure S6). The approach of inferring the
472  demographic model using synonymous sites is not novel for analyses with the site frequency
473  spectrum and helps control for the effects of background selection (Boyko et al. 2008; Huber et
474  al. 2017; Kim et al. 2017; Tataru et al. 2017).

475 We performed simulations under the scaled UK70K model inferred using the ABC
476  algorithm. We found that the frequency trajectories and allele ages are significantly different
477  between alleles under different strengths of selection (Figure 8). However, the distribution of T
478 values is very similar for deleterious alleles that experience up to a twofold difference in the
479 amount of selection acting upon them. This is important to note since the distribution of T
480 values is one of the most important factors, along with the mutation and recombination rate,
481  determining the resolution of our approach to infer selection.

482 We also performed simulations to analyze if the amount of information present in the
483 UK10K dataset was sufficient to infer selection coefficients in 1% frequency variants. Our
484  approach takes into account the differences in recombination rates on the regions surrounding
485  each variant on the genome in the UK10K data (Supplementary Methods). We performed 100
486  simulation replicates, where each replicate mimics the amount of information present in the
487 UK10K dataset. Each replicate contains 273 independent loci with 72 haplotypes containing the
488 derived allele. The recombination rates, both to the left and right side of the loci, were assigned
489 based on the average per base recombination rate in the 250 kb region surrounding each

490 variant (see Supplementary Figure S7). We calculated L moving upstream and downstream of
491 the focal loci, obtaining (722)><2 x 273 L values for each simulation replicate. Using data

492 simulated under 5 different selection coefficients, we found that we were able to obtain accurate
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493 estimates of selection when the variants were neutral or under positive selection. When we
494  simulated deleterious variants, we found that our estimates of selection tended to be biased
495 towards being more neutral than the actual 4Ns value. However, the true value was within the
496 10t and 90t percentile of the distribution of estimated values (Supplementary Figure S8). We
497  obtained similar results when the simulated 273 loci shared the same recombination rate
498  (Supplementary Figure S9). We obtained equally accurate estimates of Pw(sj) on the s;
499 intervals when we performed simulations using the Boyko distribution of fithess effects under
500 the scaled and UK70K demographic model (Supplementary Figure S10-S11; Supplementary
501 Table S2-S3).

502
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505 Figure 8.- Properties of alleles sampled at a 1% frequency under different strengths of
506 natural selection in the scaled UK10K model inferred in the UK710K data. A) Population
507 model inferred in the UK10K dataset. B) Mean allele frequency at different times in the past, in
508 units of generations. C) Probability distribution of allele ages and D) Probability distribution of
509 pairwise coalescent times T.. The dot and whiskers below C) and D) represent the mean value
510 of the distribution and the two whiskers extend at both sides of the mean until max(mean +- s.d.
511 ,0).

512

513 We performed bootstrap replicates of the L values from the 273 1% frequency
514 nonsynonymous variants of the UK70K dataset and the 152 1% frequency synonymous variants
515 to evaluate the variation in our estimates of 4Ns. We removed CpG sites before estimating the L
516 values surrounding the nonsynonymous and synonymous variants. The variation around the
517  estimates using bootstrap replicates is shown in Supplementary Figure S12, where we see that
518 the point estimates in the replicates tend to be close to a 4Ns value equal to 0 for both
519 nonsynonymous and synonymous variants. We performed the inference on the 1% frequency
520 synonymous variants because an inferred 4Ns value that was nominally different from 0 would

521 indicate problems with our methodology such as a misspecified demographic model.
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522 We used the L values for the 273 nonsynonymous variants at a 1% frequency to infer
523  the parameters of the distribution of fitness effects DFE;. We assume that no derived variants
524  we observe are under positive selection and that the DFE, follows a gamma distribution with a
525  point mass, as explained in the section Inference of the distribution of fithess effects of variants
526  at a particular frequency. When we solved the integral from Equation 3, we used discretized
527  values of 4Ns that went from 0 to 75, and we defined that P(4Ns = K = —-75|a,f) =1 —
528 =574 p(4Ns = i|a, B). We only explored 4Ns values from 0 to -75 because we only had high
529 resolution for those 4Ns values (as indicated by ESS values bigger than 100, see
530 Supplementary methods for an explanation of ESS values; Supplementary Figure S13). We
531 inferred a scale value of 0.01 and a shape value of 0.03. Based on a set of bootstrap replicates,
532 we found that our estimates clustered on the edges of the shape parameter values explored
533  (Supplementary Figure S14). This effect is specific to the inferred demographic scenario for the
534 UK10K dataset, since we did not observe the same phenomenon in the simulations done under
535 the constant population size and population expansion demographic scenarios we explored
536  previously (Figure 6). Based on our estimates of the DFEf, we estimated Pw(si) by employing
537  Equation 4 and using Py (f|D) (see Supplementary Methods for an explanation of our
538  calculation of P, (f|D)). We compared those values with previously obtained estimates (Boyko
539 et al. 2008; Kim et al. 2017). The point estimates of Pw(sj) along with the 90% bootstrap
540  percentile intervals for other s; intervals are shown in Figure 9 and Supplementary Figure S15.
541 We also show information for other bootstrap percentile intervals on Supplementary Table S4.
542  Based on our 90% bootstrap percentile intervals we find that our estimate of P, (s; € [5,50)) is
543  smaller than the probabilities computed by Boyko et al. 2008 and Kim et al. 2017. On the other
544  hand, the estimate of Pll,(s] [50, oo)) was bigger than the estimates of Boyko et al. 2008 and
545 Kim et al. 2017. The probabilities of having a value of selection s over different orders of
546 magnitude are shown on Supplementary Table S5 and are compared with the probabilities
547  obtained by (Boyko et al. 2008; Kim et al. 2017). We also computed p-values under the null

548  hypothesis that there is no difference between the estimated Py, (s;) values from the data and
549 the Py (s]-) from the Boyko distribution of fitness effects (see Supplementary Figure S16). The
550 p-values were bigger than 0.05 for the three intervals s; € [0,5), s; € [5,50) and s; € [50, «).

551 Therefore, the distribution of fithess effects is not different from the distribution of fitness effects

552  estimated by Boyko et al. (2008) over the three s; intervals inspected.
553
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555 Figure 9.- Inferred distribution of fithess effects of new mutations and 1% frequency
556 deleterious variants in the UK10K dataset. ‘Inferred P,,,(s]-)’ refers to the probability of having
557 a4Nsvalue in a particular interval s; given the distribution of fitness effects of new mutations
558  DFE. We estimated Py(s;) for the s; interval = [5, 50) by summing up the Py(s;) probabilities
559  over the invervals [5, 10), [10, 15), [15, 20), [20, 25), [25, 30), [30, 35), [35, 40), [40, 45) and [45,
560 50). The selection coefficient s refers exclusively to the action of deleterious variants in this plot.
561 We compared our inferences with those of Boyko et al. (2008) and Kim et al. (2017). The two
562 triangles shown in each s; interval denote the upper and lower limit of the 90% bootstrap

563 percentile interval across 100 bootstrap replicates. The asterisk signs are the mean values for
564 the inferred probabilities P,,,(s]-) calculated from 100 bootstrap replicates. Despite the fact that

565 the estimated Boyko et al 2008 P,,,(s]-) values fall outside of the 90% bootstrap percentile from

566 the inferred P,,,(s]-) in the intervals s;j € [5,50) and sj € [50,), these differences are not
567  significant according to p-values computed under the null hypothesis that there is no difference
568  between the estimated Py(s;) values and the Py (s;) from the Boyko distribution of fitness
569 effects (see Supplementary Figure S16).

570 Discussion

571
572  We have developed a composite likelihood method to estimate the strength of natural selection

573 acting on alleles at a certain frequency in the population. Our method builds upon previous work
574  showing signatures of higher linkage disequilibrium for putatively deleterious alleles in
575  comparison with neutral alleles (Kiezun et al. 2013). This result was shown to be in line with
576  Takeo Maruyama’s work showing that deleterious alleles at a certain frequency tended to be
577  younger than neutral alleles in constant population sizes (Maruyama 1974). Here we introduce a
578 method to estimate the strength of natural selection based on linkage disequilibrium using the
579 pairwise identity by state lengths L.

580 We found that the distribution of L captures differences in the absolute strength of the
581 selection coefficient 4Ns in a constant population size scenario. The mean allele frequency

582 trajectory is practically identical for deleterious and advantageous alleles experiencing the same
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583 amount of selection; therefore, any statistic based on haplotype signatures will be insufficient in
584 that scenario to distinguish between positive and negative selection.

585 On the other hand, we found that the distribution of L is sufficient to differentiate between
586 advantageous and deleterious alleles under some non-equilibrium demographic scenarios,
587 including the demographic scenario inferred from the UK710K dataset. This is encouraging, since
588 most natural populations are very likely to have evolved under a non-equilibrium demographic
589 scenario and it is precisely in such scenarios where we would like to be able to differentiate
590 between alleles with different types of selection.

591 The mean allele frequency trajectories of deleterious alleles segregating at a 1%
592 frequency when the population is expanding are particularly noteworthy. These alleles tend to
593 have increased in frequency when the population size is low. Then, they decrease in frequency
594  when the population expands due to a higher efficacy of selection. This suggest that it is likely
595 that, on average, deleterious alleles would tend to come from higher frequencies in the recent
596 past in expanding populations. These simulations of allele frequency trajectories under several
597  demographic scenarios are useful to understand past fluctuations in frequency and haplotypic
598 patterns one might expect for selected alleles. Recent work has analyzed how different
599 summaries of genetic variation change over time in non-equilibrium scenarios (Peischl et al.
600 2013; Lohmueller 2014a; Simons et al. 2014; Do et al. 2015; Henn et al. 2015; Balick et al.
601 2015; Brandvain & Wright 2016; Marsden et al. 2016; Koch & Novembre 2017), and analyzing
602 the behavior of frequency trajectories is helpful to understand those changes.

603 When we estimated parameters that define the DFE; of segregating variants, we found
604 that our method can provide reasonable estimates of the parameters that would lead to
605 estimating a sensible value of the mean of the DFE; in several scenarios. Under a constant
606 population size, the scale estimates of the DFE; are inversely correlated with the shape
607 parameters. Note that this curve decay causes the product of the scale and shape parameters
608 to have relatively similar values. Under a population expansion model, the estimates of the
609 shape and scale show a wider variation around the curve than the constant population size
610 scenario (Figure 6). Similarly, the pairwise coalescent time T: distribution between variants with
611 different negative selection coefficients appear more similar to each other in a population
612 expansion scenario as compared to a constant population size scenario (Figure 4D and 2C).
613  Due to the greater variation in the estimates of the parameters that define the DFE; of variants
614 at a 1% frequency, we also see a larger variation in the mean 4Ns values estimated in a
615 population expansion as compared to a constant population size demographic scenario

616 (Supplementary Figure S2). Estimates of the mean 4Ns values are more precise under a
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617 constant population size compared to the population expansion scenario. For the UK710K
618 demographic scenario and the scaled UK70K model, where there is a large recent population
619 expansion, we saw that the proportion of 4Ns values smaller than 5 tended to be overestimated
620  while the proportion of 4Ns values larger than 5 were underestimated based on the analysis of
621 simulations using the Boyko et al. (2008) DFE. The consequence is that the mean 4Ns value
622 would tend to be underestimated under the UK70K demographic scenario and the scaled
623 UK10K demographic scenario (Supplementary Figure S10-S11). It is likely that this
624 underestimation will be seen in other scenarios with large recent population expansions.

625 One technical aspect from our methodology that could be subject to future improvement
626 is that the space of scale and shape parameters we explore is limited due to low effective
627 sample size (ESS) values. In the case of the UK10K dataset, the ESS are smaller than 100
628 in4Ns values smaller than -75 (Supplementary Figure S12). To increase the values of the ESS,
629 one possible improvement of our method is to make better proposals for the allele frequency
630 trajectories going backwards in time. That is, to improve our choice of the importance sampling
631 distribution. Future work will be devoted to make improvements in this issue, particularly in
632 populations undergoing recent large expansions. One possibility is to expand the theory of
633  Wright-Fisher bridges to select trajectories that end at a certain frequency fin the present under
634  non-equilibrium scenarios (Schraiber et al. 2013). We did not find the same pattern of low ESS
635 values in the other two demographic scenarios we analyzed, where the population sizes did not
636  experience changes in population size of the same magnitude as in the demographic model
637 inferred in the UK10K data.

638 Using the UK10K data, we obtained a point estimate, along with 90% bootstrap interval
639 calculations, of the DFE. Our point estimates are consistent with point estimates obtained using
640 information from the site frequency spectrum (Boyko et al. 2008) (Supplementary Figure S16). It
641 is possible that we find discrepancies between the estimated DFE in other species or
642  populations using haplotypic information compared to using data from the site frequency
643  spectrum. In a similar vein, important discrepancies on the inferred past demographic histories
644 on human populations have been found when using site frequency spectrum data and
645 haplotypic information, and some of the potential causes of the differences have been carefully
646  discussed previously (Harris & Nielsen 2013; Hsieh et al. 2016; Beichman et al. 2017).
647  Technical aspects of the data that can impact the demographic inferences when using
648 haplotypic data include: 1) Switch errors during statistical phasing which cause a bias towards
649  more recent split-time estimates (Song et al. 2017), 2) Uncalled heterozygous sites due to low

650 genomic coverage which causes a bias towards lower effective population size estimates
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651 (Nadachowska-Brzyska et al. 2016), 3) Not filtering low coverage, potentially false positive
652 variants, which can produce poor estimates of sudden contractions or expansions
653  (Nadachowska-Brzyska et al. 2016).

654 With respect to the potential impact of switch errors in our inference, the UK710K project
655  does not report switch error rates, but we would expect them to be even lower than those of the
656 1000 Genomes Project (estimated to be 0.56% with a mean of distance of ~1,062 kb between
657  errors) (Auton et al. 2015), due to the fact that the UK70K has approximately 50% more
658 samples than the 1000 genomes project, and all the samples come from the same population.
659 We expect to see the impact of phasing errors to be small in our data since we are using
660  window sizes of 500 kb in our analysis; this window size is smaller than the mean distance
661 between switch errors in the 1000 Genomes Data, and the mean distance between switch
662  errors is likely to be even larger in the UK70K project.

663 Our inferences of the DFE can be impacted due to the low genomic coverage present in
664 the UK10K dataset (~4x on average). However, the estimate of the percentage of genotypes
665  correctly called in the UK710K dataset is equal to 99.688% for common variants with a frequency
666  bigger than 5%, and 99.999% for singletons (Walter et al. 2015). This indicates that the
667  sequencing strategy carried out in the UK710K dataset should not have a large impact on our
668 estimates of the DFE due to wrongly called genotypes across individuals.

669 Apart from the technical aspects that could be impacting our estimates of the DFE, there
670 are biological phenomena that could be responsible for differences in the DFE estimates we see
671 when we use site frequency spectrum information and haplotypic data. One of those
672 phenomena is linked selection, which reduces the genetic variation in neutral sites next to an
673 allele under either positive or negative selection (Cutter & Payseur 2013). Linked selection will
674 increase the lengths of the pairwise haplotype lengths in the synonymous sites used to infer the
675  demographic scenario and in the nonsynonymous sites used to infer the distribution of fitness
676  effects. Previous work estimating the distribution of fitness effects using site frequency spectrum
677 information has shown that using synonymous sites to estimate the demographic scenario
678  controls for the effect of linked selection and gives an accurate estimation of the DFE (Huber et
679 al. 2017). We expect the same effect to take place when using haplotypic information.
680  Specifically the amount of linked selection is predicted to be similar between synonymous and
681 nonsynonymous variants at 1% frequency (see caption Supplementary Figure S6), indicating
682 that the increase in pairwise haplotype lengths should be similar for both synonymous and

683  nonsynonymous sites.
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684 Another biological phenomenon that could impact our DFE estimates is the
685 incompleteness of the demographic model fitted to the data (Harris & Nielsen 2013; Garud et al.
686  2015; Beichman et al. 2017). We are fitting a demographic model with one deme to the UK710K
687 dataset, and it is possible that fitting a model with population structure could give a better fit to
688 the haplotypic data and to the site frequency spectrum data (Harris & Nielsen 2013). We also
689 are not modelling non-crossover gene conversion (Andolfatto & Nordborg 1998; Korunes &
690 Noor 2017). Non-crossover gene conversion events involve haplotype tracts of approximately
691 100-1000 bp and the probability that any site in the genome is involved in a non-crossover gene
692  conversion event is 5.9 X 10° / bp / generation (Williams et al. 2015). Their impact is to break
693 down linkage disequilibrium, which in our model, for a single variant would result in inferences
694 that are biased towards neutrality; however, in aggregate if it impacts LD around synonymous
695 and nonsynonymous variants equally, the effect on inferences may be minor. Nonetheless,
696  modelling noncrossover gene conversion could improve models of the haplotype signatures of
697  selection.

698 As another factor, changes on the DFE over time could lead to differences in the inferred
699 DFE from the site frequency spectrum and the haplotypic data. DFE estimates from the site
700 frequency spectrum data use information from variants that have appeared across a broad
701 range of time. On the other hand, the haplotype data we used comes from 1% frequency
702  variants that have appeared recently. The relaxation of selective pressures across time is one
703  way to change the selective coefficient of variants to make them more neutral (Somel et al.
704  2013; Lynch 2016). Our results argue in favor of conserved selective coefficients over time in
705  humans, in line with recent results (Fortier et al. 2019).

706 Although here we analyzed the distribution of fithess effects of nonsynonymous variants
707  at a certain frequency, it is possible to determine the distribution of fithess effects of variants
708  within specific functional categories. One possibility is to try to determine the strength of
709  selection of alleles on variants that are predicted to be more deleterious based on the Fitcons
710 (Gulko et al. 2015), SIFT (Sim et al. 2012), Polyphen (Adzhubei et al. 2010) or C-scores
711  (Kircher et al. 2014; Racimo & Schraiber 2014). It is also be possible to estimate the strength of
712  selection in a set of alleles that have a particular collection of genomic features (Huang & Siepel
713  2019). This can help us to obtain genome-wide estimates of the selection coefficient of variants
714  based on their predicted functional category. This is of particular interest to genome-wide
715 association studies, due to the interest in understanding the association between associated
716 variants and their selection coefficients on different complex traits. Additionally the use of the

717 newly developed tree-sequence framework (Kelleher et al. 2018; Haller et al. 2019) for
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718  simulations should also help to speed up the calculation of the likelihood of different values of
719  selection in the part of our method that depends on Monte Carlo simulations. Another future
720 avenue of research is to infer the distribution of selection coefficients of new mutations
721 combining information from the DFE; inferred at many different frequencies in the population.
722  Combining information from variants at many frequencies is likely to increase the accuracy of
723 estimates of the distribution of fitness effects of new variants, and could detect changes in the

724  distribution of fitness effects of new variants through time.

725

726 Methods

727

728 Inference of selection
729

730 The likelihood of having a particular selection coefficient 4Ns conditioning on the allele
731 frequency fand the demographic scenario D using information from one length L € w; can be

732 estimated as:
733

L(4Ns, f,D|L € w;) = fP(L € w;|H,)P(H;|4Ns, f, D)dH,;

734

735 where H;is a particular allele frequency history, i.e. a trajectory of allele counts from when the
736 allele first appears in the population until the present. We can compute P(L € w;|H;) via Monte
737  Carlo simulations done using mssel (Kindly provided by Richard Hudson), which assumes the
738  structured coalescent model to simulate haplotypes containing a site whose frequency trajectory
739 is determined by H;. We used mssel to simulate many pairs of haplotypes (10,000 independent
740  pairs for all scenarios but the UK710K scenario, where we simulated 273 independent sets of 72
741 haplotypes) given an allele frequency trajectory H; and we computed the L value for each pair of
742  haplotypes. We can use that distribution of L values for a given allele frequency H; to find the
743  probability P(L € w;|H;) that L falls in a certain window wi. It is important to appreciate that these
744  Monte Carlo simulations can include additional information about the recombination rate present
745 in a particular region. Using the appropriate recombination rate is important because it changes
746  the values of L.

747 The likelihood L(4Ns, f,D|L) is found by integrating over the space of allele frequency
748  trajectories that end at a frequency fin the present and have a selection coefficient 4Ns. One

749  possible way to perform that integration step is to perform many simulations under the
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750  assumptions of the Poisson Random Field framework (Sawyer & Hartl 1992; Hartl et al. 1994)
751 (PRF) and utilize rejection sampling to only keep those trajectories that end at a frequency fin
752  the present. Under the PRF model, the number of mutations that enter the population each
753  generation i have a Poisson distribution with mean 2N;uK = © /2, where N; is the population
754  size in generation i, u is the mutation rate per base and K is the number of sites being
755 simulated. The sites are independent and the frequency of each mutation changes each
756  generation following a Wright-Fisher model with selection. We could generate many allele
757  frequency trajectories under this framework given a particular value of 4Ns and just keep those
758 trajectories that end at a frequency of £ However, this is inefficient and computationally
759 demanding, since the vast majority of allele frequency trajectories will not end at a frequency fin
760  the present. And it is particularly more challenging if we wish to calculate £L(4Ns, f, D|L) for a
761  grid of values of 4Ns. In the next section we show an alternative importance sampling approach
762  we developed to perform an efficient integration over the space of allele frequency trajectories
763  given 4Ns and f.

764

765 Integration over the space of allele frequency trajectories using importance sampling

766
767  We used importance sampling to integrate over the space of allele frequency trajectories and

768 calculate the likelihood L(4Ns,f,D|L) over many different values of 4Ns. The efficient
769 integration over the space of allele frequency trajectories is done using the importance sampling
770  approach developed by Slatkin (2001) with a modification regarding the importance sampling
771  distribution we use. Here, the “target” distribution f(x) = P(H;|s,f) are samples of allele
772  frequency trajectories that end at a frequency fand have a selection coefficient s.

773 Following Slatkin (2001), we can define the trajectory H; of a derived allele a as the
774  number of copies of the allele a present each generation since the allele appeared in the
775  population. Therefore, H; = {ir, ir_1,ir_3, -, i2,i1,i0}, Where iz = 0 and iy_; = 1. The effective
776  population sizes at those times are N = {N;, Ny_1,Ny_5, ..., N3, N, Ng}. The allele appears in
777  generation T-1, where it has 1 copy in the population.

778 We define the fitness of the genotypes AA, Aa and aa as 1, 1+s and 1+2s, respectively.
779  Under a Wright-Fisher model with selection, the probability of moving from i; to i;_; copies of

780 the allele going forward in time is equal to:
781

2N, ; .
782 P(ig-1lie) = pii,, = ( itf;1>xtlt_1(1 — x()?Ne-1le-n,
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783  where

784

785 X! 1+2sx¢+s(1—x¢)
t

=X .
C1+2sx?+25x,(1-x¢)

786  The frequency of the allele at generation tis x; = %
t

787 As a “importance sampling” distribution g(x), we use a very similar process to a Wright-
788  Fisher neutral model. We start with the count y of the number of derived alleles a in the present
789  based on a sample of n alleles. Estimating the frequency in generation 0 based on that sample
790 of alleles is equal to the problem of estimating a probability based on binomial data. Therefore,
791  we can follow Gelman et al. (2013) to state that the posterior density of the distribution of allele
792  frequency f in generation 0 is distributed as: f|y ~Beta(y + 1,n—y+1). Based on the
793  distribution of f, we can obtain the distribution of the number of alleles in generation 0, iy, just
794 by multiplying iy = fn and rounding i, to a discrete value. Then we can define the probability of
795  having iy alleles in generation 0 given that we sampled y derived alleles in a sample of n alleles
796  as:

797

= |Beta(y + 1,n —y + 1)).

798  P(ipln,y) =P(X < =—=|Beta(y + L,n—y+ 1)) - P(X < ~
0

2N,

2

799  On the other hand, the probability that we obtain y derived alleles in a sample of n alleles given

800 that the number of derived alleles in the population is iy is:

801
802  P(n,ylig) = (;) (Z‘T‘)O)y (1 - Joym,
803

804  After we sample from that distribution, we move backwards in time assuming that the allele is
805 neutral. Under this proposal distribution, if i;_; = 1, then i; can take any value from 0 to 2N,. If
806 i;,_, = 0or 2N, then we stop the allele frequency trajectory. If i;_; is bigger than 1 and smaller
807 than 2N, then i; can take any value from 1 to 2N;. These three rules are used together to make
808  sure that each trajectory going forward in time always goes from 0 to 1 copy of the allele.

809 Under the importance sampling distribution we use, the transition probabilities of going
810 from i;_, alleles in generation t-1 to i; alleles in generation i; is:

811
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813
814

815 Where x;_; = Zi\f]‘l . By generating an allele frequency trajectory with this importance sampling
t—1

816  distribution, we can calculate the probability of any sample from this importance sampling
817  distribution g(x):

T
9@ =Pl | | ais

818 Finally, the probability of the whole allele frequency trajectory H; going forward in time is then
819 equalto:
820

1
Plls,f) = ) =Puylio) | | b,
821

822 Now that we have defined how to sample allele frequency trajectories using our proposal

823  distribution, we can compute the weight for every simulated allele frequency trajectory H; from

824 gx)asw; = % For some of the proposed trajectories under g(x), the trajectory will end up at

825 a frequency of 1 going backwards into the past, instead of 0. The value of w; for those
826 trajectories is defined to be equal to 0.
827 The expected value that we wish to obtain with this problem is L(4Ns, f,D|L € w;). After
828  generating M replicates using g(x), we can compute that expected value under the importance
829  sampling framework:
830

M w;P(L € w;|H))

L(4Ns,f,D|L € w;) =
i=1 Wi
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831

832  Using this approach, we can estimate L(4Ns, f,D|L € w;) for different values of s using the
833 same set of allele frequency trajectories generated from our importance sampling distribution.
834 This alleviates the need to simulate a different set of allele frequency trajectories for each value
835 of the selection coefficient s that we want to evaluate and follows the idea of a driving value
836  (Fearnhead & Donnelly 2001). The proposal distribution g(x) is not necessarily optimal for every
837 svalue, but it is possible to verify if the distribution is reasonable based on the effective sample
838 size (ESS) values (see Equation S1; Supplementary Methods). The ESS indicates the sample
839 size used in a Monte-Carlo evaluation of the target distribution f(x) that is equivalent to the
840 importance sampling approach estimate. Plots of the ESS values for the two main demographic
841  scenarios explored are shown in the Supplementary Figures S18-S19. In every demographic
842  scenario explored, we simulated 100,000 allele frequency trajectories to evaluate 401 values of
843  4Ns in discrete intervals from -200 to 200. The only values that we need to change to evaluate
844  L(4Ns,f,D|L € w;) are the importance sampling weights w;, where we will change the value of
845  P(H;ls,f) = f(x) depending on the value of the selection coefficient s evaluated.

846 Finally, given a set of values L ={L:€ w; , L€ w;,, Ls€ w;,, ... L,€ w; }, where i; can take
847 any value from 1 to S, we can estimate the composite likelihood of having that set of L values
848 as:

849

L(4Ns, f,D|L € w;) = nj L(4Ns, £, DIL; € w)

850

851 Forward-in-time simulations to obtain mean allele frequency trajectories

852

853 We used PReFerSim (Ortega-Del Vecchyo et al. 2016) to obtain 10,000 allele frequency
854  trajectories of a 1% frequency allele under the constant-size demography scenario for 5
855 different values of selection (4Ns = 0, -50, -100, 50, 100). To do those simulations, we performed
856 many replicate simulations where the number of new mutations per generation follows a
857  Poisson distribution with a mean equal to ® /2 = 1,000. Those simulations were repeated until
858 we obtained 10,000 alleles frequency trajectories where the present-day frequency f is equal to
859 1% in a sample of 4,000 chromosomes. We did the same procedure to obtain 10,000 allele
860 frequency trajectories of a 1% frequency allele for 5 different values of selection (4Ns = 0, -50, -

861 100, 50, 100) in a population expansion and an ancient bottleneck scenario. The value of ®/
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862 2 for the most ancestral epoch was set to 1,000 in the population expansion and the ancient
863  bottleneck scenario.

864 In the case of the UK70K demographic scenario, we obtained 10,000 allele frequency
865 trajectories of a 1% frequency allele for 5 values of selection (4Ns = 0, -25, -50, 25, 50). We
866 performed many simulations using a ® /2 value equal to 1,000 for the most ancestral epoch
867  until we obtained 10,000 allele frequency trajectories. We sampled 7,242 chromosomes and
868 retained those trajectories where f= 1% + 0.05%.

869

870  Connecting the distribution of fitness effects of variants at a particular frequency (DFEy)
871  with the distribution of fitness effects of new mutations (DFE)

872

873  The distribution of fitness effects of variants at a particular frequency DF Ef in the population is

874 related to the distribution of fitness effects of new mutations DFE defined by a set of x
875  parameters Y = {4, P, Y3, ..., P, } by the following equation:
876
Py (sjlf,D) Py(fID)
Py (s;1D)
877  Where we can re-arrange the above equation to obtain:

Y = PuiAD) Py(fID)
878  Py(sjID) P ieD)

Py(fls;, D) =

879  The events defined in that formula are:

880 f.- The allele has an x% sample allele frequency.

881 s;.- Allele has a selection coefficient 4Ns that falls in the interval [4Ns;4, 4Ns;), where s;.;
882 and s; define two different selection coefficients. N is the effective population size in the
883 most ancestral epoch in the demographic scenario D.

884 Y .- A set of k parameters Y = {1, ,, Y3, ..., P, } that define the DFE.

885 D.- Demographic scenario.

886 Py (s;|D) defines the distribution of fitness effects of new mutations over a set of discrete bins
887  when using the information contained across all non-overlapping intervals o = {[4Nsy, 4Ns;),
888  [4Ns4, 4Nsy), [ANs,, 4Ns3)..., [ANSp.1, 4Nsp)} = { 84,82, 83, ..., Sp } covering all 4Ns values from 0
889 to infinite. We defined the endpoints of the first b-1 intervals to be equal to 5(i-1) and 5i, where i
890 takes values from 1 to b - 1, in all the analysis we performed with the exception of

891  Supplementary Table S4. The last interval was set to be equal to [5h, ). Since Pz,,(s]-|D) is
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892  independent of the demographic scenario D, then Py(s;|D) = Py(s;) because D does not
893  impact the proportion of new variants in a selection interval s;. If we look at the information of all
894  non-overlapping intervals o, Py (s;|f, D) defines the distribution of fitness effects of variants at a
895  particular frequency DFE; over a set of discrete bins. As seen in the section Testing inference of
896  the distribution of fitness effects for variants found at a particular frequency (“DFE;”), we can
897  use the L values to infer DFE.

898 Py (f|D) can be computed both in data and in simulations by measuring the proportion
899  of variants at a certain frequency. Calculating P, (f|D) in genomic data requires us to calculate
900 the proportion of variants at a frequency f£. That proportion must take into account all variants
901 that have emerged during the demographic history D, including variants that have become fixed
902  or have been lost. To calculate Py (f|sj, D), we can make the assumption that all the mutations
903 inthe interval s; have very similar selection coefficients, which is more likely to be true when the
904 interval is not very big. This probability can be found via forward-in-time simulations, where we
905 simulate variants that have a selection coefficient contained in a certain interval s; in a particular
906 demographic scenario D. Then, the proportion of variants in that simulation that have a f
907  frequency in the present is equal to Py(f|s;, D).

908 We calculate Py (s;) for the first b-1 intervals using Equation 4. Then, for the last interval
909 s, we use Py(sp) =1—XP 7 Py(s;). If P71 Py(s;) > 1.0, we set the probabilities Py(s;) =
910 Pll,(s]-)/Zf"1 Py (s;) for the first b-1 intervals and Py (s;) = 0 for the last interval b.

911 We tested Equation 4 on two different distributions of fitness effects (Figure 7 and
912  Supplementary Figure S3). To perform those two tests we did simulations under the Poisson
913 Random Field model using PReFerSim (Ortega-Del Vecchyo et al. 2016) to estimate
914  Py(flsj D). We did those simulations using the mouse distribution of fitness effects (Halligan et
915 al. 2013) and the population expansion demographic model. Those calculations were done
916 across 5,000 simulation replicates where the value of ® /2 in the first epoch was set equal to
917  1,000. We sampled 4,000 chromosomes for each segregating site to calculate £.

918 When we estimated the distribution of fithess effects of new variants in the UK70K data,
919 we estimated Py (f|s;, D) by performing 1,000 replicate simulations under the inferred UK70K
920 demographic model and the human distribution of fitness effects (Boyko et al. 2008). The value
921 of ®/2in the first epoch of each simulation was set equal to 1,000. To mimic the properties of

922 the UK10K data, we sampled 7,242 chromosomes for each segregating site. We calculated
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923  Py(flsj, D) by counting the proportion of variants in our 1,000 simulations that have a frequency
924  fequal to 1% + 0.05%.

925

926 Estimating L taking into account differences in local recombination rates in the UK710K
927  dataset

928

929  Apart from being dependent on the strength of selection acting on the variants, the distribution
930 of L surrounding each variant on the genome in the UK10K data is dependent on the local
931 recombination rate p. We took into account the local recombination rate when inferring the
932  distribution of fitness effects using the 273 nonCpG nonsynonymous 1% frequency variants. To
933 do this, we used our importance sampling method to obtain the distribution of L given the
934  selection coefficient, the inferred demographic scenario, and 21 different recombination rates.
935 To select the 21 recombination rates, we used the results from a previously inferred
936 recombination map (Kong et al. 2010). We took the 21 different percentile values (0t, 5t, ..., 95th,
937 100t ) from the distribution of 546 average recombination rates per base taken from the
938 upstream and downstream 250 kb regions next to the 273 nonsynonymous 1% frequency
939 variants. In the end, we generated 21 distributions for each selection value explored, each with
940  a different recombination rate p;. Those 21 distributions of L(4Ns, f, D, p;|L € w;) were used to
941 infer selection using the upstream and downstream regions from the nonCpG nonsynonymous
942 1% frequency variants. They were also used to infer the point estimate of 4Ns in the nonCpG
943  synonymous 1% frequency variants. The L(4Ns, f, D, p;|L € w;) distribution used for each of the
944 546 regions is the one where the local recombination p is closer to p;.

945 We evaluated the accuracy of our method to infer selection under the inferred scaled
946 UK10K demographic scenario using simulations. We mimicked the amount of information
947  present in the UK710K data in each simulation replicate. Each simulation replicate contains 273
948 independent loci with 72 haplotypes containing the derived allele. The recombination rates, both
949 to the left and right side of the loci, were equal to the average per base recombination rates in

950 the 250 kb windows next to each locus in the data. We calculated L going to the left and right

951 side of the focal loci, obtaining (72)x2>< 273 L values for each simulation replicate

2
952  (Supplementary Figure S8, S10).

953
954 Data availability
955
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956 The programs and data to reproduce every figure of the paper can be found in
957  https://github.com/dortegadelv/HaplotypeDFEStandingVariation .
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