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Abstract 20	

Recent genome sequencing studies with large sample sizes in humans have discovered a vast 21	
quantity of low-frequency variants, providing an important source of information to analyze how 22	
selection is acting on human genetic variation. In order to estimate the strength of natural 23	
selection acting on low-frequency variants, we have developed a likelihood-based method that 24	
uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency 25	
variants. We show that in some non-equilibrium populations (such as those that have had 26	
recent population expansions) it is possible to distinguish between positive or negative selection 27	
acting on a set of variants. With our new framework, one can infer a fixed selection intensity 28	
acting on a set of variants at a particular frequency, or a distribution of selection coefficients for 29	
standing variants and new mutations. We apply our method to the UK10K phased haplotype 30	
dataset of 3,781 individuals and find a similar proportion of neutral, moderately deleterious, and 31	
deleterious variants compared to previous estimates made using the site frequency spectrum. 32	
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We discuss several interpretations for this result, including that selective constraints have 33	
remained constant over time. 34	

 35	

Introduction 36	

The distribution of fitness effects for new mutations (DFE) is one of the most important 37	
determinants of molecular evolution. The DFE is a probability distribution that quantifies the 38	
proportion of new mutations having a certain selection coefficient s, where s can take positive or 39	
negative values depending on whether the allele is under positive or negative selection. The 40	
DFE determines current levels of genetic variation, since the frequencies of the alleles under 41	
selection depend on their selection coefficient (Sawyer & Hartl 1992; Hartl et al. 1994; 42	
Bustamante et al. 2001), and alleles under selection change the genetic variation at linked sites 43	
due to the effects of linked selection (Maynard Smith & Haigh 1974; Charlesworth et al. 1993). 44	
The DFE is also a key feature in the evolution of complex phenotypic traits (Lohmueller 2014a; 45	
Simons et al. 2014; Mancuso et al. 2015), since the association between the selection 46	
coefficients and the effect of mutations on a complex trait is an important determinant of the 47	
genetic architecture of a trait (Eyre-Walker 2010). Due to the impact of the DFE on levels of 48	
genetic and phenotypic variation, properly inferring the DFE is essential to many fundamental 49	
problems such as validating predictions of the nearly neutral theory (Kimura & Crow 1964; Crow 50	
1972; Ohta 1992), understanding changes in the deleterious segregating variation observed in 51	
different populations (Gazave et al. 2013; Lohmueller 2014b; Henn et al. 2015; Brandvain & 52	
Wright 2016; Gravel 2016; Simons & Sella 2016; Koch & Novembre 2017), elucidating the 53	
factors that influence changes on the DFE between species (Martin & Lenormand 2006; 54	
Charlesworth & Eyre-Walker 2007; Serohijos & Shakhnovich 2014; Tenaillon 2014; Rice et al. 55	
2015; Huber et al. 2017), and inferring the amount of adaptive evolution between species 56	
(Gossmann et al. 2012; Galtier 2016; Zhen et al. 2018). 57	

Broadly, two lines of research have been developed to infer a DFE. One is based on 58	
experimental approaches and the other one is based on the analysis of population genetic 59	
variation at putatively neutral and deleterious sites. The main experimental approaches taken 60	
with viruses, bacteria and yeast are site-directed mutagenesis experiments in target regions 61	
(Bataillon & Bailey 2014) and mutation-accumulation experiments (Halligan & Keightley 2009). 62	
They are useful because they can obtain information about the DFE including advantageous and 63	
deleterious mutations; that said, advantageous mutations tend to be rare or not found in results 64	
from experimental approaches (Halligan & Keightley 2009; Lind et al. 2010; Jacquier et al. 2013; 65	
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Bataillon & Bailey 2014) with some exceptions (Sanjuán et al. 2004; Dickinson 2008). The types 66	
of probability distributions that have provided a good fit to the DFE of deleterious mutations on 67	
site-directed mutagenesis experiments are a gamma distribution (Domingo-Calap et al. 2009; 68	
Lind et al. 2010; Jacquier et al. 2013), a unimodal distribution with a similar shape to a gamma 69	
distribution (Sanjuán et al. 2004; Domingo-Calap et al. 2009; Peris et al. 2010), and a bimodal 70	
distribution with one part of the probability mass on nearly neutral mutations and the other one 71	
on the highly deleterious mutations (Hietpas et al. 2011). However, the data still points to a 72	
bimodal DFE with mutations being either neutral or very deleterious in the majority of the studies 73	
where other unimodal simpler distributions provided the best fit to the data (Sanjuán et al. 2004; 74	
Domingo-Calap et al. 2009; Peris et al. 2010; Jacquier et al. 2013).  This highlights that the DFE 75	
might have a more complex form than the simpler probability distributions typically used to fit 76	
data. In mutation-accumulation experiments, a gamma distribution is typically assumed for the 77	
DFE of deleterious mutations, since there is little information to distinguish between alternative 78	
distributions (Halligan & Keightley 2009). 79	

The other main approach is to use population genetic variation data to estimate the DFE 80	
with information from the site frequency spectrum (SFS) on putatively neutral and deleterious 81	
sites (Sawyer & Hartl 1992; Williamson et al. 2005; Keightley & Eyre-Walker 2007; Boyko et al. 82	
2008; Gutenkunst et al. 2009; Kim et al. 2017). An interesting extension has recently been 83	
developed to take SFS information and divergence data from an outgroup to infer the DFE from 84	
the population where the SFS data was taken along with the rate of adaptive molecular evolution 85	
based on the divergence data (Tataru et al. 2017). Two other extensions have been taken to 86	
model the correlation between the fitness effects of multiple nonsynonymous alleles at a 87	
particular position (Ragsdale et al. 2016) and to calculate the joint DFE between pairs of 88	
populations (Fortier et al. 2019). The first step in these approaches is to inter the demographic 89	
scenario that fits the SFS at putatively neutral sites, which typically are chosen to be variants at 90	
synonymous sites. The DFE is then inferred from putatively deleterious sites of interest, typically 91	
nonsynonymous sites, while taking the demographic scenario into account. Some species 92	
where these approaches have been applied to infer the DFE include humans (Eyre-Walker et al. 93	
2006; Boyko et al. 2008; Li et al. 2010; Huber et al. 2017; Kim et al. 2017), mouse 94	
(Kousathanas & Keightley 2013; Halligan et al. 2013) and Drosophila (Kousathanas & Keightley 95	
2013; Huber et al. 2017). Studies that compare the fit of different probability distributions argue 96	
in favor of a DFE of deleterious nonsynonymous mutations on humans that follows either 1) a 97	
gamma distribution (Boyko et al. 2008; Kim et al. 2017) or 2) a combination of a point mass at 98	
neutrality plus a gamma distribution (Kim et al. 2017). Those two studies infer a leptokurtic DFE 99	
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with a proportion of nearly neutral mutations (s < 10-5) of 18.3%-26.3%, and moderate to strong 100	
deleterious mutations (s  > 10-3) of 46.6%-57.4%. 101	

One drawback of current methods that estimate the DFE using population genetic 102	
variation is that they ignore all linkage information. No attempt has been made to exploit the 103	
information from linked genetic variation to estimate the DFE despite the fact that many studies 104	
have analyzed how both deleterious (Charlesworth et al. 1993, 1995; Hudson & Kaplan 1995; 105	
Nordborg et al. 1996; Nicolaisen & Desai 2013; Cvijović et al. 2018) and advantageous variants 106	
(Maynard Smith & Haigh 1974; Kaplan et al. 1989; Braverman et al. 1995; Nielsen 2005) 107	
decrease linked genetic variation. Further, linked genetic variation has been effectively used to 108	
infer the age of particular variants (Slatkin & Rannala 1997; Tishkoff et al. 2007; Chen & Slatkin 109	
2013; Mathieson & McVean 2014; Chen et al. 2015; Nakagome et al. 2016; Ormond et al. 2016; 110	
Albers & McVean 2018), the time to the common ancestor of a positively selected allele (Smith 111	
et al. 2018), the time since fixation of an advantageous allele (Przeworski 2003), the selection 112	
coefficient of an allele (Slatkin 2001, 2008; Coop & Griffiths 2004; Tishkoff et al. 2007; Chen & 113	
Slatkin 2013; Chen et al. 2015; Ormond et al. 2016) and to detect loci under positive selection 114	
(Kim & Stephan 2002; Sabeti et al. 2002, 2007; Wang et al. 2006; Voight et al. 2006; Williamson 115	
et al. 2007; Tang et al. 2007; Pavlidis et al. 2010; Li 2011; Ferrer-Admetlla et al. 2014; Garud et 116	
al. 2015; Field et al. 2016; Huber et al. 2016). Since there has been so much success in 117	
understanding how selection changes the linked variation around individual variants, it should 118	
be feasible to pool the haplotype information from many variants putatively under selection at a 119	
certain frequency f to infer the distribution of fitness effects 𝐷𝐹𝐸! of variants at a frequency f.  120	

Here we propose a new approach to infer 𝐷𝐹𝐸!. We note that 𝐷𝐹𝐸! is different from the 121	

distribution of fitness effects of new mutations entering the population, which we call the 𝐷𝐹𝐸. 122	
Natural selection acts to increase the frequency of advantageous variants and to decrease the 123	
frequency of deleterious variants, causing a difference between 𝐷𝐹𝐸 and 𝐷𝐹𝐸!. The relationship 124	

between 𝐷𝐹𝐸!  and DFE is one of the topics we will address in this study. 125	

Recent large population genomic datasets such as the UK10K (Walter et al. 2015), the 126	
Netherlands Genome Project (Francioli et al. 2014) and the Haplotype Reference Consortium 127	
(McCarthy et al. 2016) provide an unprecedented source of haplotype information to quantify 128	
both the 𝐷𝐹𝐸! and the DFE. These datasets have started to be exploited to understand the 129	

impact of selection on variants under selection at a certain frequency. For example, Kiezun et 130	
al. (2013) found that, conditioning on the variants having a certain frequency f in the population, 131	
nonsynonymous variants have more extended linkage disequilibrium with neighboring neutral 132	
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variation compared to synonymous variants on data from the Netherlands Genome Project. This 133	
is in line with Takeo Maruyama’s results showing that deleterious variants at a certain frequency 134	
have a younger age compared to neutral variants (Maruyama 1974), implying that there is less 135	
variation on haplotypes carrying deleterious variants.  136	

Building on previous work to estimate the strength of selection acting on advantageous 137	
variants (Slatkin 2001; Chen & Slatkin 2013), we propose an approach to provide a point 138	
estimate of the population-scaled selection coefficient or a distribution of fitness effects acting 139	
on a set of variants at a particular frequency f  ( 𝐷𝐹𝐸!). We infer the strength of natural selection 140	

using pairwise haplotypic identity-by-state lengths (the length in one direction along a pair of 141	
haplotypes carrying a focal allele to the first difference between the pair of haplotypes). For 142	
each pair j of haplotypes we define the observed length as Lj. The length can be measured in 143	
both directions along the chromosome extending outward from the focal allele. We show that 144	
these lengths can be used to distinguish between alleles under positive and negative selection 145	
in several non-equilibrium demographic scenarios. Further, we show how the 𝐷𝐹𝐸! can be used 146	

to infer the DFE. The resulting method can help improve the understanding of how selection is 147	
influencing, for instance, the low-frequency variants present in a population. We apply our 148	
method to the UK10K dataset, and we estimate a similar proportion of neutral, moderately 149	
deleterious and deleterious variants compared to SFS-based approaches.  150	
	151	

Results 152	

 153	

A method for inference of the population-scaled selection coefficient based on haplotype 154	
variation 155	
 156	
Our analysis is based on a set of x haplotype pairs carrying a derived allele at a frequency f in 157	
the population. We compute the pairwise identity by state length Lj for every haplotype pair, 158	
which is defined as the distance from the derived allele to the first difference between a pair of 159	
haplotypes. For computational simplicity, we bin the chromosome under analysis into a set of S 160	
discrete non-overlapping windows 𝑾 = {𝑤!,𝑤!,… ,𝑤!} that extend to the side of the derived 161	
allele. Thus, for a set of n haplotype pairs carrying an allele, our analysis is based on which 162	
window the first difference appears in for each pair (𝑳 = {𝐿!  ∈ 𝑤!! , 𝐿! ∈ 𝑤!! , 𝐿! ∈ 𝑤!! ,… , 𝐿! ∈163	

𝑤!!}). We define 𝑠!,… , 𝑠! as integers between 1 and S indicating the windows in which each 164	
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length falls (Figure 1). We can calculate a length Lj both upstream and downstream of each 165	
derived allele in a sample of n allele carriers from alleles at a frequency f in a number A of loci, 166	

and observe a total number 𝑥 = 2 × 𝐴 × 𝑛
2  of 𝑳 length values.  167	

 168	
Figure 1.- Two haplotypes containing a derived 169	
allele, here represented as a black dot, that has 170	
a frequency 𝒇 in the population. The physical 171	
distance near the allele is divided into 5 non-172	
overlapping equidistant windows of a certain 173	
length, with an extra window w6 indicating that 174	
there are no differences in any of the windows w1 175	
to w5. The first difference between the pairs of 176	
haplotypes is denoted by the green “x”.  177	

	178	
 179	
For our inference procedure, we will consider each 𝐿!  independently and so we 180	

momentarily refer generically to a single observed length as 𝐿. The parameter we wish to infer is 181	
the population scaled selection coefficient 4𝑁𝑠 . That parameter is defined in terms of the 182	
effective population size N from the most ancient epoch in the demographic scenario D. It is also 183	
possible to define the population scaled selection coefficient in terms of the most recent epoch. 184	
If the population size of the most recent epoch is NR, then the population scaled selection 185	

coefficient in the most recent time is equal to 4 !!
!
𝑠.  186	

The likelihood of a particular population scaled selection coefficient, 4𝑁𝑠, conditioned on 187	
the allele frequency f and a certain demographic scenario D, from a single observed length L 188	
can be expressed as: 189	

 190	
ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) = 𝑃 𝐿 ∈ 𝑤! 𝐻! 𝑃 𝐻! 4𝑁𝑠, 𝑓,𝐷 𝑑𝐻!   (1) 191	
 192	
where Hi is a particular allele frequency trajectory. The integration over the space of allele 193	
frequency trajectories Hi is challenging. One possible approach to do the integration over the 194	
space of Hi is to perform forward-in-time simulations of alleles under the Poisson Random Field 195	
model and retain the trajectories of alleles that end at a frequency f in the present. However, 196	
this approach is ineffective because we will end up simulating the trajectories of many alleles 197	
that do not end up at a frequency f in the present. To overcome this, we integrate over the 198	
space of allele frequency trajectories Hi using an importance sampling approach. We also 199	
compute 𝑃 𝐿 ∈ 𝑤! 𝐻!  using a Monte Carlo approximation (see Methods).  200	

w1 w2 w3 w4 w5 w6

L � w4 here

Windows of pairwise haplotypic 
identity by state lengths (L)
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We then apply this likelihood function to the complete collection of observed lengths 𝑳 to 201	
calculate a composite likelihood function for 4𝑁𝑠:  202	
 203	
ℒ(4𝑁𝑠, 𝑓,𝐷|𝑳) = ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿! ∈ 𝑤!!)

!
!!!        (2) 204	

 205	
An estimator of 4𝑁𝑠 can be obtained by maximizing this composite likelihood function, which 206	
here we do simply by using a grid search over a range of candidate values (see Methods).  207	

To build an understanding of the inference problem and the method’s performance, we 208	
first assessed the impact of selection on allele frequency trajectories, pairwise coalescent times, 209	
and haplotype identity-by-state-lengths, and then assessed the performance of the estimator.  210	
We do this first for a constant-size demographic history and then time-varying population sizes.   211	
 212	
Evaluation of population-scaled selection coefficient inference for constant population 213	
sizes 214	
	215	
We investigated performance using forward-in-time simulations under the Poisson Random 216	
Field (PRF) framework. Specifically, we used PReFerSim (Ortega-Del Vecchyo et al. 2016) to 217	
obtain 10,000 alleles frequency trajectories with a present-day sample allele frequency of 𝑝=1% 218	
for 5 different values of selection (4𝑁𝑠 = 0, -50, -100, 50, 100) in a sample of 4,000 chromosomes 219	
(see Methods). 220	

Using the 10,000 recorded allele frequency trajectories for each selection value 4Ns, we 221	
calculated the mean allele frequency across many generations going backwards into the past to 222	
obtain an average frequency trajectory for 1% frequency alleles (Figure 2A). As expected, the 223	
average allele frequency trajectory for neutral alleles (4𝑁𝑠 = 0) is higher for a longer duration 224	
going backwards in time compared to alleles under natural selection. Alleles under the same 225	
absolute strength of selection have the same average allele frequency trajectory, regardless of 226	
whether the allele is under positive or negative selection. The distribution of ages is shifted 227	
towards younger values for higher absolute values of 4𝑁𝑠  and with increasingly smaller 228	
standard deviation (Figure 2B), and Maruyama’s theoretical results accurately predict the mean 229	
age estimates observed in the simulations (Supplementary Table 1).  230	

We computed the distribution of pairwise coalescent times 𝑇!  analytically (see 231	
Supplementary Methods) across different values of 4𝑁𝑠. We found that alleles under higher 232	
absolute values of 4𝑁𝑠 have a more recent average value of T2, and their distribution of T2 has a 233	
smaller standard deviation (Figure 2C). We calculated the distribution of L for each 4𝑁𝑠 value 234	

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/770966doi: bioRxiv preprint 

https://doi.org/10.1101/770966
http://creativecommons.org/licenses/by/4.0/


	 8 

using simulations assuming a constant recombination rate 𝜌 = 4𝑁𝑟 = 100  and a constant 235	
mutation rate 𝜃 = 4𝑁𝑢 = 100 for a region of 250 kb. Alleles under the same absolute strength of 236	
selection have almost identical distributions of L (Figure 2D). This is in line with the fact that T2 237	
is younger in alleles under stronger selection coefficients, implying that there will be fewer 238	
mutations between haplotypes sharing the allele and, therefore, higher average values of L 239	
(Figure 2E). 240	
 241	
	242	

	243	
Figure 2.- Properties of alleles sampled at a 𝟏% frequency under different strengths of 244	
natural selection in a constant size population (N  = 𝟏𝟎,𝟎𝟎𝟎). We obtained 10,000 frequency 245	
trajectories for 1% frequency alleles under different strengths of selection using forward-in-time 246	
simulations under the PRF model. We used those frequency trajectories to calculate: A) The 247	
mean allele frequency at different times in the past, in units of generations, to obtain an average 248	
frequency trajectory; B) The probability distribution of allele ages; C) The probability distribution 249	
of pairwise coalescent times T2. Below B) and C), we show a dot with two whiskers extending at 250	
both sides of the dot. The dot represents the mean value of the distribution and the two 251	
whiskers extend one s.d. below or above the mean. The whisker that extends one s.d. below 252	
the mean is constrained to extend until max(mean – s.d. ,0). D) Probability distribution of L. We 253	
define L by taking the physical distance in basepairs next to the allele across 5 non-overlapping 254	
equidistant windows of 50 kb, with an extra window w6 indicating that there are no differences in 255	
the 250 kb next to the allele.  In this demographic scenario, the alleles under a higher absolute 256	
strength of selection have younger ages and younger T2 on average.  The fact that alleles under 257	
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higher strengths of selection have younger average T2 values implies that those alleles tend to 258	
have larger L values as shown in D) and E). 259	

We next used the simulations to test our method’s ability to estimate the strength of 260	
selection. We found that for alleles where, for instance 4Ns is -50, the estimated values of 261	
selection tend to be equally distributed around values of -50 or 50 (Figure 3A).  A similar result 262	
is seen for the 4Ns values equal to 100. This reinforces that in a constant size population one 263	
can only provide reasonable estimates of the absolute strength of natural selection. Indeed, 264	
when we display the estimated absolute value of the strength of selection, we see that our 265	
method produces nearly unbiased estimates (Figure 3B).  266	

	267	
Figure 3.- Estimation of the strength of natural selection in a constant population size 268	
model using 𝟏𝟎,𝟎𝟎𝟎 realized values of 𝑳 from 𝟏𝟎,𝟎𝟎𝟎 pairs of haplotypes, where each 269	
pair was sampled from an independent loci in 1% frequency alleles. A) Estimated selection 270	
values. B) Estimated selection magnitudes (absolute values of 4Ns). ‘Real 4𝑁𝑠 values’ refers to 271	
the 4𝑁𝑠  values used in the simulations, while ‘Estimated 4𝑁𝑠  values’ refers to the values 272	
estimated by our method. The dashed lines are placed on values that match 4𝑁𝑠 values used in 273	
the simulations. The median value of the estimates of 4𝑁𝑠 is shown with a solid line. The green 274	
lines in A) and B) indicate estimated values of 4𝑁𝑠, where there are 100 estimated values for the 275	
five 4𝑁𝑠 values inspected. Each estimated 4𝑁𝑠 value uses 10,000 L values. 276	
 277	

Evaluation of inference performance for non-equilibrium demographic scenarios 278	

	279	
Following our analysis for constant-size populations, we next analyzed the shape of the average 280	
allele frequency trajectory in a population expansion scenario (Figure 4A) for 1% frequency 281	
alleles with different 4𝑁𝑠 values. Unlike in the constant population size scenario, we found 282	
distinct average allele frequency trajectories for alleles under positive or negative selection 283	
(Figure 4B): alleles under positive selection on average had increased in frequency moving 284	
forward in time, while alleles under negative selection on average had increased in frequency 285	
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before the expansion and then decreased after the expansion due to the increased selection 286	
efficacy in the large population. The ages of alleles under the strongest absolute values of 287	
selection tend to be younger, and alleles with the same |4𝑁𝑠| value but different 4𝑁𝑠 value differ 288	
in the mean and standard deviation of their allele ages (Figure 4C). The distributions of pairwise 289	
coalescent times for allele carriers show concordant patterns (Figure 4D): alleles under the 290	
stronger positive selection had, on average, younger T2 values than negatively selected alleles 291	
of the same magnitude. Further, when we contrasted the T2 distribution of the negatively 292	
selected alleles inspected (4𝑁𝑠 = -50, -100), we saw that their mean T2 value did not differ 293	
much, and their biggest difference was due to a slightly smaller standard deviation in the most 294	
deleterious allele (Figure 4D). 295	

We next used our method to infer the strength of selection for this expansion scenario 296	
and found that it can provide approximately unbiased estimates of the sign and strength of 297	
selection (Figure 5, using 10,000 realized values of L from 10,000 pairs of haplotypes at 298	
independent loci). This does not mean we can differentiate between positive and negative 299	
selection in all non-equilibrium models. The power to do so will be dependent on the parameters 300	
of the non-equilibrium demography being studied. As an example, in an ancient bottleneck 301	
scenario we find there are no significant differences in the distribution of T2 between alleles that 302	
have the same absolute strength of selection, indicating that we would not be able to 303	
differentiate between alleles under positive or negative selection under this demographic model 304	
(Supplementary Figure S1). 305	
 306	
	307	

	308	
Figure 4.- Properties of alleles sampled at a 𝟏% frequency under different strengths of 309	
selection in a population expansion scenario. A) Population expansion model analyzed. B) 310	
Mean allele frequency at different times in the past, in units of generations. Note that alleles 311	
under the same absolute strength of selection (4𝑁𝑠 ) have very different average allele 312	
frequency trajectories, in contrast to the constant population size scenario (Fig 2); C) Probability 313	
distribution of allele ages and D) Probability distribution of pairwise coalescent times T2. The dot 314	
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and whiskers below C) and D) represent the mean value of the distribution and the two whiskers 315	
extend at both sides of the mean until max(mean +- s.d. ,0). 316	

  317	
	318	
Figure 5.- Estimation of the strength of natural selection in a population expansion model 319	
for 1% frequency alleles. The green lines indicate one estimated value of 4𝑁𝑠. ‘Real 4𝑁𝑠 320	
values’ indicate the 4𝑁𝑠 values used in the simulations and ‘Estimated 4𝑁𝑠 values’ refers to the 321	
values estimated by our method. The median value of the estimates of 4𝑁𝑠 is shown with a 322	
solid line. The recombination rate in the simulated 250 kb region for the most recent epoch was 323	
set equal to 𝜌 = 4𝑁𝑟 = 1,000 and the mutation rate was set equal to 𝜃 = 4𝑁𝑢 = 1,000.  324	
 325	
A method for inference of the distribution of fitness effects for variants found at a 326	
particular frequency (“𝐷𝐹𝐸!”)	327	

	328	

Our composite likelihood framework is extendible to find the distribution of fitness effects 𝐷𝐹𝐸! 329	

for a set of variants at a particular frequency f. This distribution, which we denote as 𝐷𝐹𝐸!, is 330	

different from the canonical DFE, which represents the distribution of fitness effects of new 331	
mutations that recently entered the population. To parameterize the 𝐷𝐹𝐸! we use a discretized, 332	

partially collapsed gamma distribution following studies that use a gamma distribution (Boyko et 333	
al. 2008; Kim et al. 2017). We parameterize the gamma component with two parameters that 334	
represent the shape 𝛼 and scale 𝛽. We discretize the distribution to cover only integer values of 335	
4𝑁𝑠 for computational reasons, and then collapse the probabilities for all values greater than a 336	
threshold 4𝑁𝑠 value (which we denote as 𝜏) to a single point mass. The point mass probability is 337	
necessary to facilitate the integration over 4𝑁𝑠 values when computing ℒ(𝛼,𝛽,𝐷, 𝑓|𝐿 ∈ 𝑤!). We 338	
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denote the resulting distribution as 𝐷𝐹𝐸!(𝛼,𝛽). In practice, we explore different values of 𝛼 and 339	

𝛽 while keeping the value of 𝜏 fixed to a large value (i.e 300), effectively representing strongly 340	
selected variants (see Methods).  341	

The likelihood of having a certain distribution of identity by state lengths L given a 342	
demographic scenario D, a variant at a frequency f and two parameters 𝛼 and 𝛽 is equal to: 343	
 344	

ℒ(𝛼,𝛽,𝐷, 𝑓|𝐿 ∈ 𝑤!) = 𝑃 𝐿 ∈ 𝑤! 4𝑁𝑠, 𝑓,𝐷 𝑃(4𝑁𝑠|𝛼,𝛽) 𝑑4𝑁𝑠!
!!"!!    (3) 345	

Where 𝑃 𝐿 ∈ 𝑤! 4𝑁𝑠, 𝑓,𝐷 = ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) and was introduced in equation 1. 346	
 347	
Testing the inference of the distribution of fitness effects for variants found at a 348	
particular frequency (“𝑫𝑭𝑬𝒇”) 349	

We tested if the distribution of haplotype lengths L can be used to estimate the parameters that 350	
define the distribution of fitness effects of variants at a particular frequency. We used 351	
distributions of 100,000 L values obtained via simulations under the constant population size 352	
and population expansion demographic model from the past sections under two distributions of 353	
fitness effect of new mutations estimated in different species: one from humans (shape = 0.184; 354	
scale = 319.8626; N = 1000) (Boyko et al. 2008) and another one from mice (shape = 0.11; 355	
scale = 8636364; N = 1000000)  (Halligan et al. 2013).  356	

We found that the estimated parameters of the shape (𝛼) and scale (𝛽) of the 𝐷𝐹𝐸! of 357	

1% frequency variants in a sample of 4,000 chromosomes have considerable variation (Figure 358	
6A,B). However, the estimated shape and scale of the 𝐷𝐹𝐸! typically imply the correct mean 359	

value of the 𝐷𝐹𝐸! (estimates lie along the red-dashed lines in Figure 6). This can be better seen 360	

in Supplementary Figure S2. We found that the estimated 𝐷𝐹𝐸!  parameters on constant 361	

population sizes define a 𝐷𝐹𝐸! with a mean 4𝑁𝑠 value that, on average, is almost equal to the 362	

mean 4𝑁𝑠  value found across 50,000 simulated 1% frequency variants. In a population 363	
expansion scenario (Figure 6C,D), the estimated 𝐷𝐹𝐸! parameters imply a 𝐷𝐹𝐸! with a mean 364	

4𝑁𝑠 value that is slightly lower than the actual mean 4𝑁𝑠 value, and with considerably higher 365	
variance in the estimated mean (Supplementary Figure S2). 366	

 367	
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		368	
Figure 6.- MLEs of the parameters that define the distribution of fitness effect for variants 369	
at a 1% frequency. We tested if our method was capable of estimating the parameters of the 370	
𝐷𝐹𝐸! of variants at a particular frequency in two demographic models and two DFE’s. The shape 371	
(𝛼) and scale (𝛽) parameters define the compound 𝐷𝐹𝐸! distribution. Each black dot represents 372	
the 𝛼 and 𝛽 parameter estimated using a set of 100,000 L values simulated independently. The 373	
dotted red line represents a combination of shape and scale parameters from a gamma 374	
distribution that give an identical mean 4Ns value to the mean 4Ns value of the underlying 375	
𝐷𝐹𝐸!. The grid of scale parameters explored goes from (0.01, 0.02, …, 0.3) and the grid of shape 376	
parameters explored goes from (5, 10, … , 350). 377	
 378	
 379	
Method for inferring the distribution of fitness effects of new mutations 𝑫𝑭𝑬  from the 380	
distribution of fitness effects for variants at a particular frequency 𝑫𝑭𝑬𝒇  381	

 382	
The distribution of fitness effects of variants at a particular frequency (𝐷𝐹𝐸!) is related to the 383	

distribution of fitness effects of new variants DFE by equation 4 (see Methods for more detail): 384	

	𝑃! 𝒔𝒋|𝐷  =		𝑃! 𝒔𝒋 		=
!!(𝒔𝒋|!,!) !!(!|!)

!!(!|𝒔𝒋,!)
	 	 	 	 	 (4)	385	

 386	
where 𝒔𝒋  is an interval of 4𝑁𝑠 values [4𝑁𝑠0, 4𝑁𝑠1). s0 and s1 define two different selection 387	

coefficients. We used a set of non-overlapping intervals s = {[4𝑁𝑠0, 4𝑁𝑠1), [4𝑁𝑠1, 4𝑁𝑠2), [4𝑁𝑠2, 388	
4𝑁𝑠 3)… , [ 4𝑁𝑠 b-1, 4𝑁𝑠 b)} = { 𝒔𝟏, 𝒔𝟐, 𝒔𝟑,… , 𝒔𝒃  }. 𝜓  is a vector of the parameters 389	
𝜓 = {𝜓!,𝜓!,𝜓!,… ,𝜓!} that define the DFE. 390	

The probabilities 𝑃!(𝒔𝒋|𝑓,𝐷) over all the intervals in s define the distribution of fitness 391	

effects of variants at a particular frequency 𝐷𝐹𝐸! over a set of discrete bins. After inferring the 392	

𝐷𝐹𝐸!  using our composite likelihood method, we can calculate 𝑃!(𝒔𝒋|𝑓,𝐷) from the inferred 393	

𝐷𝐹𝐸! . On the other hand, 𝑃! 𝒔𝒋|𝐷 = 𝑃! 𝒔𝒋  since the demographic scenario 𝐷  does not 394	

change the proportion of new variants in a selection interval 𝒔𝒋. 𝑃! 𝒔𝒋  defines the proportion of 395	

new mutations inside a 𝒔𝒋 interval. It is equal to the DFE over a set of discrete intervals 𝒔𝒋. 396	

Regarding the other two probabilities shown in the equation, 𝑃!(𝑓|𝐷) can be estimated by 397	

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

0 100 200 3000.
00

0.
10

0.
20

0.
30

A) Constant size
Human DFE

Shape ( α )

Sc
al

e 
( β

 )

●

●
●

●●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●● ●

● ●
●
●●●
●
●

●

●

●

●
●

●● ●
●

●

●

●
●

●

0 100 200 3000.
00

0.
10

0.
20

0.
30

B) Constant size
Mouse DFE

Shape ( α )
Sc

al
e 

( β
 )

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

0 100 200 3000.
00

0.
10

0.
20

0.
30

C) Population expansion
Human DFE

Shape ( α )

Sc
al

e 
( β

 )

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

0 100 200 3000.
00

0.
10

0.
20

0.
30

D) Population expansion
Mouse DFE

Shape ( α )

Sc
al

e 
( β

 )

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 16, 2019. ; https://doi.org/10.1101/770966doi: bioRxiv preprint 

https://doi.org/10.1101/770966
http://creativecommons.org/licenses/by/4.0/


	 14 

measuring the proportion of variants at a certain frequency f given D and a set of parameters 𝝍 398	
that define the DFE. 𝑃!(𝑓|𝒔𝒋,𝐷) can be computed via simulations (see Supplementary Text for 399	

more details). 400	
	401	
Testing inference of the distribution of fitness effects of new mutations 𝑫𝑭𝑬 from the 402	
distribution of fitness effects of variants at a particular frequency (𝑫𝑭𝑬𝒇) 403	

	404	
We estimated the distribution of fitness effects of new mutations, i.e. the DFE, in a population 405	
expansion scenario given the distribution of fitness effects 𝐷𝐹𝐸! of a set of variants at a 1% 406	

frequency (Figure 7 – Boyko Human DFE; and Supplementary Figure S3 – Human DFE with a 407	

scale value that is 20 times smaller). We see that the inferred and real 𝑃! 𝒔𝒋  values match 408	

using equation (4), with some slight discrepancies that could be due to either using a 𝒔𝒋 bin that 409	

is not small enough or small inaccuracies in the estimated probabilities of 𝑃!(𝒔𝒋|𝑓,𝐷), 𝑃!(𝑓|𝐷) 410	

or 𝑃!(𝑓|𝒔𝒋,𝐷). We also note that variants at a 1% frequency tend to be less deleterious 411	

compared to new variants based on the comparison of the distributions 𝑃!(𝒔𝒋|𝑓,𝐷) against  412	

𝑃! 𝒔𝒋 . Additionally, we used our 𝐷𝐹𝐸! estimates from Figure 6 to estimate 𝑃! 𝒔𝒋 . The 𝑃! 𝒔𝒋  413	

estimates are accurate, but display a larger variance under the population expansion scenario 414	
compared to the constant size scenario (Supplementary Figure S4). 415	
	416	

 417	
		418	
Figure 7.- Inference of the distribution of fitness effects of new mutations from the 419	
distribution of fitness effects of variants at a certain frequency in deleterious variants. 420	
The DFE follows a gamma distribution with shape and scale parameters equal to 0.184 and 421	
1599.313, respectively. This is equal to the gamma distribution inferred by Boyko et al. (2008) 422	
after adjusting the population sizes to the population expansion demographic model used. The 423	
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demographic model has a population that grows from 5,000 to 50,000 individuals in the last 100 424	
generations (see also Figure 4A). ‘Real 𝑷𝝍 𝒔𝒋 ’ refers to the probability of having a 4𝑁𝑠 value in 425	
a certain interval 𝒔𝒋 given the distribution of fitness effects of new mutations with parameters 𝝍. 426	
‘𝑷𝝍(𝒔𝒋|𝒇,𝑫)’ is the probability of having a 4𝑁𝑠 value in an interval 𝒔𝒋 given the distribution of 427	
fitness effects DFE with parameters 𝝍 and the demographic scenario D in f = 1% frequency 428	
variants. We calculated 𝑷𝝍(𝒔𝒋|𝒇,𝑫)  from a set of ~  40,000 4𝑁𝑠  1% variants obtained via 429	
PReFerSim simulations under the DFE and the population expansion scenario (see 430	
Supplementary Text). ‘Inferred 𝑷𝝍 𝒔𝒋 ’ is an estimate of the probability of having a 4𝑁𝑠 value in 431	
a certain interval 𝒔𝒋 given the distribution of fitness effects of new mutations with parameters 𝝍 432	
using 𝑷𝝍(𝒔𝒋|𝒇,𝑫) and equation 4. The selection coefficient s refers exclusively to the action of 433	
deleterious variants in this plot. 434	
 435	

Application: Inference of the distribution of fitness effects of 𝟏% frequency variants in 436	
the UK10K dataset 437	
	438	
We inferred the distribution of fitness effects of the 273 1% ± 0.05% frequency variants at non-439	
CpG nonsynonymous sites that are more than 5 Mb away from the centromere or telomeres in 440	
the phased UK10K haplotype reference panel. The panel was statistically phased with Shapeit2 441	
(Delaneau et al. 2013b), which previous analyses have shown produces a low haplotype 442	
phasing error (switch error rate approximately < 2.0%) for low-frequency alleles (Delaneau et al. 443	
2013a). Our method assumes that phasing errors will be similar in the nonsynonymous and 444	
synonymous variants, implying that differences in the distribution of L will be due to selection 445	
instead of phasing errors. We discarded a set of related individuals along with other individuals 446	
with no clear European ancestry from the haplotype panel, as previously defined (Walter et al. 447	
2015). In the end, we obtained a set of 3,621 individuals (7,242 haplotypes) from the UK10K 448	
haplotype panel. 449	

We used an ABC algorithm to infer the demographic scenario that explains the 450	
distribution of L for the 152 non-CpG synonymous variants at a 1% ± 0.05% frequency that are 451	
more than 5 Mb away from the centromere or telomeres (see Supplementary Methods, 452	
Supplementary Figure S5). CpG sites were removed before estimating L around the non-CpG 453	
synonymous sites. We removed CpG sites by excluding sites preceded by a C or followed by a 454	
G (McVicker et al. 2009). Due to computational reasons, in the ABC method we scaled the 455	
population size down by a factor of five while increasing the mutation rate 𝜇, selection coefficient 456	
s and recombination rate r by the same factor of five to keep 4𝑁𝑠, 𝛩 = 4𝑁𝜇  and 𝜌 = 4𝑁𝑟 457	
constant. That same scaling was used in all the simulations described in this section and in our 458	
inference of selection in the UK10K data. We will refer to the inferred scaled model as the 459	
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‘scaled UK10K model’ and we will refer to the model without the scaling as the ‘UK10K model’. 460	
We find that in the upstream and downstream 250 kb regions surrounding the 152 synonymous 461	
1% frequency variants and the 273 nonsynonymous 1% frequency sites there is a similar 462	
proportion of exonic sites (Mann-Whitney U test p-value = 0.876), PhastCons element sites 463	
(Mann-Whitney U test p-value = 0.299), and the average strength of background selection 464	
(Mann-Whitney U test p-value = 0.605) based on the B values (McVicker et al. 2009). The 465	
distributions of B values indicate that similar strengths of background selection are acting on the 466	
synonymous and nonsynonymous sites, and should reduce genetic variation similarly on 467	
regions surrounding both categories of sites. Therefore, the demographic model we inferred for 468	
the synonymous variants can be used to model the evolution of the nonsynonymous variants 469	
since the reduction in genetic variation due to background selection is similar on the haplotypes 470	
surrounding both types of variants (Supplementary Figure S6). The approach of inferring the 471	
demographic model using synonymous sites is not novel for analyses with the site frequency 472	
spectrum and helps control for the effects of background selection (Boyko et al. 2008; Huber et 473	
al. 2017; Kim et al. 2017; Tataru et al. 2017).  474	

We performed simulations under the scaled UK10K model inferred using the ABC 475	
algorithm. We found that the frequency trajectories and allele ages are significantly different 476	
between alleles under different strengths of selection (Figure 8). However, the distribution of T2 477	
values is very similar for deleterious alleles that experience up to a twofold difference in the 478	
amount of selection acting upon them. This is important to note since the distribution of T2 479	
values is one of the most important factors, along with the mutation and recombination rate, 480	
determining the resolution of our approach to infer selection.  481	

We also performed simulations to analyze if the amount of information present in the 482	
UK10K dataset was sufficient to infer selection coefficients in 1% frequency variants. Our 483	
approach takes into account the differences in recombination rates on the regions surrounding 484	
each variant on the genome in the UK10K data (Supplementary Methods). We performed 100 485	
simulation replicates, where each replicate mimics the amount of information present in the 486	
UK10K dataset. Each replicate contains 273 independent loci with 72 haplotypes containing the 487	
derived allele. The recombination rates, both to the left and right side of the loci, were assigned 488	
based on the average per base recombination rate in the 250 kb region surrounding each 489	
variant (see Supplementary Figure S7). We calculated L moving upstream and downstream of 490	

the focal loci, obtaining 722 × 2 × 273 L values for each simulation replicate. Using data 491	

simulated under 5 different selection coefficients, we found that we were able to obtain accurate 492	
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estimates of selection when the variants were neutral or under positive selection. When we 493	
simulated deleterious variants, we found that our estimates of selection tended to be biased 494	
towards being more neutral than the actual 4𝑁𝑠 value. However, the true value was within the 495	
10th and 90th percentile of the distribution of estimated values (Supplementary Figure S8). We 496	
obtained similar results when the simulated 273 loci shared the same recombination rate 497	

(Supplementary Figure S9). We obtained equally accurate estimates of 𝑃! 𝒔𝒋  on the 𝒔𝒋 498	

intervals when we performed simulations using the Boyko distribution of fitness effects under 499	
the scaled and UK10K demographic model (Supplementary Figure S10-S11; Supplementary 500	
Table S2-S3).   501	

 502	
 503	

	504	
Figure 8.- Properties of alleles sampled at a 𝟏% frequency under different strengths of 505	
natural selection in the scaled UK10K model inferred in the UK10K data. A) Population 506	
model inferred in the UK10K dataset. B) Mean allele frequency at different times in the past, in 507	
units of generations. C) Probability distribution of allele ages and D) Probability distribution of 508	
pairwise coalescent times T2. The dot and whiskers below C) and D) represent the mean value 509	
of the distribution and the two whiskers extend at both sides of the mean until max(mean +- s.d. 510	
,0). 511	

 512	
We performed bootstrap replicates of the L values from the 273 1% frequency 513	

nonsynonymous variants of the UK10K dataset and the 152 1% frequency synonymous variants 514	
to evaluate the variation in our estimates of 4𝑁𝑠. We removed CpG sites before estimating the L 515	
values surrounding the nonsynonymous and synonymous variants. The variation around the 516	
estimates using bootstrap replicates is shown in Supplementary Figure S12, where we see that 517	
the point estimates in the replicates tend to be close to a 4𝑁𝑠  value equal to 0 for both 518	
nonsynonymous and synonymous variants. We performed the inference on the 1% frequency 519	
synonymous variants because an inferred 4𝑁𝑠 value that was nominally different from 0 would 520	
indicate problems with our methodology such as a misspecified demographic model.  521	
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We used the L values for the 273 nonsynonymous variants at a 1% frequency to infer 522	
the parameters of the distribution of fitness effects 𝐷𝐹𝐸!. We assume that no derived variants 523	

we observe are under positive selection and that the 𝐷𝐹𝐸! follows a gamma distribution with a 524	

point mass, as explained in the section Inference of the distribution of fitness effects of variants 525	
at a particular frequency. When we solved the integral from Equation 3, we used discretized 526	
values of 4𝑁𝑠  that went from 0 to 75, and we defined that  𝑃 4𝑁𝑠 = 𝐾 = −75|𝛼,𝛽 = 1 −527	

𝑃 4𝑁𝑠 = 𝑖|𝛼,𝛽!!!!"
!!! . We only explored 4𝑁𝑠 values from 0 to -75 because we only had high 528	

resolution for those 4𝑁𝑠  values (as indicated by ESS values bigger than 100, see 529	
Supplementary methods for an explanation of ESS values; Supplementary Figure S13). We 530	
inferred a scale value of 0.01 and a shape value of 0.03. Based on a set of bootstrap replicates, 531	
we found that our estimates clustered on the edges of the shape parameter values explored 532	
(Supplementary Figure S14). This effect is specific to the inferred demographic scenario for the 533	
UK10K dataset, since we did not observe the same phenomenon in the simulations done under 534	
the constant population size and population expansion demographic scenarios we explored 535	
previously (Figure 6). Based on our estimates of the 𝐷𝐹𝐸!, we estimated 𝑃! 𝒔𝒋  by employing 536	

Equation 4 and using 𝑃!(𝑓|𝐷)  (see Supplementary Methods for an explanation of our 537	

calculation of 𝑃!(𝑓|𝐷)). We compared those values with previously obtained estimates (Boyko 538	

et al. 2008; Kim et al. 2017). The point estimates of 𝑃! 𝒔𝒋  along with the 90% bootstrap 539	

percentile intervals for other 𝒔𝒋 intervals are shown in Figure 9 and Supplementary Figure S15. 540	

We also show information for other bootstrap percentile intervals on Supplementary Table S4. 541	
Based on our 90% bootstrap percentile intervals we find that our estimate of 𝑃! 𝒔𝒋 ∈ [5,50)  is 542	

smaller than the probabilities computed by Boyko et al. 2008 and Kim et al. 2017. On the other 543	
hand, the estimate of 𝑃! 𝒔𝒋 ∈ [50,∞)  was bigger than the estimates of Boyko et al. 2008 and 544	

Kim et al. 2017. The probabilities of having a value of selection s over different orders of 545	
magnitude are shown on Supplementary Table S5 and are compared with the probabilities 546	
obtained by (Boyko et al. 2008; Kim et al. 2017). We also computed p-values under the null 547	
hypothesis that there is no difference between the estimated 𝑃! 𝒔𝒋  values from the data and 548	

the 𝑃! 𝒔𝒋  from the Boyko distribution of fitness effects (see Supplementary Figure S16). The 549	

p-values were bigger than 0.05 for the three intervals 𝒔𝒋 ∈ [0,5), 𝒔𝒋 ∈ [5,50) and 𝒔𝒋 ∈ [50,∞). 550	

Therefore, the distribution of fitness effects is not different from the distribution of fitness effects 551	
estimated by Boyko et al. (2008) over the three 𝒔𝒋 intervals inspected.  552	

 553	
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 554	
Figure 9.- Inferred distribution of fitness effects of new mutations and 1% frequency 555	
deleterious variants in the UK10K dataset. ‘Inferred 𝑃𝝍 𝒔𝒋 ’ refers to the probability of having 556	
a 4𝑁𝑠 value in a particular interval 𝒔𝒋 given the distribution of fitness effects of new mutations 557	
DFE. We estimated 𝑃𝝍 𝒔𝒋  for the sj interval = [5, 50) by summing up the 𝑃𝝍 𝒔𝒋  probabilities 558	
over the invervals [5, 10), [10, 15), [15, 20), [20, 25), [25, 30), [30, 35), [35, 40), [40, 45) and [45, 559	
50). The selection coefficient s refers exclusively to the action of deleterious variants in this plot. 560	
We compared our inferences with those of Boyko et al. (2008) and Kim et al. (2017). The two 561	
triangles shown in each 𝒔𝒋  interval denote the upper and lower limit of the 90% bootstrap 562	
percentile interval across 100 bootstrap replicates. The asterisk signs are the mean values for 563	
the inferred probabilities 𝑃𝝍 𝒔𝒋  calculated from 100 bootstrap replicates.  Despite the fact that 564	
the estimated Boyko et al 2008 𝑃𝝍 𝒔𝒋  values fall outside of the 90% bootstrap percentile from 565	
the inferred 𝑃𝝍 𝒔𝒋  in the intervals 𝒔𝒋 ∈ [5,50)  and 𝒔𝒋 ∈ [50,∞) , these differences are not 566	
significant according to p-values computed under the null hypothesis that there is no difference 567	
between the estimated 𝑃! 𝒔𝒋  values and the 𝑃! 𝒔𝒋  from the Boyko distribution of fitness 568	
effects (see Supplementary Figure S16).  569	

Discussion 570	

	571	
We have developed a composite likelihood method to estimate the strength of natural selection 572	
acting on alleles at a certain frequency in the population. Our method builds upon previous work 573	
showing signatures of higher linkage disequilibrium for putatively deleterious alleles in 574	
comparison with neutral alleles (Kiezun et al. 2013). This result was shown to be in line with 575	
Takeo Maruyama’s work showing that deleterious alleles at a certain frequency tended to be 576	
younger than neutral alleles in constant population sizes (Maruyama 1974). Here we introduce a 577	
method to estimate the strength of natural selection based on linkage disequilibrium using the 578	
pairwise identity by state lengths L. 579	

We found that the distribution of L captures differences in the absolute strength of the 580	
selection coefficient 4𝑁𝑠 in a constant population size scenario. The mean allele frequency 581	
trajectory is practically identical for deleterious and advantageous alleles experiencing the same 582	
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amount of selection; therefore, any statistic based on haplotype signatures will be insufficient in 583	
that scenario to distinguish between positive and negative selection.   584	

On the other hand, we found that the distribution of L is sufficient to differentiate between 585	
advantageous and deleterious alleles under some non-equilibrium demographic scenarios, 586	
including the demographic scenario inferred from the UK10K dataset. This is encouraging, since 587	
most natural populations are very likely to have evolved under a non-equilibrium demographic 588	
scenario and it is precisely in such scenarios where we would like to be able to differentiate 589	
between alleles with different types of selection. 590	

The mean allele frequency trajectories of deleterious alleles segregating at a 1% 591	
frequency when the population is expanding are particularly noteworthy. These alleles tend to 592	
have increased in frequency when the population size is low. Then, they decrease in frequency 593	
when the population expands due to a higher efficacy of selection. This suggest that it is likely 594	
that, on average, deleterious alleles would tend to come from higher frequencies in the recent 595	
past in expanding populations. These simulations of allele frequency trajectories under several 596	
demographic scenarios are useful to understand past fluctuations in frequency and haplotypic 597	
patterns one might expect for selected alleles. Recent work has analyzed how different 598	
summaries of genetic variation change over time in non-equilibrium scenarios (Peischl et al. 599	
2013; Lohmueller 2014a; Simons et al. 2014; Do et al. 2015; Henn et al. 2015; Balick et al. 600	
2015; Brandvain & Wright 2016; Marsden et al. 2016; Koch & Novembre 2017), and analyzing 601	
the behavior of frequency trajectories is helpful to understand those changes.  602	

When we estimated parameters that define the 𝐷𝐹𝐸! of segregating variants, we found 603	

that our method can provide reasonable estimates of the parameters that would lead to 604	
estimating a sensible value of the mean of the 𝐷𝐹𝐸! in several scenarios. Under a constant 605	

population size, the scale estimates of the 𝐷𝐹𝐸!  are inversely correlated with the shape 606	

parameters. Note that this curve decay causes the product of the scale and shape parameters 607	
to have relatively similar values. Under a population expansion model, the estimates of the 608	
shape and scale show a wider variation around the curve than the constant population size 609	
scenario (Figure 6). Similarly, the pairwise coalescent time T2 distribution between variants with 610	
different negative selection coefficients appear more similar to each other in a population 611	
expansion scenario as compared to a constant population size scenario (Figure 4D and 2C). 612	
Due to the greater variation in the estimates of the parameters that define the 𝐷𝐹𝐸! of variants 613	

at a 1% frequency, we also see a larger variation in the mean 4𝑁𝑠 values estimated in a 614	
population expansion as compared to a constant population size demographic scenario 615	
(Supplementary Figure S2). Estimates of the mean 4𝑁𝑠  values are more precise under a 616	
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constant population size compared to the population expansion scenario. For the UK10K 617	
demographic scenario and the scaled UK10K model, where there is a large recent population 618	
expansion, we saw that the proportion of 4𝑁𝑠 values smaller than 5 tended to be overestimated 619	
while the proportion of 4𝑁𝑠 values larger than 5 were underestimated based on the analysis of 620	
simulations using the Boyko et al. (2008) DFE. The consequence is that the mean 4𝑁𝑠 value 621	
would tend to be underestimated under the UK10K demographic scenario and the scaled 622	
UK10K demographic scenario (Supplementary Figure S10-S11). It is likely that this 623	
underestimation will be seen in other scenarios with large recent population expansions. 624	

One technical aspect from our methodology that could be subject to future improvement 625	
is that the space of scale and shape parameters we explore is limited due to low effective 626	
sample size (ESS) values. In the case of the UK10K dataset, the ESS are smaller than 100 627	
in 4𝑁𝑠 values smaller than -75 (Supplementary Figure S12). To increase the values of the ESS, 628	
one possible improvement of our method is to make better proposals for the allele frequency 629	
trajectories going backwards in time. That is, to improve our choice of the importance sampling 630	
distribution. Future work will be devoted to make improvements in this issue, particularly in 631	
populations undergoing recent large expansions. One possibility is to expand the theory of 632	
Wright-Fisher bridges to select trajectories that end at a certain frequency f in the present under 633	
non-equilibrium scenarios (Schraiber et al. 2013). We did not find the same pattern of low ESS 634	
values in the other two demographic scenarios we analyzed, where the population sizes did not 635	
experience changes in population size of the same magnitude as in the demographic model 636	
inferred in the UK10K data. 637	

Using the UK10K data, we obtained a point estimate, along with 90% bootstrap interval 638	
calculations, of the DFE. Our point estimates are consistent with point estimates obtained using 639	
information from the site frequency spectrum (Boyko et al. 2008) (Supplementary Figure S16). It 640	
is possible that we find discrepancies between the estimated DFE in other species or 641	
populations using haplotypic information compared to using data from the site frequency 642	
spectrum. In a similar vein, important discrepancies on the inferred past demographic histories 643	
on human populations have been found when using site frequency spectrum data and 644	
haplotypic information, and some of the potential causes of the differences have been carefully 645	
discussed previously (Harris & Nielsen 2013; Hsieh et al. 2016; Beichman et al. 2017). 646	
Technical aspects of the data that can impact the demographic inferences when using 647	
haplotypic data include: 1) Switch errors during statistical phasing which cause a bias towards 648	
more recent split-time estimates (Song et al. 2017), 2) Uncalled heterozygous sites due to low 649	
genomic coverage which causes a bias towards lower effective population size estimates 650	
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(Nadachowska-Brzyska et al. 2016), 3) Not filtering low coverage, potentially false positive 651	
variants, which can produce poor estimates of sudden contractions or expansions 652	
(Nadachowska-Brzyska et al. 2016).  653	

With respect to the potential impact of switch errors in our inference, the UK10K project 654	
does not report switch error rates, but we would expect them to be even lower than those of the 655	
1000 Genomes Project (estimated to be 0.56% with a mean of distance of ~1,062 kb between 656	
errors) (Auton et al. 2015), due to the fact that the UK10K has approximately 50% more 657	
samples than the 1000 genomes project, and all the samples come from the same population. 658	
We expect to see the impact of phasing errors to be small in our data since we are using 659	
window sizes of 500 kb in our analysis; this window size is smaller than the mean distance 660	
between switch errors in the 1000 Genomes Data, and the mean distance between switch 661	
errors is likely to be even larger in the UK10K project. 662	

Our inferences of the DFE can be impacted due to the low genomic coverage present in 663	
the UK10K dataset (~4x on average). However, the estimate of the percentage of genotypes 664	
correctly called in the UK10K dataset is equal to 99.688% for common variants with a frequency 665	
bigger than 5%, and 99.999% for singletons (Walter et al. 2015). This indicates that the 666	
sequencing strategy carried out in the UK10K dataset should not have a large impact on our 667	
estimates of the DFE due to wrongly called genotypes across individuals. 668	

Apart from the technical aspects that could be impacting our estimates of the DFE, there 669	
are biological phenomena that could be responsible for differences in the DFE estimates we see 670	
when we use site frequency spectrum information and haplotypic data. One of those 671	
phenomena is linked selection, which reduces the genetic variation in neutral sites next to an 672	
allele under either positive or negative selection (Cutter & Payseur 2013). Linked selection will 673	
increase the lengths of the pairwise haplotype lengths in the synonymous sites used to infer the 674	
demographic scenario and in the nonsynonymous sites used to infer the distribution of fitness 675	
effects. Previous work estimating the distribution of fitness effects using site frequency spectrum 676	
information has shown that using synonymous sites to estimate the demographic scenario 677	
controls for the effect of linked selection and gives an accurate estimation of the DFE (Huber et 678	
al. 2017). We expect the same effect to take place when using haplotypic information.  679	
Specifically the amount of linked selection is predicted to be similar between synonymous and 680	
nonsynonymous variants at 1% frequency (see caption Supplementary Figure S6), indicating 681	
that the increase in pairwise haplotype lengths should be similar for both synonymous and 682	
nonsynonymous sites.  683	
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Another biological phenomenon that could impact our DFE estimates is the 684	
incompleteness of the demographic model fitted to the data (Harris & Nielsen 2013; Garud et al. 685	
2015; Beichman et al. 2017). We are fitting a demographic model with one deme to the UK10K 686	
dataset, and it is possible that fitting a model with population structure could give a better fit to 687	
the haplotypic data and to the site frequency spectrum data (Harris & Nielsen 2013). We also 688	
are not modelling non-crossover gene conversion (Andolfatto & Nordborg 1998; Korunes & 689	
Noor 2017). Non-crossover gene conversion events involve haplotype tracts of approximately 690	
100-1000 bp and the probability that any site in the genome is involved in a non-crossover gene 691	
conversion event is 5.9 𝑋 10-6 / bp / generation (Williams et al. 2015).  Their impact is to break 692	
down linkage disequilibrium, which in our model, for a single variant would result in inferences 693	
that are biased towards neutrality; however, in aggregate if it impacts LD around synonymous 694	
and nonsynonymous variants equally, the effect on inferences may be minor. Nonetheless, 695	
modelling noncrossover gene conversion could improve models of the haplotype signatures of 696	
selection. 697	

As another factor, changes on the DFE over time could lead to differences in the inferred 698	
DFE from the site frequency spectrum and the haplotypic data. DFE estimates from the site 699	
frequency spectrum data use information from variants that have appeared across a broad 700	
range of time. On the other hand, the haplotype data we used comes from 1% frequency 701	
variants that have appeared recently. The relaxation of selective pressures across time is one 702	
way to change the selective coefficient of variants to make them more neutral (Somel et al. 703	
2013; Lynch 2016). Our results argue in favor of conserved selective coefficients over time in 704	
humans, in line with recent results (Fortier et al. 2019). 705	

Although here we analyzed the distribution of fitness effects of nonsynonymous variants 706	
at a certain frequency, it is possible to determine the distribution of fitness effects of variants 707	
within specific functional categories. One possibility is to try to determine the strength of 708	
selection of alleles on variants that are predicted to be more deleterious based on the Fitcons 709	
(Gulko et al. 2015), SIFT (Sim et al. 2012), Polyphen (Adzhubei et al. 2010) or C-scores 710	
(Kircher et al. 2014; Racimo & Schraiber 2014). It is also be possible to estimate the strength of 711	
selection in a set of alleles that have a particular collection of genomic features (Huang & Siepel 712	
2019).  This can help us to obtain genome-wide estimates of the selection coefficient of variants 713	
based on their predicted functional category. This is of particular interest to genome-wide 714	
association studies, due to the interest in understanding the association between associated 715	
variants and their selection coefficients on different complex traits. Additionally the use of the 716	
newly developed tree-sequence framework (Kelleher et al. 2018; Haller et al. 2019) for 717	
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simulations should also help to speed up the calculation of the likelihood of different values of 718	
selection in the part of our method that depends on Monte Carlo simulations. Another future 719	
avenue of research is to infer the distribution of selection coefficients of new mutations 720	
combining information from the DFEf inferred at many different frequencies in the population. 721	
Combining information from variants at many frequencies is likely to increase the accuracy of 722	
estimates of the distribution of fitness effects of new variants, and could detect changes in the 723	
distribution of fitness effects of new variants through time.  724	

 725	

Methods 726	

 727	
Inference of selection 728	
 729	
The likelihood of having a particular selection coefficient 4𝑁𝑠  conditioning on the allele 730	
frequency f and the demographic scenario D using information from one length 𝐿 ∈ 𝑤! can be 731	
estimated as: 732	
 733	

ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) = 𝑃 𝐿 ∈ 𝑤! 𝐻! 𝑃 𝐻! 4𝑁𝑠, 𝑓,𝐷 𝑑𝐻! 

 734	
where Hi is a particular allele frequency history, i.e. a trajectory of allele counts from when the 735	
allele first appears in the population until the present. We can compute 𝑃 𝐿 ∈ 𝑤! 𝐻!  via Monte 736	
Carlo simulations done using mssel (Kindly provided by Richard Hudson), which assumes the 737	
structured coalescent model to simulate haplotypes containing a site whose frequency trajectory 738	
is determined by Hi. We used mssel to simulate many pairs of haplotypes (10,000 independent 739	
pairs for all scenarios but the UK10K scenario, where we simulated 273 independent sets of 72 740	
haplotypes) given an allele frequency trajectory Hi and we computed the L value for each pair of 741	
haplotypes. We can use that distribution of L values for a given allele frequency Hi to find the 742	
probability 𝑃 𝐿 ∈ 𝑤! 𝐻!  that L falls in a certain window wi. It is important to appreciate that these 743	
Monte Carlo simulations can include additional information about the recombination rate present 744	
in a particular region. Using the appropriate recombination rate is important because it changes 745	
the values of L. 746	

The likelihood ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿) is found by integrating over the space of allele frequency 747	
trajectories that end at a frequency f in the present and have a selection coefficient 4𝑁𝑠. One 748	
possible way to perform that integration step is to perform many simulations under the 749	
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assumptions of the Poisson Random Field framework (Sawyer & Hartl 1992; Hartl et al. 1994) 750	
(PRF) and utilize rejection sampling to only keep those trajectories that end at a frequency f in 751	
the present. Under the PRF model, the number of mutations that enter the population each 752	
generation i have a Poisson distribution with mean 2𝑁!𝜇𝐾 =Θ/2, where Ni is the population 753	

size in generation i, 𝜇  is the mutation rate per base and K is the number of sites being 754	
simulated. The sites are independent and the frequency of each mutation changes each 755	
generation following a Wright-Fisher model with selection. We could generate many allele 756	
frequency trajectories under this framework given a particular value of 4𝑁𝑠 and just keep those 757	
trajectories that end at a frequency of f. However, this is inefficient and computationally 758	
demanding, since the vast majority of allele frequency trajectories will not end at a frequency f in 759	
the present. And it is particularly more challenging if we wish to calculate ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿) for a 760	
grid of values of 4𝑁𝑠. In the next section we show an alternative importance sampling approach 761	
we developed to perform an efficient integration over the space of allele frequency trajectories 762	
given 4𝑁𝑠 and f. 763	
  764	

Integration over the space of allele frequency trajectories using importance sampling 765	

	766	
We used importance sampling to integrate over the space of allele frequency trajectories and 767	
calculate the likelihood ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿)  over many different values of 4𝑁𝑠 . The efficient 768	
integration over the space of allele frequency trajectories is done using the importance sampling 769	
approach developed by Slatkin (2001) with a modification regarding the importance sampling 770	
distribution we use. Here, the “target” distribution 𝑓 𝑥 = 𝑃(𝐻!|𝑠, 𝑓)  are samples of allele 771	
frequency trajectories that end at a frequency f and have a selection coefficient 𝑠. 772	

Following Slatkin (2001), we can define the trajectory Hi of a derived allele a as the 773	
number of copies of the allele a present each generation since the allele appeared in the 774	
population. Therefore, 𝐻! = {𝑖! , 𝑖!!!, 𝑖!!!,… , 𝑖!, 𝑖!, 𝑖!}, where 𝑖! = 0 and 𝑖!!! = 1. The effective 775	
population sizes at those times are 𝑁 = {𝑁! ,𝑁!!!,𝑁!!!,… ,𝑁!,𝑁!,𝑁!}. The allele appears in 776	
generation T-1, where it has 1 copy in the population. 777	

We define the fitness of the genotypes AA, Aa and aa as 1, 1+s and 1+2s, respectively. 778	
Under a Wright-Fisher model with selection, the probability of moving from 𝑖! to 𝑖!!! copies of 779	
the allele going forward in time is equal to: 780	
 781	

𝑃 𝑖!!! 𝑖! = 𝑝!!,!!!! =
2𝑁!!!
𝑖!!!

𝑥!
!!!!!(1 − 𝑥!!)!!!!!!!!!!, 782	
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where 783	
 784	

𝑥!! = 𝑥!
!!!!!!!!(!!!!)

!!!!!!!!!!!!(!!!!)
. 785	

The frequency of the allele at generation t is 𝑥! =
!!
!!!

. 786	

As a “importance sampling” distribution g(x), we use a very similar process to a Wright-787	
Fisher neutral model. We start with the count y of the number of derived alleles a in the present 788	
based on a sample of n alleles. Estimating the frequency in generation 0 based on that sample 789	
of alleles is equal to the problem of estimating a probability based on binomial data. Therefore, 790	
we can follow Gelman et al. (2013) to state that the posterior density of the distribution of allele 791	
frequency 𝑓  in generation 0 is distributed as: 𝑓|𝑦 ~𝐵𝑒𝑡𝑎 𝑦 + 1, 𝑛 − 𝑦 + 1 . Based on the 792	

distribution of 𝑓, we can obtain the distribution of the number of alleles in generation 0, 𝑖!, just 793	

by multiplying 𝑖! = 𝑓𝑛 and rounding 𝑖! to a discrete value. Then we can define the probability of 794	
having i0 alleles in generation 0 given that we sampled y derived alleles in a sample of n alleles 795	
as: 796	
 797	

𝑃 𝑖! 𝑛, 𝑦 = 𝑃(𝑋 < !!!!.!
!!!

|𝐵𝑒𝑡𝑎(𝑦 + 1, 𝑛 − 𝑦 + 1)) − 𝑃(𝑋 < !!!!.!
!!!

|𝐵𝑒𝑡𝑎(𝑦 + 1, 𝑛 − 𝑦 + 1)). 798	

On the other hand, the probability that we obtain y derived alleles in a sample of n alleles given 799	
that the number of derived alleles in the population is i0 is: 800	
 801	

𝑃 𝑛, 𝑦 𝑖! =
𝑛
𝑦

!!
!!!

!
(1 − !!

!!!
)!!!. 802	

 803	
After we sample from that distribution, we move backwards in time assuming that the allele is 804	
neutral. Under this proposal distribution, if 𝑖!!! = 1, then 𝑖! can take any value from 0 to 2𝑁!. If 805	
𝑖!!! = 0 or 2𝑁! then we stop the allele frequency trajectory. If 𝑖!!! is bigger than 1 and smaller 806	
than 2𝑁!, then 𝑖! can take any value from 1 to 2𝑁!. These three rules are used together to make 807	
sure that each trajectory going forward in time always goes from 0 to 1 copy of the allele. 808	

Under the importance sampling distribution we use, the transition probabilities of going 809	
from 𝑖!!! alleles in generation t-1 to 𝑖! alleles in generation 𝑖! is: 810	
 811	
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P(it |it−1)=qit−1,it =

2Ntit
⎛
⎝
⎜

⎞
⎠
⎟xt−1it (1−xt−1)2Nt −it

1− 2Ntit
⎛
⎝
⎜

⎞
⎠
⎟xt−10 (1−xt−1)2Nt

if it−1 =(2,2Nt ) and it >0

2Ntit
⎛
⎝
⎜

⎞
⎠
⎟xt−1it (i −xt−1)2Nt −it if it−1 =1

0 if 1) it−1 =0or 2Nt ;2) it−1 =(2,2Nt )and it =0

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

812	

 813	
 814	

Where 𝑥!!! =
!!!!
!!!!!

. By generating an allele frequency trajectory with this importance sampling 815	

distribution, we can calculate the probability of any sample from this importance sampling 816	
distribution g(x): 817	

𝑔 𝑥 = 𝑃 𝑖! 𝑛, 𝑦 𝑞!!!!,!!
!

!!!
 

Finally, the probability of the whole allele frequency trajectory Hi going forward in time is then 818	
equal to: 819	
 820	

𝑃 𝐻! 𝑠, 𝑓 = 𝑓 𝑥 = 𝑃(𝑛, 𝑦|𝑖!) 𝑝!!,!!!!
!

!!!!!
 

 821	
Now that we have defined how to sample allele frequency trajectories using our proposal 822	
distribution, we can compute the weight for every simulated allele frequency trajectory Hi from 823	

g(x) as ω! =
!(!!)
!(!!)

. For some of the proposed trajectories under g(x), the trajectory will end up at 824	

a frequency of 1 going backwards into the past, instead of 0. The value of ω!  for those 825	
trajectories is defined to be equal to 0. 826	

The expected value that we wish to obtain with this problem is ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!). After 827	
generating M replicates using g(x), we can compute that expected value under the importance 828	
sampling framework: 829	
 830	

ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) =
ω!𝑃 𝐿 ∈ 𝑤! 𝐻!!

!!!

ω!!
!!!
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 831	
Using this approach, we can estimate ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) for different values of s using the 832	
same set of allele frequency trajectories generated from our importance sampling distribution. 833	
This alleviates the need to simulate a different set of allele frequency trajectories for each value 834	
of the selection coefficient s that we want to evaluate and follows the idea of a driving value 835	
(Fearnhead & Donnelly 2001). The proposal distribution g(x) is not necessarily optimal for every 836	
s value, but it is possible to verify if the distribution is reasonable based on the effective sample 837	
size (ESS) values (see Equation S1; Supplementary Methods). The ESS indicates the sample 838	
size used in a Monte-Carlo evaluation of the target distribution 𝑓 𝑥  that is equivalent to the 839	
importance sampling approach estimate. Plots of the ESS values for the two main demographic 840	
scenarios explored are shown in the Supplementary Figures S18-S19. In every demographic 841	
scenario explored, we simulated 100,000 allele frequency trajectories to evaluate 401 values of 842	
4𝑁𝑠 in discrete intervals from -200 to 200. The only values that we need to change to evaluate 843	
ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿 ∈ 𝑤!) are the importance sampling weights ω!, where we will change the value of 844	
𝑃 𝐻! 𝑠, 𝑓 = 𝑓 𝑥  depending on the value of the selection coefficient s evaluated.  845	

Finally, given a set of values 𝑳 ={L1 ∈ 𝑤!! , L2 ∈ 𝑤!! , L3 ∈ 𝑤!! , … Ln ∈ 𝑤!!}, where 𝑖!  can take 846	

any value from 1 to S, we can estimate the composite likelihood of having that set of 𝑳 values 847	
as: 848	
 849	

ℒ(4𝑁𝑠, 𝑓,𝐷|𝑳 ∈ 𝑤!) = ℒ(4𝑁𝑠, 𝑓,𝐷|𝐿! ∈ 𝑤!!)
!

!!!
 

 850	
Forward-in-time simulations to obtain mean allele frequency trajectories 851	
 852	
We used PReFerSim (Ortega-Del Vecchyo et al. 2016) to obtain 10,000 allele frequency 853	
trajectories of a 1% frequency allele under the constant-size demography scenario for 5 854	
different values of selection (4𝑁𝑠 = 0, -50, -100, 50, 100). To do those simulations, we performed 855	
many replicate simulations where the number of new mutations per generation follows a 856	
Poisson distribution with a mean equal to Θ/2 = 1,000. Those simulations were repeated until 857	
we obtained 10,000 alleles frequency trajectories where the present-day frequency f is equal to 858	
1% in a sample of 4,000 chromosomes. We did the same procedure to obtain 10,000 allele 859	
frequency trajectories of a 1% frequency allele for 5 different values of selection (4𝑁𝑠 = 0, -50, -860	
100, 50, 100) in a population expansion and an ancient bottleneck scenario. The value of Θ/861	
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2 for the most ancestral epoch was set to 1,000 in the population expansion and the ancient 862	
bottleneck scenario. 863	

In the case of the UK10K demographic scenario, we obtained 10,000 allele frequency 864	
trajectories of a 1% frequency allele for 5 values of selection (4𝑁𝑠 = 0, -25, -50, 25, 50). We 865	
performed many simulations using a Θ/2 value equal to 1,000 for the most ancestral epoch 866	
until we obtained 10,000 allele frequency trajectories. We sampled 7,242 chromosomes and 867	
retained those trajectories where f = 1% ± 0.05%. 868	
 869	
Connecting the distribution of fitness effects of variants at a particular frequency (𝑫𝑭𝑬𝒇) 870	

with the distribution of fitness effects of new mutations (𝑫𝑭𝑬) 871	
 872	

The distribution of fitness effects of variants at a particular frequency 𝐷𝐹𝐸! in the population is 873	

related to the distribution of fitness effects of new mutations DFE defined by a set of κ 874	
parameters 𝝍 = {𝝍𝟏,𝝍𝟐,𝝍𝟑,… ,𝝍𝜿} by the following equation: 875	
 876	

𝑃! 𝑓 𝒔𝒋,𝐷 =
𝑃!(𝒔𝒋|𝑓,𝐷) 𝑃!(𝑓|𝐷)

𝑃! 𝒔𝒋|𝐷
 

Where we can re-arrange the above equation to obtain: 877	

𝑃! 𝒔𝒋|𝐷 = !!(𝒔𝒋|!,!) !!(!|!)
!!(!|𝒔𝒋,!)

  878	

The events defined in that formula are: 879	
f .- The allele has an x% sample allele frequency. 880	
𝒔𝒋.- Allele has a selection coefficient 4𝑁𝑠 that falls in the interval [4𝑁𝑠j-1, 4𝑁𝑠j), where sj-1 881	

and sj define two different selection coefficients. N is the effective population size in the 882	
most ancestral epoch in the demographic scenario D. 883	

𝜓 .- A set of κ parameters 𝝍 = {𝜓!,𝜓!,𝜓!,… ,𝜓!} that define the DFE. 884	
D.- Demographic scenario. 885	

𝑃! 𝒔𝒋|𝐷  defines the distribution of fitness effects of new mutations over a set of discrete bins 886	

when using the information contained across all non-overlapping intervals σ  = {[4𝑁𝑠0, 4𝑁𝑠1), 887	
[4𝑁𝑠1, 4𝑁𝑠2), [4𝑁𝑠2, 4𝑁𝑠3)… , [4𝑁𝑠b-1, 4𝑁𝑠b)} = { 𝒔𝟏, 𝒔𝟐, 𝒔𝟑,… , 𝒔𝒃 } covering all 4𝑁𝑠 values from 0 888	
to infinite. We defined the endpoints of the first b-1 intervals to be equal to 5(i-1) and 5i, where i 889	
takes values from 1 to b - 1, in all the analysis we performed with the exception of 890	

Supplementary Table S4. The last interval was set to be equal to [5b, ∞). Since 𝑃! 𝒔𝒋|𝐷  is 891	
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independent of the demographic scenario D, then 𝑃! 𝒔𝒋|𝐷 =  𝑃! 𝒔𝒋  because 𝐷  does not 892	

impact the proportion of new variants in a selection interval sj. If we look at the information of all 893	
non-overlapping intervals σ , 𝑃!(𝒔𝒋|𝑓,𝐷) defines the distribution of fitness effects of variants at a 894	

particular frequency 𝐷𝐹𝐸! over a set of discrete bins. As seen in the section Testing inference of 895	

the distribution of fitness effects for variants found at a particular frequency (“𝐷𝐹𝐸!”), we can 896	

use the 𝑳 values to infer 𝐷𝐹𝐸!. 897	

 𝑃!(𝑓|𝐷) can be computed both in data and in simulations by measuring the proportion 898	

of variants at a certain frequency. Calculating  𝑃! 𝑓 𝐷  in genomic data requires us to calculate 899	

the proportion of variants at a frequency f. That proportion must take into account all variants 900	
that have emerged during the demographic history D, including variants that have become fixed 901	
or have been lost. To calculate 𝑃!(𝑓|𝒔𝒋,𝐷), we can make the assumption that all the mutations 902	

in the interval sj have very similar selection coefficients, which is more likely to be true when the 903	
interval is not very big. This probability can be found via forward-in-time simulations, where we 904	
simulate variants that have a selection coefficient contained in a certain interval sj in a particular 905	
demographic scenario D. Then, the proportion of variants in that simulation that have a f 906	

frequency in the present is equal to 𝑃! 𝑓 𝒔𝒋,𝐷 . 907	

 We calculate 𝑃! 𝒔𝒋  for the first b-1 intervals using Equation 4. Then, for the last interval 908	

sb we use 𝑃! 𝒔𝒃 = 1 − 𝑃!(𝒔𝒊)!!!
! . If 𝑃!(𝒔𝒊)!!!

! > 1.0 , we set the probabilities 𝑃!(𝒔𝒋) =909	

𝑃!(𝒔𝒋)/ 𝑃!(𝒔𝒊)!!!
!  for the first b-1 intervals and 𝑃!(𝒔𝒋) = 0 for the last interval b. 910	

We tested Equation 4 on two different distributions of fitness effects (Figure 7 and 911	
Supplementary Figure S3). To perform those two tests we did simulations under the Poisson 912	
Random Field model using PReFerSim (Ortega-Del Vecchyo et al. 2016) to estimate 913	
𝑃!(𝑓|𝒔𝒋,𝐷). We did those simulations using the mouse distribution of fitness effects (Halligan et 914	

al. 2013) and the population expansion demographic model. Those calculations were done 915	
across 5,000 simulation replicates where the value of Θ/2 in the first epoch was set equal to 916	
1,000. We sampled 4,000 chromosomes for each segregating site to calculate f. 917	

When we estimated the distribution of fitness effects of new variants in the UK10K data, 918	
we estimated 𝑃!(𝑓|𝒔𝒋,𝐷) by performing 1,000 replicate simulations under the inferred UK10K 919	

demographic model and the human distribution of fitness effects (Boyko et al. 2008). The value 920	
of Θ/2 in the first epoch of each simulation was set equal to 1,000. To mimic the properties of 921	
the UK10K data, we sampled 7,242 chromosomes for each segregating site. We calculated 922	
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𝑃!(𝑓|𝒔𝒋,𝐷) by counting the proportion of variants in our 1,000 simulations that have a frequency 923	

f equal to 1% ± 0.05%. 924	
 925	
Estimating L taking into account differences in local recombination rates in the UK10K 926	
dataset 927	

 928	
Apart from being dependent on the strength of selection acting on the variants, the distribution 929	
of L surrounding each variant on the genome in the UK10K data is dependent on the local 930	
recombination rate 𝜌. We took into account the local recombination rate when inferring the 931	
distribution of fitness effects using the 273 nonCpG nonsynonymous 1% frequency variants. To 932	
do this, we used our importance sampling method to obtain the distribution of L given the 933	
selection coefficient, the inferred demographic scenario, and 21 different recombination rates. 934	
To select the 21 recombination rates, we used the results from a previously inferred 935	
recombination map (Kong et al. 2010). We took the 21 different percentile values (0th, 5th, …, 95th, 936	
100th ) from the distribution of 546 average recombination rates per base taken from the 937	
upstream and downstream 250 kb regions next to the 273 nonsynonymous 1% frequency 938	
variants. In the end, we generated 21 distributions for each selection value explored, each with 939	
a different recombination rate 𝜌!. Those 21 distributions of ℒ(4𝑁𝑠, 𝑓,𝐷, 𝜌!|𝐿 ∈ 𝑤!) were used to 940	

infer selection using the upstream and downstream regions from the nonCpG nonsynonymous 941	
1% frequency variants. They were also used to infer the point estimate of 4𝑁𝑠 in the nonCpG 942	
synonymous 1% frequency variants. The ℒ(4𝑁𝑠, 𝑓,𝐷, 𝜌!|𝐿 ∈ 𝑤!) distribution used for each of the 943	

546 regions is the one where the local recombination 𝜌  is closer to 𝜌!. 944	

We evaluated the accuracy of our method to infer selection under the inferred scaled 945	
UK10K demographic scenario using simulations. We mimicked the amount of information 946	
present in the UK10K data in each simulation replicate. Each simulation replicate contains 273 947	
independent loci with 72 haplotypes containing the derived allele. The recombination rates, both 948	
to the left and right side of the loci, were equal to the average per base recombination rates in 949	
the 250 kb windows next to each locus in the data. We calculated L going to the left and right 950	

side of the focal loci, obtaining 72
2 × 2× 273 L values for each simulation replicate 951	

(Supplementary Figure S8, S10). 952	
 953	

Data availability 954	
 955	
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The programs and data to reproduce every figure of the paper can be found in 956	
https://github.com/dortegadelv/HaplotypeDFEStandingVariation . 957	
 958	
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