

1 **Chromosome-scale *de novo* assembly and phasing of a Chinese**
2 **indigenous pig genome**

3
4 Yalan Yang^{1,2,#}, Jinmin Lian^{3,#}, Bingkun Xie^{4,#}, Muya Chen^{1,2}, Yongchao Niu³,
5 Qiaowei Li^{1,2}, Yuwen Liu^{1,2}, Guoqiang Yi^{1,2}, Xinhao Fan^{1,2}, Yijie Tang^{1,2}, Jiang Li³,
6 Ivan Liachko⁵, Shawn T. Sullivan⁵, Bradley Nelson⁵, Erwei Zuo^{1,2}, Zhonglin Tang^{1,2*}

7
8 ¹ Innovation Team of Pig Genome Design and Breeding, Agricultural Genome Institute
9 at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China;

10 ² Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs,
11 Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences,
12 Shenzhen, 518124, China;

13 ³ Biozeron Shenzhen, Inc., Shenzhen, 518081, China;

14 ⁴ Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of
15 Animal Science, Nanning, 530001, China;

16 ⁵ Phase Genomics Inc, Seattle, WA 98109, USA.

17 [#] These authors contributed equally to this work.

18 *To whom correspondence should be addressed. Tel. 86-0755-23251432, Fax. 86-0755-
19 23251432. Email: tangzhonglin@caas.cn (Z.T.)

20

21 **Abstract**

22 Chinese indigenous pigs differ significantly from Western commercial pig breeds in
23 phenotypic and genomic characteristics. Thus, building a high-quality reference
24 genome for Chinese indigenous pigs is pivotal to exploring gene function, genome
25 evolution and improving genetic breeding in pigs. Here, we report an ultrahigh-quality
26 phased chromosome-scale genome assembly for a male Luchuan pig, a representative
27 Chinese domestic breed, by generating and combining data from PacBio Sequel reads,
28 Illumina paired-end reads, high-throughput chromatin conformation capture and
29 BioNano optical map. The primary assembly is ~ 2.58 Gb in size with contig and
30 scaffold N50s of 18.03 Mb and 140.09 Mb, respectively. Comparison between primary
31 assembly and alternative haplotig reveals numerous haplotype-specific alleles, which
32 provide a rich resource to study the allele-specific expression, epigenetic regulation,
33 genome structure and evolution of pigs. Gene enrichment analysis indicates that the
34 Luchuan-specific genes are predominantly enriched in Gene Ontology terms for
35 phosphoprotein phosphatase activity, signaling receptor activity and
36 phosphatidylinositol binding. We provide clear molecular evolutionary evidence that
37 the divergence time between Luchuan and Duroc pigs is dated back to about 1.7 million
38 years ago. Meanwhile, Luchuan exhibits fewer events of gene family expansion and
39 stronger gene family contraction than Duroc. The positively selected genes (PSGs) in
40 Luchuan pig significantly enrich for protein tyrosine kinase activity, microtubule motor
41 activity, GTPase activator activity and ubiquitin-protein transferase activity, whereas
42 the PSGs in Duroc pig enrich for G-protein coupled receptor activity. Overall, our
43 findings not only provide key benchmark data for the pig genetics community, but also
44 pave a new avenue for utilizing porcine biomedical models to study human health and
45 diseases.

47 **Introduction**

48 *Sus scrofa* (pig) is one of the most important domesticated animals for its enormous
49 value in food supply and biomedical research. Plenty of archaeological and molecular
50 evidence suggests that pigs were independently domesticated in the Near East and
51 China about 9,000 years ago [1-3]. The effects of geographical divergence, local
52 adaptation and artificial selection result in great phenotypic and genomic diversity
53 among pigs from distinct locations and breeds [4, 5]. In China, there are ~ 100 native
54 breeds (China National Commission of Animal Genetic Resources 2011), accounting
55 for about one-third of world breeds. To study pig genetics, the present pig reference
56 genome (Sscrofa11.1) was derived from a Western pig (the Duroc breed) [6, 7].
57 However, Eastern and Western pigs have different genetic backgrounds. To better
58 explore gene function, genome evolution and improve genetic breeding in pigs, it is of
59 great value to build a reference genome for Chinese indigenous pigs.

60 Two main challenges for assembling a state-of-the-art high-quality reference
61 genome are chromosome-scale contiguity and diploid phasing. Previous studies
62 reported multiple *de novo* assemblies of Chinese native breeds using whole-genome
63 shotgun-based strategies, and shed light on genomic and phenotype diversities of
64 Chinese domestic pigs [4, 8-10]. Nonetheless, these shotgun-based approaches cannot
65 yield large continuous genome scaffolds, significantly limiting the quality and
66 contiguity of the current Chinese pig genome assemblies. Beyond genome assembly at
67 the chromosome scale, accurate representation of haplotypes is crucial to identifying
68 single-nucleotide polymorphisms (SNPs) and structural variants (SVs), haplotype
69 structure and heterozygosities between two homologous chromosomes. Therefore, a
70 phased genome assembly is essential for studies on intraspecific variation, allele-
71 specific expression, epigenetic regulation, and chromosome evolution, as well as
72 understanding how combinations of variants impact phenotypes [15-17]. Among the
73 new technologies to tackle the two challenges in genome assembly, long-read
74 sequencing, high-throughput chromatin conformation capture (Hi-C) and optical

75 mapping technologies have been developed for ordering and orienting assembly contigs,
76 and thus can create phased chromosome-scale genome assemblies [11]. These
77 technologies have substantially improved genome assemblies for human, goat and
78 gorilla [12-14]. However, a phased genome assembly with chromosome-scale
79 contiguity for pigs is not yet available, which results in the lack of resolution for pigs
80 inter-haplotype variations, and impedes the dissection of the genetic basis of phenotypic
81 differences in domestication between Eastern and Western pigs.

82 Here, we applied long-read sequencing (Pacbio), short paired-end reads (Illumina),
83 Hi-C and optical map (BioNano) technologies to generate an assembly of the Luchuan
84 pig, an indigenous breed from Guangxi province in South China. As a representative of
85 the native breeds in China, Luchuan pig has many distinguishing phenotypic features
86 comparing with Western domesticated pigs, including low growth rate, high fat content,
87 excellent meat quality, early maturity, high fecundity, good maternal stability, wide
88 adaptability to coarse feeding and strong disease resistance [4, 5]. To study the genetic
89 basis underlying these phenotypic differences, Luchuan is an ideal material for building
90 a high-quality reference genome representing Chinese indigenous pigs. In our study, a
91 high-contiguous, chromosome-scale phased assembly of the Luchuan pig genome was
92 *de novo* assembled. To our knowledge, this is the first published phased chromosome-
93 scale assembly for mammals, providing important genetic resources and
94 methodological references for future studies of animal genomic evolution, molecular
95 breeding and biomedical research.

96 **Material and Methods**

97 **Sample collection and sequencing**

98 A Luchuan boar was obtained from the Institute of Animal Science of Guangxi
99 province, China, for genome assembly. Genomic DNA was extracted from its blood
100 sample. In order to generate a chromosome-scale assembly, four different genome
101 libraries were constructed and sequenced according to the manufacturers' instructions:
102 (i) Whole genome sequencing (WGS) by PacBio Sequel platform (20-kb library); (ii)

103 Hi-C chromosome conformation captured reads sequencing by Phase genomics; (iii)
104 Short reads paired-end sequencing (150bp in length) by Illumina NovaSeq 6000
105 platform; (iv) BioNano optical map data (Nt.BspQI, Nb.BssSI and DLE-1 enzymes).

106 To fully assist genome annotation, thirty-seven RNAs from 14 tissues (heart, lung,
107 adipose, kidney, liver, brain, spleen, stomach, leg muscle, dorsal muscles, testis, ovary,
108 large intestine, small intestine) at four developmental stages (Days 0, 14, 50 and adult
109 pigs) of Luchuan pigs (4 individuals) were equally pooled together. Two strand-specific
110 RNA-seq libraries with an insert size of 350 bp using the NEBNext® Ultra™
111 Directional RNA Library Prep Kit for Illumina® (NEB, USA) were prepared and
112 sequenced on an Illumina NovaSeq 6000 platform, to generate 150bp paired-end reads
113 (Berry Genomics Co., Ltd., Tianjin, China). A PacBio full-length transcriptome library
114 was constructed and sequenced on the Pacific Bioscience RS II sequencer (Berry
115 Genomics, Co., Ltd., Beijing, China).

116 All animals and samples used in this study were collected according to the
117 guidelines for the care and use of experimental animals established by the Ministry of
118 Agriculture and Rural Affairs of China.

119

120 ***De novo* genome assembly and scaffolding**

121 The primary contigs were assembled with the Falcon software packages (v2.0.5)
122 [16] followed by the FALCON-Unzip and Arrow (v2.2.2) polishing, then a Hi-C-based
123 contigs phasing was processed by FALCON-Phase to create phased, diploid contigs.
124 Phase Genomics' Proximo Hi-C genome scaffolding platform was used to establish
125 chromosome-scale scaffolds from the draft assembly using a method similar to that
126 described previously [14]. Following diploid chromosomal scaffolding, a round of
127 polishing using Juicebox (v1.8.8) [18, 19] was performed to correct small errors in
128 chromosome assignment, ordering and orientation. After a draft set of scaffolds was
129 generated, FALCON-Phase was run again for Hi-C based scaffold phasing. The
130 Illumina sequencing data were further used to improve the assembly by Pilon (v1.22)
131 software. Given the availability of a relatively good quality of the Duroc pig

132 (Sscrofa11.1) genome, a reference-assisted scaffolding strategy was conducted to get
133 chromosome-level pseudomolecules with Chromosomer software (v0.1.4a) [20].
134 Quality control on the integrity of the assembly of genic regions was performed by
135 using the independent BUSCO v3 benchmark (<http://busco.ezlab.org/>) [21].

136

137 **Assembly quality assessment**

138 BioNano optical map data was used to assess the assembly quality, which produces
139 physical maps with unique sequence motifs that can provide long-range structural
140 information of the genome. Briefly, high-molecular weight DNA was extracted from
141 the pig blood sample and digested with nickases Nt.BspQI, Nb.BssSI and Direct
142 Labeling Enzyme 1 (DLE-1), respectively. After labeling and staining, DNA was loaded
143 onto the Saphyr chip for sequencing. Raw data for each enzyme library were collected
144 and converted into a BNX file by AutoDetect software, to obtain basic labeling and
145 DNA length information. The filtered raw DNA molecules in BNX format were aligned,
146 clustered and assembled into the BNG map by using the Bionano Solve pipeline. Two
147 enzyme (Nt.BspQI, Nb.BssSI) hybrid scaffolding was firstly processed to produce a set
148 of initial hybrid scaffold, a second round of hybrid scaffolding with genome map of
149 DEL-1 enzyme was followed.

150

151 **Repeat annotation**

152 There are two main types of repeats in the genome: tandem and interspersed.
153 Tandem repetitive sequences were identified using Tandem Repeats Finder (TRF,
154 version4.07). The interspersed repeat contents were identified using two methods: *de*
155 *novo* repeat identification and known repeat searching against existing databases.
156 RepeatModeler (version 1.0.8, <http://www.repeatmasker.org/RepeatModeler/>) was
157 used to predict repeat sequences in the genome, and RepeatMasker (version 4.0.7) [22]
158 was then used to search the Luchuan pig genome against the *de novo* transposable
159 elements (TE) library. The homology-based approach involved applying commonly

160 used databases of known repetitive sequences, RepeatMasker (version 4.0.7) and the
161 Repbase database (version 21) [23] were used to identify TEsin the assembled genome.
162 RepeatMasker and Repeat Protein Masker (<http://repeatmasker.org>) were applied for
163 TEs identification at the DNA and protein levels, respectively.

164

165 **Gene prediction and annotation**

166 Protein-coding region identification and gene prediction were conducted through a
167 combination of three approaches as following:

168 (i) Homology-based prediction. Protein sequences for human and five animal
169 genomes (mouse, cattle, dog, goat and the Duroc pig) were downloaded from Ensembl
170 release-95, and aligned to the Luchuan assembly using the TBLASTN program
171 available in the BLAST v2.2.24 (E-value cutoff 1e-05). Then the SOLAR
172 (version0.9.6), a dynamic program algorithm to link putative exons together, was
173 employed to analyze the TBLASTN results. GeneWise (version 2.4.1) [24] was used to
174 predict the exact gene structure of the corresponding genomic regions on each matched
175 sequences;

176 (ii) *De novo* prediction. Four *ab initio* gene prediction programs including
177 Augustus (version 3.2.1) [25], GlimmerHMM (version 3.0.4) [26], Geneid (version
178 1.4.4) [27] and SNAP (version 2006-07-28) [24], were employed to predict coding
179 regions in the repeat-masked genome;

180 (iii) Transcriptome-based prediction methods. RNA-seq data (26.35 Gb) reads
181 were mapped to the assembly using Hisat2 (version 2.1.0) [28]. Stringtie (version 1.2.2)
182 and TransDecoder (version 3.0.1) were used to assemble the transcripts and identify
183 candidate coding regions into gene models. For PacBio full-length transcriptome data
184 (Iso-Seq), transcripts were identified by IsoSeq3 (version 3.1.0) with default parameters,
185 then the Iso-Seq data were mapped to the reference genome with minimap2 (version
186 2.15-r905). Furthermore, Cupcake ToFU (v5.8) was used to get the final unique, full-
187 length and high-quality isoforms of Pacbio data.

188 All gene models predicted based on the above three approaches were combined by

189 EvidenceModeler (EVM) into a non-redundant set of gene structures, and the produced
190 gene models were finally refined using the Program to Assemble Spliced Alignments
191 (PASA v2.3.3) [29]. Functional annotation of protein-coding genes (PCGs) was
192 achieved using BLASTP (E-value 1e-05) against two integrated protein sequence
193 databases: SwissProt and TrEMBL. Protein domains were annotated by InterProScan
194 (v5.30). The Gene Ontology (GO) terms for each gene were extracted with
195 InterProScan [30]. The pathways in which the genes might be involved were assigned
196 by BLAST against the KEGG databases (release 59.3) [31] with an E-value cutoff of
197 1e-05.

198

199 **Noncoding RNAs annotation**

200 The transfer RNAs (tRNA) genes were predicted by tRNAscan-SE (version 1.3.1)
201 [32] with eukaryote parameters. The ribosomal RNA (rRNA) fragments were predicted
202 by aligning to human template rRNA sequences using BlastN (version 2.2.26) at an E-
203 value of 1e-5. The microRNAs (miRNAs) and small nuclear RNAs (snRNAs) were
204 detected by searching against the Rfam database (release 12.0) [33] with INFERNAL
205 (version 1.1.1) [34]. Long non-coding RNAs (LncRNAs) and Circular RNAs
206 (circRNAs) were predicted by methods described previously [4, 35, 36].

207

208 **Identification of orthologous gene sets across species**

209 A gene family indicates a set of similar genes that descended from a single original
210 gene in the last common ancestor of considered species. Orthologous gene sets of
211 Luchuan pig, Duroc pig, cattle, goat, dog, mouse and human were used for genome
212 comparisons. For a gene with multiple isoforms, we chose the longest transcript (≥ 50
213 amino acids) to represent the gene. The TreeFam methodology [37] was used to define
214 a gene family and result in 3,733 single-copy orthologous genes for the six mammalian
215 species. In addition, the one-to-one orthologous between these species were defined
216 using BLASTP based on the Bidirectional Best Hit (BBH) method with a sequence

217 coverage > 80% and identity > 80%, followed by selection of the best match.

218

219 **Variants calling**

220 The primary assembly of Luchuan genome was aligned with the alternative
221 haplotig assembly and the Duroc contigs by MUMmer (version 3.23)[38] with default
222 parameters, and one-to-one genomic alignment results were extracted with the ‘delta-
223 filter -1’ parameter. SNPs and indels were identified by show-snp from the one-to-one
224 alignment blocks (parameter ‘-ClrT -x 1’). Structural variations were identified by
225 Assemblytics (v1.0) software [39] base on the alignment blocks from MUMmer.

226

227 **Phylogenetic tree construction and evolution rate estimation**

228 Single-copy gene families were used to construct a phylogenetic tree for Luchuan
229 pig and the other mammalian genomes (Duroc pig, cattle, goat, dog, mouse and human).
230 Four-fold degenerate sites were extracted from each family and concatenated into one
231 supergene for each species. PhyML v3.0 was adopted to reconstruct the phylogenetic
232 tree based on the GTR+gamma substitution model [40]. The divergence time among
233 Luchuan pig, Duroc pig, cattle, goat, dog, mouse and human were estimated using the
234 MCMCTree program (version 4.4) as implemented in the Phylogenetic Analysis of
235 Maximum Likelihood (PAML) package [41], with an independent rates clock and
236 HKY85 nucleotide substitution model. The calibration times (differentiation time
237 between human and mouse, human and goat, cattle and goat, pig and goat) were derived
238 from the TimeTree database [42].

239

240 **Results**

241 **Assembly and phasing of the Luchuan pig genome**

242 To construct a high-quality reference genome for Chinese indigenous pigs, a male
243 Luchuan pig was used for WGS, which generated ~140× Pacbio Sequel long reads

244 (348.71 Gb), ~41× Hi-C reads (102.42 Gb, Phase Genomics), ~86× Illumina paired-
245 end reads (214.48 Gb), and ~351× BioNano optical map data (879.44 Gb, Bionano
246 Genomics).

247 The Pacbio reads were first assembled *de novo*, producing an initial contig
248 assembly with N50 of 18.68 Mb and a total length of 2.52 Gb. Then the assembly was
249 integrated with Hi-C data to create phased diploid chromosome-scale scaffolds
250 (Supplementary Figure 1), generating an alternative haplotype sequence with contig
251 N50 of 18.79Mb, scaffold N50 of 141.24Mb and a total length of 2.55 Gb. After
252 improving the assembly based on Illumina sequencing data, the optical map data were
253 used to validate, correct and merge the scaffolds (Supplementary Table 1). Given the
254 high quality of the present Duroc reference genome (Sscrofa11.1), a reference-assisted
255 scaffolding strategy was used to get chromosome-level pseudomolecules (Figure 1A).
256 Finally, we generated a high-contiguous, chromosome-scale and phased assembly of
257 the Luchuan genome, yielding a 2.58 Gb primary assembly with a contig N50 of 18.03
258 Mb and a scaffold N50 of 140.09 Mb. This assembly is comparable in quality to the
259 Duroc genome [7] and much better than other published pig genomes [4, 8-10] (Table
260 1). Remarkably, the alternative haplotig assembly size is very close to the primary
261 assembly with a contig N50 of 17.77 Mb and a scaffold N50 of 140.08 Mb.

262

263 **Table 1. Comparison of features between the Luchuan pig and other assemblies.**

	Luchuan	Duroc ^{*[7]}	Tibetan wild ^[8]	Wuzhishan ^[9]	Bama ^[10]
Sequenced genome size (Gb)	2.58	2.50	2.43	2.64	2.49
Contig N50 (Mb)	18.03	41.89	0.0207	0.0235	1.01
Scaffold N50 (Mb)	140.09	138.97	1.06	5.43	140.44
Percentage of anchoring and ordering	96.1%	97.34%	-	-	97.49%
Predicted PCGs	22,710	22,452	21,806	20,326	21,334
Repeat proportion (%)	40.16	40.55	39.47	38.20	37.32
Complete BUSCOs (%)	95.1	96.0	93.1	95.2	93.9

264 * Statistic of Duroc pig genome was based on Sscrofa11.1 (Ensembl release-95).

265 The reference assessment revealed that approximately 96.1% of the 2.58 Gb
266 assembled final Luchuan assembly was assigned to 20 chromosomes (18 autosomes
267 and X/Y chromosome) (Supplementary Table 2-3). The 20 chromosomes were made
268 up of 466 contigs, reflecting the low fragmentation of these assemblies. We further
269 evaluated the genome assembly quality, and found that 95.1% of the 4,104 core genes
270 in the OrthoDB mammalian database were identified in the Luchuan primary assembly,
271 of which 94.4% were single-copy, 0.7% duplicated, 2.9% fragmented and 2.0% missing
272 (Supplementary Table 4).

273

274 **Validation of the phased diploid assemblies**

275 The pseudo-chromosomes of Luchuan pig presented great colinearity with
276 Sscrofa11.1, supporting a high-quality genome assembly (Figure 1B; Supplementary
277 Figure 2). It is worth noting that the alternative haplotig also has highly collinear
278 relationships with Duroc pig assembly (Supplementary Figure 2). Additionally, to
279 assess the scaffolding accuracy of Luchuan assembly, we adopted the nickases
280 Nt.BspQI, Nb.BssSI and DLE-1 for optical map library construction, and got 453 Gb,
281 345 Gb, and 618 Gb raw data using these three enzymes, respectively. After removing
282 molecules in lengths less than 150 kb, we obtained 303 Gb, 268 Gb and 308 Gb high-
283 quality optical molecules, accounting for $> 100\times$ coverage of genome size. The N50 of
284 the molecules are 358 kb, 394 kb and 248 kb for Nt.BspQI, Nb.BssSI nickase and
285 DLE-1 enzymes, respectively (Supplementary Table 5). The high concordance between
286 the assembly and the optical map data provides strong support for the robustness of the
287 assembly (Figure 2). By comparison between the contigs/scaffolds and optical maps,
288 74 and 73 conflicts were detected for the primary assembly and alternative haplotig,
289 respectively. After conflict correction, we assembled 63 and 64 hybrid scaffolds based
290 on genome map hybrid assembly for the primary assembly and alternative haplotig,
291 respectively. These results demonstrated the high reliability of the alternate haplotype
292 assembly.

293

294 **Genetic variations between primary assembly and alternate haplotig**

295 By comparing the primary assembly to the alternate haplotig, we identified
296 numerous haplotype-specific alleles, including 6.83 million SNPs, 1.64 million short
297 indels and 23,539 SVs (Figure 3). Among the SNPs, most (97.54%) were located in
298 intergenic regions (63.01%) and intronic regions (34.51%), only 0.56% were located in
299 coding sequences. Of the SNPs present in coding regions, 24,056 were synonymous
300 and 13,959 were non-synonymous. In addition, 2,479 and 463 indels may result in
301 frameshift and non-frameshift variations, respectively. These variations are valuable to
302 further study the allele-specific expression, epigenetic regulation, genome structure and
303 evolution in pigs.

304

305 **Genome annotation**

306 We predicted a total of 22,710 PCGs with strong evidence in Luchuan by combining
307 *ab initio* prediction, homologous protein prediction and transcriptome alignment. Of
308 these PCGs, ~90% gain clear supporting evidence based on transcriptome sequencing
309 data and functional annotation information (Table 1; Supplementary Table 6). The
310 average length of gene, exon and intron were 40,062bp, 177bp and 4,709bp,
311 respectively. We also annotated 2,835 small ncRNAs including 388 miRNAs, 394
312 rRNAs, 1,076 tRNAs and 977 snRNAs. Additionally, 3,066 novel lncRNAs and 1,019
313 novel circRNAs were identified in the Luchuan genome (Supplementary Table 7).

314 Repeat elements accounted for ~40.16% of the Luchuan genome (Supplementary
315 Table 8-9). The two largest repeat classes were long-interspersed elements (LINEs) and
316 short interspersed nuclear elements (SINEs), which comprised 27.83% and 10.86% of
317 the genome, respectively. Tandem repeats constituted 3.88% of the genome. The
318 number and length of genes and the proportion of repeat elements were similar to those
319 present in the pig reference genome and other assemblies [4, 6-9].

320

321 **Comparative Genomic and Phylogenetic Analyses**

322 We identified a total of 8,481 homologous gene families that are shared among

323 Luchuan, Duroc, goat and human. Interestingly, there are 163 and 134 gene families
324 specifically identified in Luchuan and Duroc, respectively (Figure 4A). Among those
325 Luchuan-specific gene families, 421 genes with supporting evidence of transcription or
326 Interpro functional annotation were considered to be the high-quality Luchuan-specific
327 genes. These genes are significantly (FDR < 0.05) enriched in GO terms for
328 phosphoprotein phosphatase activity, signaling receptor activity and
329 phosphatidylinositol binding. By comparison, the 207 Duroc-specific genes are
330 functionally over-represented in biological processes related to actin filament binding,
331 peptidase inhibitor activity, pheromone receptor activity, microtubule motor activity
332 and epidermis development (Supplementary Table 10).

333 A phylogenetic tree was constructed using the pigs (Luchuan and Duroc) and five
334 other mammals (cattle, goat, dog, human and mouse). As shown in Figure 4B, the
335 divergence time between Luchuan and Duroc was estimated to be about 1.7 million
336 years ago (MYA). Compared with Duroc, Luchuan showed fewer events of gene family
337 expansion (63 vs. 433), and more events of gene family contraction (560 vs. 161)
338 (Figure 4B). Notably, expanded genes in Luchuan were closely related to response to
339 oxidative stress and biotic stimulus. In Duroc, the olfactory-related genes were
340 significantly expanded, consistent with a previous study [8]. In addition, expanded
341 genes in Duroc are significantly ($P < 0.05$) enriched in GO terms for
342 galactosyltransferase activity, antioxidant activity and growth factor activity.

343 **Bidirectional selection between Luchuan and Duroc pigs**

344 To study the bidirectional selection between Luchuan and Duroc pigs, we further
345 screened out 7,222 one-to-one orthologous gene sets from the seven mammals. We
346 found 272 and 768 positively selected genes (PSGs) in the Luchuan and Duroc pigs (P
347 < 0.05, likelihood ratio test), respectively. It is worth noting that 25 PSGs were shared
348 in both breeds, such as *CACNA1F*, a calcium channel subunit gene, and *RBM46*, an
349 RNA binding motif protein. Enrichment analysis revealed the PSGs detected in
350 Luchuan were especially enriched in GO terms related to protein tyrosine kinase

351 activity (8 PSGs), microtubule motor activity (6 PSGs), GTPase activator activity (6
352 PSGs) and ubiquitin-protein transferase activity (6 PSGs), whereas PSGs in Duroc pigs
353 were significantly enriched in GO terms for G-protein coupled receptor activity, which
354 is closely related with the olfactory receptors (Supplementary Table 11).

355

356 **Discussion**

357 Chinese indigenous and Western pigs are independently domesticated and exhibit
358 a great spectrum of phenotypic and genomic differences [4, 6-9]. A comprehensive
359 exploration of the genetic diversity within and between pig breeds is important for
360 animal breeding and biomedical research. The present pig reference genome
361 (Sscrofa11.1) was derived from a Western breed (Duroc pig) [7] with high continuity
362 and quality. Increased accessibility to short-read sequencing has resulted in a deluge of
363 genome assemblies for Chinese indigenous pigs, although incomplete and fragmented
364 compared with Duroc [4, 8-10]. Until now, no chromosome-level phased assemblies of
365 Chinese indigenous pigs have been built, so accurately investigating the full range of
366 genetic variations and phased diploid architecture is extremely difficult. Recently, rapid
367 progress in high-throughput DNA sequencing and library preparation methods have
368 enabled the generation of phased genome assemblies with chromosome-level quality
369 [15-17]. Built upon these most recent technology breakthroughs, here we present, to
370 our knowledge, the first phased chromosome-scale genome assembly of pigs, which is
371 also the first such type of published assembly for mammals. Our genome assembly
372 yields a 2.58 Gb primary assembly with a contig N50 of 18.03 Mb, with comparable
373 quality to the current reference genome [7].

374 Synteny analysis revealed strong collinearity between the genomes of Luchuan and
375 Duroc pigs, supporting great overall quality of our assembly. Notably, our assembly
376 approach also makes it possible to construct a high-quality alternate haplotig assembly,
377 which is comparable to the primary assembly with a scaffold N50 size of 17.77 Mb.
378 Using the phased diploid assembly, we are able to identify structural variations between
379 two homologous chromosomes [15, 16], which are important for understanding how

380 combinations of variants impact phenotypes. Millions of genetic variations between
381 primary assembly and alternate haplotig of Luchuan genome were identified in our
382 study, which provided an unprecedently detailed resource to further study the allele-
383 specific expression, epigenetic regulation, genome structure and evolution of Eastern
384 pigs [15-17]. Moreover, combining our Luchuan genome and the classic Duroc
385 assembly would provide foundational resources to study the genetic basis underlying
386 the phenotypic differences between Eastern and Western pigs.

387 To study the evolution and domestication of Luchuan pigs, we reconstructed the
388 phylogenetic tree among Luchuan, Duroc, cattle, goat, dog, human and mouse. Our
389 analysis revealed that the divergence time between Luchuan and Duroc was about 1.7
390 MYA, which is in close proximity to the split time between Asian and European wild
391 boars (0.8-2 MYA) [43-45]. Gene replication is one of the basic mechanisms for
392 acquiring new functions and physiological features, and accordingly studying gene
393 family expansion and contraction provides unique perspectives on the genetic basis of
394 local domestication and adaptation [46, 47]. The Luchuan genome exhibited fewer
395 events of gene family expansion and stronger gene family contraction compared with
396 Duroc pig, which is in accordance with the comparative analysis between Duroc pig
397 and Tibetan wild boar [8]. Duroc pig was reported to have markedly more olfactory-
398 related genes than Tibetan wild boar [8]. Our results also confirmed that these genes
399 were significantly expanded and positively selected in Duroc pig. The oxidative stress
400 and response to biotic stimulus-related genes were expanded and GTPase activator
401 activity-related genes were positively selected in Luchuan pig, which might confer the
402 remarkable capabilities of Luchuan to adapt to coarse feeding and strong resistance to
403 diseases, which are important features shared by many Chinese indigenous breeds. The
404 PSGs analysis suggested that the Duroc pig had experienced stronger selection
405 pressures during breeding than Luchuan pig. These results provided novel insights into
406 the distinct evolutionary scenarios occurring under different local adaptation and
407 artificial selection between Chinese indigenous and Western pig breeds.

408 Overall, we presented the first phased chromosome-scale genome assembly of a
409 Chinese indigenous breed, which provides great resources for understanding pig

410 evolution and domestication. This Luchuan pig genome assembly would benefit the
411 dissection of the genetic basis and molecular mechanisms underlying phenotypic
412 differences between and within pig breeds, facilitate molecular breeding to improve
413 economical traits, and shed light on the etiology of human traits and diseases.

414

415 Acknowledgements

416 This work was supported by National Natural Science Foundation of China (31830090),
417 the National Key Project (2016ZX08009-003-006), the Shenzhen Dapeng New District
418 Special Fund for Industry Development (KY20180114) and the Agricultural Science
419 and Technology Innovation Program (ASTIP-AGIS5).

420

421 Author contributions

422 Z.L.T conceived, coordinated and managed the project; Y.L.Y, Y.W.L, G.Q.Y, M.Y.C,
423 Y.C.N, J.M.L, J.L, I.L, S.T.S and B.N assembled and annotated the genome sequences,
424 and carried out other computational and bioinformatics analysis; B.K.X provided the
425 Luchuan pigs and helped in samples collection. Z.L.T, X.H.F, Y.L.Y and Y.J.T
426 performed animal experiment and collected biological samples; Y.L.Y, Y.C.N and J.M.L
427 wrote the manuscript; Z.L.T, Y.L.Y, G.Q.Y, and E.W.Z revised the paper. All authors
428 read and approved the final manuscript.

429

430 References

- 431 1. Giuffra E, Kijas J, Amarger V, Carlberg Ö, Jeon J-T, Andersson L: **The origin of the domestic**
432 **pig: independent domestication and subsequent introgression.** *Genetics* 2000, **154**:1785-
433 1791.
- 434 2. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson
435 H, Brand T, Willerslev E, et al: **Worldwide phylogeography of wild boar reveals multiple**
436 **centers of pig domestication.** *Science* 2005, **307**:1618-1621.
- 437 3. Fang M, Andersson L: **Mitochondrial diversity in European and Chinese pigs is consistent**
438 **with population expansions that occurred prior to domestication.** *Proceedings of the Royal*
439 *Society B: Biological Sciences* 2006, **273**:1803-1810.
- 440 4. Li M, Chen L, Tian S, Lin Y, Tang Q, Zhou X, Li D, Yeung CK, Che T, Jin L: **Comprehensive**
441 **variation discovery and recovery of missing sequence in the pig genome using multiple de**

442 **novo assemblies.** *Genome research* 2017, **27**:865-874.

443 5. Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, et al:

444 **Adaptation and possible ancient interspecies introgression in pigs identified by whole-**

445 **genome sequencing.** *Nature Genetics* 2015, **47**:217-225.

446 6. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-

447 Gaillard C, Park C, Milan D, Megens H-J: **Analyses of pig genomes provide insight into**

448 **porcine demography and evolution.** *Nature* 2012, **491**:393.

449 7. Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, Chow W, Eory L, Finlayson HA,

450 **Fliceck P: An improved pig reference genome sequence to enable pig genetics and genomics**

451 **research.** *bioRxiv* 2019:668921.

452 8. Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, et al: **Genomic**

453 **analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars.**

454 *Nat Genet* 2013, **45**:1431-1438.

455 9. Fang X, Mou Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W: **The**

456 **sequence and analysis of a Chinese pig genome.** *GigaScience* 2012, **1**:16.

457 10. Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S, et al:

458 **Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates**

459 **Study of Human Diabetic Disease.** *iScience* 2019, **19**:162-176.

460 11. Kronenberg ZN, Rhie A, Koren S, Concepcion G, Peluso P, Munson K, Hiendleder S, Fedrigo

461 O, Jarvis E, Phillipi A: **Extended haplotype phasing of de novo genome assemblies with**

462 **FALCON-Phase.** *bioRxiv* 2019:327064.

463 12. Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja

464 A, Fiddes I, Hillier LW, et al: **Long-read sequence assembly of the gorilla genome.** *Science*

465 2016, **352**:aae0344.

466 13. Chaisson MJ, Wilson RK, Eichler EE: **Genetic variation and the de novo assembly of human**

467 **genomes.** *Nat Rev Genet* 2015, **16**:627-640.

468 14. Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I,

469 Sullivan ST, et al: **Single-molecule sequencing and chromatin conformation capture enable**

470 **de novo reference assembly of the domestic goat genome.** *Nat Genet* 2017, **49**:643-650.

471 15. Zhou B, Ho SS, Greer SU, Zhu X, Bell JM, Arthur JG, Spies N, Zhang X, Byeon S, Pattini R:

472 **Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE**

473 **cell line K562.** *Genome research* 2019, **29**:472-484.

474 16. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley R,

475 Figueroa-Balderas R, Morales-Cruz A, et al: **Phased diploid genome assembly with single-**

476 **molecule real-time sequencing.** *Nat Methods* 2016, **13**:1050-1054.

477 17. Seo JS, Rhie A, Kim J, Lee S, Sohn MH, Kim CU, Hastie A, Cao H, Yun JY, Kim J, et al: **De**

478 **novo assembly and phasing of a Korean human genome.** *Nature* 2016, **538**:243-247.

479 18. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL: **Juicebox**

480 **Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom.** *Cell Syst*

481 2016, **3**:99-101.

482 19. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL,

483 Machol I, Omer AD, Lander ES, Aiden EL: **A 3D Map of the Human Genome at Kilobase**

484 **Resolution Reveals Principles of Chromatin Looping.** *Cell* 2014, **159**:1665-1680.

485 20. Tamazian G, Dobrynin P, Krasheninnikova K, Komissarov A, Koepfli KP, O'Brien SJ:

486 **Chromosomer: a reference-based genome arrangement tool for producing draft**
487 **chromosome sequences.** *Gigascience* 2016, **5**:38.

488 21. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM: **BUSCO: assessing**
489 **genome assembly and annotation completeness with single-copy orthologs.** *Bioinformatics*
490 2015, **31**:3210-3212.

491 22. Tarailo - Graovac M, Chen N: **Using RepeatMasker to identify repetitive elements in**
492 **genomic sequences.** *Current protocols in bioinformatics* 2009, **25**:4.10. 11-14.10. 14.

493 23. Bao W, Kojima KK, Kohany O: **Repbase Update, a database of repetitive elements in**
494 **eukaryotic genomes.** *Mobile Dna* 2015, **6**:11.

495 24. Korf I: **Gene finding in novel genomes.** *BMC bioinformatics* 2004, **5**:59.

496 25. Stanke M, Schöffmann O, Morgenstern B, Waack S: **Gene prediction in eukaryotes with a**
497 **generalized hidden Markov model that uses hints from external sources.** *BMC*
498 **bioinformatics** 2006, **7**:62.

499 26. Majoros WH, Pertea M, Salzberg SL: **TigrScan and GlimmerHMM: two open source ab**
500 **initio eukaryotic gene-finders.** *Bioinformatics* 2004, **20**:2878-2879.

501 27. Guigo R: **Assembling genes from predicted exons in linear time with dynamic**
502 **programming.** *Journal of Computational Biology* 1998, **5**:681-702.

503 28. Kim D, Langmead B, Salzberg SL: **HISAT: a fast spliced aligner with low memory**
504 **requirements.** *Nat Methods* 2015, **12**:357-360.

505 29. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR:
506 **Automated eukaryotic gene structure annotation using EVidenceModeler and the**
507 **Program to Assemble Spliced Alignments.** *Genome biology* 2008, **9**:R7.

508 30. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell
509 A, Nuka G: **InterProScan 5: genome-scale protein function classification.** *Bioinformatics*
510 2014, **30**:1236-1240.

511 31. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: **Data, information,**
512 **knowledge and principle: back to metabolism in KEGG.** *Nucleic Acids Res* 2014, **42**:D199-
513 205.

514 32. Lowe TM, Eddy SR: **tRNAscan-SE: a program for improved detection of transfer RNA**
515 **genes in genomic sequence.** *Nucleic Acids Res* 1997, **25**:955-964.

516 33. Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, Bateman A, Petrov AI:
517 **Non-Coding RNA Analysis Using the Rfam Database.** *Curr Protoc Bioinformatics* 2018,
518 **62**:e51.

519 34. Nawrocki EP, Eddy SR: **Infernal 1.1: 100-fold faster RNA homology searches.**
520 *Bioinformatics* 2013, **29**:2933-2935.

521 35. Yang Y, Zhou R, Zhu S, Li X, Li H, Yu H, Li K: **Systematic Identification and Molecular**
522 **Characteristics of Long Noncoding RNAs in Pig Tissues.** *Biomed Res Int* 2017,
523 **2017**:6152582.

524 36. Liang G, Yang Y, Niu G, Tang Z, Li K: **Genome-wide profiling of Sus scrofa circular RNAs**
525 **across nine organs and three developmental stages.** *DNA research* 2017, **24**:523-535.

526 37. Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L, Li R, Liu T, Zhang Z, Bolund L,
527 et al: **TreeFam: a curated database of phylogenetic trees of animal gene families.** *Nucleic*
528 *Acids Res* 2006, **34**:D572-580.

529 38. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: **Versatile**

530 and open software for comparing large genomes. *Genome Biol* 2004, **5**:R12.

531 39. Nattestad M, Schatz MC: **Assemblytics: a web analytics tool for the detection of variants**
532 **from an assembly.** *Bioinformatics* 2016, **32**:3021-3023.

533 40. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: **New algorithms and**
534 **methods to estimate maximum-likelihood phylogenies: assessing the performance of**
535 **PhyML 3.0.** *Syst Biol* 2010, **59**:307-321.

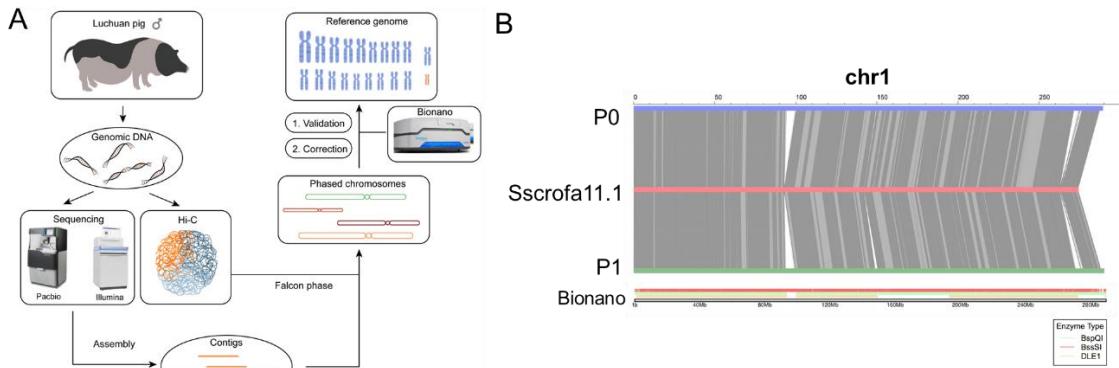
536 41. Yang Z: **PAML 4: phylogenetic analysis by maximum likelihood.** *Mol Biol Evol* 2007,
537 **24**:1586-1591.

538 42. Kumar S, Stecher G, Suleski M, Hedges SB: **TimeTree: A Resource for Timelines, Timetrees,**
539 **and Divergence Times.** *Mol Biol Evol* 2017, **34**:1812-1819.

540 43. Frantz LAF, Schraiber JG, Madsen O, Megens HJ, Bosse M, Paudel Y, Semiadi G, Meijaard E,
541 Li N, Crooijmans RPMA, et al: **Genome sequencing reveals fine scale diversification and**
542 **reticulation history during speciation in Sus.** *Genome Biology* 2013, **14**.

543 44. Frantz LA, Madsen O, Megens HJ, Schraiber JG, Paudel Y, Bosse M, Crooijmans RP, Larson
544 G, Groenen MA: **Evolution of Tibetan wild boars.** *Nat Genet* 2015, **47**:188-189.

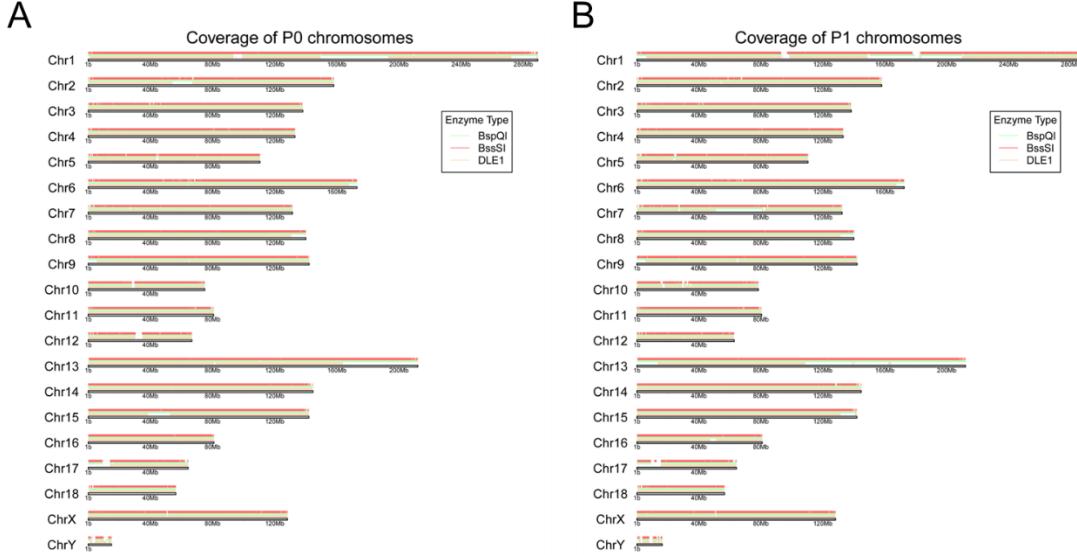
545 45. Groenen MA: **A decade of pig genome sequencing: a window on pig domestication and**
546 **evolution.** *Genet Sel Evol* 2016, **48**:23.


547 46. Nasvall J, Sun L, Roth JR, Andersson DI: **Real-time evolution of new genes by innovation,**
548 **amplification, and divergence.** *Science* 2012, **338**:384-387.

549 47. Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR,
550 Young G, Roscito JG, et al: **The axolotl genome and the evolution of key tissue formation**
551 **regulators.** *Nature* 2018, **554**:50-55.

552

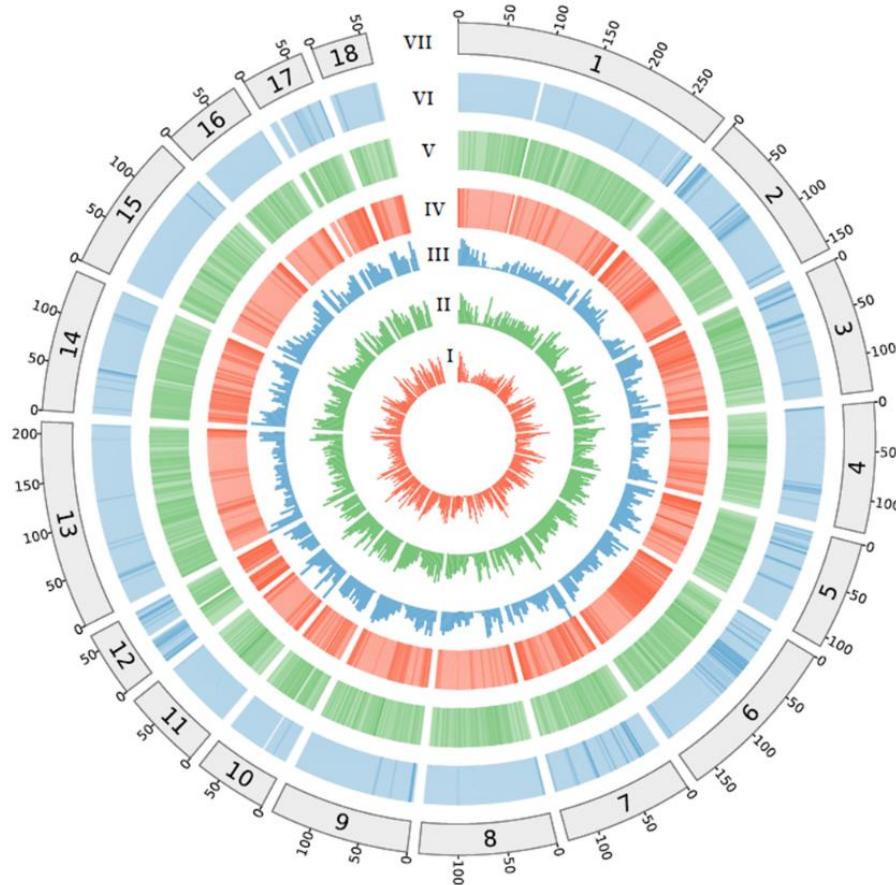
553


554

555

556 **Figure 1. Genome Assembly.** (A) The flowchart of contig, scaffold and chromosome
557 assembly in this study. (B) Collinearity analysis for Chr1 between *Sscrofa11.1* (*Middle*)
558 and primary assembly (P0, *Upper*) and alternate haplotigs (P1, *Lower*) assemblies. Gray
559 lines indicate collinearity between the genomes. Bionano optical map of Chr1 is shown
560 in the bottom. Collinearity Analysis for other chromosomes were shown in
561 Supplementary Figure 2.

562



563

564 **Figure 2. Assembly quality assessment by BioNano optical map data.** (A) A
565 comparison of Bionano optical maps and primary assembly of Luchuan pig. (B) A
566 comparison of Bionano optical maps and alternate haplotigs of Luchuan pig. The
567 optical genome maps are constructed by three enzymes (Nt.BspQI, Nb.BssSI and DLE-
568 1) and shown in different colors. The black bar corresponds to the pseudo-chromosomes
569 of Luchuan pig.

570

571

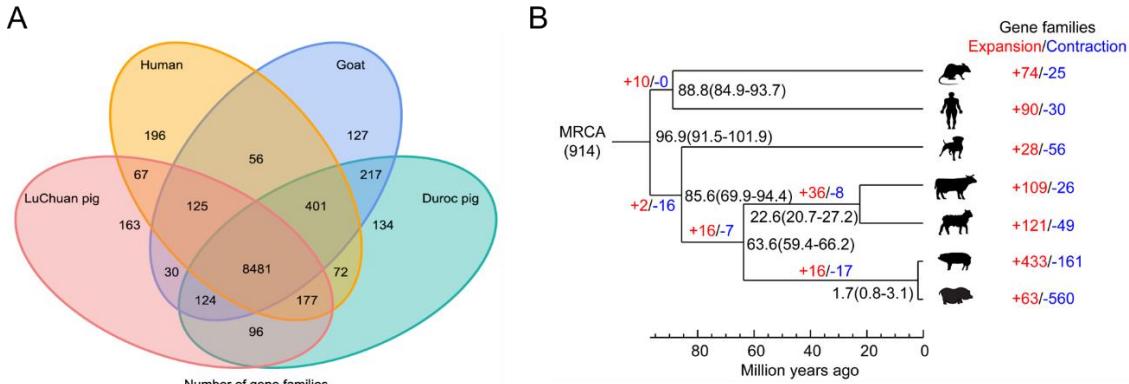
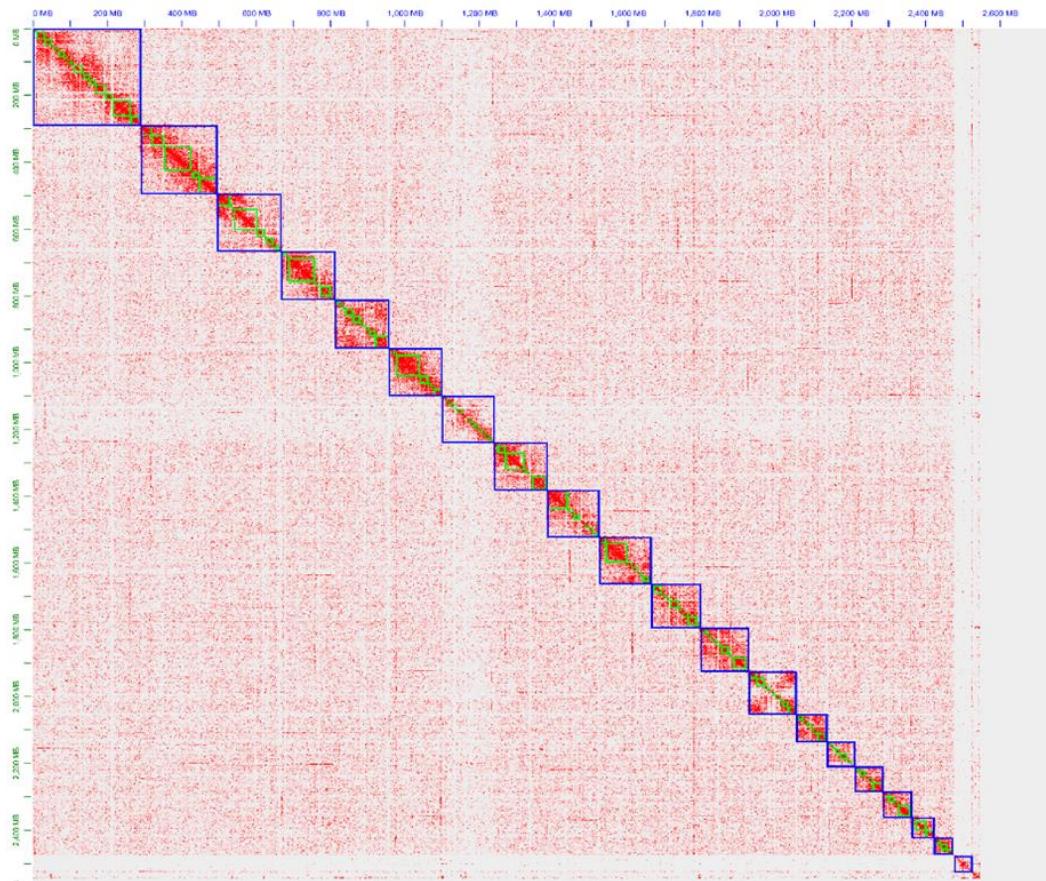

572

Figure 3. Circos plot showing the characterization of the Luchuan pig.

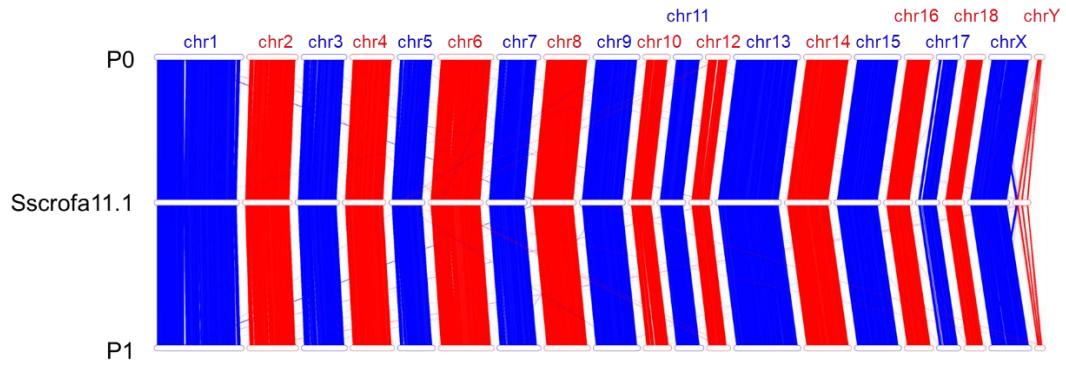
573 I: Number of SNPs between primary assembly (P0) and alternate haplotigs (P1) in non-
574 overlapping 5Mb windows;
575 II: Number of indels between primary assembly (P0) and alternate haplotigs (P1) in non-overlapping 5Mb windows;
576 III: Number of structural variants between primary assembly (P0) and alternate
577 haplotigs (P1) in non-overlapping 5Mb windows;
578 IV: GC content in non-overlapping 1Mb windows;
579 V: Percent coverage of TEs in non-overlapping 1Mb windows;
580 VI: Gene density calculated on the basis of the number of genes in non-overlapping
581 1Mb windows;
582 VII: The length of pseudo-chromosome in the size of Mb.
583

584


585

586

587 **Figure 4. Comparative genomic and phylogenetic analyses.** (A) Venn diagram
588 showing shared orthologous gene families among genomes of Luchuan, Duroc, goat
589 and human. (B) Phylogenetic tree with divergence times and history of orthologous
590 gene families. Numbers on the nodes represent divergence times, with the error range
591 shown in parentheses. The numbers of gene families that expanded (red) or contracted
592 (blue) in each lineage after speciation are shown on the corresponding branch. MRCA,
593 most recent common ancestor.


594

595

596 **Supplementary Figure 1. HiC contact heatmap.** Genome-wide analysis of chromatin
597 interactions in Luchuan genome.

598

599

600 **Supplementary Figure 2. Collinearity analysis between Sscrofa11.1 (Middle)**
601 **and primary assembly (P0, Upper) and alternate haplotigs (P1, Lower) assemblies.** Red
602 lines indicate collinearity between the genomes.

603