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Abstract

Background: The relationship between germline genetic variation and breast cancer
survival is largely unknown, especially in understudied minority populations who often
have poorer survival. Genome-wide association studies (GWAS) have interrogated
breast cancer survival but often are underpowered due to subtype heterogeneity and
many clinical covariates and detect loci in non-coding regions that are difficult to interpret.
Transcriptome-wide association studies (TWAS) show increased power in detecting
functionally-relevant loci by leveraging expression quantitative trait loci (eQTLs) from
external reference panels in relevant tissues. However, ancestry- or race-specific
reference panels may be needed to draw correct inference in ancestrally-diverse cohorts.

Such panels for breast cancer are lacking.

Results: We provide a framework for TWAS for breast cancer in diverse populations,
using data from the Carolina Breast Cancer Study (CBCS), a North Carolina population-
based cohort that oversampled black women. We perform eQTL analysis for 406 breast
cancer-related genes to train race-stratified predictive models of tumor expression from
germline genotypes. Using these models, we impute expression in independent data from
CBCS and TCGA, accounting for sampling variability in assessing performance. These
models are not applicable across race, and their predictive performance varies across
tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of
0.10 and stratifying for race, we identify associations in black women near AURKA,

CAPN13, PIK3CA, and SERPINBS via TWAS that are underpowered in GWAS.
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Conclusions: We show that carefully implemented and thoroughly validated TWAS is an
efficient approach for understanding the genetics underpinning breast cancer outcomes

in diverse populations.

Keywords: transcriptome-wide analysis (TWAS); breast cancer; expression quantitative

trait loci (eQTL); survival; polygenic traits
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Background

Breast cancer remains the most common cancer among women in the world [1]. Breast
cancer tends to be more aggressive in young women and African American women,
though underlying germline determinants of poor outcomes are not well-studied. Cohorts
that represent understudied minority populations, like the Carolina Breast Cancer Study
(CBCS), have identified differences in healthcare access, socioeconomics, and
environmental exposures associated with disparities in outcome [2—4], but more targeted
genomic studies are necessary to interrogate these disparities from a biologic and genetic

perspective.

Few genome-wide association studies (GWAS) have studied the relationship between
germline variation and survival outcomes in breast cancer, with most focusing instead on
genetic predictors of risk [5,6]. Recently, GWAS have shown evidence of association
between candidate common germline variants and breast cancer survival, but these
studies are often underpowered [7,8]. Furthermore, the most significant germline variants
identified by GWAS, in either risk or survival, are often located in non-coding regions of
the genome, requiring in vitro follow-up experiments and co-localization analyses to
interpret functionally [9]. It is important to seek strategies for overcoming these challenges
in GWAS, especially because several studies in complex traits and breast cancer risk
have shown that regulatory variants not significant in GWAS account for a large

proportion of trait heritability [10—12].
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Novel methodologic approaches that integrate multiple data types offer advantages in
interpretability and statistical efficiency. Escala-Garcia et al. has suggested that
aggregating variants by integrating gene expression or other omics may better explain
underlying biological mechanisms while increasing the power of association studies
beyond GWAS [7]. To alleviate problems with statistical power and interpretability, a
recent trend in large-scale association studies is the transcriptome-wide association study
(TWAS). TWAS aggregates genomic information into functionally-relevant units that map
to genes and their expression. This gene-based approach combines the effects of many
regulatory variants into a single testing unit that increases study power and provides more
interpretable trait-associated genomic loci [13-15]. Hoffman et al. and Wu et al. have
recently conducted TWAS for breast cancer risk and have reported several significant
associations for genes with breast cancer susceptibility, showing increased power over
GWAS [15,16]. However, these studies either draw from ancestrally-homogeneous
reference panels like subsets of women of European ancestry from the Genotype-Tissue
Expression (GTEX) project [16] or study populations of European descent from the Breast
Cancer Association Consortium (BCAC) [15]. It is not known whether these models can
be informative in African American women and other groups. Recent findings have
suggested that stratification by race or ancestry may be necessary to construct proper
tests of association across race or ancestry [17,18]. However, many cohorts, especially
large-scale genetic cohorts, may not have a sufficient sample size in minority populations

to power these tests.
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Here, we provide a framework for TWAS for complex disease outcomes in diverse study
populations using transcriptomic reference data from the Carolina Breast Cancer Study
(CBCS), a multi-phase cohort that includes an over-representation of African American
women [19]. We train race-stratified predictive models of tumor expression from germline
variation and carefully validate their performance, accounting for sampling variability and
disease heterogeneity, two aspects that previous TWAS in breast cancer have not
considered. This framework shows promise for scaling up into larger GWAS cohorts for

further detection of risk- or outcome-associated loci.

Results

Race specific germline eQTL analysis

To assess the association between germline genomic variation and tumor expression of
406 autosomal genes, targeted by the CBCS because of their association with breast
cancer progression, we first conducted a full cis-trans expression quantitative trait loci
(eQTL) analysis, stratifying on race and controlling for key biological covariates and
population stratification (see Methods). We discuss the relationship between self-

reported race and ancestry in CBCS in Supplemental Results.

We evaluated associations between the tumor expression levels of 406 autosomal genes
and 5,989,134 germline SNPs. SNPs and genes found in association in an eQTL will be
called eSNPs and eGenes, respectively. At a Benjamini-Bogomolov [20] FDR-corrected
P-value (BBFDR < 0.05), we identified 266 cis-eQTLs and 77 trans-eQTLs in the AA

sample across 32 eGenes, and 691 cis-eQTLs and 15 trans-eQTLs in the WW sample
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97 across 24 eGenes, shown in Supplemental Figure 2. Of these eGenes, 4 are in common
98 acrossrace: PSPHL, GSTT2, EFHD1, and SLC16A3. Expressions of PSPHL and GSTT2
99  have been previously reported to be governed by respective cis-deletions and serve as
100 distinguishing biomarkers for race [21-24]. The majority of significant eQTLs in both the
101 AA and WW samples were found in cis-association with respective eGenes. However,
102  we saw a higher proportion of significant trans-eQTLs in the AA sample (Supplemental
103  Figure 2). The locations and strengths of top eQTLs for all 406 autosomal genes are
104  shown in Figure 1A. All significant eQTLs are plotted in Supplemental Figure 2.
105
106  We further adjusted our eQTL models for a computationally-derived estimate of tumor
107  purity, which showed little effect on the strength and location of top eQTLs by eGene
108 (Supplemental Results). We do not consider tumor purity in any downstream analyses
109  and train predictive models on bulk tumor expression.
110
111 We lastly sought to evaluate the source of the significant eQTLs we detect in CBCS.
112 Similar to previous pan-cancer germline eQTL analyses [25], we cross-referenced
113  eGenes found in CBCS with eGenes detected in relevant healthy tissues from Genotype-
114  Tissue Expression (GTEx) Project. We attributed all but 7 of the cis-eGenes from CBCS
115  across both AA and WW women found in GTEXx to one of these three tissue types (Figure
116  1B), with the effect sizes of the top eQTLs for these eGenes correlating very well between
117 CBCS and GTEXx (see Supplemental Figure 5).
118

119  Race-specific predictive models of tumor expression
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120  Using the significant germline eQTLs of tumor expression as motivation, we used tumor
121 expression and genotyping data from 628 AA women and 571 WW women from CBCS
122 to build predictive models of tumor RNA expression levels for each gene’s breast tumor
123 expression (see Methods). Mean cis-heritability (cis-h?) of the 417 genes is 0.016 (SE =
124 0.019) in AA women and 0.015 (SE = 0.019), as estimated by GREML-LDMS analysis
125  [26]. For downstream analysis, we only consider genes with cis-h? significantly greater
126 than O at a nominal P-value less than 0.10 from the relevant likelihood ratio test.
127  Considering only these genes, the mean cis-h? of genes is 0.049 (SE = 0.016) in AA
128 models and 0.052 (SE = 0.016) in WW models. Of the predictive models built for these
129  genes, 125 showed a five-fold cross-validation prediction performance (CV R?) of at least
130 0.01 (10% Pearson correlation between predicted and observed expression with P <
131 0.05) in one of the two predictive models. Figure 2A shows the CV R? of these 153 genes
132 across race. The median CV R? for the 153 genes was 0.011 in both AA and WW women.
133 Cis-h? and CV R? are compared in Supplemental Figure 6.

134

135 Based on model performance in CBCS, we selected 46 genes in AAwomen and 57 genes
136  in WW women for association analyses between predicted tumor gene expression and
137  breast cancer survival, using data from all patients from CBCS with genotype data. These
138  genes were selected because they showed an CV R? > 0.01 (10% correlation between
139  observed and predicted expression in the CBCS training set) and cis-h? > 0 with nominal
140 P < 0.10 in a given race strata.

141

142 Evaluation of predictive models in independent data
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143  Predictive performance was strong across race and biological and molecular subtype in
144  two external samples: The Cancer Genome Atlas (TCGA) and a held-out CBCS sample
145 set. We defined the imputed expression of a given gene in an external cohort as the
146  GReX, or the germline-genetically regulated tumor expression, of that gene.

147

148  The first sample is derived from TCGA breast tumor tissues with 179 AA and 735 WW
149  women. We compared predictive performance by calculating an external validation R?
150  (EV R?) with squared Spearman correlations. Of the 151 genes modeled in CBCS training
151 data with significant cis-h?, 149 genes were measured via RNA-seq in TCGA. A
152 comparison of predictive performance in TCGA for these 149 genes is shown in Figure
153 2B, showing adequate performance in AA women (33 genes with EV R? > 0.01) and poor
154  performance in WW women (7 genes with EV R? > 0.01). The top predicted gene in cross-
155  validation from CBCS for both races, PSPHL, was not present in the TCGA normalized
156  expression data and could not be validated. Another top cross-validated gene, GSTT2,
157  was present in TCGA expression data and was validated as the top genetically predicted
158 gene in TCGA by EV RZ.

159

160 We also imputed expression into entirely held-out samples from CBCS data (1,121 AA
161 and 1,070 WW women) that have gene expression for a subset of the genes (166 of 417
162  genes) in the CBCS training set. These samples were largely derived from Phases | and
163 Il of CBCS (see Methods). A comparison of imputation performance in CBCS for 51
164  genesis shown in Figure 2C, showing adequate performance in both AA and WW women

165 (18 and 15 genes with EV R? > 0.01 in AA and WW women).
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166

167  Predictive models are not applicable across race

168 We find that the predictive accuracy of most genes was lower when expression was
169  imputed in AA women using models trained in the WW sample. We employed the WW
170  predictive models to impute expression into AA samples from TCGA and held-out CBCS
171  data. We compare the performances of the WW model and AA model in the AA sample
172 in Figure 2D (TCGA) and 2E (CBCS). In held-out CBCS samples, with the WW model,
173  we could only predict PSPHL and GSTT2 at R? > 0.01 in the AA sample, as the
174  expression of these genes is modulated mostly by strongly associated cis-eSNPs. In
175 TCGA, our WW models performed adequately in AA women, though the WW models
176  predicted fewer genes at R? > 0.01 than the AA models.

177

178  Evaluation of predictive performance across subtype

179  While predictive accuracy of expression models was stable across datasets, there was
180  greater heterogeneity across biological and molecular subtype. In part, this is due to small
181 sample sizes within race and subtype-specific strata. Upon first inspection, we see vast
182  differences in the performance of our models across subtype (Supplemental Figure 7),
183  with a large majority of genes performing at EV R? > 0.01 in rarer subtypes, like HER2-
184  enriched breast cancers. However, we recognized sample sizes in the TCGA validation
185  set were relatively small, especially when considering AA women and women of certain
186  subtype, e.g. as low as 16 AA women with HERZ2-enriched breast cancer. As overall
187  correlation between observed and imputed expressions are near 0, we sought to account

188  for sampling variability when imputing into groups of women with such small sample sizes.

10
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189

190 We employed a permutation scheme: permuting observed expression values among
191  samples 10,000 times to generate a null distribution for EV R2. We then tested for the null
192  hypothesis R? = 0, controlling for false discovery, according to this null distribution.
193  Supplemental Figure 9 displays g-values in Manhattan form [27], showing that the
194  proportion of genes with EV R? significantly different from 0 is similar across subtypes.
195 We inverted this permutation test [28] to construct a confidence interval for EV R2. We
196 find that the EV R? of several genes are highly variable across subtypes, even when
197  accounting for differences in sample size and therefore sampling variation. Key examples
198  of such genes with variable EV R? across subtypes are shown in Figure 3.

199

200 Predicted expression associated with breast cancer-specific survival

201 To assess association between imputed gene expression and breast cancer-specific
202  survival, we constructed race-stratified cause-specific proportional hazard models for
203 3,828 samples from CBCS (1,865 AA and 1,963 WW), where we model time to mortality
204 due to breast cancer. Of the genes evaluated, we detected 4 whose GReX were
205 associated with breast-cancer specific survival at FDR-adjusted P < 0.10 in AA women,
206 shown in Table 1 and Figure 4. We did not identify any genes with GReX associated with
207  survival in WW women.

208

209 An association between increased GReX and increased risk of breast cancer-specific
210 mortality was identified for CAPN13 (2p23.1). We also found protective associations

211 between higher GReX of AURKA (20q913.2), PIK3CA (3q26.32), SERPINBS (18q21.33)

11
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212 and lower risk of breast cancer-mortality (Figure 4C). Of these 4 loci, associations with
213 survival have been reported with SNPs in the same chromosomal region as AURKA,
214  PIK3CA, and SERPINBS [8,29-33], though none of these reported SNPs were utilized in
215  constructing the GReX of this gene. Furthermore, the GReX of these four genes were not
216  significantly correlated (P > 0.05 for all pairwise Spearman correlation tests), and the sets
217  of SNPs used in constructing the GReX of these four genes had no pairwise intersections,
218  providing evidence that their independent association with breast cancer-specific survival
219  was not a pleiotropic effect from shared or correlated SNPs.

220

221  To determine whether the associations between predicted gene expression and breast
222 cancer-specific survival were independent of GWAS-identified association signals, we
223  performed conditional analyses adjusted for the most significant GWAS-identified
224  survival-associated SNPs closest to the TWAS-identified gene by adjusting the cause-
225  specific proportional hazards model for the genotype from this SNP. We found that the
226  association for PIK3CA had a small change in effect size after adjustment for its adjacent
227  survival-associated SNP, and its SNP-adjusted association was insignificant, while the
228 other genes’ associations remained significant after adjustment (Table 2). This
229  conditional analysis suggests that the GReX of AURKA, CAPN13, and SERPINBS may
230 be associated with breast cancer-specific survival independent of the GWAS-identified
231 variant. No previously reported survival-associated SNPs were found significant at the
232 genome-wide significance level in our dataset, and none of the closest survival-

233 associated SNPs used in conditional adjustment were significant (Figure 4A). This

12
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234  supports our observation that correctly analyzed TWAS using relevant tissue gene
235  expression may increase power for association testing.

236

237  As we deal with case-only data, we wished to inspect any collider bias that arises from
238 unmeasured confounders that are associated with both breast cancer incidence and
239  survival (see Supplemental Figure 13) [34]. Since a case-control dataset was not readily
240 available to us to test associations between the GReX of genes with breast cancer risk,
241  we construct the weighted burden test, as in FUSION [14], for the GReX of AURKA,
242 CAPN13, PIK3CA, and SERPINBS in the GWAS summary statistics for breast cancer risk
243 in AA women available from BCAC using the iCOGs dataset and additional GWAS [35—
244  37]. We find that none of the GReX of these genes are significantly associated with breast
245  cancer incidence (Z > 1.96, P < 0.05), suggesting minimal presence of collider bias in
246  our estimates of association with survival for the GReX of these four genes.

247

248  Lastly, we examined the association of the GReX of these four genes with breast cancer-
249  specific survival in AA women, stratified by estrogen receptor (ER) subtype. We find that
250 overall associations with survival are often driven by significant associations in a single
251  subtype, though there is evidence of significant hazardous association in both ER
252 subtypes for CAPN13 (Supplementary Figure 10). We also did not detect a survival
253  association with the total expression of these 4 genes, as estimated from breast cancer-
254  specific Cox models (Supplementary Figure 11).

255

256 Discussion

13
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257 In this paper, we studied the relationship between breast cancer-specific survival and
258 germline genetics using a TWAS framework, wherein we aggregate the germline genome
259 into testing units that map to the transcriptome to greatly mitigate the multiple testing
260  burden found in GWAS. This study is the first systematic TWAS for breast cancer-specific
261  survival, motivated by a full cis-trans eQTL analysis with one of the largest sample sizes
262  for breast tumor gene expression in African American women. Our analyses underscore
263 the importance of accounting for sampling variability when validating predictive models
264  for TWAS and incorporating race or ancestry in these models, an aspect which confounds
265 naive comparisons involving imputed GReX across validation sub-groups of different
266 sample size.

267

268  Using a training set from CBCS, we leveraged race-stratified germline eQTLs of tumor
269  expression to train race-stratified models of tumor expression from germline variation.
270  Our eQTL analysis reveals a strong cis-signal between germline variants and tumor
271 expression of several genes, that is both differential across race and not exclusively
272  attributable to healthy breast tissue. Our models showed strong cross-validation
273 predictive performance in genes with significant cis-heritability. We also show strong
274  predictive performance in a held-out test set from CBCS and adequate performance of
275  our WW models in TCGA-BRCA data. We suspect that this discrepancy in validation
276  performance between CBCS and TCGA may be attributed to a poor intersection of SNPs
277  in the genotyping data from TCGA and CBCS (only approximately 85% of SNPs from
278  CBCS represented in TCGA imputed genotype data). There could also be a lack of cis-

279  heritability of the tumor expression of a majority of genes assayed in TCGA. For example,

14
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280 Gusev et al. has trained models for gene expression in breast tumors in TCGA,; only 8 of
281 the 417 genes in the CBCS Nanostring panel showed significant cis-heritability in their
282  models [14], which we downloaded from the Gusev Lab’s TWAS/FUSION repository. We
283  believe that predictive performance in TCGA data consistent with CBCS data is a high
284  bar for validation due to both genotyping and RNA expression platform differences
285 between CBCS (Oncoarray and Nanostring) and TCGA (Affymetrix 6.0 and RNAseq).
286  Reproducible performance in both AA and WW women in our independent test set from
287  CBCS data suggests that our models are quite robust. Follow-up studies, in which models
288 of tumor expression are trained in TCGA RNA-seq data and validated in CBCS
289  Nanostring data, could elucidate any discrepancies in predictive performance across
290 platform.

291

292  An important implication of our work is the race-specificity of TWAS methods. In our
293  validation scheme, we assessed the applicability of imputing expression in AA samples
294 using the WW predictive models, as publicly available tumor expression data is often
295 measured in predominantly WW cohorts. We find that WW models generally have poor
296 performance in AA women. Epidemiological studies have stressed accounting for
297 differences in race by stratification or adjustment for admixture estimates when
298  constructing polygenic scores [38]. Our key finding of poor predictive performance across
299 race suggests that this epidemiological note of caution extends to creating predictive
300 models for RNA expression. Previous TWAS studies of breast cancer risk have either
301 used models trained in a sample of predominantly European ancestries [16] or imputed

302 into large cohorts of strictly patients of European descent [15]. Hoffman et al. does

15
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303 exclude SNPs that were monomorphic in any of the 14 different ancestral populations
304 they analyze [16], though this may not capture all effects of ancestry on genetic regulation
305 of expression, including the possibility for interactions. We contend that accounting for
306 ancestry or stratifying by race may be necessary to draw correct inference in large,
307 ancestrally-heterogeneous cohorts.

308

309 Our data also suggests that predictive performance may vary by molecular subtype.
310 Previous groups have shown the predictive utility of catering polygenic risk scores to
311  breast cancer subtype [39,40], a phenomenon we investigated in our predictive models
312 of tumor expression. As the estimates of sample correlations between observed and
313  predicted expression were small and the sample sizes per subtype were small, we
314 recognized the need to employ a permutation method to assess the precision of our
315 prediction R?. We found that a significant portion of the variability of predictive
316 performance across subtype was explained by sampling variability. Nevertheless, even
317 after accounting for sampling variability, we noticed that several genes have varied
318 predictive performance across subtype and race. This finding suggests that TWAS
319 predictive models of expression may need to account of biological heterogeneity. We also
320 reinforce the importance of sampling variability in the validation of predictive models in
321  external cohorts prior to generalized imputation and association testing. For example, Wu
322 etal. trained their models in a relatively small set of 67 women from GTEx and validated
323 their 12,824 models in a validation set of 86 women from TCGA without accounting for
324 sampling variability of predictive performance [15]. A recent multi-tissue TWAS in ovarian

325 cancer from Gusev et al. considered a more thorough validation of predictive models by
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326 leveraging multiple independent cohorts to assess replication rates for their models [41].
327 We recommend such an approach if multiple independent cohorts are accessible. But, in
328 TWAS evaluation in a single tissue, studies should place a strong emphasis on validation,
329  accounting for sampling variability of prediction R?, ideally prior to imputation in larger
330 cohorts.

331

332 While many of the most significant findings here are methodological in nature, we also
333 have data to suggest that four genomic loci may merit further investigation relative to
334 breast cancer survival. We identified 4 genomic loci associated with breast cancer
335 survival at an FDR-adjusted significance level of 0.10 in AA women. After adjustment for
336 genetics at the most significantly survival-associated SNP close to the gene in question,
337 survival associations at 3 of these 4 locations remained marginally significant. We did not
338 observe any significant association between the total expression of these 4 genes and
339  breast cancer-specific survival. This suggests that the germline-regulated component of
340 the tumor expression of these genes — a small fraction of the total expression variation —
341 may be associated with survival outcomes. Numerous factors, including copy number
342  alterations, epigenetic or post-transcriptional regulation, and exposures and technical
343  artifacts in measurement contributed to the total expression measured in the tumor. Thus,
344 we do not expect that significant GReX association implies total expression association,
345  orvice versa.

346

347  While nearly all of the genes on the CBCS Nanostring panel are relevant to breast cancer

348 research, many have not been shown to be associated with survival. Two of these 4
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349 TWAS-identified genes have strong functional evidence in breast cancer survival
350 literature. Mutations in AURKA and PIK3CA have previously been shown to be
351  significantly associated with breast cancer survival rates [29-31]. Less is known about
352 the involvement of SERPINBS and CAPN13 in breast cancer survival. SERPINBS is a
353  tumor-suppressor gene that has been shown to promote development of breast cancers
354 in humans [42]. The calpain family, which contain CAPN13, is a group of proteases that
355 is involved in apoptosis and the progression and proliferation of breast cancer cells and
356 has been suggested as therapy targets for various cancers [43—45]. These four loci merit
357 further studies for validation and functional characterization, both in large GWAS cohorts
358 and using in vitro studies.

359

360 We also observed that 3 of the 4 associations were driven by very strong effect sizes
361  within a single subtype (Supplementary Figure 11). Though we cannot contextualize this
362  result, it highlights an often-overlooked modeling consideration. In a cohort that is both
363  Dbiologically and ancestrally-heterogenous, as in CBCS, investigators should consider
364 modeling choices beyond simple linear adjustments for subtype and race. Given a large
365 enough sample size, it may be prudent in future TWAS to stratify predictive models on
366  both race and biological subtype to increase power to detect outcome-associated loci that
367 are strongly present within only one such strata or have heterogeneous effects across
368 strata. This idea is akin to the logic of Begg et al and Martinez et al in detecting etiological
369 risk factors for ER-positive and -negative tumors [46,47].

370
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371 Since the CBCS analysis was a case-only study, we were wary of potential collider bias
372 by unmeasured confounders associated with both breast cancer risk and progression
373  [34,48-50]. These colliders may affect the magnitude and direction of effect sizes on
374  association between survival and GReX of genes (Supplemental Figure 14). We find that,
375 using summary statistics for breast cancer risk GWAS from iCOGs [35-37], none of the
376  GReX of these four genes showed significant transcriptome-wide associations with breast
377  cancer risk in this iCOGs data. This suggests that our estimates of association may be
378 free of the collider bias, outlined in Supplemental Figure 14. As Escala-Garcia et al.
379  highlights, germline variation can affect breast cancer prognosis via tumor etiology (risk
380 of developing a tumor of a certain subtype), or via mechanisms that are relevant post-
381 tumorigenesis, such as the cellular response to therapy, or the host-tumor micro-
382  environment, including immune response and stroma-tumor interactions [7]. Ideally, in
383 future TWAS and integrated omic analyses of breast cancer survival, it is prudent to
384  consider joint models of breast cancer risk and survival to account for the many effects of
385 germline genotype and any associations with unmeasurable confounders [49].

386

387  One limitation of our study is that data on somatic amplifications and deletions were not
388 yet available for the CBCS cohort we analyzed. Removing the somatic copy number
389 variation signal from tumor expression profiles may improve our estimates of cis-
390 heritability and perhaps the predictive performance of our models, as previous TWAS
391  have shown [41]. Furthermore, not all genes in the CBCS Nanostring panel have a
392  significant heritable component in expression regulation. These genes, like ESR1, which

393 have a significant role in breast cancer etiology [51], could not be investigated in our
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394 study. Lastly, since CBCS mRNA expression is assayed by the Nanostring nCounter
395 system, we could only analyze 94 aggregated locations on the human transcriptome
396 across race. However, the Nanostring platform allows the CBCS to robustly measure
397 expression from FFPE samples on a targeted panel of breast cancer and race-related
398 genes, allowing us to leverage the large sample size from all three phases of the CBCS.
399  One of the greatest strengths of our study is that the CBCS affords us both a large training
400 and test set of AA and WW women for race-stratified predictive models. Such data is
401 important in drawing inference in more ancestrally-heterogeneous populations.
402  Accordingly, the statistical power of our study is high to detect associations for genes with
403  relatively high cis-heritability. Nonetheless, the specific survival-associated loci merit
404  further investigation in external datasets. Future studies in large GWAS cohorts, such as
405 those within the Breast Cancer Association Consortium, will elucidate how to account for
406  ancestral and biological heterogeneity in detecting survival-associated loci.

407

408 Conclusion

409 We have provided a framework of transcriptome-wide association studies (TWAS) for
410 breast cancer outcomes in diverse study populations, considering both ancestral and
411  subtype-dependent biological heterogeneity in our predictive models. From a more
412  theoretical perspective, this work will inform the utilization of TWAS methods in polygenic
413  traits and diverse study populations, stressing rigorous validation of predictive models
414  prior to imputation and careful modeling to capture associations with outcomes of interest
415 in diverse populations.

416
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417  Methods

418 Data collection

419  Study population

420 The Carolina Breast Cancer Study (CBCS) is a population-based study conducted in
421 North Carolina (NC) that began in 1993; study details and sampling schemes have been
422  described in previous CBCS work [19,52]. Patients of breast cancer aged between 20
423  and 74 years were identified using rapid case ascertainment in cooperation with the NC
424  Central Cancer Registry, with self-identified African American and young women (ages
425  20-49) oversampled using randomized recruitment [19]. Randomized recruitment allows
426  sample weighting to make inferences about the frequency of subtype in the NC source
427  population. Details regarding patient recruitment and clinical data collections are
428  described in Troester et al [2].

429

430 Date of death and cause of death were identified by linkage to the National Death Index.
431  All diagnosed with breast cancer have been followed for vital status from diagnosis until
432  date of death or date of last contact. Breast cancer-related deaths were classified as
433  those that listed breast cancer (International Statistical Classification of Disease codes
434  174.9 and C-50.9) as the underlying cause of death on the death certificate. By the end
435  of follow-up, we identified 674 deaths, 348 of which were due to breast cancer. In total,
436 we compiled 3,828 samples (1,865 AA and 1,963 WW) from all phases of CBCS with
437  relevant survival and clinical variables.

438

439  CBCS genotype data
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440  Approximately 50% of the SNPs for the OncoArray were selected as a “GWAS backbone”
441  (lllumina HumanCore), which aimed to provide high coverage for the majority of common
442  variants through imputation. The remaining SNPs were selected from lists supplied by six
443  disease-based consortia, together with a seventh list of SNPs of interest to multiple
444  disease-focused groups. Approximately 72,000 SNPs were selected specifically for their
445  relevance to breast cancer. The sources for the SNPs included in this backbone, as well
446  as backbone manufacturing, calling, and quality control, are discussed in depth by the
447  OncoArray Consortium [53]. All samples were imputed using the October 2014 (v.3)
448 release of the 1000 Genomes Project dataset as a reference panel in the standard two-
449  stage imputation approach, using SHAPEITZ2 for phasing and IMPUTEvZ2 for imputation
450 [54-56]. All genotyping, genotype calling, quality control, and imputation was done at the
451 DCEG Cancer Genomics Research Laboratory [53].

452

453  From the provided genotype data, we excluded variants (1) with a minor frequency less
454  than 5% and (2) that deviated significantly from Hardy-Weinberg equilibrium at P < 1078
455 using the appropriate functions in PLINK v1.90b3 [57,58]. Finally, we intersected
456  genotyping panels for the AA and WW samples, resulting in 5,989,134 autosomal variants
457  and 334,391 variants of the X chromosome. CBCS genotype data was coded as dosages,
458  with reference and alternative allele coding as in the National Center for Biotechnology
459 Information’s Single Nucleotide Polymorphism Database (dbSNP).

460

461 CBCS gene expression data
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462  Paraffin-embedded tumor blocks were requested from participating pathology
463 laboratories for each sample, reviewed, and assayed for gene expression using
464  Nanostring as discussed previously [2]. In total, 1,388 samples with invasive breast
465 cancer from the CBCS were analyzed for a total of 406 autosomal genes and 11 genes
466 on the X chromosome. All assays were performed in the Translational Genomics
467  Laboratory at the University of North Carolina at Chapel Hill.

468

469  We used the NanoStringQCPro package in Bioconductor to first eliminate samples that
470 did not have sufficient Nanostring data quality [59]. Next, we normalized distributional
471  differences between lanes with upper-quartile normalization [60]. Unwanted technical and
472  biological variation (i.e. tissue heterogeneity) was estimated in the resulting gene
473  expression data with techniques from the RUVSeq package from Bioconductor [61].
474  Unwanted variation was controlled using the distribution of 11 endogenous housekeeping
475  genes on the Nanostring gene expression panel. Ultimately, we removed 2 dimensions
476  of unwanted variation from the variance-stabilized transformation of the gene expression
477 data [62,63]. We lastly used principal component analysis to detect and remove any
478  significant, potential outliers. A final intersection of samples that had both genotype and
479  gene expression data gave us a final sample of 1,199 subjects (628 AA women and 571
480  WW women).

481

482  TCGA genotype data

483  Birdseed genotype files of 914 of WW and AA women were downloaded from the Genome

484  Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype files were merged into
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485  a single binary PLINK file format (BED/FAM/BIM) and imputed using the October 2014
486  (v.3) release of the 1000 Genomes Project dataset as a reference panel in the standard
487  two-stage imputation approach, using SHAPEIT v2.837 for phasing and IMPUTE v2.3.2
488  for imputation [54—-56]. We excluded variants (1) with a minor allele frequency of less than
489 1%, (2) that deviated significantly from Hardy-Weinberg equilibrium (P < 1078) using
490 appropriate functions in PLINK v1.90b3 [57,58], and (3) located on sex chromosomes.
491  We further excluded any SNPs not found on the final, quality-controlled CBCS genotype
492  data. Final TCGA genotype data was coded as dosages, with reference and alternative
493  allele coding as in dbSNP.

494

495  TCGA expression data

496 TCGA level-3 normalized RNA expression data were downloaded from the Broad
497 Institute's GDAC Firehose (2016/1/28 analysis archive) and subsetted to the 417 genes
498 analyzed in CBCS. A total of 412 of these 417 were available in TCGA expression data.
499

500 Computational methods

501  Deconvolution of bulk tumor RNA

502 A study pathologist analyzed tumor microarrays (TMAs) from 176 of the 1,199 subjects
503 to estimate area of dissections originating from epithelial tumor, assumed here as a proxy
504 for the proportion of the bulk RNA expression attributed to the tumor. Using these 176
505 observations as a training set and the normalized gene expressions as the design matrix,
506 we trained a support vector machine model tuned over a 10-fold cross-validation [64,65].

507 The cross-validated model was then used to estimate tumor purities for the remaining
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508 1,023 samples from their gene expressions. We do not consider tumor purity in final eQTL
509 models and all downstream analyses.

510

511  eQTL analysis

512 We assessed the additive relationship between the gene expression values and
513  genotypes with linear regression analysis using MatrixeQTL [66], in the following model:
514 E; = XBs + XcPc + €g,

515 where E; is the gene expression of gene g, X; is the vector of genotype dosages for a
516 given SNP s, C is a matrix of covariates, 5, and . are the effect-sizes on gene expression
517 for the SNP s and the covariates C, respectively, and € is assumed to be Gaussian
518 random error with mean 0 and common variance o2 for all genes g.

519

520 We calculated both cis- (variant-gene distance less than 500 kb) and trans-associations
521  between variants and genes. Classical P-values were calculated for Wald-type tests of
522 Hy: s = 0 and were adjusted post-hoc via the Benjamini-Bogomolov hierarchical error
523  control procedure, TreeQTL [20]. We conducted all eQTL analyses stratified by race. Age,
524  BMI, postmenopausal status, and the first 5 principal components of the joint AA and WW
525 genotype matrix were included in the models as covariates in C. Estimated tumor purity
526 was also included as a covariate to assess its impact on strength and location of eQTLs.
527  Any SNP found in an eQTL with Benajmini-Bogomolov adjust P-value BBFDR < 0.05 is
528 defined as an eSNP using TreeQTL [20]. The corresponding gene in that eQTL is defined
529 as an eGene. We exclude samples with Normal-like subtype, as classified by the PAM50

530 classifier, due to generally low tumor content.
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531

532 We downloaded healthy tissue eQTLs from the Genotype-Tissue Expression (GTEXx)
533  Project and cross-referenced eGenes and corresponding eSNPs between CBCS and
534 GTEx in healthy breast mammary tissue, EBV-transformed Iymphocytes, and
535 subcutaneous adipose tissue. The Genotype-Tissue Expression (GTEx) Project was
536 supported by the Common Fund of the Office of the Director of the National Institutes of
537 Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the
538 analyses described in this manuscript were obtained from the GTEx Portal on 05/12/19.

539

540  Estimation of cis-heritability

541  Cis-heritability (cis-h?) was estimated using the GREML-LDMS method, proposed to
542  estimate heritability by correction for bias in linkage disequilibrium (LD) in estimated SNP-
543  based heritability [26]. Analysis was conducted using GCTA v.1.92 [67]. For downstream
544  analysis, we only consider the 151 genes (81 in AA women and 100 in WW women) with
545  cis-h? that can be estimated with nominal P-value < 0.10.

546

547  Predictive tumor expression models

548  We adopt general techniques from PrediXcan and FUSION to estimate eQTL-effect sizes
549  for predictive models of tumor expression from germline variants [13,14]. First, gene
550 expressions were residualized for the covariates C included in the eQTL models (age,
551 BMI, postmenopausal status, and genotype PCs) given the following ordinary least
552  squares model:

553 Eg = Xcﬁc + Eg.
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554  We then consider downstream analysis on Eg =E; - XcBe.

555

556  For a given gene g, we consider the following linear predictive model:

557 Eq = Xgw, + €,

558  where Eg is the gene expression of gene g, residualized for the covariate matrix X¢, X, is
559 the genotype matrix for gene g that includes all cis-SNPs for gene g (within 500 kb of
560 eitherthe 5’ or 3’ end of the gene) and all trans-eQTLs with BBFDR < 0.01, w, is a vector
561  of effect-sizes for eQTLs in X, and ¢, is Gaussian random error with mean 0 and common
562  variance for all g.

563

564 We estimate w, with the best predictive of three schemes: (1) elastic-net regularized
565 regression with mixing parameter a = 0.5 and A penalty parameter tuned over 5-fold
566  cross-validation [13,68], (2) linear mixed modeling where the genotype matrix X, is
567 treated as a matrix of random effects and w;, is taken as the best linear unbiased predictor
568  (BLUP) of wy, using rrBLUP [69], and (3) multivariate linear mixed modeling as described
569 above, estimated using GEMMA v.0.97 [70].

570

571 In these models, the genotype matrix X, is pruned for linkage disequilibrium (LD) prior to

572 modeling using a window size of 50, step size of 5, and LD threshold of 0.5 using PLINK

573 v.1.90b3 [58] to account for redundancy in signal. The final vectors w, of effect-sizes for

574  each gene g are estimated by the estimation scheme with the best 5-fold cross-validation
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575  performance. All predicted models are stratified by race, i.e. an individual model of tumor
576  expression for AA women and WW women for each gene g.

577

578 To impute expression into external cohorts, we then construct the germline genetically-
579  regulated tumor expression GReX, of gene g given w, in the predictive model as follows:
580 GReXy = Xy newWy,

581  where X, .., is the genotype matrix of all available SNPs in the feature set of w, in a
582  GWAS cohort.

583

584 All final models are available here: https://qgithub.com/bhattacharya-a-

585 bt/CBCS TWAS Paper.

586

587  Validation in TCGA

588  Using our stratified predictive models of tumor expression, we imputed expression in
589 TCGA and measured predictive accuracy of each gene through prediction R?, defined
590 here as the squared Spearman correlation between observed and imputed expression. It
591 is important to note that all variants in the CBCS-trained predictive models are not
592 represented in the TCGA genotype data. Predictive performance in TCGA was also
593 assessed stratified by PAMS50 intrinsic subtype and estrogen receptor status.

594

595 To account for sampling variability in calculating correlations in validation cohorts of
596 smaller sample sizes, we calculated a permutation null distribution for each gene by

597 permuting observed expressions 10,000 times and calculating a “null” prediction R? at
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598 each permutation. The sample validation prediction R? was compared to this permutation
599  null distribution to generate an empirical P-value for the sample R?, using Storey's qvalue
600 package. We then calculated g-values from these empirical P-values, controlling for a
601 false discovery rate of 0.05 [27]. Lastly, we constructed confidence intervals for R? by
602 inverting the acceptance region from the permutation test [28].

603

604  Validation in CBCS

605 We used an entirely held-out sample of 2,308 women from CBCS as a validation set of
606  Nanostring nCounter data on a codeset of 166 genes. These samples were normalized
607 as outlined before. We used the same validation methods as in TCGA, as well using a
608 permutation method to assess the statistical significance of predictive performance,
609 stratified by PAM50 subtype and estrogen receptor status.

610

611  PAMSO subtyping

612 GReXin CBCS were first estimated as outlined above. We residualized the original tumor
613  expression E for these imputed expression values to form a matrix of tumor expression
614 adjusted for GReX (E). We then classified each subject into PAM50 subtypes based on
615 both E and E, using the procedure summarized by Parker et al [71,72].

616

617  Survival modeling

618 Here, we defined a relevant event as a death due to breast cancer. We aggregated all
619 deaths not due to breast cancer as a competing risk. Any subjects lost to follow-up were

620 treated as right-censored observations. We estimated the association of GReX with
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621  breast cancer survival by modeling the race-stratified cause-specific hazard function of
622  breast cancer-specific mortality, stratifying on race [73]. For a given gene g, the model
623  has form

624 () = Agi () e ReXaPatzche,

625 where B, is the effect size of GReX,; on the hazard of breast cancer-specific mortality, Z
626 represents the matrix of covariates (age at diagnosis, estrogen-receptor status at
627 diagnosis, tumor stage at diagnosis, and study phase), and g, are the effect sizes of
628 these covariates on survival. 1;,(t) is the hazard function specific to breast cancer
629  mortality, and A, (¢) is the baseline hazard function. We test H,: f, = 0 for each gene g
630 with Wald-type tests, as in a traditional Cox proportional hazards model. We correct for
631 genomic inflation and bias using bacon, a method that constructs an empirical null
632  distribution using a Gibbs sampling algorithm by fitting a three-component normal mixture
633 on Z-statistics from TWAS tests of association [74].

634

635 Here, we consider only the 46 genes that have CV R? > 0.01 in AA women and the 57
636 genes that have CV R? > 0.01 in WW women for race-stratified survival modeling. We
637 adjust tests for g, via the Benjamini-Hochberg procedure at a false discovery rate of 0.10.
638

639  For comparison, we run a GWAS to analyze the association between germline SNPs and
640 breast cancer-specific survival using GWASTools [75]. We use a similar cause-specific
641 hazards model with the same covariates as in the TWAS models of association,
642  correcting for false discovery with the Benjamini-Hochberg procedure.

643
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Inspection of collider bias

To assess collider bias when conditioning for breast cancer incidence in case-only
studies, such as CBCS, we test for association for the GReX of genes with breast cancer
risk using iCOGs summary statistics from BCAC [35-37], using the weighted burden test

identified by FUSION [14]. In summary, we compose a weighted Z test statistic as follows:

wz
wsg W'’

7=
where Z is the vector of Z-statistics from iCOGs and W = X 1X, ; with X, is the
covariance matrix between all SNPs represented in Z and the gene expression of the

given gene and X, ; is the covariance among all SNPs.

Power analysis

Using survSNP [76], we generated the empirical power of a GWAS to detect various
hazard ratios with 3,828 samples with 1,000 simulation replicates at a significance level
of P = 1.70 x 1078, corresponding to an FDR-adjusted P = 0.10. We assume an event
rate of 10%, a relative allelic frequency of the risk allele of 0.1 and estimate the 90%
percentile of times-to-event as a landmark time. Similarly, for genes of various cis-h?, we
assessed the power of TWAS to detect various hazard ratios at P = 0.0096
(corresponding to FDR-adjusted P = 0.10) over 1,000 simulation replications from the

empirical distribution function of the GReX of the given gene.

Abbreviations

CBCS: Carolina Breast Cancer Study

GWAS: Genome-wide association study
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667 LD: Linkage disequilibrium

668  SNP/V: Single nucleotide polymorphism/variant
669  TWAS: Transcriptome-wide association study
670 GTEx: The Genoype-Tissue Expression Project
671 BCAC: Breast Cancer Association Consortium
672  PRS: Polygenic risk score

673  WW: self-identified white women

674  AA: self-identified African American women

675 ER: estrogen receptor

676  eQTL: expression quantitative trait loci

677 AMBER: Alberta Moving Beyond Breast Cancer
678 eGene: eQTL-associated gene

679 eSNP: SNP found in an eQTL

680 FDR: false discovery rate

681 BBFDR: Benjamini-Bogomolov adjusted false discovery rate
682  hZ2: heritability

683 TCGA: The Cancer Genome Atlas

684 BRCA: breast cancer

685 GReX: germline-genetically regulated tumor expression
686
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Figure 1: (A) Cis-trans plot of top eQTL by gene stratified by SRR. Each point represents the top
eQTL for a given gene. The color and size of each point reflects the Benjamini-Bogomolov FDR-
adjusted P-value (BBFDR) for that eQTL. eGenes with BBFDR < 0.01 are labelled. (B) Comparison
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Figure 2: (A) Comparison of cross-validation R? across race in CBCS. Cross-validation R? in CBCS WW
women (X-axis) and CBCS AA women (Y-axis) for each of the 151 analyzed genes. Scales are logarithmic.
Dotted lines represent R? = 0.01. Colors represent the model with which a given gene can be predicted at
R? > 0.01. (B) Cross-validation R? in CBCS (X-axis) and square Spearman correlation between observed
expression and GReX in TCGA-BRCA (Y-axis) in AA sample (left) and WW sample (right). Pearson
correlations between R?calculated on the raw scale. R? are plotted on the log-scale. (C) Comparison of
validation R? across race in TCGA for 149 analyzed genes found in TCGA expression data. (D) Comparison
of validation R? across race in held-out CBCS samples for 51 analyzed genes. (E) Comparison of R? of
genes in TCGA AA sample imputed from WW models (X-axis) and the AA models (Y-axis). (F) Comparison
of R? of genes in held-out CBCS AA sample imputed from WW models (X-axis) and the AA models (Y-axis)
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Figure 3: Validation R? across PAM50 molecular subtype and estrogen receptor status, stratified by
race, for example genes with highly variable R? in TCGA (A) and held-out CBCS (B). Squared
Spearman correlation (Y-axis), denoted R?, between observed and predicted gene expression is plotted
for different genes (X-axis), stratfied by PAM50 subtype and estrogen receptor status. Points are

colored and shaped according to subtype. Error bars provide 90% confidence intervals inverted from
the corresponding permutation test.
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Figure 4: GWAS and TWAS results in AA women. (A) Manhattan plot of traditional GWAS on breast
cancer survival. Genomic regions found to be significantly associated with survival in TWAS are
represented in various colors. No SNVs reach Benjamini-Hochberg FDR-adjusted genome-wide
significance. (B) Manhattan plot of TWAS on breast cancer survival. Genomic regions found to be
significant at FDR-adjusted P < 0.10 are highlighted in red. The blue line represents a cutoff of FDR-
adjusted @ = 0.05 and the dotted black line represents a cutoff of FDR-adjusted a = 0.10. (C) Caterpillar
plot of log-hazard rates with FDR-adjusted 90% confidence levels (X-axis) and genomic position (Y-
axis). Results shown are significant at nominal P < 0.10. Genes highlighted in red represent genes
with GReX significantly associated with survival at FDR-adjusted P < 0.10.

52


https://doi.org/10.1101/769570
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/769570; this version posted September 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Hazard Ratio

Region Gene (90% CI)? Z-Statistic? P-value? GReX R?P
20q13.2 AURKA 0.83 (0.73, 0.95) -2.52 1.5x 1073 0.021
2p23.1 CAPN13 1.22 (1.07, 1.41) 2.76 5.4 x107* 0.011
3q26.32 PIK3CA 0.85(0.74, 0.97) -2.34 3.2x1073 0.013
18921.33 SERPINBS 0.82 (0.72, 0.93) -2.85 3.4x107% 0.010

Table 1: Genes with GReX found in association with breast cancer-specific survival in AA
women. (a) Hazard ratio and FDR-adjusted 90% confidence intervals, Z-statistic, and P-
value of association of GReX with breast cancer-specific survival. (b) Cross-validation R?
of gene expression in AA models.

. Hazard ratio, P-value,
Gene Closest survival- Isjtllf\t/?\?:l?atsos(o:zzf:cti adjusting for adjusting for
associated SNP? SNP? adjacent GWAS- adjacent risk
SNP (90% CI)® SNPsP
AURKA rs202100873 87.1 kb 0.84 (0.74, 0.94) 0.027
CAPN13 rs72068647 266.9 kb 1.18 (1.04, 1.33) 0.046
PIK3CA rs66487567 271.9 kb 0.88 (0.78, 1.00) 0.096
SERPINB5 rs376302305 89.4 kb 0.84 (0.75, 0.94) 0.028

Table 2: Genes with GReX found in association with breast cancer-specific survival. (a)
Top survival-associated SNP in cis-region of the given gene from GWAS for survival and
distance of top cis-SNP from gene. (b) FDR-adjusted hazard ratio, 90% confidence
interval, and P-value for association of GReX and breast cancer-specific survival,
adjusting for adjacent survival-associated SNPs.
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