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Abstract 1 

Background: The relationship between germline genetic variation and breast cancer 2 

survival is largely unknown, especially in understudied minority populations who often 3 

have poorer survival. Genome-wide association studies (GWAS) have interrogated 4 

breast cancer survival but often are underpowered due to subtype heterogeneity and 5 

many clinical covariates and detect loci in non-coding regions that are difficult to interpret. 6 

Transcriptome-wide association studies (TWAS) show increased power in detecting 7 

functionally-relevant loci by leveraging expression quantitative trait loci (eQTLs) from 8 

external reference panels in relevant tissues. However, ancestry- or race-specific 9 

reference panels may be needed to draw correct inference in ancestrally-diverse cohorts. 10 

Such panels for breast cancer are lacking.  11 

 12 

Results: We provide a framework for TWAS for breast cancer in diverse populations, 13 

using data from the Carolina Breast Cancer Study (CBCS), a North Carolina population-14 

based cohort that oversampled black women. We perform eQTL analysis for 406 breast 15 

cancer-related genes to train race-stratified predictive models of tumor expression from 16 

germline genotypes. Using these models, we impute expression in independent data from 17 

CBCS and TCGA, accounting for sampling variability in assessing performance. These 18 

models are not applicable across race, and their predictive performance varies across 19 

tumor subtype. Within CBCS (� =  3,828), at a false discovery-adjusted significance of 20 

0.10 and stratifying for race, we identify associations in black women near AURKA, 21 

CAPN13, PIK3CA, and SERPINB5 via TWAS that are underpowered in GWAS.  22 

 23 
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Conclusions: We show that carefully implemented and thoroughly validated TWAS is an 24 

efficient approach for understanding the genetics underpinning breast cancer outcomes 25 

in diverse populations. 26 

 27 

Keywords: transcriptome-wide analysis (TWAS); breast cancer; expression quantitative 28 

trait loci (eQTL); survival; polygenic traits  29 
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Background 30 

Breast cancer remains the most common cancer among women in the world [1]. Breast 31 

cancer tends to be more aggressive in young women and African American women, 32 

though underlying germline determinants of poor outcomes are not well-studied. Cohorts 33 

that represent understudied minority populations, like the Carolina Breast Cancer Study 34 

(CBCS), have identified differences in healthcare access, socioeconomics, and 35 

environmental exposures associated with disparities in outcome [2–4], but more targeted 36 

genomic studies are necessary to interrogate these disparities from a biologic and genetic 37 

perspective. 38 

 39 

Few genome-wide association studies (GWAS) have studied the relationship between 40 

germline variation and survival outcomes in breast cancer, with most focusing instead on 41 

genetic predictors of risk [5,6]. Recently, GWAS have shown evidence of association 42 

between candidate common germline variants and breast cancer survival, but these 43 

studies are often underpowered [7,8]. Furthermore, the most significant germline variants 44 

identified by GWAS, in either risk or survival, are often located in non-coding regions of 45 

the genome, requiring in vitro follow-up experiments and co-localization analyses to 46 

interpret functionally [9]. It is important to seek strategies for overcoming these challenges 47 

in GWAS, especially because several studies in complex traits and breast cancer risk 48 

have shown that regulatory variants not significant in GWAS account for a large 49 

proportion of trait heritability [10–12].  50 

 51 
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Novel methodologic approaches that integrate multiple data types offer advantages in 52 

interpretability and statistical efficiency. Escala-García et al. has suggested that 53 

aggregating variants by integrating gene expression or other omics may better explain 54 

underlying biological mechanisms while increasing the power of association studies 55 

beyond GWAS [7]. To alleviate problems with statistical power and interpretability, a 56 

recent trend in large-scale association studies is the transcriptome-wide association study 57 

(TWAS). TWAS aggregates genomic information into functionally-relevant units that map 58 

to genes and their expression. This gene-based approach combines the effects of many 59 

regulatory variants into a single testing unit that increases study power and provides more 60 

interpretable trait-associated genomic loci [13–15]. Hoffman et al. and Wu et al. have 61 

recently conducted TWAS for breast cancer risk and have reported several significant 62 

associations for genes with breast cancer susceptibility, showing increased power over 63 

GWAS [15,16]. However, these studies either draw from ancestrally-homogeneous 64 

reference panels like subsets of women of European ancestry from the Genotype-Tissue 65 

Expression (GTEx) project [16] or study populations of European descent from the Breast 66 

Cancer Association Consortium (BCAC) [15]. It is not known whether these models can 67 

be informative in African American women and other groups. Recent findings have 68 

suggested that stratification by race or ancestry may be necessary to construct proper 69 

tests of association across race or ancestry [17,18]. However, many cohorts, especially 70 

large-scale genetic cohorts, may not have a sufficient sample size in minority populations 71 

to power these tests. 72 

 73 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2019. ; https://doi.org/10.1101/769570doi: bioRxiv preprint 

https://doi.org/10.1101/769570
http://creativecommons.org/licenses/by/4.0/


6 
 

Here, we provide a framework for TWAS for complex disease outcomes in diverse study 74 

populations using transcriptomic reference data from the Carolina Breast Cancer Study 75 

(CBCS), a multi-phase cohort that includes an over-representation of African American 76 

women [19]. We train race-stratified predictive models of tumor expression from germline 77 

variation and carefully validate their performance, accounting for sampling variability and 78 

disease heterogeneity, two aspects that previous TWAS in breast cancer have not 79 

considered. This framework shows promise for scaling up into larger GWAS cohorts for 80 

further detection of risk- or outcome-associated loci.  81 

 82 

Results 83 

Race specific germline eQTL analysis 84 

To assess the association between germline genomic variation and tumor expression of 85 

406 autosomal genes, targeted by the CBCS because of their association with breast 86 

cancer progression, we first conducted a full cis-trans expression quantitative trait loci 87 

(eQTL) analysis, stratifying on race and controlling for key biological covariates and 88 

population stratification (see Methods). We discuss the relationship between self-89 

reported race and ancestry in CBCS in Supplemental Results. 90 

 91 

We evaluated associations between the tumor expression levels of 406 autosomal genes 92 

and 5,989,134 germline SNPs. SNPs and genes found in association in an eQTL will be 93 

called eSNPs and eGenes, respectively. At a Benjamini-Bogomolov [20] FDR-corrected 94 

�-value (		
�� < 0.05), we identified 266 cis-eQTLs and 77 trans-eQTLs in the AA 95 

sample across 32 eGenes, and 691 cis-eQTLs and 15 trans-eQTLs in the WW sample 96 
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across 24 eGenes, shown in Supplemental Figure 2. Of these eGenes, 4 are in common 97 

across race: PSPHL, GSTT2, EFHD1, and SLC16A3. Expressions of PSPHL and GSTT2 98 

have been previously reported to be governed by respective cis-deletions and serve as 99 

distinguishing biomarkers for race [21–24]. The majority of significant eQTLs in both the 100 

AA and WW samples were found in cis-association with respective eGenes. However, 101 

we saw a higher proportion of significant trans-eQTLs in the AA sample (Supplemental 102 

Figure 2). The locations and strengths of top eQTLs for all 406 autosomal genes are 103 

shown in Figure 1A. All significant eQTLs are plotted in Supplemental Figure 2. 104 

 105 

We further adjusted our eQTL models for a computationally-derived estimate of tumor 106 

purity, which showed little effect on the strength and location of top eQTLs by eGene 107 

(Supplemental Results). We do not consider tumor purity in any downstream analyses 108 

and train predictive models on bulk tumor expression.  109 

 110 

We lastly sought to evaluate the source of the significant eQTLs we detect in CBCS. 111 

Similar to previous pan-cancer germline eQTL analyses [25], we cross-referenced 112 

eGenes found in CBCS with eGenes detected in relevant healthy tissues from Genotype-113 

Tissue Expression (GTEx) Project. We attributed all but 7 of the cis-eGenes from CBCS 114 

across both AA and WW women found in GTEx to one of these three tissue types (Figure 115 

1B), with the effect sizes of the top eQTLs for these eGenes correlating very well between 116 

CBCS and GTEx (see Supplemental Figure 5).  117 

 118 

Race-specific predictive models of tumor expression 119 
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Using the significant germline eQTLs of tumor expression as motivation, we used tumor 120 

expression and genotyping data from 628 AA women and 571 WW women from CBCS 121 

to build predictive models of tumor RNA expression levels for each gene’s breast tumor 122 

expression (see Methods). Mean cis-heritability (cis-ℎ�) of the 417 genes is 0.016 (�� =123 

 0.019) in AA women and 0.015 (�� =  0.019), as estimated by GREML-LDMS analysis 124 

[26]. For downstream analysis, we only consider genes with cis-ℎ� significantly greater 125 

than 0 at a nominal �-value less than 0.10 from the relevant likelihood ratio test. 126 

Considering only these genes, the mean cis-ℎ� of genes is 0.049 (�� =  0.016) in AA 127 

models and 0.052 (�� =  0.016) in WW models. Of the predictive models built for these 128 

genes, 125 showed a five-fold cross-validation prediction performance (CV ��) of at least 129 

0.01 (10% Pearson correlation between predicted and observed expression with � <130 

 0.05) in one of the two predictive models. Figure 2A shows the CV �� of these 153 genes 131 

across race. The median CV �� for the 153 genes was 0.011 in both AA and WW women. 132 

Cis-ℎ� and CV �� are compared in Supplemental Figure 6.  133 

 134 

Based on model performance in CBCS, we selected 46 genes in AA women and 57 genes 135 

in WW women for association analyses between predicted tumor gene expression and 136 

breast cancer survival, using data from all patients from CBCS with genotype data. These 137 

genes were selected because they showed an CV �� > 0.01 (10% correlation between 138 

observed and predicted expression in the CBCS training set) and cis-ℎ� ≥ 0 with nominal 139 

� < 0.10 in a given race strata. 140 

 141 

Evaluation of predictive models in independent data 142 
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Predictive performance was strong across race and biological and molecular subtype in 143 

two external samples: The Cancer Genome Atlas (TCGA) and a held-out CBCS sample 144 

set. We defined the imputed expression of a given gene in an external cohort as the 145 

GReX, or the germline-genetically regulated tumor expression, of that gene. 146 

 147 

The first sample is derived from TCGA breast tumor tissues with 179 AA and 735 WW 148 

women. We compared predictive performance by calculating an external validation �� 149 

(EV ��) with squared Spearman correlations. Of the 151 genes modeled in CBCS training 150 

data with significant cis-ℎ�, 149 genes were measured via RNA-seq in TCGA. A 151 

comparison of predictive performance in TCGA for these 149 genes is shown in Figure 152 

2B, showing adequate performance in AA women (33 genes with EV �� > 0.01) and poor 153 

performance in WW women (7 genes with EV �� > 0.01). The top predicted gene in cross-154 

validation from CBCS for both races, PSPHL, was not present in the TCGA normalized 155 

expression data and could not be validated. Another top cross-validated gene, GSTT2, 156 

was present in TCGA expression data and was validated as the top genetically predicted 157 

gene in TCGA by EV ��. 158 

 159 

We also imputed expression into entirely held-out samples from CBCS data (1,121 AA 160 

and 1,070 WW women) that have gene expression for a subset of the genes (166 of 417 161 

genes) in the CBCS training set. These samples were largely derived from Phases I and 162 

II of CBCS (see Methods). A comparison of imputation performance in CBCS for 51 163 

genes is shown in Figure 2C, showing adequate performance in both AA and WW women 164 

(18 and 15 genes with EV �� > 0.01 in AA and WW women). 165 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2019. ; https://doi.org/10.1101/769570doi: bioRxiv preprint 

https://doi.org/10.1101/769570
http://creativecommons.org/licenses/by/4.0/


10 
 

 166 

Predictive models are not applicable across race 167 

We find that the predictive accuracy of most genes was lower when expression was 168 

imputed in AA women using models trained in the WW sample. We employed the WW 169 

predictive models to impute expression into AA samples from TCGA and held-out CBCS 170 

data. We compare the performances of the WW model and AA model in the AA sample 171 

in Figure 2D (TCGA) and 2E (CBCS). In held-out CBCS samples, with the WW model, 172 

we could only predict PSPHL and GSTT2 at �� > 0.01 in the AA sample, as the 173 

expression of these genes is modulated mostly by strongly associated cis-eSNPs. In 174 

TCGA, our WW models performed adequately in AA women, though the WW models 175 

predicted fewer genes at �� > 0.01 than the AA models. 176 

 177 

Evaluation of predictive performance across subtype 178 

While predictive accuracy of expression models was stable across datasets, there was 179 

greater heterogeneity across biological and molecular subtype. In part, this is due to small 180 

sample sizes within race and subtype-specific strata. Upon first inspection, we see vast 181 

differences in the performance of our models across subtype (Supplemental Figure 7), 182 

with a large majority of genes performing at EV �� > 0.01 in rarer subtypes, like HER2-183 

enriched breast cancers. However, we recognized sample sizes in the TCGA validation 184 

set were relatively small, especially when considering AA women and women of certain 185 

subtype, e.g. as low as 16 AA women with HER2-enriched breast cancer. As overall 186 

correlation between observed and imputed expressions are near 0, we sought to account 187 

for sampling variability when imputing into groups of women with such small sample sizes.  188 
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 189 

We employed a permutation scheme: permuting observed expression values among 190 

samples 10,000 times to generate a null distribution for EV ��. We then tested for the null 191 

hypothesis �� = 0, controlling for false discovery, according to this null distribution. 192 

Supplemental Figure 9 displays �-values in Manhattan form [27], showing that the 193 

proportion of genes with EV �� significantly different from 0 is similar across subtypes. 194 

We inverted this permutation test [28] to construct a confidence interval for EV ��. We 195 

find that the EV �� of several genes are highly variable across subtypes, even when 196 

accounting for differences in sample size and therefore sampling variation. Key examples 197 

of such genes with variable EV �� across subtypes are shown in Figure 3. 198 

 199 

Predicted expression associated with breast cancer-specific survival  200 

To assess association between imputed gene expression and breast cancer-specific 201 

survival, we constructed race-stratified cause-specific proportional hazard models for 202 

3,828 samples from CBCS (1,865 AA and 1,963 WW), where we model time to mortality 203 

due to breast cancer. Of the genes evaluated, we detected 4 whose GReX were 204 

associated with breast-cancer specific survival at FDR-adjusted � < 0.10 in AA women, 205 

shown in Table 1 and Figure 4. We did not identify any genes with GReX associated with 206 

survival in WW women. 207 

 208 

An association between increased GReX and increased risk of breast cancer-specific 209 

mortality was identified for CAPN13 (2p23.1). We also found protective associations 210 

between higher GReX of AURKA (20q13.2), PIK3CA (3q26.32), SERPINB5 (18q21.33) 211 
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and lower risk of breast cancer-mortality (Figure 4C). Of these 4 loci, associations with 212 

survival have been reported with SNPs in the same chromosomal region as AURKA, 213 

PIK3CA, and SERPINB5 [8,29–33], though none of these reported SNPs were utilized in 214 

constructing the GReX of this gene. Furthermore, the GReX of these four genes were not 215 

significantly correlated (� > 0.05 for all pairwise Spearman correlation tests), and the sets 216 

of SNPs used in constructing the GReX of these four genes had no pairwise intersections, 217 

providing evidence that their independent association with breast cancer-specific survival 218 

was not a pleiotropic effect from shared or correlated SNPs.  219 

 220 

To determine whether the associations between predicted gene expression and breast 221 

cancer-specific survival were independent of GWAS-identified association signals, we 222 

performed conditional analyses adjusted for the most significant GWAS-identified 223 

survival-associated SNPs closest to the TWAS-identified gene by adjusting the cause-224 

specific proportional hazards model for the genotype from this SNP. We found that the 225 

association for PIK3CA had a small change in effect size after adjustment for its adjacent 226 

survival-associated SNP, and its SNP-adjusted association was insignificant, while the 227 

other genes’ associations remained significant after adjustment (Table 2). This 228 

conditional analysis suggests that the GReX of AURKA, CAPN13, and SERPINB5 may 229 

be associated with breast cancer-specific survival independent of the GWAS-identified 230 

variant. No previously reported survival-associated SNPs were found significant at the 231 

genome-wide significance level in our dataset, and none of the closest survival-232 

associated SNPs used in conditional adjustment were significant (Figure 4A). This 233 
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supports our observation that correctly analyzed TWAS using relevant tissue gene 234 

expression may increase power for association testing. 235 

 236 

As we deal with case-only data, we wished to inspect any collider bias that arises from 237 

unmeasured confounders that are associated with both breast cancer incidence and 238 

survival (see Supplemental Figure 13) [34]. Since a case-control dataset was not readily 239 

available to us to test associations between the GReX of genes with breast cancer risk, 240 

we construct the weighted burden test, as in FUSION [14], for the GReX of AURKA, 241 

CAPN13, PIK3CA, and SERPINB5 in the GWAS summary statistics for breast cancer risk 242 

in AA women available from BCAC using the iCOGs dataset and additional GWAS [35–243 

37]. We find that none of the GReX of these genes are significantly associated with breast 244 

cancer incidence (� > 1.96, � < 0.05), suggesting minimal presence of collider bias in 245 

our estimates of association with survival for the GReX of these four genes.  246 

 247 

Lastly, we examined the association of the GReX of these four genes with breast cancer-248 

specific survival in AA women, stratified by estrogen receptor (ER) subtype. We find that 249 

overall associations with survival are often driven by significant associations in a single 250 

subtype, though there is evidence of significant hazardous association in both ER 251 

subtypes for CAPN13 (Supplementary Figure 10). We also did not detect a survival 252 

association with the total expression of these 4 genes, as estimated from breast cancer-253 

specific Cox models (Supplementary Figure 11). 254 

 255 

Discussion 256 
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In this paper, we studied the relationship between breast cancer-specific survival and 257 

germline genetics using a TWAS framework, wherein we aggregate the germline genome 258 

into testing units that map to the transcriptome to greatly mitigate the multiple testing 259 

burden found in GWAS. This study is the first systematic TWAS for breast cancer-specific 260 

survival, motivated by a full cis-trans eQTL analysis with one of the largest sample sizes 261 

for breast tumor gene expression in African American women. Our analyses underscore 262 

the importance of accounting for sampling variability when validating predictive models 263 

for TWAS and incorporating race or ancestry in these models, an aspect which confounds 264 

naïve comparisons involving imputed GReX across validation sub-groups of different 265 

sample size. 266 

 267 

Using a training set from CBCS, we leveraged race-stratified germline eQTLs of tumor 268 

expression to train race-stratified models of tumor expression from germline variation. 269 

Our eQTL analysis reveals a strong cis-signal between germline variants and tumor 270 

expression of several genes, that is both differential across race and not exclusively 271 

attributable to healthy breast tissue. Our models showed strong cross-validation 272 

predictive performance in genes with significant cis-heritability. We also show strong 273 

predictive performance in a held-out test set from CBCS and adequate performance of 274 

our WW models in TCGA-BRCA data. We suspect that this discrepancy in validation 275 

performance between CBCS and TCGA may be attributed to a poor intersection of SNPs 276 

in the genotyping data from TCGA and CBCS (only approximately 85% of SNPs from 277 

CBCS represented in TCGA imputed genotype data). There could also be a lack of cis-278 

heritability of the tumor expression of a majority of genes assayed in TCGA. For example, 279 
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Gusev et al. has trained models for gene expression in breast tumors in TCGA; only 8 of 280 

the 417 genes in the CBCS Nanostring panel showed significant cis-heritability in their 281 

models [14], which we downloaded from the Gusev Lab’s TWAS/FUSION repository. We 282 

believe that predictive performance in TCGA data consistent with CBCS data is a high 283 

bar for validation due to both genotyping and RNA expression platform differences 284 

between CBCS (Oncoarray and Nanostring) and TCGA (Affymetrix 6.0 and RNAseq). 285 

Reproducible performance in both AA and WW women in our independent test set from 286 

CBCS data suggests that our models are quite robust. Follow-up studies, in which models 287 

of tumor expression are trained in TCGA RNA-seq data and validated in CBCS 288 

Nanostring data, could elucidate any discrepancies in predictive performance across 289 

platform. 290 

 291 

An important implication of our work is the race-specificity of TWAS methods. In our 292 

validation scheme, we assessed the applicability of imputing expression in AA samples 293 

using the WW predictive models, as publicly available tumor expression data is often 294 

measured in predominantly WW cohorts. We find that WW models generally have poor 295 

performance in AA women. Epidemiological studies have stressed accounting for 296 

differences in race by stratification or adjustment for admixture estimates when 297 

constructing polygenic scores [38]. Our key finding of poor predictive performance across 298 

race suggests that this epidemiological note of caution extends to creating predictive 299 

models for RNA expression. Previous TWAS studies of breast cancer risk have either 300 

used models trained in a sample of predominantly European ancestries [16] or imputed 301 

into large cohorts of strictly patients of European descent [15]. Hoffman et al. does 302 
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exclude SNPs that were monomorphic in any of the 14 different ancestral populations 303 

they analyze [16], though this may not capture all effects of ancestry on genetic regulation 304 

of expression, including the possibility for interactions.  We contend that accounting for 305 

ancestry or stratifying by race may be necessary to draw correct inference in large, 306 

ancestrally-heterogeneous cohorts. 307 

 308 

Our data also suggests that predictive performance may vary by molecular subtype. 309 

Previous groups have shown the predictive utility of catering polygenic risk scores to 310 

breast cancer subtype [39,40], a phenomenon we investigated in our predictive models 311 

of tumor expression. As the estimates of sample correlations between observed and 312 

predicted expression were small and the sample sizes per subtype were small, we 313 

recognized the need to employ a permutation method to assess the precision of our 314 

prediction ��. We found that a significant portion of the variability of predictive 315 

performance across subtype was explained by sampling variability. Nevertheless, even 316 

after accounting for sampling variability, we noticed that several genes have varied 317 

predictive performance across subtype and race. This finding suggests that TWAS 318 

predictive models of expression may need to account of biological heterogeneity. We also 319 

reinforce the importance of sampling variability in the validation of predictive models in 320 

external cohorts prior to generalized imputation and association testing. For example, Wu 321 

et al. trained their models in a relatively small set of 67 women from GTEx and validated 322 

their 12,824 models in a validation set of 86 women from TCGA without accounting for 323 

sampling variability of predictive performance [15]. A recent multi-tissue TWAS in ovarian 324 

cancer from Gusev et al. considered a more thorough validation of predictive models by 325 
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leveraging multiple independent cohorts to assess replication rates for their models [41]. 326 

We recommend such an approach if multiple independent cohorts are accessible. But, in 327 

TWAS evaluation in a single tissue, studies should place a strong emphasis on validation, 328 

accounting for sampling variability of prediction ��, ideally prior to imputation in larger 329 

cohorts. 330 

 331 

While many of the most significant findings here are methodological in nature, we also 332 

have data to suggest that four genomic loci may merit further investigation relative to 333 

breast cancer survival. We identified 4 genomic loci associated with breast cancer 334 

survival at an FDR-adjusted significance level of 0.10 in AA women. After adjustment for 335 

genetics at the most significantly survival-associated SNP close to the gene in question, 336 

survival associations at 3 of these 4 locations remained marginally significant. We did not 337 

observe any significant association between the total expression of these 4 genes and 338 

breast cancer-specific survival. This suggests that the germline-regulated component of 339 

the tumor expression of these genes – a small fraction of the total expression variation – 340 

may be associated with survival outcomes. Numerous factors, including copy number 341 

alterations, epigenetic or post-transcriptional regulation, and exposures and technical 342 

artifacts in measurement contributed to the total expression measured in the tumor. Thus, 343 

we do not expect that significant GReX association implies total expression association, 344 

or vice versa. 345 

 346 

While nearly all of the genes on the CBCS Nanostring panel are relevant to breast cancer 347 

research, many have not been shown to be associated with survival. Two of these 4 348 
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TWAS-identified genes have strong functional evidence in breast cancer survival 349 

literature. Mutations in AURKA and PIK3CA have previously been shown to be 350 

significantly associated with breast cancer survival rates [29–31].  Less is known about 351 

the involvement of SERPINB5 and CAPN13 in breast cancer survival. SERPINB5 is a 352 

tumor-suppressor gene that has been shown to promote development of breast cancers 353 

in humans [42]. The calpain family, which contain CAPN13, is a group of proteases that 354 

is involved in apoptosis and the progression and proliferation of breast cancer cells and 355 

has been suggested as therapy targets for various cancers [43–45]. These four loci merit 356 

further studies for validation and functional characterization, both in large GWAS cohorts 357 

and using in vitro studies. 358 

 359 

We also observed that 3 of the 4 associations were driven by very strong effect sizes 360 

within a single subtype (Supplementary Figure 11). Though we cannot contextualize this 361 

result, it highlights an often-overlooked modeling consideration. In a cohort that is both 362 

biologically and ancestrally-heterogenous, as in CBCS, investigators should consider 363 

modeling choices beyond simple linear adjustments for subtype and race. Given a large 364 

enough sample size, it may be prudent in future TWAS to stratify predictive models on 365 

both race and biological subtype to increase power to detect outcome-associated loci that 366 

are strongly present within only one such strata or have heterogeneous effects across 367 

strata. This idea is akin to the logic of Begg et al and Martínez et al in detecting etiological 368 

risk factors for ER-positive and -negative tumors [46,47]. 369 

 370 
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Since the CBCS analysis was a case-only study, we were wary of potential collider bias 371 

by unmeasured confounders associated with both breast cancer risk and progression 372 

[34,48–50].  These colliders may affect the magnitude and direction of effect sizes on 373 

association between survival and GReX of genes (Supplemental Figure 14). We find that, 374 

using summary statistics for breast cancer risk GWAS from iCOGs [35–37], none of the 375 

GReX of these four genes showed significant transcriptome-wide associations with breast 376 

cancer risk in this iCOGs data. This suggests that our estimates of association may be 377 

free of the collider bias, outlined in Supplemental Figure 14. As Escala-García et al. 378 

highlights, germline variation can affect breast cancer prognosis via tumor etiology (risk 379 

of developing a tumor of a certain subtype), or via mechanisms that are relevant post-380 

tumorigenesis, such as the cellular response to therapy, or the host-tumor micro-381 

environment, including immune response and stroma-tumor interactions [7]. Ideally, in 382 

future TWAS and integrated omic analyses of breast cancer survival, it is prudent to 383 

consider joint models of breast cancer risk and survival to account for the many effects of 384 

germline genotype and any associations with unmeasurable confounders [49]. 385 

 386 

One limitation of our study is that data on somatic amplifications and deletions were not 387 

yet available for the CBCS cohort we analyzed. Removing the somatic copy number 388 

variation signal from tumor expression profiles may improve our estimates of cis-389 

heritability and perhaps the predictive performance of our models, as previous TWAS 390 

have shown [41]. Furthermore, not all genes in the CBCS Nanostring panel have a 391 

significant heritable component in expression regulation. These genes, like ESR1, which 392 

have a significant role in breast cancer etiology [51], could not be investigated in our 393 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2019. ; https://doi.org/10.1101/769570doi: bioRxiv preprint 

https://doi.org/10.1101/769570
http://creativecommons.org/licenses/by/4.0/


20 
 

study. Lastly, since CBCS mRNA expression is assayed by the Nanostring nCounter 394 

system, we could only analyze 94 aggregated locations on the human transcriptome 395 

across race. However, the Nanostring platform allows the CBCS to robustly measure 396 

expression from FFPE samples on a targeted panel of breast cancer and race-related 397 

genes, allowing us to leverage the large sample size from all three phases of the CBCS. 398 

One of the greatest strengths of our study is that the CBCS affords us both a large training 399 

and test set of AA and WW women for race-stratified predictive models. Such data is 400 

important in drawing inference in more ancestrally-heterogeneous populations. 401 

Accordingly, the statistical power of our study is high to detect associations for genes with 402 

relatively high cis-heritability. Nonetheless, the specific survival-associated loci merit 403 

further investigation in external datasets. Future studies in large GWAS cohorts, such as 404 

those within the Breast Cancer Association Consortium, will elucidate how to account for 405 

ancestral and biological heterogeneity in detecting survival-associated loci. 406 

 407 

Conclusion 408 

We have provided a framework of transcriptome-wide association studies (TWAS) for 409 

breast cancer outcomes in diverse study populations, considering both ancestral and 410 

subtype-dependent biological heterogeneity in our predictive models. From a more 411 

theoretical perspective, this work will inform the utilization of TWAS methods in polygenic 412 

traits and diverse study populations, stressing rigorous validation of predictive models 413 

prior to imputation and careful modeling to capture associations with outcomes of interest 414 

in diverse populations. 415 

 416 
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Methods 417 

Data collection 418 

Study population 419 

The Carolina Breast Cancer Study (CBCS) is a population-based study conducted in 420 

North Carolina (NC) that began in 1993; study details and sampling schemes have been 421 

described in previous CBCS work [19,52]. Patients of breast cancer aged between 20 422 

and 74 years were identified using rapid case ascertainment in cooperation with the NC 423 

Central Cancer Registry, with self-identified African American and young women (ages 424 

20-49) oversampled using randomized recruitment [19]. Randomized recruitment allows 425 

sample weighting to make inferences about the frequency of subtype in the NC source 426 

population. Details regarding patient recruitment and clinical data collections are 427 

described in Troester et al [2]. 428 

 429 

Date of death and cause of death were identified by linkage to the National Death Index. 430 

All diagnosed with breast cancer have been followed for vital status from diagnosis until 431 

date of death or date of last contact. Breast cancer-related deaths were classified as 432 

those that listed breast cancer (International Statistical Classification of Disease codes 433 

174.9 and C-50.9) as the underlying cause of death on the death certificate. By the end 434 

of follow-up, we identified 674 deaths, 348 of which were due to breast cancer. In total, 435 

we compiled 3,828 samples (1,865 AA and 1,963 WW) from all phases of CBCS with 436 

relevant survival and clinical variables. 437 

 438 

CBCS genotype data 439 
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Approximately 50% of the SNPs for the OncoArray were selected as a “GWAS backbone” 440 

(Illumina HumanCore), which aimed to provide high coverage for the majority of common 441 

variants through imputation. The remaining SNPs were selected from lists supplied by six 442 

disease-based consortia, together with a seventh list of SNPs of interest to multiple 443 

disease-focused groups. Approximately 72,000 SNPs were selected specifically for their 444 

relevance to breast cancer. The sources for the SNPs included in this backbone, as well 445 

as backbone manufacturing, calling, and quality control, are discussed in depth by the 446 

OncoArray Consortium [53]. All samples were imputed using the October 2014 (v.3) 447 

release of the 1000 Genomes Project dataset as a reference panel in the standard two-448 

stage imputation approach, using SHAPEIT2 for phasing and IMPUTEv2 for imputation 449 

[54–56]. All genotyping, genotype calling, quality control, and imputation was done at the 450 

DCEG Cancer Genomics Research Laboratory [53]. 451 

 452 

From the provided genotype data, we excluded variants (1) with a minor frequency less 453 

than 5% and (2) that deviated significantly from Hardy-Weinberg equilibrium at � < 10�� 454 

using the appropriate functions in PLINK v1.90b3 [57,58]. Finally, we intersected 455 

genotyping panels for the AA and WW samples, resulting in 5,989,134 autosomal variants 456 

and 334,391 variants of the X chromosome. CBCS genotype data was coded as dosages, 457 

with reference and alternative allele coding as in the National Center for Biotechnology 458 

Information’s Single Nucleotide Polymorphism Database (dbSNP). 459 

 460 

CBCS gene expression data 461 
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Paraffin-embedded tumor blocks were requested from participating pathology 462 

laboratories for each sample, reviewed, and assayed for gene expression using 463 

Nanostring as discussed previously [2]. In total, 1,388 samples with invasive breast 464 

cancer from the CBCS were analyzed for a total of 406 autosomal genes and 11 genes 465 

on the X chromosome. All assays were performed in the Translational Genomics 466 

Laboratory at the University of North Carolina at Chapel Hill. 467 

 468 

We used the NanoStringQCPro package in Bioconductor to first eliminate samples that 469 

did not have sufficient Nanostring data quality [59]. Next, we normalized distributional 470 

differences between lanes with upper-quartile normalization [60]. Unwanted technical and 471 

biological variation (i.e. tissue heterogeneity) was estimated in the resulting gene 472 

expression data with techniques from the RUVSeq package from Bioconductor [61]. 473 

Unwanted variation was controlled using the distribution of 11 endogenous housekeeping 474 

genes on the Nanostring gene expression panel. Ultimately, we removed 2 dimensions 475 

of unwanted variation from the variance-stabilized transformation of the gene expression 476 

data [62,63]. We lastly used principal component analysis to detect and remove any 477 

significant, potential outliers. A final intersection of samples that had both genotype and 478 

gene expression data gave us a final sample of 1,199 subjects (628 AA women and 571 479 

WW women). 480 

 481 

TCGA genotype data 482 

Birdseed genotype files of 914 of WW and AA women were downloaded from the Genome 483 

Data Commons (GDC) legacy (GRCh37/hg19) archive. Genotype files were merged into 484 
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a single binary PLINK file format (BED/FAM/BIM) and imputed using the October 2014 485 

(v.3) release of the 1000 Genomes Project dataset as a reference panel in the standard 486 

two-stage imputation approach, using SHAPEIT v2.837 for phasing and IMPUTE v2.3.2 487 

for imputation [54–56]. We excluded variants (1) with a minor allele frequency of less than 488 

1%, (2) that deviated significantly from Hardy-Weinberg equilibrium (� <  10��) using 489 

appropriate functions in PLINK v1.90b3 [57,58], and (3) located on sex chromosomes. 490 

We further excluded any SNPs not found on the final, quality-controlled CBCS genotype 491 

data. Final TCGA genotype data was coded as dosages, with reference and alternative 492 

allele coding as in dbSNP. 493 

 494 

TCGA expression data 495 

TCGA level-3 normalized RNA expression data were downloaded from the Broad 496 

Institute's GDAC Firehose (2016/1/28 analysis archive) and subsetted to the 417 genes 497 

analyzed in CBCS. A total of 412 of these 417 were available in TCGA expression data. 498 

 499 

Computational methods 500 

Deconvolution of bulk tumor RNA 501 

A study pathologist analyzed tumor microarrays (TMAs) from 176 of the 1,199 subjects 502 

to estimate area of dissections originating from epithelial tumor, assumed here as a proxy 503 

for the proportion of the bulk RNA expression attributed to the tumor. Using these 176 504 

observations as a training set and the normalized gene expressions as the design matrix, 505 

we trained a support vector machine model tuned over a 10-fold cross-validation [64,65]. 506 

The cross-validated model was then used to estimate tumor purities for the remaining 507 
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1,023 samples from their gene expressions. We do not consider tumor purity in final eQTL 508 

models and all downstream analyses. 509 

 510 

eQTL analysis 511 

We assessed the additive relationship between the gene expression values and 512 

genotypes with linear regression analysis using MatrixeQTL [66], in the following model: 513 

�� = � ! + �#!# + $�, 514 

where �� is the gene expression of gene %, �  is the vector of genotype dosages for a 515 

given SNP &, ' is a matrix of covariates, !  and !# are the effect-sizes on gene expression 516 

for the SNP & and the covariates ', respectively, and $ is assumed to be Gaussian 517 

random error with mean 0 and common variance (� for all genes %. 518 

 519 

We calculated both cis- (variant-gene distance less than 500 kb) and trans-associations 520 

between variants and genes. Classical �-values were calculated for Wald-type tests of 521 

)*: ! = 0 and were adjusted post-hoc via the Benjamini-Bogomolov hierarchical error 522 

control procedure, TreeQTL [20]. We conducted all eQTL analyses stratified by race. Age, 523 

BMI, postmenopausal status, and the first 5 principal components of the joint AA and WW 524 

genotype matrix were included in the models as covariates in '. Estimated tumor purity 525 

was also included as a covariate to assess its impact on strength and location of eQTLs. 526 

Any SNP found in an eQTL with Benajmini-Bogomolov adjust �-value 		
�� < 0.05 is 527 

defined as an eSNP using TreeQTL [20]. The corresponding gene in that eQTL is defined 528 

as an eGene. We exclude samples with Normal-like subtype, as classified by the PAM50 529 

classifier, due to generally low tumor content. 530 
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 531 

We downloaded healthy tissue eQTLs from the Genotype-Tissue Expression (GTEx) 532 

Project and cross-referenced eGenes and corresponding eSNPs between CBCS and 533 

GTEx in healthy breast mammary tissue, EBV-transformed lymphocytes, and 534 

subcutaneous adipose tissue. The Genotype-Tissue Expression (GTEx) Project was 535 

supported by the Common Fund of the Office of the Director of the National Institutes of 536 

Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the 537 

analyses described in this manuscript were obtained from the GTEx Portal on 05/12/19.  538 

 539 

Estimation of cis-heritability 540 

Cis-heritability (cis-ℎ�) was estimated using the GREML-LDMS method, proposed to 541 

estimate heritability by correction for bias in linkage disequilibrium (LD) in estimated SNP-542 

based heritability [26]. Analysis was conducted using GCTA v.1.92 [67]. For downstream 543 

analysis, we only consider the 151 genes (81 in AA women and 100 in WW women) with 544 

cis-ℎ� that can be estimated with nominal �-value < 0.10. 545 

 546 

Predictive tumor expression models 547 

We adopt general techniques from PrediXcan and FUSION to estimate eQTL-effect sizes 548 

for predictive models of tumor expression from germline variants [13,14]. First, gene 549 

expressions were residualized for the covariates ' included in the eQTL models (age, 550 

BMI, postmenopausal status, and genotype PCs) given the following ordinary least 551 

squares model: 552 

�� = �#!# +  $�. 553 
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We then consider downstream analysis on �,� ≡ �� − �#!/#. 554 

 555 

For a given gene %, we consider the following linear predictive model: 556 

�,� = ��0� + $�,  557 

where �,� is the gene expression of gene %, residualized for the covariate matrix �#, �� is 558 

the genotype matrix for gene % that includes all cis-SNPs for gene % (within 500 kb of 559 

either the 5’ or 3’ end of the gene) and all trans-eQTLs with 		
�� < 0.01, 0� is a vector 560 

of effect-sizes for eQTLs in ��, and $� is Gaussian random error with mean 0 and common 561 

variance for all %. 562 

 563 

We estimate 0� with the best predictive of three schemes: (1) elastic-net regularized 564 

regression with mixing parameter 1 =  0.5 and 2 penalty parameter tuned over 5-fold 565 

cross-validation [13,68], (2) linear mixed modeling where the genotype matrix �� is 566 

treated as a matrix of random effects and 03� is taken as the best linear unbiased predictor 567 

(BLUP) of 0�, using rrBLUP [69], and (3) multivariate linear mixed modeling as described 568 

above, estimated using GEMMA v.0.97 [70]. 569 

 570 

In these models, the genotype matrix �� is pruned for linkage disequilibrium (LD) prior to 571 

modeling using a window size of 50, step size of 5, and LD threshold of 0.5 using PLINK 572 

v.1.90b3 [58] to account for redundancy in signal. The final vectors 03� of effect-sizes for 573 

each gene % are estimated by the estimation scheme with the best 5-fold cross-validation 574 
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performance. All predicted models are stratified by race, i.e. an individual model of tumor 575 

expression for AA women and WW women for each gene %. 576 

 577 

To impute expression into external cohorts, we then construct the germline genetically-578 

regulated tumor expression 4�5�� of gene % given 03� in the predictive model as follows: 579 

4�5�� = ��,67803�, 580 

where ��,678 is the genotype matrix of all available SNPs in the feature set of 03� in a 581 

GWAS cohort. 582 

 583 

All final models are available here: https://github.com/bhattacharya-a-584 

bt/CBCS_TWAS_Paper. 585 

 586 

Validation in TCGA 587 

Using our stratified predictive models of tumor expression, we imputed expression in 588 

TCGA and measured predictive accuracy of each gene through prediction ��, defined 589 

here as the squared Spearman correlation between observed and imputed expression. It 590 

is important to note that all variants in the CBCS-trained predictive models are not 591 

represented in the TCGA genotype data. Predictive performance in TCGA was also 592 

assessed stratified by PAM50 intrinsic subtype and estrogen receptor status.  593 

 594 

To account for sampling variability in calculating correlations in validation cohorts of 595 

smaller sample sizes, we calculated a permutation null distribution for each gene by 596 

permuting observed expressions 10,000 times and calculating a “null” prediction �� at 597 
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each permutation. The sample validation prediction �� was compared to this permutation 598 

null distribution to generate an empirical �-value for the sample ��, using Storey's qvalue 599 

package. We then calculated �-values from these empirical �-values, controlling for a 600 

false discovery rate of 0.05 [27]. Lastly, we constructed confidence intervals for �� by 601 

inverting the acceptance region from the permutation test [28]. 602 

 603 

Validation in CBCS 604 

We used an entirely held-out sample of 2,308 women from CBCS as a validation set of 605 

Nanostring nCounter data on a codeset of 166 genes. These samples were normalized 606 

as outlined before. We used the same validation methods as in TCGA, as well using a 607 

permutation method to assess the statistical significance of predictive performance, 608 

stratified by PAM50 subtype and estrogen receptor status. 609 

 610 

PAM50 subtyping 611 

GReX in CBCS were first estimated as outlined above. We residualized the original tumor 612 

expression � for these imputed expression values to form a matrix of tumor expression 613 

adjusted for GReX (�,). We then classified each subject into PAM50 subtypes based on 614 

both � and �,, using the procedure summarized by Parker et al [71,72]. 615 

 616 

Survival modeling 617 

Here, we defined a relevant event as a death due to breast cancer. We aggregated all 618 

deaths not due to breast cancer as a competing risk. Any subjects lost to follow-up were 619 

treated as right-censored observations. We estimated the association of GReX with 620 
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breast cancer survival by modeling the race-stratified cause-specific hazard function of 621 

breast cancer-specific mortality, stratifying on race [73]. For a given gene %, the model 622 

has form 623 

29:;< = 2*9:;<5=>7?@A@BCDAD , 624 

where !� is the effect size of 4�5�� on the hazard of breast cancer-specific mortality, �# 625 

represents the matrix of covariates (age at diagnosis, estrogen-receptor status at 626 

diagnosis, tumor stage at diagnosis, and study phase), and !# are the effect sizes of 627 

these covariates on survival. 29:;< is the hazard function specific to breast cancer 628 

mortality, and 2*9:;< is the baseline hazard function. We test )*: !� = 0 for each gene % 629 

with Wald-type tests, as in a traditional Cox proportional hazards model. We correct for 630 

genomic inflation and bias using bacon, a method that constructs an empirical null 631 

distribution using a Gibbs sampling algorithm by fitting a three-component normal mixture 632 

on �-statistics from TWAS tests of association [74]. 633 

 634 

Here, we consider only the 46 genes that have CV �� > 0.01 in AA women and the 57 635 

genes that have CV �� > 0.01 in WW women for race-stratified survival modeling. We 636 

adjust tests for !� via the Benjamini-Hochberg procedure at a false discovery rate of 0.10. 637 

 638 

For comparison, we run a GWAS to analyze the association between germline SNPs and 639 

breast cancer-specific survival using GWASTools [75]. We use a similar cause-specific 640 

hazards model with the same covariates as in the TWAS models of association, 641 

correcting for false discovery with the Benjamini-Hochberg procedure. 642 

 643 
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Inspection of collider bias 644 

To assess collider bias when conditioning for breast cancer incidence in case-only 645 

studies, such as CBCS, we test for association for the GReX of genes with breast cancer 646 

risk using iCOGs summary statistics from BCAC [35–37], using the weighted burden test 647 

identified by FUSION [14]. In summary, we compose a weighted � test statistic as follows: 648 

�, =  
EC

EFG,GEH
, 649 

where � is the vector of �-statistics from iCOGs and E = FI,J
�KFJ,J with FI,J is the 650 

covariance matrix between all SNPs represented in � and the gene expression of the 651 

given gene and F ,  is the covariance among all SNPs. 652 

 653 

Power analysis 654 

Using survSNP [76], we generated the empirical power of a GWAS to detect various 655 

hazard ratios with 3,828 samples with 1,000 simulation replicates at a significance level 656 

of � = 1.70 × 10��, corresponding to an FDR-adjusted � =  0.10. We assume an event 657 

rate of 10%, a relative allelic frequency of the risk allele of 0.1 and estimate the 90th 658 

percentile of times-to-event as a landmark time. Similarly, for genes of various cis-ℎ�, we 659 

assessed the power of TWAS to detect various hazard ratios at � =  0.0096 660 

(corresponding to FDR-adjusted � =  0.10) over 1,000 simulation replications from the 661 

empirical distribution function of the GReX of the given gene. 662 

 663 
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CBCS: Carolina Breast Cancer Study 665 
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LD: Linkage disequilibrium 667 

SNP/V: Single nucleotide polymorphism/variant 668 

TWAS: Transcriptome-wide association study 669 

GTEx: The Genoype-Tissue Expression Project 670 

BCAC: Breast Cancer Association Consortium 671 

PRS: Polygenic risk score 672 

WW: self-identified white women 673 

AA: self-identified African American women 674 

ER: estrogen receptor 675 

eQTL: expression quantitative trait loci 676 

AMBER: Alberta Moving Beyond Breast Cancer 677 

eGene: eQTL-associated gene 678 

eSNP: SNP found in an eQTL 679 

FDR: false discovery rate 680 

BBFDR: Benjamini-Bogomolov adjusted false discovery rate 681 

ℎ�: heritability 682 

TCGA: The Cancer Genome Atlas 683 

BRCA: breast cancer 684 

GReX: germline-genetically regulated tumor expression 685 
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Figure 1: (A) Cis-trans plot of top eQTL by gene stratified by SRR. Each point represents the top 

eQTL for a given gene. The color and size of each point reflects the Benjamini-Bogomolov FDR-

adjusted P-value (BBFDR) for that eQTL. eGenes with 		
�� <  0.01 are labelled. (B) Comparison 

of effect sizes of eGenes with significant cis-eQTLs in CBCS (Y -axis) and GTEx (X-axis) over tissue 

type, stratified by race. eGenes are colored by the GTEx tissue that shows the largest effect size. 

GTEx effect sizes on the X-axis are multiplied by the sign of the correlation between the genotypes of 

the GTEx and CBCS eSNPs. 
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Figure 2: (A) Comparison of cross-validation �� across race in CBCS. Cross-validation �� in CBCS WW 

women  (X-axis) and CBCS AA women  (Y-axis) for each of the 151 analyzed genes. Scales are logarithmic. 

Dotted lines represent �� = 0.01. Colors represent the model with which a given gene can be predicted at 

�� > 0.01. (B) Cross-validation �� in CBCS (X-axis) and square Spearman correlation between observed 

expression and GReX in TCGA-BRCA (Y-axis) in AA sample (left) and WW sample (right). Pearson 

correlations between ��calculated on the raw scale. �� are plotted on the log-scale. (C) Comparison of 

validation �� across race in TCGA for 149 analyzed genes found in TCGA expression data. (D) Comparison 

of validation �� across race in held-out CBCS samples for 51 analyzed genes. (E) Comparison of �� of 

genes in TCGA AA sample imputed from WW models (X-axis) and the AA models (Y-axis). (F) Comparison 

of �� of genes in held-out CBCS AA sample imputed from WW models (X-axis) and the AA models (Y-axis)
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Figure 3: Validation �� across PAM50 molecular subtype and estrogen receptor status, stratified by 

race, for example genes with highly variable �� in TCGA (A) and held-out CBCS (B). Squared 

Spearman correlation (Y-axis), denoted ��, between observed and predicted gene expression is plotted 

for different genes (X-axis), stratfied by PAM50 subtype and estrogen receptor status. Points are 

colored and shaped according to subtype. Error bars provide 90% confidence intervals inverted from 

the corresponding permutation test. 
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Figure 4: GWAS and TWAS results in AA women. (A) Manhattan plot of traditional GWAS on breast 

cancer survival. Genomic regions found to be significantly associated with survival in TWAS are 

represented in various colors. No SNVs reach Benjamini-Hochberg FDR-adjusted genome-wide 

significance. (B) Manhattan plot of TWAS on breast cancer survival. Genomic regions found to be 

significant at FDR-adjusted � < 0.10 are highlighted in red. The blue line represents a cutoff of FDR-

adjusted 1 = 0.05 and the dotted black line represents a cutoff of FDR-adjusted 1 = 0.10. (C) Caterpillar

plot of log-hazard rates with FDR-adjusted 90% confidence levels (X-axis) and genomic position (Y-

axis). Results shown are significant at nominal � <  0.10. Genes highlighted in red represent genes 

with GReX significantly associated with survival at FDR-adjusted � <  0.10.  
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Region Gene 
Hazard Ratio 

(90% CI)a N-Statistica O-valuea GReX PQb 

20q13.2 AURKA 0.83 (0.73, 0.95) -2.52 1.5 × 10�R 0.021 

2p23.1 CAPN13 1.22 (1.07, 1.41) 2.76 5.4 × 10�T 0.011 

3q26.32 PIK3CA 0.85 (0.74, 0.97) -2.34 3.2 × 10�R 0.013 

18q21.33 SERPINB5 0.82 (0.72, 0.93) -2.85 3.4 × 10�T 0.010 

 
Table 1: Genes with GReX found in association with breast cancer-specific survival in AA 
women. (a) Hazard ratio and FDR-adjusted 90% confidence intervals, �-statistic, and �-

value of association of GReX with breast cancer-specific survival. (b) Cross-validation �� 
of gene expression in AA models. 
 
 
 
 
 

Gene 
Closest survival-
associated SNPa 

Distance to closest 
survival-associated 

SNPa 

Hazard ratio, 
adjusting for 

adjacent GWAS-
SNP (90% CI)b 

O-value, 
adjusting for 
adjacent risk 

SNPsb 

AURKA rs202100873 87.1 kb 0.84 (0.74, 0.94) 0.027 

CAPN13 rs72068647 266.9 kb 1.18 (1.04, 1.33) 0.046 

PIK3CA rs66487567 271.9 kb 0.88 (0.78, 1.00) 0.096 

SERPINB5 rs376302305 89.4 kb 0.84 (0.75, 0.94) 0.028 

 
Table 2: Genes with GReX found in association with breast cancer-specific survival. (a) 
Top survival-associated SNP in cis-region of the given gene from GWAS for survival and 
distance of top cis-SNP from gene. (b) FDR-adjusted hazard ratio, 90% confidence 
interval, and �-value for association of GReX and breast cancer-specific survival, 
adjusting for adjacent survival-associated SNPs. 
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