

1 **Two uptake hydrogenases differentially
2 interact with the aerobic respiratory chain
3 during mycobacterial growth and persistence**

4 **Paul R.F. Cordero¹, Rhys Grinter¹, Kiel Hards², Max J. Cryle³, Coral G. Warr^{1,4},
5 Gregory M. Cook², Chris Greening^{1*}**

6

7 ¹ School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia

8 ² Department of Microbiology and Immunology, University of Otago, Dunedin, OTA
9 9016, New Zealand

10 ³ The Monash Biomedicine Discovery Institute, Department of Biochemistry and
11 Molecular Biology, Monash University, Clayton, VIC 3800, Australia

12 ⁴ School of Medicine, University of Tasmania. Hobart, TAS 7000, Australia

13

14

15

16 * Correspondence can be addressed to:

17

18 Associate Professor Chris Greening (chris.greening@monash.edu), School of
19 Biological Sciences, Monash University, Clayton, VIC 3800, Australia

20

21 **Abstract**

22 Aerobic soil bacteria metabolize atmospheric hydrogen (H_2) to persist when nutrient
23 sources are limited. This process is the primary sink in the global H_2 cycle and supports
24 the productivity of microbes in oligotrophic environments. To mediate this function,
25 bacteria possess [NiFe]-hydrogenases capable of oxidising H_2 to subatmospheric
26 concentrations. The soil saprophyte *Mycobacterium smegmatis* has two such [NiFe]-
27 hydrogenases, designated Huc and Hhy, which belong to different phylogenetic
28 subgroups. Huc and Hhy exhibit similar characteristics: both are oxygen-tolerant,
29 oxidise H_2 to subatmospheric concentrations, and enhance survival during hypoxia
30 and carbon limitation. These shared characteristics pose the question: Why does *M.*
31 *smegmatis* require two hydrogenases mediating a seemingly similar function? In this
32 work we resolve this question by showing that Huc and Hhy are differentially
33 expressed, localised, and integrated into the respiratory chain. Huc is active in late
34 exponential and early stationary phase, supporting energy conservation during
35 mixotrophic growth and the transition into dormancy. In contrast, Hhy is most active
36 during long-term persistence, providing energy for maintenance processes when
37 carbon sources are depleted. We show that Huc and Hhy are obligately linked to the
38 aerobic respiratory chain via the menaquinone pool and are differentially affected by
39 respiratory uncouplers. Consistent with their distinct expression profiles, Huc and Hhy
40 interact differentially with the terminal oxidases of the respiratory chain. Huc
41 exclusively donates electrons to, and possibly physically associates with, the proton
42 pumping cytochrome *bcc-aa₃* supercomplex. In contrast, the more promiscuous Hhy
43 can also provide electrons to the cytochrome *bd* oxidase complex. These data
44 demonstrate that, despite their similar characteristics, Huc and Hhy perform distinct
45 functions during mycobacterial growth and survival.

46

47 Introduction

48 Earth's soils consume vast amounts of hydrogen (H_2) from the atmosphere (1, 2). Over
49 the past decade, research by a number of groups has revealed that this net H_2
50 consumption is mediated by aerobic soil bacteria (3–8). Based on this work, it has
51 been established that gas-scavenging bacteria are the major sink in the global H_2 cycle,
52 responsible for the net consumption of approximately 70 million tonnes of H_2 each
53 year and 80 percent of total atmospheric H_2 consumed (6, 9–11). In addition to its
54 biogeochemical importance, it is increasingly realised that atmospheric H_2 oxidation is
55 important for supporting the productivity and biodiversity of soil ecosystems (12–20).
56 This process is thought to play a key role under oligotrophic conditions, where the
57 majority of microbes exist in a non-replicative, persistent state (14, 21). As the energy
58 requirements for persistence are approximately 1000-fold lower than for growing cells
59 (22), the energy provided by atmospheric H_2 can theoretically sustain up to 10^8 cells
60 per gram of soil (23).

61 The genetic basis of atmospheric H_2 oxidation has largely been elucidated. Two
62 distinct subgroups of hydrogenase, namely the group 1h and 2a [NiFe]-hydrogenases,
63 are known to oxidise H_2 to subatmospheric concentrations (3, 5, 24). The operons for
64 these hydrogenases minimally encode the hydrogenase large subunit containing the
65 H_2 -activating catalytic centre, the hydrogenase small subunit containing electron-
66 relaying iron-sulfur clusters, and a putative iron-sulfur protein hypothesised to have a
67 role in electron transfer (23, 25–27). Additional operons encode the maturation and
68 accessory proteins required for hydrogenase function (13, 27). Increasing evidence
69 suggests that hydrogenases capable of atmospheric H_2 oxidation are widely encoded
70 in soil bacteria. Representatives of three dominant soil phyla, Actinobacteriota,
71 Acidobacteriota, and Chloroflexota, have been experimentally shown to oxidize
72 atmospheric H_2 (3–5, 8, 24, 28, 29). Moreover, genomic and metagenomic studies
73 indicate that at least 13 other phyla possess hydrogenases from lineages known to
74 support atmospheric H_2 oxidation (13, 14, 19, 30).

75 The saprophytic soil actinobacterium *Mycobacterium smegmatis* has served as a key
76 model organism for these studies (24, 27, 31). In *M. smegmatis*, H_2 oxidation has been
77 shown to be solely mediated by two oxygen-tolerant hydrogenases: the group 2a
78 [NiFe]-hydrogenase Huc (also known as Hyd1 or cyanobacterial-type uptake

79 hydrogenase) and the group 1h [NiFe]-hydrogenase Hhy (also known as Hyd2 or
80 actinobacterial-type uptake hydrogenase) (13, 27). These enzymes belong to distinct
81 phylogenetic subgroups and their large subunits share less than 25% amino acid
82 identity (13). Despite this, Huc and Hhy display striking similarities. Both enzymes
83 oxidise H₂ to subatmospheric concentrations under ambient conditions (24) and both
84 appear to be membrane-associated despite the lack of predicted transmembrane
85 regions (24). Both Huc and Hhy are reported to be upregulated during stationary phase
86 in response to both carbon and oxygen limitation (27). Consistently, Huc and Hhy
87 deletion mutants show reduced growth yield and impaired long-term survival,
88 suggesting that atmospheric H₂ oxidation supports energy and redox homeostasis (24,
89 31, 32). Nevertheless, some evidence suggests that these enzymes are not redundant.
90 For reasons incompletely understood, significant survival phenotypes are observed
91 for both single and double mutants (24, 27). In whole cells, the enzymes also exhibit
92 distinct apparent kinetic parameters, with Hhy having higher affinity but lower activity
93 for H₂ compared to Huc (24).

94 It remains to be understood if and how the hydrogenases of *M. smegmatis* are
95 integrated into the respiratory chain. As an obligate aerobe, *M. smegmatis* depends
96 on aerobic heterotrophic respiration to generate proton-motive force and synthesize
97 ATP for growth (33). *M. smegmatis* possesses a branched respiratory chain
98 terminating in one of two terminal oxidases, the cytochrome *bcc*-aa₃ supercomplex or
99 the cytochrome *bd* oxidase (34). The proton pumping cytochrome *bcc*-aa₃ oxidase is
100 the more efficient of these two complexes, leading to the efflux of 6 H⁺ ions per electron
101 pair received, and is the major complex utilised during aerobic growth (34, 35). The
102 non-proton pumping cytochrome *bd* complex is less efficient, resulting in the transport
103 of 2 H⁺ ions per electron pair, but is predicted to have a higher affinity for O₂ and is
104 important during non-replicative persistence (36, 37). In actively growing *M.*
105 *smegmatis*, electrons entering the respiratory chain are derived from heterotrophic
106 substrates, and are donated to the respiratory chain by NADH largely via the non-
107 proton pumping type II NADH dehydrogenase NDH-2 and succinate via the succinate
108 dehydrogenase SDH1 (34). While *M. smegmatis* is strictly heterotrophic for replicative
109 growth, it was recently demonstrated that it is able to aerobically respire using carbon
110 monoxide (CO) at atmospheric concentrations during carbon-limited persistence
111 through the actions of a carbon monoxide dehydrogenase (38). It has likewise been

112 predicted that Huc and Hhy support survival during persistence by providing electrons
113 derived from H₂ to the respiratory chain (24, 27). However, these studies were
114 correlative and it remains to be definitively demonstrated that H₂ serves as a
115 respiratory electron donor in this organism.

116 In this work, we addressed these knowledge gaps by comprehensively studying Huc
117 and Hhy during different stages of mycobacterial growth and persistence. We show
118 that Huc and Hhy are differentially expressed throughout growth and persistence and
119 form distinct interactions with the membrane. In addition, we show both Huc and Hhy
120 are obligately linked to the respiratory chain via the menaquinone pool, but form
121 distinct interactions with the terminal oxidases. These data demonstrate that H₂
122 oxidation in *M. smegmatis* provides electrons to the respiratory chain for mixotrophic
123 growth via Huc and to energise persistence via Hhy. These findings represent a
124 significant advance in our understanding of the role of high affinity hydrogenases in
125 bacterial metabolism.

126

127 **Results and Discussion**

128 **Mycobacterial hydrogenases are differentially expressed and active during 129 growth and persistence.**

130 Previous work investigating the activity of Huc and Hhy in *M. smegmatis* showed they
131 are induced in batch culture upon exhaustion of carbon sources (24). However, we
132 lack a high-resolution understanding of the expression and activity of Huc and Hhy
133 during mycobacterial growth and persistence. To address this question, we quantified
134 Huc and Hhy gene expression using qPCR at different growth phases in batch liquid
135 cultures. In exponentially growing, carbon replete cells (OD₆₀₀ 0.3 and OD₆₀₀ 1.0
136 cultures), transcript levels for *hucL* (the Huc large subunit) were relatively low; however,
137 as carbon sources became exhausted *hucL* expression increased, with maximum
138 expression observed at 1-day post-OD_{max} (OD₆₀₀ ~3.0). Subsequently, at 3-days post-
139 OD_{max} (OD₆₀₀ ~3.0) as cells endured prolonged carbon-limitation, expression levels of
140 *hucL* declined significantly (**Figure 1a**). In contrast, expression of *hhyL* (the Hhy large
141 subunit) remained low during exponential growth, before rapidly increasing by 57-fold

142 when cells reached carbon-limited stationary phase and remained at high levels into
143 late stationary phase (**Figure 1b**).

144 Next, we determined the rate of H₂ oxidation of wild-type *M. smegmatis* and mutant
145 strains containing only Huc or Hhy at different stages of growth and persistence in
146 liquid batch culture. H₂ oxidation rates in the Huc-only strain correlated well with gene
147 expression levels; levels of H₂ oxidation were relatively low during early exponential
148 growth (OD₆₀₀ 0.3) and increased during late exponential phase (OD₆₀₀ 1.0), before
149 peaking at 1-day post-OD_{max} and declining rapidly thereafter (**Figure 1c**). The rapid
150 decline in transcript levels and activity of Huc during stationary phase suggests tight
151 regulation of this enzyme. In contrast, the activity of Hhy was low during exponential
152 growth (OD₆₀₀ 0.3 and 1.0), increased slightly at 1- and 3-days post-OD_{max}, and
153 increasing markedly during prolonged persistence, with high levels of activity observed
154 at 3-weeks post-OD_{max} (**Figure 1d**). A notable lag was observed between the increase
155 of transcript levels and Hhy activity during stationary phase, suggesting post-
156 transcriptional regulation of this hydrogenase. The H₂ oxidation activity profile of the
157 wild-type strain in these assays are the same as the sum of the activity of Huc and
158 Hhy only mutants, confirming that Huc and Hhy are functioning normally in the mutant
159 background (**Figure 1e**). Additionally, a mutant strain lacking both Huc and Hhy did
160 not consume H₂, confirming that Huc and Hhy are solely responsible for H₂ oxidation
161 (**Figure 1f**).

162 These data provide a clear picture of the differential regulation of Huc and Hhy hinted
163 at by previous studies (27). Huc is expressed by *M. smegmatis* during the transition
164 from growth to persistence, allowing cells to grow mixotrophically on atmospheric H₂
165 and, where available, higher concentrations produced through abiotic or biotic
166 processes (e.g. fermentation, nitrogen fixation) (39). Subsequently, as cells commit to
167 persistence due to carbon starvation, Hhy is expressed and supplies energy from
168 atmospheric H₂ to meet maintenance needs.

169

170 **Mycobacterial hydrogenases differentially associate with the membrane, with**
171 **Huc potentially forming a supercomplex with the cytochrome *bcc-aa₃* oxidase.**

172 In order to directly attribute the H₂ oxidation activity in our cellular assays to Huc and
173 Hhy, we separated cell lysates of wild-type and hydrogenase mutant strains using
174 native-PAGE and detected hydrogenase activity by zymographic staining (**Figure 2a**).
175 A high molecular weight species exhibiting H₂ oxidation activity was detected at 1-day
176 post-OD_{max} in wild-type and Huc-only cultures, but not in the Hhy-only strain. We
177 determined the size of this high-MW species to be >700 kDa via blue native-PAGE
178 (**Figure S1**). In contrast, at 3-days post-OD_{max}, a low molecular weight H₂-oxidising
179 species was present in wild-type and Hhy-only cultures, but was absent from the Huc-
180 only strain (**Figure 2a**). These high and low molecular weight bands from the wild-type
181 strain were excised and proteins present were identified by mass spectrometry. The
182 high-MW band yielded peptides corresponding to Huc, while the low-MW band yielded
183 peptides corresponding to Hhy (**Table S1**). These data correlate well with the activity
184 of Huc and Hhy observed in our cellular assays, confirming Huc is the dominant
185 hydrogenase during the transition from growth to dormancy and Hhy is more active
186 during prolonged persistence.

187 The difference in size between Huc and Hhy activity observed on the native gel is
188 striking. The slow migration of Huc may be due to the formation of an oligomer
189 containing multiple Huc subunits or other unidentified proteins. To test this hypothesis,
190 we interrogated the mass spectrometry data for likely Huc interacting partners.
191 Intriguingly, components of the cytochrome *bcc-aa*₃ oxidase supercomplex were
192 detected in the Huc sample, with a high probability and coverage, demonstrating they
193 are prevalent in this region of the gel (**Table S1**). It was shown previously that H₂
194 oxidation in *M. smegmatis* is oxygen dependent, suggesting that Huc and Hhy activity
195 are obligately linked to respiratory chain (24). As cytochrome *bcc-aa*₃ is a large
196 supercomplex (40), association with Huc could account for the high-MW of Huc activity
197 on the native gel, while placing the hydrogenase in an ideal position to donate
198 electrons to this complex.

199 Previous work indicated Huc and Hhy were membrane-associated despite lacking
200 obvious transmembrane regions or signal peptides (24). To interrogate the nature of
201 this membrane association, we fractionated cells into lysates, cytosols, and
202 membranes and detected the hydrogenases by western blotting chromosomally
203 StrepII-tagged variants of Huc and Hhy. Two bands corresponding to Huc were

204 detected by western blot in *M. smegmatis* whole cells, with sizes of ~60 and >200 kDa.
205 Upon cell fractionation, the ~60 kDa band was observed in both cytoplasmic and
206 membrane fractions, while the >200 kDa band was only observed in the membrane
207 fraction (**Figure 2b**). Interaction of Huc with the membrane was disrupted by 5%
208 sodium cholate, with both bands partitioning to the soluble phase (**Figure 2b**). In
209 contrast, a single ~60 kDa band corresponding to Hhy was observed in the whole cell
210 lysate and membrane fractions, but was absent from the cytoplasmic fraction. The
211 interaction between Hhy and the cell membrane was not disrupted by the addition of
212 5% sodium cholate, suggesting it forms a strong interaction with the membrane
213 relative to Huc and implies different mechanisms are responsible for their membrane
214 association (**Figure 2b**). Both Huc and Hhy are predicted to form hetero-tetramers,
215 consisting of two large and small subunits with a molecular weight of >200 kDa (26,
216 27). This is consistent with the bands observed via western blot, with the >200 kDa
217 species observed for Huc representing an intact tetramer, with the ~60 kDa species
218 representing partial disassociation of this complex.

219

220 **Mycobacterial hydrogenases are coupled to the respiratory chain and interact**
221 **differentially with the terminal cytochrome oxidases.**

222 While it is known that O₂ is required for H₂ oxidation by Huc and Hhy in *M. smegmatis*
223 (6, 24), it had not been determined whether these enzymes support the reduction of
224 O₂ through coupling to the respiratory chain. To resolve this question, we
225 amperometrically monitored the H₂ and O₂ consumption in carbon-limited *M.*
226 *smegmatis* cells (3-days post-OD_{max}) following sequential spiking with H₂ and O₂
227 saturated buffer (**Figure 3a**). Upon spiking cells with H₂, oxidation (0.31 $\mu\text{M min}^{-1}$) was
228 observed due to ambient levels of O₂ present in solution. When O₂-saturated buffer
229 was subsequently added, the rate of H₂ oxidation increased markedly (1.2 $\mu\text{M min}^{-1}$) (**Figure 3a**).
230 In cells initially spiked with O₂, minimal consumption of O₂ was observed
231 (0.01 $\mu\text{M min}^{-1}$). However, with the subsequent addition of H₂, the cells consumed O₂
232 at approximately half the rate observed for H₂ oxidation (0.51 $\mu\text{M min}^{-1}$) (**Figure 3a**).
233 This rate is consistent with the expected stoichiometry of H₂-dependent aerobic
234 respiration (H₂ + ½ O₂ → H₂O). These data directly link H₂ oxidation to O₂ consumption,

235 providing strong experimental evidence that electrons derived from H₂ support
236 respiratory reduction of O₂ in *M. smegmatis*.

237 Having established that H₂ oxidation directly supports O₂ reduction in *M. smegmatis*,
238 we next sought to determine which of the two terminal oxidases were utilized for this
239 process. To achieve this, we monitored the rate of H₂ oxidation and O₂ consumption
240 in wild-type, Huc-only, and Hhy-only strains, as well as mutant strains possessing
241 either cytochrome *bcc-aa*₃ or *bd* oxidase as the sole terminal respiratory complex.
242 Given the loss of both terminal oxidases is lethal in *M. smegmatis* (41), we utilised zinc
243 azide, a selective inhibitor of cytochrome *bcc-aa*₃ oxidase (42), to assess the effects
244 of loss of both terminal oxidases on H₂ oxidation. As expected from our initial
245 experiments at 3-days post-OD_{max} (**Figure 1**), the H₂ oxidation rate of the Hhy-only
246 mutant was 3-fold higher than the Huc-only strain (**Figure 3b**). H₂ oxidation was also
247 observed in the cytochrome *bcc-aa*₃ oxidase only strain, showing the complex
248 receives electrons from H₂ oxidation. However, this activity was 3-fold lower than
249 observed for wild-type cells, suggesting that cytochrome *bd* complex also receives
250 electrons from H₂ oxidation at 3-days post-OD_{max} (**Figure 3b**). In striking contrast, H₂
251 oxidation in the cytochrome *bd* only strain was 6.3-fold greater than wild type (**Figure**
252 **3b**). This may be due to an increase in the amount of hydrogenases present in the
253 cells or deregulation of their activity, due to metabolic remodeling to cope with the loss
254 of the proton pumping cytochrome *bcc-aa*₃ oxidase (35). The O₂ consumption for the
255 wild-type and Huc- and Hhy-only strains, when spiked with H₂, fit approximately with
256 the 2:1 stoichiometry observed in our initial experiment (**Figure 3c**). However, O₂
257 consumption of either oxidase mutants in the presence of H₂ was significantly higher
258 than wild-type and did not conform to a 2:1 ratio (**Figure 3c**), suggesting H₂ is co-
259 metabolised with other substrates (e.g. carbon reserves). Taken together, these data
260 show that both terminal oxidase complexes accept electrons from H₂ oxidation.

261 Next, we probed the specifics of coupling between Huc and Hhy and the terminal
262 oxidases, by inhibiting the cytochrome *bcc-aa*₃ complex with zinc azide. In wild-type
263 cells, the addition of azide led to a 4.6-fold reduction in H₂ oxidation, demonstrating
264 that hydrogenase activity is primarily coupled to the cytochrome *bcc-aa*₃ complex at 3-
265 days post-OD_{max}. For the Huc-only strain, the addition of zinc azide largely abolished
266 H₂ oxidation (8.4-fold reduction), suggesting that Huc is obligately coupled to the

267 cytochrome *bcc-aa*₃ complex (**Figure 3b**). In contrast, only a 1.5-fold reduction in Hhy
268 activity was observed; this demonstrates that while Hhy utilises the cytochrome *bcc-*
269 *aa*₃ oxidase, it is promiscuous and can also donate electrons to the alternative
270 cytochrome *bd* complex (**Figure 3b**). The addition of azide to the cytochrome *bcc-aa*₃
271 only strain led near complete inhibition of H₂ oxidation (10.5-fold decrease) and O₂
272 consumption (22.9-fold decrease) (**Figure 3c**). This confirms that Huc and Hhy require
273 an active terminal oxidase to oxidise H₂, and thus are obligately coupled to the
274 respiratory chain. The high level of H₂ oxidation observed in the cytochrome *bd* only
275 strain was unchanged by azide treatment, which is expected given this complex is
276 unaffected by azide inhibition (42).

277

278 **Huc and Hhy input electrons into the respiratory chain via the quinone pool.**

279 Having firmly established that Huc and Hhy activity is coupled to terminal oxidase
280 activity under the conditions tested, we sought to better understand this relationship.
281 To do so, we measured H₂ oxidation of the wild-type, Huc-only, and Hhy-only strains
282 in the presence of selective respiratory chain inhibitors and uncouplers. First, we
283 tested whether the electrons generated by Hhy and Huc are transferred to the electron
284 carrier menaquinone, which donates electrons to both terminal oxidases in
285 mycobacteria (43). To do so, we tested the effect of HQNO, a competitive inhibitor of
286 quinone-binding (42, 44), on H₂ oxidation in our wild-type, Huc- and Hhy-only strains.
287 Addition of HQNO led to a 8.6-fold and 10.4-fold decrease in H₂ oxidation by the Huc-
288 and Hhy-only mutants respectively, demonstrating transport of electrons generated by
289 these enzymes occurs via the menaquinone pool (**Figure 4a,b**). There was a 2.5-fold
290 decrease in the activity of wild-type cells treated with HQNO, confirming that H₂
291 oxidation is also menaquinone dependent in a non-mutant background (**Figure 4c**).

292 Next, we tested the effect of valinomycin on H₂ oxidation. Valinomycin is an ionophore
293 that binds K⁺ to form a positively charged complex and specifically transporting K⁺ ions
294 across the cellular membrane along the electrical gradient, collapsing the electrical
295 potential component of the proton-motive force (PMF) in respiratory bacteria (45). In
296 *M. smegmatis* at an external of pH above 5, the majority of the PMF is driven by
297 electrical potential (46) and thus addition of valinomycin under our assay conditions

298 leads to a dramatic reduction in the PMF. Huc and Hhy exhibited strikingly different
299 responses to valinomycin. Valinomycin reduced H₂ oxidation by 20-fold in the Huc-
300 only strain, but increased oxidation by 1.3-fold in the Hhy-only and wild-type strains,
301 compared to untreated cells (**Figure 4**). The near complete loss of Huc activity due to
302 valinomycin treatment indicates this enzyme is energy-dependent, requiring the
303 largely intact PMF to function; this may indicate that the complex is obligately
304 associated with the proton-translocating cytochrome *bcc-aa₃* supercomplex.
305 Conversely, the increase in Hhy activity demonstrates that this enzyme does not
306 require the PMF, with the increase in H₂ oxidation possibly resulting from increased
307 metabolic flux as the cells attempt to maintain their membrane potential.

308 Next, we tested the effect of nigericin on H₂ oxidation. Nigericin is an ionophore which
309 acts as an antiporter of K⁺ and H⁺ ions and is uncharged in its ion bound forms (45).
310 In our assay, nigericin leads to the net efflux of K⁺ ions from and influx of H⁺ ions into
311 the cell, dissipating the proton gradient but not effecting membrane potential. The
312 experimentally determined pH of the external media in our assay was 5.8 (due to
313 media acidification during growth). Under these conditions, ΔpH across the membrane
314 accounts for approximately one third of the PMF in *M. smegmatis* (46). Thus, the
315 addition of nigericin will lead to a significant net influx of protons and acidification of
316 the cytoplasm, shifting the equilibrium for H₂ towards reduction. The addition of
317 nigericin inhibited H₂ oxidation to a moderate degree in our assay. Wild-type and Huc-
318 only strains exhibited a ~1.5-fold decrease in activity, while Hhy activity was reduced
319 2.3-fold (**Figure 4**). The inhibitory effect of nigericin towards Hhy is in contrast with the
320 stimulatory effect of valinomycin on this enzyme. This possibly reflects that, in contrast
321 to valinomycin, nigericin may cause intracellular acidification in addition to diminishing
322 the PMF.

323

324 **A model for the integration of hydrogenases in the mycobacterial respiratory**
325 **chain.**

326 Based on the findings from our work we propose a model for integration of Huc and
327 Hhy into the mycobacterial respiratory chain, which we outline in **Figure 5**. Our data
328 show that both Huc and Hhy are obligately coupled to O₂ reduction via the terminal

329 oxidases of the respiratory chain. Huc preferentially donates electrons to the
330 cytochrome *bcc-aa*₃ complex, while Hhy donates electrons both the cytochrome *bcc-*
331 *aa*₃ and cytochrome *bd* complexes. Both enzymes are membrane associated,
332 positioning them for the transfer of electrons produced by H₂ oxidation to the
333 respiratory chain. The size of Huc and its co-migration with the cytochrome *bcc-aa*₃
334 complex on a native gel suggest that Huc association with the membrane may be
335 mediated by protein-protein interactions, possibly with the terminal oxidase. Inhibition
336 of Huc and Hhy activity by the quinone analogue HQNO suggests that electrons from
337 these enzymes are transferred to the terminal oxidases via the menaquinone pool. It
338 remains to be resolved whether electron transfer to menaquinone is directly mediated
339 by the hydrogenases or through an intermediate protein, for example the FeS proteins
340 co-transcribed with the hydrogenase large and small subunits in the *huc* and *hhy*
341 operons (27). Collapse of the PMF by valinomycin treatment leads to near complete
342 inhibition of Huc activity, but enhancement of Hhy activity. This suggests a distinct
343 relationship exists between these enzymes and the PMF, with Huc requiring an intact
344 PMF, potentially due to its obligate coupling to the cytochrome *bcc-aa*₃ complex.

345 Our data also demonstrates that Huc and Hhy are differentially regulated during
346 mycobacterial growth and persistence. The tightly controlled expression and activity
347 of Huc during the transition between growth and dormancy suggests that it oxidises
348 H₂ mixotrophically as heterotrophic energy sources become scarce. The proton-
349 motive force generated by Huc, through obligate interaction with the cytochrome *bcc-*
350 *aa*₃ complex, may help to energise the cell during the transition to dormancy.
351 Expression of *hhyL*, the gene encoding the large Hhy subunit, is upregulated at the
352 cessation of cell division. However, high levels of Hhy-mediated H₂ oxidation are only
353 observed a number of weeks into dormancy. This suggests that the enzyme primarily
354 functions to meet maintenance needs during persistence, a role which is further
355 supported by its promiscuous utilisation of cytochrome *bd* oxidase. The observed lag
356 between *hhyL* transcription and Hhy activity suggests that regulation of this
357 hydrogenase also occurs downstream of transcription. This possibly provides flexibility
358 to *M. smegmatis*, by limiting synthesis of this resource-intensive protein immediately
359 upon exhaustion of carbon-derived energy sources, but allowing rapid deployment of
360 Hhy if resources remain scarce.

361 While this work provides the basis for understanding how Huc and Hhy are regulated
362 and integrated into cellular metabolism, further investigation is required to fully
363 understand the mechanisms that regulate these enzymes and the biochemistry of their
364 H₂ oxidation. For example, what are the regulatory pathways that allow the cell to
365 rapidly switch on Huc when resources become scarce and then off again as *M.*
366 *smegmatis* commits to dormancy? Analogously, how do non-replicating *M. smegmatis*
367 cells regulate transcription and then activity of Hhy during a state of resource limitation?
368 In addition, the data we present suggests physical interactions between Huc and
369 respiratory chain components. Purification of both Huc and Hhy from their native
370 context in the *M. smegmatis* cell will likely provide insight into the protein-protein
371 interactions that mediate electron transfer from these enzymes. Furthermore,
372 purification of these complexes, combined with structural and spectroscopic analysis,
373 will likely provide insight into the mechanisms that underpin the high H₂ affinity and O₂
374 tolerance of Huc and Hhy. In conjunction with this study, these data will provide a
375 richer picture of how mycobacteria consume H₂ during growth and persistence.

376

377 **Materials and Methods**

378 **Bacterial strains and growth conditions**

379 *Mycobacterium smegmatis* mc²155 and its derivatives were routinely grown in
380 lysogeny broth (LB) agar plates supplemented with 0.05% (w/v) Tween 80 (LBT) (47).
381 In broth culture, the strain was grown in either LBT or Hartmans de Bont (HdB) minimal
382 medium (pH 7.0) supplemented with 0.2% (w/v) glycerol, 0.05% (w/v) tyloxapol, and
383 10 mM NiSO₄. *Escherichia coli* was maintained in LB agar plates and grown in LB
384 broth (48). Selective LB or LBT media used for cloning experiments contained
385 gentamycin at 5 µg mL⁻¹ for *M. smegmatis* and 20 µg mL⁻¹ for *E. coli*. Cultures were
386 routinely incubated at 37°C, with rotary shaking at 150 rpm for liquid cultures, unless
387 otherwise specified. The strains of *M. smegmatis* and its derivatives and *E. coli* are
388 listed in **Table S2**.

389 **Insertion of StrepII tags**

390 To facilitate visualization of the hydrogenases in western blots, a StrepII tag was
391 inserted at the C-terminal end of the small subunits of Huc (MSMEG_2262, *hucS*) and
392 Hhy (MSMEG_2720, *hhyS*) through allelic exchange mutagenesis as described
393 previously (33). Two allelic exchange constructs, *hucS_{StrepII}* (2656 bp) and *hhyS_{StrepII}*
394 (3000 bp), were synthesized by GenScript. These were cloned into the Spel site of the
395 mycobacterial shuttle plasmid pX33 to yield the constructs pHuc-StrepII and pHhy-
396 StrepII (**Table S3**). The constructs were propagated in *E. coli* TOP10 and transformed
397 into wild-type *M. smegmatis* mc²155 cells by electroporation. Gentamycin was used in
398 selective solid and liquid medium to propagate pX33. To allow for permissive
399 temperature-sensitive vector replication, transformants were incubated on LBT
400 gentamycin plates at 28°C until colonies were visible (5-7 days). Resultant catechol-
401 positive colonies were subcultured onto fresh LBT gentamycin plates and incubated
402 at 40°C for 3-5 days to facilitate integration of the recombinant plasmid, via flanking
403 regions, into the chromosome. The second recombination event was facilitated by
404 subculturing catechol-reactive and gentamycin-resistant colonies onto LBT agar
405 plates supplemented with 10% sucrose (w/v) and incubating at 40°C for 3-5 days.
406 Catechol-unreactive colonies were subsequently screened by PCR to distinguish wild-
407 type revertants from Huc-StrepII and Hhy-StrepII mutants. Primers used for screening
408 are listed in **Table S3**.

409 **Cellular fractionation for detection of Huc and Hhy**

410 The untagged and StrepII-tagged Huc and Hhy were constitutively produced by
411 growing *M. smegmatis* wild-type, Huc-only, Hhy-only, Huc-StrepII, and Hhy-StrepII
412 strains in HdB with 0.2% glycerol as the sole carbon source (24, 47). Cells were grown
413 at 37°C with agitation and harvested by centrifugation (15 min, 10,000 g, 4°C) after 1
414 day post-OD_{max} (~3.0) for wild-type, Huc-only, and Huc-StrepII or 3 days post OD_{max}
415 (~3.0) for wild-type, Hhy-only, and Hhy-StrepII. They were washed in lysis buffer (50
416 mM Tris-Cl, pH 8.0, 2 mM MgCl₂, 1 mM PMSF, 5 mg mL⁻¹ lysozyme, 40 µg ml⁻¹ DNase)
417 and resuspended in the same buffer in a 1:5 cell mass to buffer ratio. The cell
418 suspension was homogenized using a Dounce homogenizer and passed through a
419 cell disruptor (40 Kpsi, four times; Constant Systems One Shot). After removal of
420 unbroken cells by low-speed centrifugation (20 min, 8,000 g, 4°C), the whole-cell
421 lysates of wild-type, Huc-only, and Hhy-only strains were used for activity staining. Cell

422 lysates of Huc-StrepII and Hhy-StrepII strains were separated by ultracentrifugation
423 (60 min, 150,000 g, 4°C) into cytosol and membrane fractions. Membranes were
424 washed in lysis buffer and analysed by western blotting. Protein concentrations were
425 measured by the bicinchoninic acid method against bovine serum albumin standards.

426 **Hydrogenase activity staining**

427 Twenty micrograms of each whole-cell lysates was loaded onto two native 7.5% (w/v)
428 Bis-Tris polyacrylamide gels prepared as described elsewhere (49) and run alongside
429 a protein standard (NativeMark Unstained Protein Standard, ThermoFisher Scientific)
430 for 3 h at 25 mA. For total protein determination, gels were stained overnight at 4°C
431 with gentle agitation using AcquaStain Protein Gel Stain (Bulldog Bio). To determine
432 hydrogenase activity, a duplicate gel was incubated in 50 mM potassium phosphate
433 buffer (pH 7.0) supplemented with 500 µM nitroblue tetrazolium chloride (NBT) in an
434 anaerobic jar amended with an anaerobic gas mixture (5% H₂, 10% CO₂ 85% N₂ v/v)
435 overnight at room temperature. Bands present after incubation corresponded to
436 hydrogenase activity.

437 **Membrane solubilization and western blots**

438 Membrane solubilization was performed by resuspending washed membranes (to a
439 final protein concentration of 1 mg mL⁻¹) in solubilization buffer containing 50 mM Tris-
440 Cl pH 8.0, 1 mM PMSF, and 5% (w/v) sodium cholate (50). The solutions were
441 incubated at room temperature with gentle agitation for 3 h. Detergent-soluble proteins
442 were separated from the insoluble material by ultracentrifugation. As a control,
443 membrane was suspended in buffer without sodium cholate. Total proteins in the
444 fractions were visualized in SDS-PAGE and Huc_StrepII and Hhy_StrepII by western
445 blotting. For western blotting, 20 µg total protein was loaded and ran on to Bolt™ 4-
446 12% SDS polyacrylamide gels after boiling in Bolt™ SDS sample buffer and 50 mM
447 dithiothreitol. The proteins in the gels were then transferred onto PVDF membrane
448 using Trans-Blot® SD Semi-Dry Transfer Cell (Bio-Rad) set at 15 V for 60 m. Following
449 transfer, the protein-containing PVDF membrane was blocked with 3% (w/v) bovine
450 serum albumin in phosphate-buffered saline (PBS), pH 7.4 with 0.1% (v/v) Tween 20
451 (PBST). PVDF membrane was washed three times in 20 mL of PBST and finally
452 resuspended in 10 mL of the same buffer. Strep-Tactin horse radish peroxidase (HRP)

453 conjugate was then added at a 1:100,000 dilution. Peroxide-mediated
454 chemilluminescence of luminol catalyzed by the HRP was developed according to
455 manufacturer's specifications (Amersham ECL Prime detection reagent, GE Life
456 Sciences) and the Strep-Tactin(HRP conjugated)–StrepII-tag complex was visualized
457 in a Fusion Solo S (Fischer Biotech) chemiluminescence detector.

458 **Gene expression analysis**

459 For qRT-PCR analysis, five synchronized sets of biological triplicate cultures (30 mL)
460 of wild-type *M. smegmatis* were grown in 125 mL aerated conical flasks. Each set of
461 triplicates was quenched either at OD₆₀₀ 0.3, OD₆₀₀ 1.0, 1-day post-OD_{max} (OD₆₀₀ ~3.0),
462 3-days post-OD_{max}, or 3-weeks post-OD_{max} with 60 mL cold 3:2 glycerol:saline solution
463 (-20°C). They were subsequently harvested by centrifugation (20,000 × g, 30 minutes,
464 -9°C), resuspended in 1 mL cold 1:1 glycerol:saline solution (-20°C), and further
465 centrifuged (20,000 × g, 30 minutes, -9°C). For cell lysis, pellets were resuspended in
466 1 mL TRIzol Reagent, mixed with 0.1 mm zircon beads, and subjected to five cycles
467 of bead-beating (4,000 rpm, 30 seconds) in a Biospec Mini-Beadbeater. Total RNA
468 was subsequently extracted by phenol-chloroform extraction as per manufacturer's
469 instructions (TRIzol Reagent User Guide, Thermo Fisher Scientific) and resuspended
470 in diethylpyrocarbonate (DEPC)-treated water. RNA was treated with DNase using the
471 TURBO DNA-free kit (Thermo Fisher Scientific) as per the manufacturer's instructions.
472 cDNA was then synthesized using SuperScript III First-Strand Synthesis System for
473 qRT-PCR (Thermo Fisher Scientific) with random hexamer primers as per the
474 manufacturer's instructions. qPCR was used to quantify the levels of the target genes
475 *hucL* (Huc) and *hhyL* (Hhy) and housekeeping gene *sigA* against amplicon standards
476 of known concentration. All reactions were run in a single 96-well plate using the
477 PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) and LightCycler 480
478 Instrument (Roche) according to each manufacturers' instructions. A standard curve
479 was created based on the cycle threshold (Ct) values of *hucL*, *hhyL*, and *sigA*
480 amplicons that were serially diluted from 10⁸ to 10 copies (R² > 0.98). The copy
481 number of the genes in each sample was interpolated based on each standard curve
482 and values were normalized to *sigA* expression. For each biological replicate, all
483 samples, standards, and negative controls were run in technical duplicate. Primers
484 used in this work are summarized in **Table S3**.

485 **Microrespiration measurements**

486 Rates of H₂ oxidation or O₂ consumption were measured amperometrically
487 according to previously established protocols (27, 30). For each set of
488 measurements, either a Unisense H₂ microsensor or Unisense O₂ microsensor
489 electrode were polarised at +800 mV or -800 mV, respectively, with a Unisense
490 multimeter. The microsensors were calibrated with either H₂ or O₂ standards of known
491 concentration. Gas-saturated phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM
492 KCl, 10 mM Na₂HPO₄ and 2 mM KH₂PO₄, pH 7.4) was prepared by bubbling the
493 solution with 100% (v/v) of either H₂ or O₂ for 5 min. In uncoupler/inhibitor-untreated
494 cells, H₂ oxidation was measured in 1.1 mL microrespiration assay chambers. These
495 were amended with 0.9 mL cell suspensions of *M. smegmatis* wild-type or derivative
496 strains either at OD₆₀₀ 0.3, OD₆₀₀ 1.0, 1-day post-OD_{max} (OD₆₀₀ ~3.0), 3-days post-
497 OD_{max}, or 3-weeks post-OD_{max}. They were subsequently amended with 0.1 mL H₂-
498 saturated PBS and 0.1 mL O₂-saturated PBS. Chambers were stirred at 250 rpm,
499 room temperature. For cells at mid-stationary phase, following measurements of
500 untreated cells, the assay mixtures were treated with either 10 µM nigericin, 10 µM
501 valinomycin, 40 µM N-oxo-2-heptyl-4-hydroxyquinoline (HQNO), or 250 µM zinc azide
502 before measurement. In O₂ consumption measurements, initial O₂ consumption
503 without the addition of H₂ were measured in microrespiration assay chambers
504 sequentially amended with 0.9 mL cell suspensions of *M. smegmatis* wild-type or
505 derivative strains at mid-stationary phase (3-days post-OD_{max}) and 0.1 mL O₂-
506 saturated PBS (0.1 mL) with stirring at 250 rpm, room temperature. After initial
507 measurements, 0.1 mL of H₂-saturated PBS was added into the assay mixture and
508 changes in O₂ concentrations were recorded. Additionally, O₂ consumption was
509 measured in cytochrome *bcc*-*aa₃*-only strains treated with 250 µM zinc azide. In both
510 H₂ and O₂ measurements, changes in concentrations were logged using Unisense
511 Logger Software (Unisense, Denmark). Upon observing a linear change in either H₂
512 or O₂ concentration, rates of consumption were calculated over a period of 20 s and
513 normalised against total protein concentration.

514

515 **Footnotes**

516

517 **Acknowledgements**

518 This work was supported by an ARC DECRA Fellowship (DE170100310; awarded to
519 C.G.), an NHMRC New Investigator Grant (APP5191146; awarded to C.G.), a Monash
520 University Science-Medicine Seed Grant (awarded to C.G. and M.J.C.), and a Monash
521 University Doctoral Scholarship (awarded to P.R.F.C.). We thank Dr Ralf Schittenhelm
522 and Dr Cheng Huang of the Monash Proteomic & Metabolic Facility for performing
523 mass spectrometry analyses.

524

525 **Author contributions**

526 C.G. and G.M.C. conceived the study. C.G., P.R.F.C., G.M.C., R.G., K.H., M.J.C., and
527 C.G.W. designed experiments. P.R.F.C. performed experiments. P.R.F.C., C.G., R.G.,
528 K.H., and G.M.C. analysed data. P.R.F.C., R.G., and C.G. wrote the paper with input
529 from all authors.

530

531 **Competing financial interests**

532 The authors declare no competing financial interests.

533

534 **References**

- 535 1. Rhee, T. S., Brenninkmeijer, C. A. M., and Rockmann, T. (2006) The
536 overwhelming role of soils in the global atmospheric hydrogen cycle. *Atmos.*
537 *Chem. Phys.* **6**, 1611–1625
- 538 2. Schmidt, U. (1974) Molecular hydrogen in the atmosphere. *Tellus A.* **26**, 78–90
- 539 3. Constant, P., Chowdhury, S. P., Pratscher, J., and Conrad, R. (2010)
540 Streptomyces contributing to atmospheric molecular hydrogen soil uptake
541 are widespread and encode a putative high-affinity [NiFe]-hydrogenase.
542 *Environ. Microbiol.* **12**, 821–829
- 543 4. Greening, C., Carere, C. R., Rushton-Green, R., Harold, L. K., Hards, K.,
544 Taylor, M. C., Morales, S. E., Stott, M. B., and Cook, G. M. (2015) Persistence
545 of the dominant soil phylum *Acidobacteria* by trace gas scavenging. *Proc. Natl.*
546 *Acad. Sci.* **112**, 10497–10502
- 547 5. Islam, Z. F., Cordero, P. R. F., Feng, J., Sean, Y. C., Thanavit, K. B., Gleadow,
548 R. M., Carere, C. R., Stott, M. B., Chiri, E., and Greening, C. (2019) Two
549 Chloro fl exi classes independently evolved the ability to persist on
550 atmospheric hydrogen and carbon monoxide. *ISME J.* **13**, 1801–1813
- 551 6. Greening, C., Villas-Bôas, S. G., Robson, J. R., Berney, M., and Cook, G. M.
552 (2014) The growth and survival of *Mycobacterium smegmatis* is enhanced by
553 co-metabolism of atmospheric H₂. *PLoS One.* **9**, e103034
- 554 7. Liot, Q., and Constant, P. (2016) Breathing air to save energy - new insights
555 into the ecophysiological role of high-affinity [NiFe]-hydrogenase in
556 *Streptomyces avermitilis*. *Microbiologyopen.* **5**, 47–59
- 557 8. Meredith, L. K., Rao, D., Bosak, T., Klepac-Ceraj, V., Tada, K. R., Hansel, C.
558 M., Ono, S., and Prinn, R. G. (2014) Consumption of atmospheric hydrogen
559 during the life cycle of soil-dwelling actinobacteria. *Environ. Microbiol. Rep.* **6**,
560 226–238
- 561 9. Constant, P., Poissant, L., and Villemur, R. (2009) Tropospheric H₂ budget
562 and the response of its soil uptake under the changing environment. *Sci. Total*
563 *Environ.* **407**, 1809–1823
- 564 10. Ehhalt, D. H., and Rohrer, F. (2009) The tropospheric cycle of H₂: A critical
565 review. *Tellus, Ser. B Chem. Phys. Meteorol.* **61**, 500–535
- 566 11. Piché-Choquette, S., Khdhiri, M., and Constant, P. (2018) Dose-response

567 relationships between environmentally-relevant H₂ concentrations and the
568 biological sinks of H₂, CH₄ and CO in soil. *Soil Biol. Biochem.* **123**, 190–199

569 12. Bay, S., Ferrari, B., and Greening, C. (2018) Life without water: How do
570 bacteria generate biomass in desert ecosystems? *Microbiol. Aust.* **39**, 28–32

571 13. Greening, C., Biswas, A., Carere, C. R., Jackson, C. J., Taylor, M. C., Stott, M.
572 B., Cook, G. M., and Morales, S. E. (2016) Genomic and metagenomic
573 surveys of hydrogenase distribution indicate H₂ is a widely utilised energy
574 source for microbial growth and survival. *ISME J.* **10**, 761–777

575 14. Ji, M., Greening, C., Vanwonterghem, I., Carere, C., Bay, S., Steen, J.,
576 Montgomery, K., Lines, T., Beardall, J., Dorst, J. van, Snape, I., Stott, M.,
577 Hugenholtz, P., and Ferrari, B. (2017) Atmospheric trace gases support
578 primary production in Antarctic desert ecosystems. *Nature*. **552**, 400–403

579 15. Kanno, M., Constant, P., Tamaki, H., and Kamagata, Y. (2015) Detection and
580 isolation of plant-associated bacteria scavenging atmospheric molecular
581 hydrogen. *Environ. Microbiol.* **18**, 2495–2506

582 16. Kessler, A. J., Chen, Y.-J., Waite, D. W., Hutchinson, T., Koh, S., Popa, M. E.,
583 Beardall, J., Hugenholtz, P., Cook, P. L. M., and Greening, C. (2019) Bacterial
584 fermentation and respiration processes are uncoupled in anoxic permeable
585 sediments. *Nat. Microbiol.* **4**, 1014–1023

586 17. Khodhiri, M., Hesse, L., Popa, M. E., Quiza, L., Lalonde, I., Meredith, L. K.,
587 Röckmann, T., and Constant, P. (2015) Soil carbon content and relative
588 abundance of high affinity H₂-oxidizing bacteria predict atmospheric H₂ soil
589 uptake activity better than soil microbial community composition. *Soil Biol.*
590 *Biochem.* **85**, 1–9

591 18. Lynch, R. C., Darcy, J. L., Kane, N. C., Nemergut, D. R., and Schmidt, S. K.
592 (2014) Metagenomic evidence for metabolism of trace atmospheric gases by
593 high-elevation desert actinobacteria. *Front. Microbiol.* **5**, 1–13

594 19. Piché-Choquette, S., Khodhiri, M., and Constant, P. (2017) Survey of high-
595 affinity H₂-oxidizing bacteria in soil reveals their vast diversity yet
596 underrepresentation in genomic databases. *Microb. Ecol.* **74**, 771–775

597 20. Schwartz, E., Fritsch, J., and Friedrich, B. (2013) H₂-Metabolizing
598 Prokaryotes. in *The Prokaryotes: Prokaryotic Physiology and Biochemistry*
599 (Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F.
600 eds), pp. 119–199, Springer, Berlin/Heidelberg, Germany

601 21. Ferrari, B. C., Bissett, A., Snape, I., Dorst, J. Van, Palmer, A. S., Ji, M.,
602 Siciliano, S. D., Stark, J. S., Winsley, T., and Brown, M. V (2016) Geological
603 connectivity drives microbial community structure and connectivity in polar ,
604 terrestrial ecosystems. **18**, 1834–1849

605 22. Price, P. B., and Sowers, T. (2004) Temperature dependence of metabolic
606 rates for microbial growth, maintenance, and survival. *Proc. Natl. Acad. Sci.*
607 **101**, 4631–4636

608 23. Greening, C., Constant, P., Hards, K., Morales, S. E., Oakeshott, J. G.,
609 Russell, R. J., Taylor, M. C., Berney, M., Conrad, R., and Cookb, G. M. (2015)
610 Atmospheric hydrogen scavenging: From enzymes to ecosystems. *Appl.*
611 *Environ. Microbiol.* **81**, 1190–1199

612 24. Greening, C., Berney, M., Hards, K., Cook, G. M., and Conrad, R. (2014) A soil
613 actinobacterium scavenges atmospheric H₂ using two membrane-associated,
614 oxygen-dependent [NiFe] hydrogenases. *Proc. Natl. Acad. Sci.* **111**, 4257–
615 4261

616 25. Schäfer, C., Friedrich, B., and Lenza, O. (2013) Novel, oxygen-insensitive
617 group 5 [NiFe]-hydrogenase in *Ralstonia eutropha*. *Appl. Environ. Microbiol.*
618 **79**, 5137–5145

619 26. Schäfer, C., Bommer, M., Hennig, S. E., Jeoung, J. H., Dobbek, H., and Lenz,
620 O. (2016) Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals
621 Insight into O₂-Tolerant H₂ Oxidation. *Structure*. **24**, 285–292

622 27. Berney, M., Greening, C., Hards, K., Collins, D., and Cook, G. M. (2014) Three
623 different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe
624 *Mycobacterium smegmatis*. *Environ. Microbiol.* **16**, 318–330

625 28. Constant, P., Poissant, L., and Villemur, R. (2008) Isolation of *Streptomyces*
626 sp. PCB7, the first microorganism demonstrating high-affinity uptake of
627 tropospheric H₂. *ISME J.* **2**, 1066–1076

628 29. Myers, M. R., and King, G. M. (2016) Isolation and characterization of
629 *Acidobacterium ailaau* sp. nov., a novel member of Acidobacteria subdivision
630 1, from a geothermally heated Hawaiian microbial mat. *Int. J. Syst. Evol.*
631 *Microbiol.* **66**, 5328–5335

632 30. Carere, C. R., Hards, K., Houghton, K. M., Power, J. F., Mcdonald, B., Collet,
633 C., Gapes, D. J., Sparling, R., Boyd, E. S., Cook, G. M., Greening, C., and
634 Stott, M. B. (2017) Mixotrophy drives niche expansion of verrucomicrobial

635 methanotrophs. *ISME J.* **11**, 2599–2610

636 31. Berney, M., Greening, C., Conrad, R., Jacobs, W. R., and Cook, G. M. (2014)
637 An obligately aerobic soil bacterium activates fermentative hydrogen
638 production to survive reductive stress during hypoxia. *Proc. Natl. Acad. Sci.*
639 **111**, 11479–11484

640 32. Berney, M., and Cook, G. M. (2010) Unique flexibility in energy metabolism
641 allows mycobacteria to combat starvation and hypoxia. *PLoS One.* **5**, e8614

642 33. Tran, S. L., and Cook, G. M. (2005) The F1F0 -ATP Synthase of
643 *Mycobacterium smegmatis* Is Essential for Growth. *J. Bacteriol.* **187**, 5023–
644 5028

645 34. Cook, G. M., Hards, K., Vilchèze, C., Hartman, T., and Berney, M. (2013)
646 Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria.
647 *Microbiol. Spectr.* **2**, 1–30

648 35. Wiseman, B., Nitharwal, R. G., Fedotovskaya, O., Schäfer, J., Guo, H., Kuang,
649 Q., Benlekbir, S., Sjöstrand, D., Ädelroth, P., Rubinstein, J. L., Brzezinski, P.,
650 and Högbom, M. (2018) Structure of a functional obligate complex III2IV2
651 respiratory supercomplex from *Mycobacterium smegmatis*. *Nat. Struct. Mol.*
652 *Biol.* **25**, 1128–1136

653 36. Borisova, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The
654 cytochrome bd respiratory oxygen reductases. *Biochim. Biophys. Acta.* **1807**,
655 1398–1413

656 37. Safarian, S., Rajendran, C., Müller, H., Preu, J., Langer, J. D., Hirose, T.,
657 Kusumoto, T., Sakamoto, J., Michel, H., and Ovchinnikov, S. (2016) Structure
658 of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen
659 reductases. *Science (80-.)* **352**, 583–586

660 38. Cordero, P. R. F., Bayly, K., Leung, P. M., Huang, C., Islam, Z. F.,
661 Schittenhelm, R. B., King, G. M., and Greening, C. (2019) Atmospheric carbon
662 monoxide oxidation is a widespread mechanism supporting microbial survival.
663 *ISME J.* <https://doi.org/10.1038/s41396-019-0479-8>

664 39. Piché-Choquette, S., and Constanta, P. (2019) Molecular hydrogen, a
665 neglected key driver of soil biogeochemical processes. *Appl. Environ.*
666 *Microbiol.* **85**, 1–19

667 40. Kim, M., Jang, J., Binte, N., Rahman, A. B., Pethe, X. K., and Berry, X. E. A.
668 (2015) Isolation and Characterization of a Hybrid Respiratory Supercomplex

669 Consisting of *Mycobacterium tuberculosis* Cytochrome bcc and
670 *Mycobacterium smegmatis* Cytochrome aa3. *J. Biol. Chem.* **290**, 14350–14360

671 41. Lu, P., Heineke, M. H., Koul, A., Andries, K., Cook, G. M., Lill, H., Van
672 Spanning, R., and Bald, D. (2015) The cytochrome bd-type quinol oxidase is
673 important for survival of *Mycobacterium smegmatis* under peroxide and
674 antibiotic-induced stress. *Sci. Rep.* **5**, 10333:1–10

675 42. Cook, G. M., Greening, C., Hards, K., and Berney, M. (2014) Energetics of
676 Pathogenic Bacteria and Opportunities for Drug Development. in *Advances in*
677 *Microbial Physiology* (Poole, R. K. ed), pp. 1–65, Academic Press, Cambridge,
678 Massachusetts, USA

679 43. Dhiman, R. K., Mahapatra, S., Slayden, R. A., Boyne, M. E., Lenaerts, A.,
680 Hinshaw, J. C., Angala, S. K., Chatterjee, D., Biswas, K., Narayanasamy, P.,
681 Kurosu, M., and Crick, D. C. (2009) Menaquinone synthesis is critical for
682 maintaining mycobacterial viability during exponential growth and recovery
683 from non-replicating persistence. *Mol. Microbiol.* **72**, 85–97

684 44. Matsuno-Yagi, A., and Hatefi, Y. (2002) Ubiquinol-Cytochrome c
685 Oxidoreductase. *J. Biol. Chem.* **271**, 6164–6171

686 45. Nicholls, D. G., and Ferguson, S. J. (2013) Ion transport across energy-
687 conserving membranes. in *Bioenergetics*, 4th Ed., pp. 13–25, Academic Press,
688 Cambridge, Massachusetts, USA

689 46. Rao, M., Streur, T. L., Aldwell, F. E., and Cook, G. M. (2001) Intracellular pH
690 regulation by *Mycobacterium smegmatis* and *Mycobacterium bovis* BCG.
691 *Microbiology*. **147**, 1017–1024

692 47. Gebhard, S., Tran, S. L., and Cook, G. M. (2006) The Phn system of
693 *Mycobacterium smegmatis*: a second high-affinity ABC-transporter for
694 phosphate. *Microbiology*. **152**, 3453–3465

695 48. Green, M. R., and Sambrook, J. (2012) *Molecular cloning: a laboratory*
696 *manual*, 4th Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
697 New York, USA

698 49. Walker, J. M. (2009) Nondenaturing Polyacrylamide Gel Electrophoresis of
699 Proteins. in *The Protein Protocols Handbook*, 3rd Ed., pp. 171–176, Humana
700 Press, Totowa, New Jersey, USA

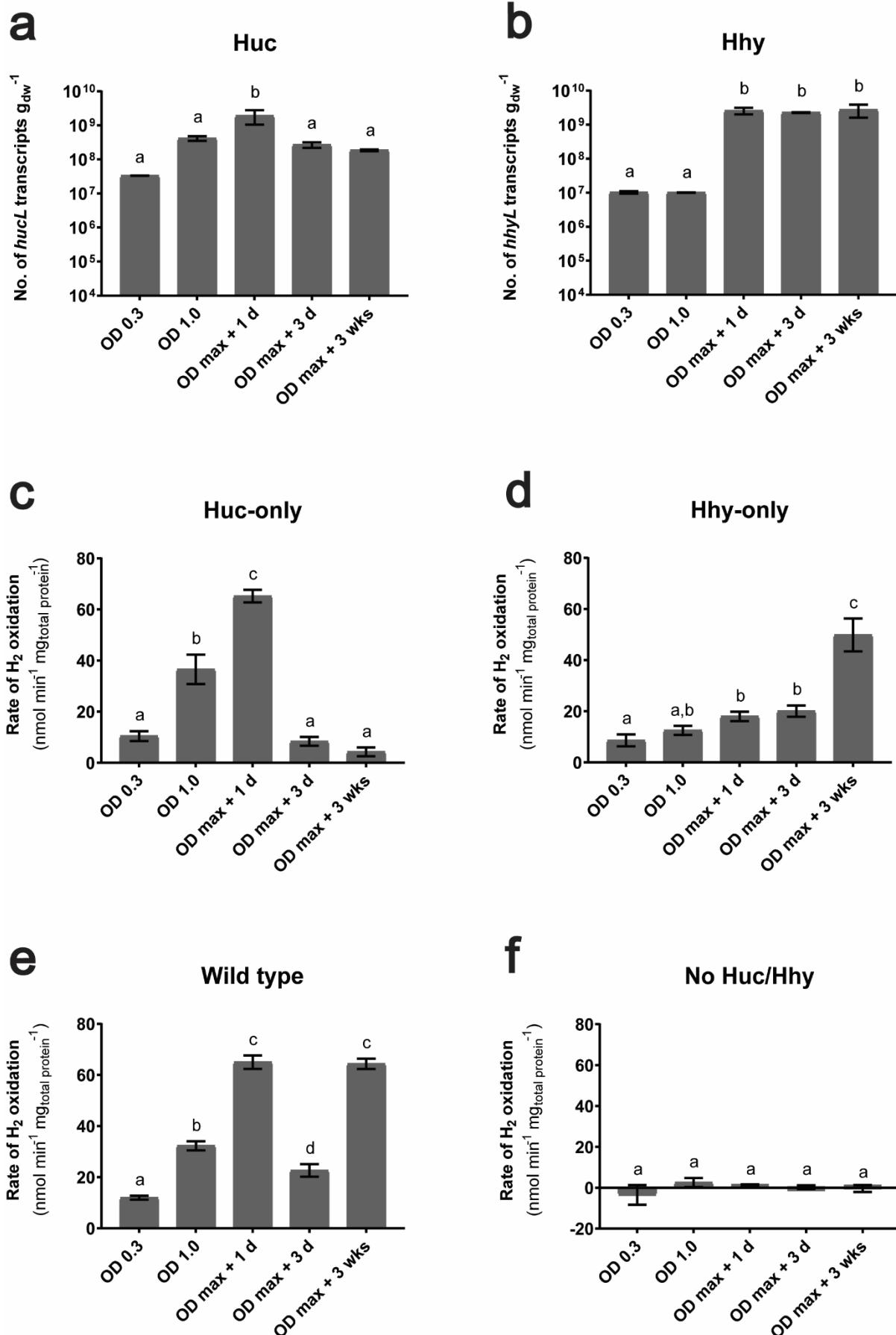
701 50. Heikal, A., Nakatani, Y., Dunn, E., Weimar, M. R., Day, C. L., Baker, E. N.,
702 Lott, J. S., Sazanov, L. A., and Cook, G. M. (2014) Structure of the bacterial

703 type II NADH dehydrogenase: A monotopic membrane protein with an
704 essential role in energy generation. *Mol. Microbiol.* **91**, 950–964

705 51. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T., and Jr, W. R. J. (1990)
706 Isolation and characterization of efficient plasmid transformation mutants of
707 *Mycobacterium smegmatis*. *Mol. Microbiol.* **4**, 1911–1919

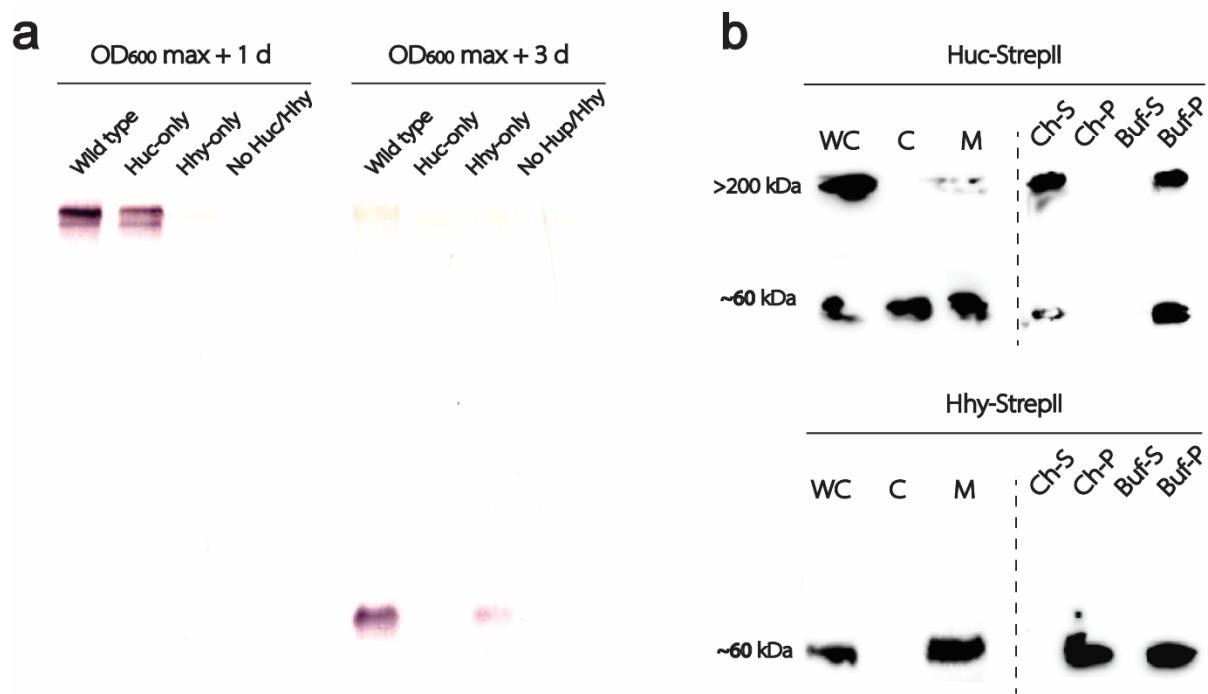
708 52. Lu, X., Williams, Z., Hards, K., Tang, J., Cheung, C. Y., Aung, H. L., Wang, B.,
709 Liu, Z., Hu, X., Lenaerts, A., Woolhiser, L., Hastings, C., Zhang, X., Wang, Z.,
710 Rhee, K., Ding, K., Zhang, T., and Cook, G. M. (2019) Pyrazolo[1,5- a]pyridine
711 Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of
712 Drug-Resistant Tuberculosis. *ACS Infect. Dis.* **5**, 239–249

713 53. Gebhard, S., Tran, S. L., and Cook, G. M. (2006) The Phn system of
714 *Mycobacterium smegmatis*: A second high-affinity ABC-transporter for
715 phosphate. *Microbiology*. **152**, 3453–3465


716

717

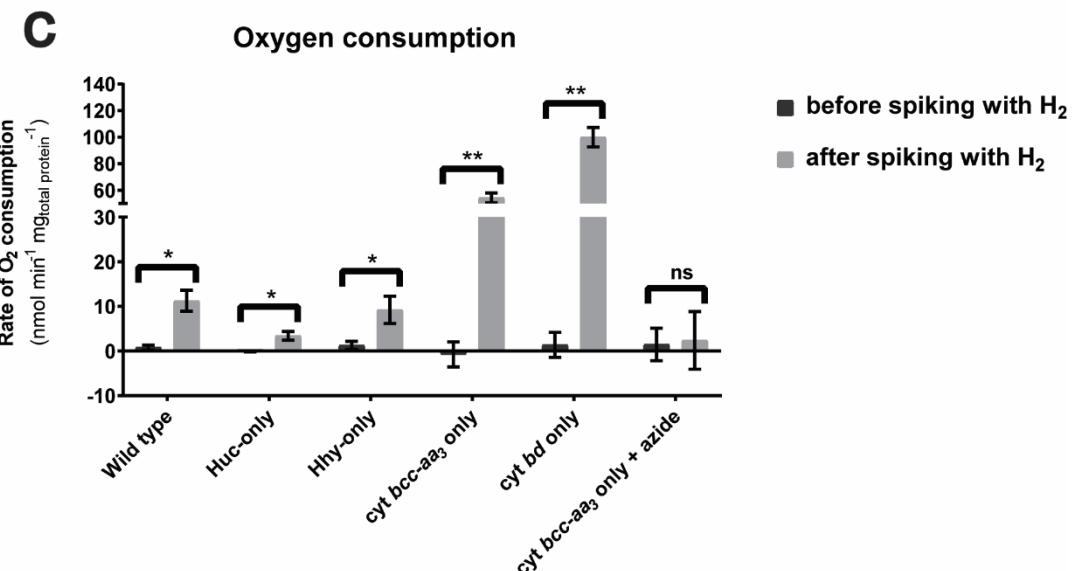
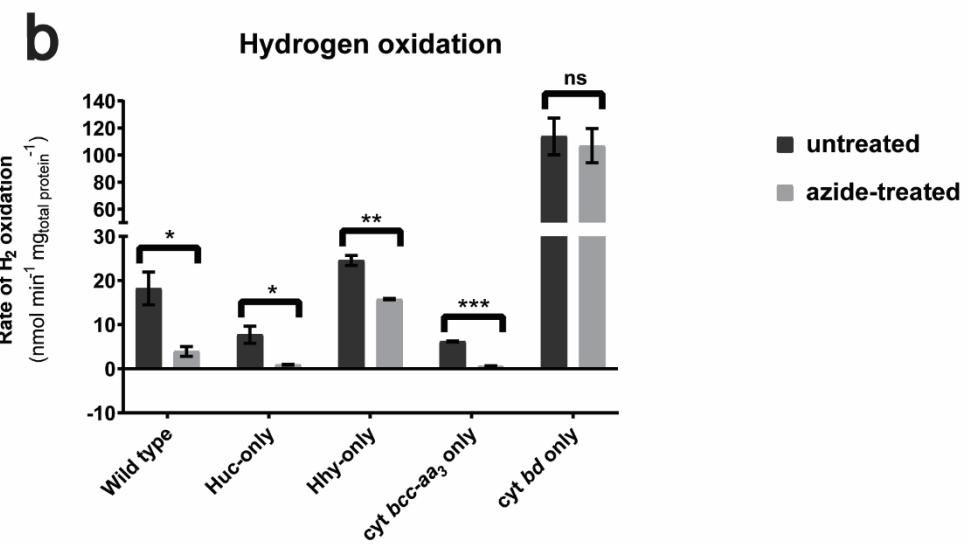
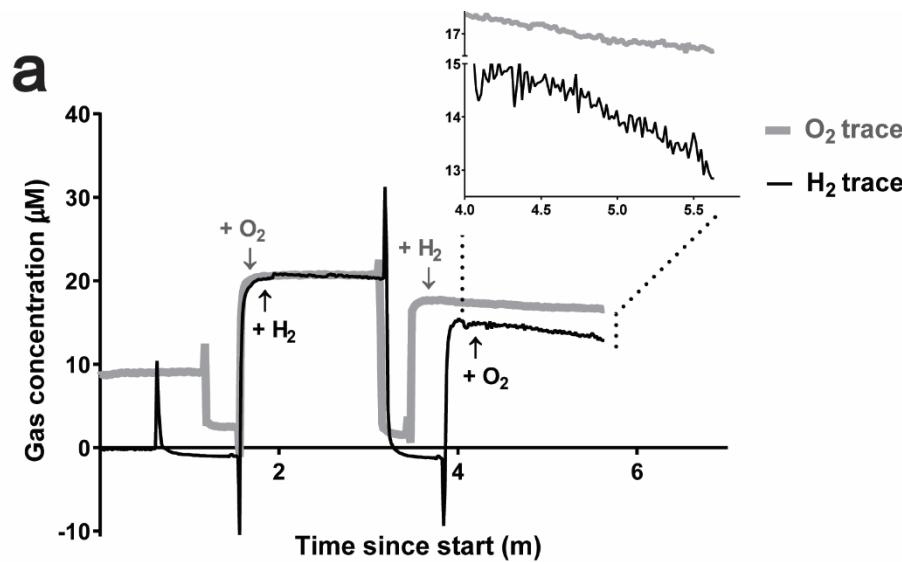
718


719 **Figures**

720 **Figure 1. Differential expression and activity of Huc and Hhy.** Normalized number
721 of transcripts of the large subunit gene of (a) Huc (*hucL*) and (b) Hhy (*hhyL*) in wild-
722 type cultures. Cultures were harvested during either carbon-replete conditions, i.e.
723 OD₆₀₀ 0.3 and OD₆₀₀ 1.0, or carbon-limited conditions, i.e. 1 day post-OD_{max} (OD₆₀₀
724 ~3.0), 3 day post-OD_{max}, and 3 weeks post-OD_{max}. Absolute transcript levels were
725 determined through qRT-PCR and normalized to the housekeeping gene *sigA*. Rates
726 of H₂ oxidation of whole cells of (c) Huc-only, (d) Hhy-only, (e) wild-type, and (f) no
727 Huc/Hhy (triple hydrogenase deletion) strains of *M. smegmatis*. Activities were
728 measured amperometrically using a hydrogen microelectrode under carbon-replete
729 and carbon-limited conditions. All values labelled with different letters are statistically
730 significant based on one-way ANOVA.

732 **Figure 2. Activity and physical association of Huc and Hhy in cell extracts. (a)**
733 Differential native activity staining of Huc and Hhy in whole-cell lysates of different *M.*
734 *smegmatis* strains harvested at 1-day post-OD_{max} (OD₆₀₀ ~3.0) and 3-day post-OD_{max}
735 (OD₆₀₀ ~3.0). **(b)** Localisation of StrepII-tagged Huc (Huc-StrepII) and Hhy (Hhy-
736 StrepII) in different cellular fractions by western blot (left of dotted lines): WC – whole-
737 cell lysates; C – cytosol; M – membrane. Huc-StrepII was harvested at 1-days post-
738 OD_{max} (OD₆₀₀ ~3.0) and Hhy-StrepII 3-days post-OD_{max} (OD₆₀₀ ~3.0). Membranes
739 containing Huc-StrepII and Hhy-StrepII solubilised in 5% sodium cholate at 22 °C for
740 3 h (right of dotted line). Huc-StrepII and Hhy-StrepII in the cholate-soluble (Ch-S) and
741 cholate-insoluble fractions (Ch-P) are visualized on western blots. Solubilisation
742 controls incubated under identical conditions minus cholate are shown, supernatant
743 (Buf-S) and pellet (Buf-P).

744

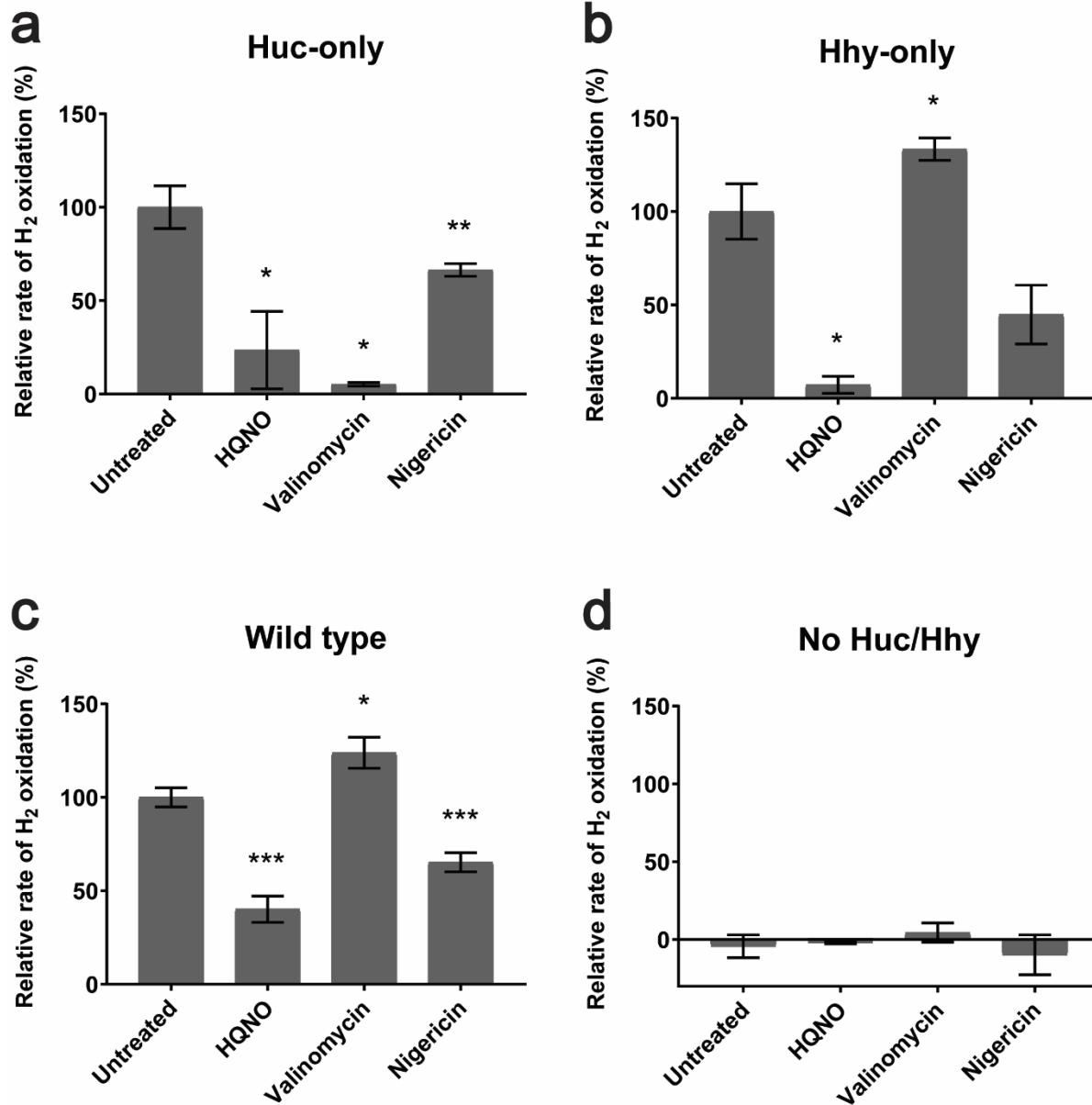



745

746

747

748

749 **Figure 3. Interaction of Huc and Hhy with the terminal cytochrome oxidases.** H₂
750 and O₂ consumption of whole cells from carbon-limited cultures (3 days post OD_{max}
751 ~3.0) of wild-type, hydrogenase, and cytochrome oxidase mutant strains. **(a)**
752 Representative raw electrode traces of H₂ and O₂ consumption by carbon-limited wild-
753 type *M. smegmatis* cultures. H₂ oxidation is dependent in the presence of O₂ and
754 likewise, O₂ is not consumed without addition of H₂ as an electron source. **(b)** The rate
755 of H₂ uptake by whole cells before and after treatment with the cytochrome oxidase
756 inhibitor zinc azide (250 μ M). **(c)** O₂ consumption in the same set of strains were
757 measured using an oxygen microelectrode, before and after addition of H₂. Values
758 with asterisks indicate activity rates that are significantly different from the untreated
759 whole cells based on student's t-test (* p \leq 0.05; ** p \leq 0.01; *** p \leq 0.001; ns – not
760 significant).

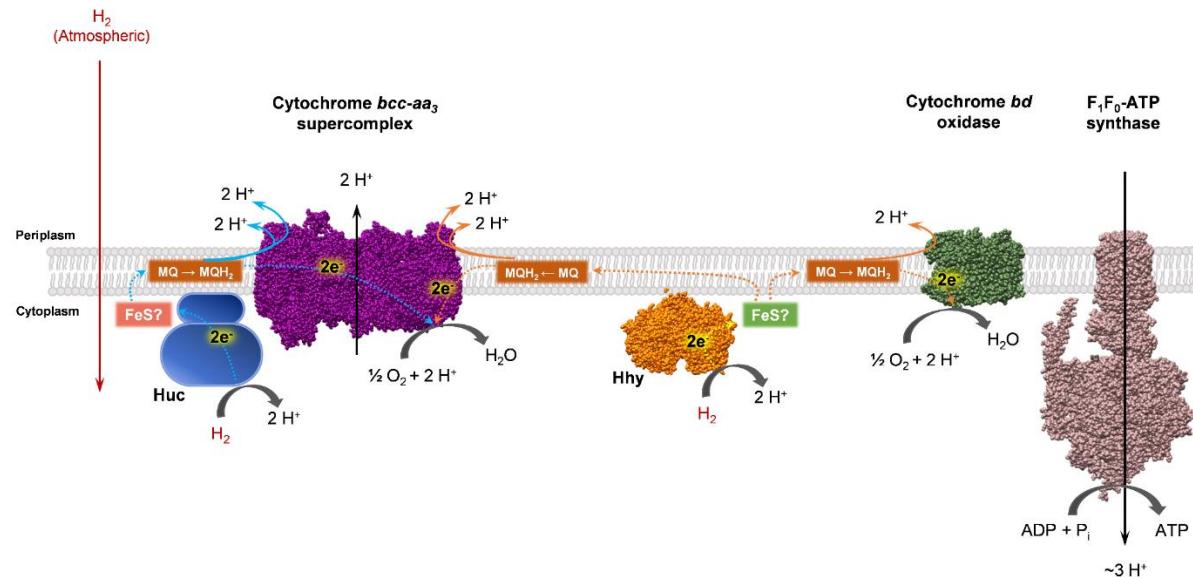

763 **Figure 4. Inhibition of Huc and Hhy coupling to the electron transport chain.** H₂
764 oxidation rates of (a) Huc-only, (b) Hhy-only, (c) wild-type, and (d) no Huc/Hhy (triple
765 hydrogenase deletion) cultures were measured using a hydrogen microelectrode
766 before and after treatment with different respiratory chain uncouplers and inhibitors:
767 HQNO (40 μ M), valinomycin (10 μ M), nigericin (10 μ M). Rates were normalized to mg
768 total protein and expressed as percentage relative to the average rate of untreated
769 cells. Cultures during carbon limitation (3 days post OD_{max} ~3.0) were used. Values
770 with asterisks indicate activity rates that are significantly different from the untreated
771 whole cells based on student's t-test (* p \leq 0.05; ** p \leq 0.01; *** p \leq 0.001)

772

773

774

775



776

777

778 **Figure 5. Huc and Hhy differentially energize the mycobacterial respiratory chain**
779 **during carbon starvation.** Both Huc and Hhy oxidise H_2 to 2 H^+ and 2e^- . The
780 electrons are used to reduce membrane-soluble menaquinone (MQ) to menaquinol
781 (MQH_2). It is possible that the genetically-associated iron-sulfur proteins (FeS) HucE
782 (MSMEG_2268) and HhyE (MSMEG_2718) relay electrons from the hydrogenase to
783 the menaquinone pool. Huc-reduced MQH_2 transfers electrons exclusively to the
784 cytochrome *bcc-aa₃* super complex, where they are transferred to the terminal electron
785 acceptor O_2 , yielding H_2O and resulting in the efflux of 6 H^+ from the cell. Under
786 starvation or hypoxia, Hhy-derived MQH_2 transfers electrons to either cytochrome *bcc-*
787 *aa₃* or the alternate cytochrome *bd* complex. This results in the efflux of 6 H^+ or 2 H^+
788 from the cell respectively, together with the reduction of O_2 to H_2O . The proton gradient
789 generated by H_2 oxidation maintains membrane potential and allows for the generation
790 of ATP via F_1F_0 -ATP synthase.

791

792