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Integrative analysis of multi-platform reverse-phase
protein array data for the pharmacodynamic
assessment of response to targeted therapies

Adam Byron'*, Stephan Bernhardt**, Béréngere Ouine?, Aurélie Cartier*®,
Kenneth G. Macleod®, Neil O. Carragher', Vonick Sibut*’, Ulrike Korf*, Bryan
Serrels"® & Leanne de Koning®*

Reverse-phase protein array (RPPA) technology uses panels of high-specificity antibodies
to measure proteins and protein post-translational modifications in cells and tissues. The
approach offers sensitive and precise quantification of large numbers of samples and has
thus found applications in the analysis of clinical and pre-clinical samples. For effective
integration into drug development and clinical practice, robust assays with consistent
results are essential. Leveraging a collaborative RPPA model, we set out to assess the
variability between three different RPPA platforms using distinct instrument set-ups and
workflows. Employing multiple RPPA-based approaches operated across distinct
laboratories, we characterised a range of human breast cancer cells and their protein-level
responses to two clinically relevant cancer drugs. We integrated multi-platform RPPA data
and used unsupervised learning to identify protein expression and phosphorylation
signatures that were not dependent on RPPA platform and analysis workflow. Our findings
indicate that proteomic analyses of cancer cell lines using different RPPA platforms can
identify concordant profiles of response to pharmacological inhibition, including when
using different antibodies to measure the same target antigens. These results highlight the
robustness and the reproducibility of RPPA technology and its capacity to identify protein
markers of disease or response to therapy.
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Introduction

In the era of personalised medicine and targeted cancer therapies, identifying those patients that
will benefit from existing and new therapies is paramount. Genetics is already being used to assist
clinical decision-making in specific cases (Aronson & Rehm 2015), but additional levels of
biological information are required to better understand disease and more accurately predict
phenotype from genotype (Friedman et al. 2015). A crucial source of information in this context
is the proteome and, notably, the activation status of dynamic cell signalling pathways through
post-translational protein modifications. Indeed, genomic mutations are not always associated
with activated signalling pathways and, conversely, pathway activation can occur in the absence of
mutations, as exemplified by PIK3CA (Cancer Genome Atlas Network 2012) and human
epidermal growth factor receptor 2 (Her2, also known as ErbB2) signalling (Wulfkuhle et al. 2012)
in breast cancer.

Several technologies exist for protein biomarker discovery and validation (Mueller et al.
2018, Giudice & Petsalaki 2019, Pierobon et al. 2019), among which reverse-phase protein array
(RPPA) is a technology of choice for its unequalled sample throughput. The RPPA technology
uses panels of monospecific affinity reagents (usually validated, high-quality antibodies) to
quantify, with high precision and sensitivity, the abundance of specific proteins and their post-
translationally modified forms in biological specimens (Paweletz et al. 2001, Akbani et al. 2014).
Protein samples derived from cells or tissues are immobilised on a solid substrate, deposited as
small spots on multiple arrays, and each array is probed with a single, epitope-specific antibody.
This enables simultaneous quantification of multiple proteins and post-translational
modifications in hundreds of samples, a multiplex capability not available in any other current
proteomic technology. The capacity to analyse large sample numbers enables analysis of multiple
sample conditions, such as drug treatments, dose responses and time courses, resulting in data
series that can support systems biology and drug discovery pipelines (Macleod et al. 2017, Hsieh
et al. 2018). The high sensitivity (in the picomole-femtomole range) and good reproducibility of
RPPA technology (Paweletz et al. 2001, Ramaswamy et al. 2005, Tibes et al. 2006, Grote et al. 2008,
Dupuy et al. 2009, Troncale et al. 2012) have motivated its application to a wide range of sample
types, including cell lines, preclinical (e.g. xenograft) models and patient-derived material. Indeed,
the microscale printing of very small amounts of samples is of particular benefit for analysis of
limited clinical or preclinical material, and RPPA has become a powerful addition to the
biomedical analytical toolbox for the investigation of disease mechanisms, diagnostics and
prognostics, notably in cancer (Grubb et al. 2009, Gonzalez-Angulo et al. 2011, Murakoshi et al.
2011, Hayashi et al. 2014, Bernhardt et al. 2017, Hutter et al. 2017, Lievre et al. 2017, Aslan et al.
2018, Faham et al. 2018, Teo et al. 2018).

The RPPA workflow is composed of several distinct steps, which can each be adapted to the
needs of the laboratory or the study. RPPAs thus offer a highly flexible, modular proteomic
technology, enabling numerous possible technical set-ups and protocols. As most laboratories
using RPPA technology have developed a customised set-up, there are essentially as many
workflows as there are RPPA platforms. Differences between platforms are diverse and can include
the type of printer used to create the arrays, sample spotting conditions, slide substrate chemistry,

primary and secondary antibodies used for immunostaining and slide scanner optics (Byron
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2019). Moreover, no standard tools exist to quantify, normalise and quality control RPPA data.
Several RPPA data processing methods have been developed (Mircean et al. 2005, Hu et al. 2007,
Anderson et al. 2009, Neeley et al. 2009, Zhang et al. 2009, Mannsperger et al. 2010, Li et al. 2012,
Neeley et al. 2012, Troncale et al. 2012, Kaushik et al. 2014, List et al. 2014, Liu et al. 2014, Ju et al.
2015, Sun et al. 2015), but these are often designed for specific technical set-ups, requiring, for
example, particular array layouts or raw data formats. To our knowledge, no extensive cross-
platform validation has been reported for RPPA technology. There is, therefore, a need to assess
and understand the impact of variation between RPPA data derived from different platforms
across international research centres.

As RPPA workflows are being developed for use in clinical settings, for which robust assays
are paramount (Gallagher & Espina 2014, Masuda & Yamada 2015), there is a growing need for
the evaluation of the reproducibility of RPPA platform outputs. Herein, we use collaborative
RPPA-based proteomics, employing distinct RPPA workflows at multiple research sites in
different countries, to characterise a range of human breast cancer cell lines and their biochemical
responses to two clinically relevant cancer drugs. We combine data derived from different RPPA
platforms to assess inter-platform variation and use integrative analysis to identify platform-
independent protein markers of response to drug treatment. Such cross-platform validation may
thus have utility in multi-centre evaluation of robust protein markers of disease and therapeutic

response.

Results
Multi-platform RPPA analysis of breast cancer cell lines. To assess the reproducibility of RPPA
technology across multiple laboratories, we developed an international multi-platform approach
that integrated RPPA data derived from three research sites across Europe (Paris, France;
Heidelberg, Germany; Edinburgh, United Kingdom). We selected for this study six breast cancer
cell lines, encompassing different breast cancer molecular subtypes and presenting distinct drug
sensitivities (Supplementary Table 1). The cells were cultured in the absence or presence of two
kinase inhibitors for 20 minutes or 24 hours and lysed in biological triplicate. In total, we generated
108 snap-frozen lysates, which were shipped to the three research sites (Fig. 1a). Samples were
analysed at each site using the respective in-house RPPA platforms, the set-up of which differed
at many stages of the RPPA analysis workflow, including slide type, the number of technical
replicates and dilutions per sample, read-out dye, scanner, image analysis software and
normalisation procedure (Supplementary Table 2), enabling the capture of variation between
RPPA platforms operated in different laboratories. Microarrayed samples were probed with panels
of validated antibodies in routine use on the three RPPA platforms. To enable dataset comparison,
all antibodies were assigned unique antibody identifiers, and only data derived from antibodies
targeting the same protein(s) or phosphorylated residue(s) (including different antibodies from
different suppliers) acquired on all three RPPA platforms were used for further analysis
(Supplementary Table 3). This experimental design thus enabled the assessment of inter-platform
concordance.

First, RPPA data of the six breast cancer cell lines cultured under control conditions were

analysed using the respective in-house data analysis procedures of the three research sites. Analysis
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of these control samples generated in biological triplicate with antibodies used in the multi-
platform RPPA analysis resulted in 522, 558 and 486 antibody readings (processed signal
intensities) for the Paris, Heidelberg and Edinburgh platforms, respectively. Normalised RPPA
data derived from each platform were then clustered antibody-wise to identify similarities between
validated antibodies (Supplementary Table 4). For each RPPA platform, clusters containing
antibodies targeting the same protein or phosphoprotein were identified, indicating that
normalised intensity profiles across cell types correlated for subsets of different antibodies (Fig.
1b-d, Supplementary Fig. 1). Most distinct antibodies targeting the same antigen, such as
phosphorylated Erk1/2, clustered together in each RPPA dataset, indicating consistent results for
the same antigen (Fig. le-g, Supplementary Fig. 1). In addition, antibodies targeting different
phosphorylated residues on the same protein or antibodies targeting phosphorylated and
corresponding total proteins, such as for S6 ribosomal protein or mTOR, generally clustered
together in each RPPA dataset, although degree of correlation varied between RPPA platforms
and distance metrics (Fig. 1b-d, Supplementary Fig. 1). These data suggest that many of the
antibodies routinely used for RPPA analysis at the three research sites in this study give

comparable results relative to the rest of each dataset.

Integrative analysis of multi-platform RPPA data. To assess the comparability of RPPA data
originating from multiple platforms, we integrated normalised RPPA data for control samples
derived from each platform (1,566 antibody readings) and analysed the integrated dataset using
unsupervised learning. For dataset integration, antigens targeted by each antibody were classified,
capturing antibody recognition of related protein isoforms or family members where applicable
(e.g. antibodies recognising Erk1 and Erk1/2 were linked and assigned the same antibody antigen
class, Erk1/2). Each data point was linked to the RPPA platform from which it was derived to
enable downstream data analysis. We reduced the dimensionality of the integrated multi-platform
RPPA dataset using principal component analysis. This unsupervised analysis of the six breast
cancer cell lines revealed separation in feature space for several of the cell types, indicating cell
type-specific expression of the proteins and phosphoproteins measured (Fig. 2a). Next, two-
dimensional hierarchical cluster analysis of the integrated dataset, using multiple distinct distance
functions to quantify dissimilarity between data points in the feature space, partitioned samples
by breast cancer cell line, elucidating discriminatory profiles of protein and phosphoprotein
expression for each cell type (Fig. 2b, Supplementary Fig. 2). Moreover, unsupervised cluster
analysis identified correlated subsets of antibodies targeting the same antigens. The data driving
these antibody clusters were generally derived from multiple RPPA platforms and, where available,
using different antibodies (Fig. 2b, Supplementary Table 5), suggesting that the profiles of protein
and phosphoprotein expression were comparable between RPPA platform set-ups.

To interrogate the similarity between antigen expression profiles for distinct antibodies
used on different RPPA platforms, we devised a data-driven representation of antibody similarity,
which we termed a clustered antibody antigen map. Antibodies used at each RPPA platform
(clustered as for Fig. 2b) were annotated with their respective antigens (classified as described in
Methods). With clustered antibodies as columns, antigen annotations were expanded into rows of

a matrix. The resulting matrix was populated with unique antibody identifiers to distinguish

Byron et al. (2019) 4


https://doi.org/10.1101/769158
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/769158; this version posted September 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

different antibodies, from which a heatmap of clustered antibody-antigen space was generated.
Thus, the antibody antigen map provides detailed annotation of cluster analysis of multi-platform
RPPA data. This enables identification of clustered antibodies that recognise antigens with similar
expression profiles across the integrated dataset (Fig. 2b,c, Supplementary Fig. 2).

The antibody antigen map revealed that the expression of many of the antigens tested (71%)
clustered with expression of the same antigen determined by at least one other RPPA platform
(Fig. 2¢,d). In addition, the expression of several of the antigens for which distinct antibodies were
used (61%) clustered with the same antigen detected by a different antibody (Fig. 2¢,d). Together,
these results indicate that RPPA analyses performed at different research sites using distinct set-
ups can identify concordant sets of distinct antibodies that target the same antigens. This implies
that different high-quality, validated antibodies can be used to generate consistent results from the

same samples using different RPPA platforms.

Consistency of multi-platform RPPA analysis of drug-treated breast cancer cell lines. To
analyse the robustness of RPPA technology using a more relevant ‘intervention’ dataset (i.e.
including treatment conditions), we extended the integrative analysis to include multi-platform
RPPA data of the six breast cancer cell lines treated with two clinically relevant drugs, lapatinib
(Tykerb, Tyverb) and selumetinib (AZD6244, ARRY-142886). Lapatinib is a reversible ATP-
mimetic tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR, also known as
ErbB1) and Her2 (Spector et al. 2005); selumetinib is a selective ATP-independent allosteric
inhibitor of mitogen-activated protein kinase kinase (MAPKK, also known as MEK) (Yeh et al.
2007). To capture the signalling dynamics of the proteins under investigation, cells were treated
with either drug or with DMSO (vehicle control) for 20 min and 24 h (Fig. 3a).

First, to examine the consistency of results generated by the antibodies used in the multi-
platform RPPA analysis, we calculated correlations between all-sample RPPA data derived from
all antibodies tested, which consisted of 9,396 antibody readings. This analysis showed that RPPA
data derived from antibodies recognising the same antigen class (i.e. like” antigens) were generally
well correlated (median Spearman rank correlation coeftficient, r; = 0.70) (Fig. 3b). In contrast,
data derived from all antibodies - regardless of target — were generally poorly correlated (r; = 0.22),
as expected (Fig. 3b), implying that RPPA-based quantification of like target antigens is in
substantially better agreement than quantification of random antigens in the dataset. Notably,
RPPA data for antigens recognised by the same antibody were correlated to a similar level to those
recognised by different antibodies (Fig. 3¢), indicating that distinct, validated antibodies generate
consistent results from the same samples. In addition, correlations between normalised RPPA data
derived from all antibodies were lower than those between corresponding raw RPPA data,
resulting in a better separation of correlation distributions for like antigens and for all antibodies
(Supplementary Fig. 3). This suggests that normalisation of RPPA data better differentiates
concordant data (derived from antibodies recognising the same antigen class) from less-
concordant data (derived from all antibodies regardless of target).

To assess the reproducibility of RPPA results across different RPPA platforms, we compared
correlation distributions for like antigens for each pair-wise combination of platforms. Each

platform comparison showed a similar correlation distribution for antigens recognised by the
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same antibodies (Fig. 3d) and a similar correlation distribution for antigens recognised by different
antibodies (Fig. 3e), although different antibodies used at the Paris and Edinburgh platforms were
less well correlated. Importantly, antigens detected by different antibodies used at different RPPA
platforms were, in general, almost as well correlated as those used at the same RPPA platform (Fig.
3f). These data show that RPPA analyses of the same samples at different platforms using distinct
workflows yield consistent results, including when several different antibodies are used to

recognise the same antigen (protein or phosphoprotein) of interest.

Integrative multi-platform RPPA analysis of drug-treated breast cancer cell lines. We
hypothesised that the observed consistency of multi-platform RPPA data would allow robust
detection of potential markers of cellular response to signalling pathway inhibition. To confirm
overall changes in RPPA data upon drug treatment of breast cancer cells, we reduced the
dimensionality of the integrated dataset using principal component analysis. Unsupervised
analysis of all cell lines identified shifts in feature space away from control conditions for some
drug-treated cells, suggesting cell type-specific differential regulation of proteins and
phosphoproteins (Supplementary Fig. 4). For example, the Her2-amplified SKBR3 cell line is
highly sensitive to lapatinib (Hegde et al. 2007, Imami et al. 2012), and treatment with lapatinib
induced substantial changes in phosphoprotein abundance, including that of phosphorylated
Her2 and EGFR and downstream signalling molecules Akt and Erk1/2 (Fig. 4a,b, Supplementary
Fig. 4). In contrast, dimensionality-reduced RPPA data for MCF?7 cells, which do not overexpress
Her2 or EGFR, did not display a large shift in feature space away from control conditions, in
keeping with the lack of response to lapatinib treatment of MCF?7 cells (Supplementary Fig. 4). For
cells treated with selumetinib, a strong reduction in phosphorylated Erk1/2 - which is activated
upon phosphorylation by MEK (Dhillon et al. 2007) — was observed in MEK inhibitor-sensitive
MDA-MB-231 cells analysed at all RPPA platforms (Fig. 4a,b), whereas SKBR3 cells, which are
not as sensitive to selumetinib, displayed a minimal shift in feature space for selumetinib-treated
samples (Fig. 4a). In some cell lines, upregulation of phosphorylated MEK1/2 was observed upon
selumetinib treatment, particularly after treatment for 24 h, representing the likely effects of
reduced negative feedback on the upstream MAPK pathway as a result of transiently inhibited
Erk1/2 upon MEK inhibition (Pratilas et al. 2009, Lito et al. 2014). In general, for drug-sensitive
cell lines, shifts in feature space were more pronounced for cells treated for 24 h as compared to
20 min, implying that the modulation of signalling pathways was enhanced when cells were
challenged with drugs for longer, enabling modelling of the dynamic signalling landscape
(Supplementary Fig. 4). Furthermore, in drug-resistant cell lines, we observed the emergence of
potential resistance mechanisms, such as the activation of phosphorylated EGFR, Her2 and Akt in
SKBR3 cells treated with selumetinib (Supplementary Fig. 4). These analyses show that the RPPA
data represent expected changes in breast cancer cell responses to the pharmacological inhibitors
tested, capturing relevant signalling dynamics, and serve as a suitable platform for the integrative
multi-platform RPPA analysis of drug-treated cells.

We next analysed the integrated RPPA dataset of drug-treated cell lines using unsupervised
cluster analysis. Two-dimensional hierarchical clustering partitioned samples by breast cancer cell

line, which were further partitioned by treatment condition (for respective drug-sensitive cells),
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with replicate samples clustering together, indicating robust data-driven grouping of the dataset
(Fig. 4c, Supplementary Fig. 5, Supplementary Table 6). Clustered antibody antigen mapping,
driven by this unsupervised dataset partitioning, identified clusters of antibodies targeting the
same antigen (Fig. 4d, Supplementary Fig. 5). As for the analysis of the cells cultured under control
conditions (Fig. 2, Supplementary Fig. 2), expression of many of the antigens tested (75%)
clustered with expression of the same antigen determined by at least one other RPPA platform
(Fig. 4d). Furthermore, the expression of several of the antigens for which distinct antibodies were
used (56%) clustered with the same antigen detected by a different antibody (Fig. 4d). Together,
these results indicate that integrative RPPA analysis of drug-treated cells can identify concordant
profiles of response to pharmacological inhibition using distinct antibodies and different RPPA
platforms. This suggests that the robustness of RPPA technology is suitable for the characterisation

of pathway signalling networks across international laboratories.

Discussion

With RPPA technology poised for adoption into routine clinical laboratory assays, there is a need
to assess reproducibility and variation between RPPA data derived from different platforms.
Herein, we employed a collaborative RPPA-based proteomics approach to evaluate the
consistency of results obtained from the same samples using different RPPA workflows. We
combined the RPPA data derived from multiple research sites to assess inter-platform variation
and found that different RPPA platforms using distinct set-ups yield remarkably consistent results,
including when several different antibodies are used to recognise the same antigen (protein or
phosphoprotein) of interest. Indeed, antigens detected by different antibodies used at different
RPPA platforms were, in general, almost as well correlated as those used at the same RPPA
platform. These observations strongly suggest that the different instrumental set-ups and
analytical workflows used at these representative RPPA platforms do not preclude the generation
of comparable and reproducible data when using high-quality, validated antibodies.

Using different workflows, the layout of samples spotted on arrays differed among the three
RPPA platforms, which prevented application of the same automated data normalisation method.
Each research site therefore applied their own in-house data normalisation procedure tailored for
the respective RPPA platform. All platforms normalised signal intensities for total amounts of
printed protein, but the way they accounted for sample dilutions differed. The Paris platform
applied non-parametric curve fitting to the serial dilutions of each sample, the Heidelberg platform
titted curves for control samples only and reported experimental samples to these curves and the
Edinburgh platform computed a linear fit of the serially diluted samples. Despite these different
approaches, we show that normalised data improves the distinction between concordant data
(derived from antibodies recognising the same antigen class) and non-concordant data (derived
from all antibodies regardless of target), as compared to raw data. Future efforts to develop
normalisation pipelines that are compatible with multiple array layouts may further improve data
reproducibility among platforms and expand opportunities for cross-platform validation of RPPA
technology. Such cross-platform validation may have utility in the appraisal of robust markers of

disease and therapeutic response and their application as prognostic or predictive biomarkers.

Byron et al. (2019) 7


https://doi.org/10.1101/769158
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/769158; this version posted September 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

There is an outstanding need for the development of robust markers of response and
resistance to targeted cancer therapy (Mueller et al. 2018, Giudice & Petsalaki 2019, Pierobon et
al. 2019). Proteomic and phosphoproteomic datasets are well placed to complement genetics-
based biomarker strategies by providing additional information on activation states of dynamic
pathway signalling. However, the application of proteomic technologies presents a number of
challenges, including consistent high-quality sample preparation, sensitive detection of low-
abundance proteins and post-translational modifications, high sample throughput at reasonable
cost and rapid turnaround time necessary for clinical application or drug discovery and
development pipelines. The development of RPPA workflows attempts to address many of these
challenges, yet the reproducibility of RPPA data generation and analysis across distinct RPPA
platforms and research centres has not been extensively evaluated. We used an integrative RPPA
approach to characterise a range of human breast cancer cell lines and their biochemical responses
to two clinically relevant cancer drugs. The cell lines were chosen to represent different molecular
subtypes of breast cancer, each of which having a different prognosis and treatment response
(Sorlie et al. 2001). The sensitivity of these cell lines towards lapatinib and selumetinib and the
expected changes in major signalling pathways are known (Konecny et al. 2006, Garon et al. 2010,
O'Neill et al. 2012) and thus served as benchmarks in this study. We demonstrated that RPPA
technology can identify expected protein markers for response to treatment and resistance in a
robust and platform-independent manner. Understanding how resistance can be predicted and
prevented is a major therapeutic challenge, and the use of proteomic approaches such as RPPA
will, by defining the functional state of cells and tissues, enable the validation and assessment of
resistance mechanisms in clinical samples (Creedon et al. 2014, Mueller et al., 2018).

High attrition rates in clinical drug development present significant challenges to drug
developers, with only one in eight oncology drugs that enter clinical development in phase 1
achieving US Food and Drug Administration approval, and a 1-in-15 success rate when these
candidate drugs are under evaluation in secondary oncology indications (Hay et al. 2014). The
development of robust biomarkers is thus becoming an essential component of new clinical trial
designs to guide patient selection, optimise dosing schedules and minimise ineffective or over-
treatment. For many complex diseases, biomarkers at the genetic, proteomic, metabolomic and
phenotypic levels are required to characterise individual patient disease and response to therapy
sufficiently. Integration of multiple biomarker modalities with emerging computational and
statistical approaches represents the future direction of personalised medicine strategies. However,
the successful implementation of personalised medicine is dependent upon the validation and
reproducibility of biomarker tests performed across distinct research centres and national
boundaries.

Our data show that RPPA analyses of drug-treated breast cancer cells using distinct
antibodies and different RPPA platforms can identify robust profiles of protein markers reporting
signalling pathway responses to pharmacological inhibition. This suggests that the consistency of
RPPA-based assays will enable the validation and assessment of treatment response and resistance
mechanisms in clinical samples across international laboratories. These data provide, to our
knowledge, the first extensive cross-platform validation of RPPA technology, which paves the way

for further investigation and improvement of technology robustness.
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Methods

Cell lines and cell lysis. MCF7, MDA-MB-231, MDA-MB-468, MDA-MB-453, HCC1954 and
SKBR3 breast cancer cells were purchased from American Type Culture Collection and grown
according to supplied instructions (Supplementary Table 1). For the preparation of cell lysates,
cells were washed twice with ice-cold phosphate-buffered saline (PBS). Laemmli buffer (50 mM
Tris-HCI (pH 6.8), 2% sodium dodecyl sulfate, 5% glycerol, 2 mM DTT, 2.5 mM EDTA, 2.5 mM
EGTA, supplemented with 4 mM sodium orthovanadate, 20 mM sodium fluoride, Halt
phosphatase inhibitor cocktail (Perbio) and cOmplete protease inhibitor cocktail (Roche)) was
incubated at 100°C for 5 min and applied directly to cells. Samples were immediately incubated at
100°C for 10 min. Lysates were passed through a 25-gauge needle five times and clarified by
centrifugation (18,000 x g, 10 min, room temperature). Clarified lysates were aliquoted and snap-
frozen in liquid nitrogen prior to shipment to the various research sites. Protein concentration was

determined using a reducing agent-compatible BCA kit (Pierce).

Pharmacological inhibitor treatment. Lapatinib and selumetinib (Selleck Chemicals) were
prepared as 10 mM stock solutions in DMSO. Cells were treated with 1 pM lapatinib, 1 pM
selumetinib or DMSO in growth medium for 20 min or 24 h. Control cells were treated with

DMSO in growth medium for 20 min.

RPPA analysis. Samples were analysed at each research site using the respective in-house RPPA
platforms as summarised in Supplementary Table 2. Biological triplicate lysates were serially
diluted, if applicable, to produce a dilution series comprising four serial 2-fold dilutions of each
sample (Supplementary Table 2). Sample dilution series were spotted onto Grace Bio-Labs
ONCYTE nitrocellulose-coated slides (Sigma-Aldrich) in technical duplicate or triplicate under
conditions of constant 70% humidity using an Aushon 2470 arrayer (Aushon Biosystems). Slides
were hydrated in deionised water and blocked with blocking buffer (Supplementary Table 2).
Slides were washed with Tris-buffered saline containing 0.1% Tween 20 (TBS-T) and incubated
with validated primary antibodies diluted in blocking buffer at room temperature for 1 h or at 4°C
overnight (Supplementary Table 3). Slides were washed with TBS-T and probed with secondary
antibodies diluted in blocking buffer at room temperature for 30 min or 1 h. To amplify the signal,
if applicable, slides were incubated with avidin, biotin and peroxidase blocking reagents (Dako)
prior to primary antibody incubation and then with Bio-Rad Amplification Reagent (Bio-Rad) at
room temperature for 15 min after secondary antibody incubation (Supplementary Table 2). Slides
were washed with TBS-T. For staining of total protein with SYPRO Ruby, slides were washed once
with 7% acetic acid, 10% methanol (15 min), twice with deionised water, once with SYPRO Ruby
(Thermo Fisher Scientific) and once with deionised water. For staining of total protein with Fast
Green FCF, slides were washed once with deionised water, once with 0.000005% Fast Green FCF
(Sigma-Aldrich) and once with deionised water. Slides were allowed to dry at room temperature
for 10 min prior to slide scanning. Slides were read using a GenePix 4000B (Molecular Devices),
Odyssey (LI-COR Biosciences) or InnoScan 710-IR (Innopsys) scanner (Supplementary Table 2).

The relative fluorescence intensity of each sample spot was quantified using MicroVigene
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(VigeneTech), GenePix Pro (Molecular Devices) or Mapix (Innopsys) software (Supplementary
Table 2). Processed signal intensities were normalised using NormaCurve (Troncale et al. 2012),
RPPanalyzer (Mannsperger et al. 2010) or spot-by-spot division of antibody signal intensity by
total protein stain signal intensity (Supplementary Table 2).

Dataset integration. Normalised RPPA data derived from each platform were binary-logarithm
transformed, if necessary, and median centred antibody-wise. Unique antibody identifiers were
assigned to each distinct antibody based on antibody reference, and antibody antigens were
classified to account for recognition of up to two related protein or phosphoprotein isoforms or
family members (e.g. antibodies targeting Erkl and Erk1/2 were classified as recognising Erk1/2)
(Supplementary Table 3). Data for antibodies targeting the same antigen class used on all three
RPPA platforms were used for dataset integration; antigen classes represented by data derived

from fewer than three RPPA platforms were excluded from further analysis.

Unsupervised learning. Binary, agglomerative hierarchical cluster analyses of centred normalised
abundances for proteins and phosphoproteins were performed using Cluster 3.0 (C Clustering
Library, version 1.54) (de Hoon et al. 2004). Spearman rank correlation coefficients, Euclidean
distances and Kendall tau coefficients were calculated and adapted as distances, if necessary.
Distance matrices were calculated using pairwise average linkage. Hierarchical clustering results
were visualised using Java TreeView (version 1.1.5r2) (Saldanha 2004). Principal component
analyses were performed using Python (version 3.7.4) or Perseus (version 1.5.2.6) (Tyanova et al.
2016).

Clustered antibody antigen mapping. For data-driven representation of antibody similarity
across multiple RPPA platforms, we devised the clustered antibody antigen map. For all antibodies
used in the integrative analysis, centred normalised abundances for proteins and phosphoproteins
were clustered on the basis of Spearman rank correlation coefficient-based distance, Euclidean
distance or Kendall tau coefficient-based distance using Cluster 3.0, computing distances with an
average-linkage matrix. Clustered antibody (column) node memberships were stored for antibody
mapping, and clustered antibodies were expanded in a second dimension according to antibody
antigen classification. Antibodies targeting the same antigen class were indexed according to
unique antibody identifier, enumerating from 1. A matrix of integer-indexed antibody identifier
elements was generated according to clustered antibodies (columns) and corresponding antibody
antigen classes (rows) (Supplementary Table 3). In this matrix, antibody (column) node
memberships determined by clustering of RPPA data were preserved, and antibody antigen classes
(rows) were ordered alphabetically. The resulting clustered antibody-antigen feature space that
was used to annotate the integrated multi-platform RPPA data. Mapping results were visualised

using Java TreeView.

Statistical analyses. No statistical methods were used to pre-determine sample size. Spearman
rank correlation coefficients were calculated for every pair-wise combination of antibody

identifiers. Kernel density estimates were computed using R (version 3.4.1) (R Core Team 2017).
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Median Spearman rank correlation coefficients were compared using Fisher transformation and
two-sided z-tests. Differentially regulated proteins and phosphoproteins were compared using
two-tailed Student’s t-tests with artificial within-groups variance set to 1 and a permutation-based

false discovery rate threshold of 5% (1,000 randomisations using Perseus).
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Figure 1. Multi-platform RPPA analysis of breast cancer cell lines. (a) Schematic illustration of
the multi-platform RPPA workflow. (b-d) Hierarchical cluster analysis of RPPA data of six
breast cancer cell lines cultured under control conditions derived from three RPPA platforms.
RPPA data derived from the Paris (b), Heidelberg (c) and Edinburgh (d) platforms were
clustered on the basis of antibody-wise dissimilarity (Spearman rank correlation coefficient—
based distance). Clustering was performed separately for each platform, and sample order was
maintained for each cluster analysis. Annotation bars indicate cell type, cell type receptor status
and RPPA platform. Arrowheads indicate different phosphorylated Erk1/2 antibodies. (e-g)
RPPA data for phosphorylated Erk1/2 (pThr202/Thr185, pTyr204/Tyr187) derived from the
Paris (e), Heidelberg (f) and Edinburgh (g) RPPA platforms. All three platforms used the same
two antibodies that recognise phosphorylated Erk1/2 (dark bars, antibody identifier
Erk1/2_pThr202/Thr185,pTyr204/Tyr187_a; light bars, antibody identifier
Erk1/2_pThr202/Thr185,pTyr204/Tyr187_b). Annotation bars (x-axis) indicate cell type. Data
are means * s.e.m. (n = 3 independent samples). For further details, see Supplementary Fig. 1

and Supplementary Table 4.
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Figure 2. Integrative analysis of multi-platform RPPA data. (a) Principal component analysis of
integrated multi-platform RPPA data of six breast cancer cell lines cultured under control
conditions. (b) Integrated multi-platform RPPA data were clustered on the basis of antibody-
wise and sample-wise dissimilarities (Spearman rank correlation coefficient-based distance).
Annotation bars indicate cell type, cell type receptor status and RPPA platform. (¢) Clustered
antibody antigen map for all antibodies used in the integrative analysis. The map is aligned with
the hierarchical clustering results in b (grey dashed line indicates alignment of first antibody
(column) end-node). Distinct antibodies that target the same antigen class (unique antibody
identifiers) are indicated by different shades of purple. Antibody antigen classes are ordered
alphabetically for clarity. (d) Exemplar of clustered antibodies that recognise Her2, indicated by
grey dashed box in b and c. Antibodies used by all three RPPA platforms clustered in antibody-
antibody antigen space. Spearman rank correlation coefficient of the cluster column node is
shown in grey. All three platforms used different antibodies that recognise Her2 (antibody
identifiers for Paris, Her2_b; Heidelberg, Her2_d; Edinburgh, Her2_a). For further details, see
Supplementary Fig. 2 and Supplementary Table 5.

Byron et al. (2019) 16


https://doi.org/10.1101/769158
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/769158; this version posted September 16, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Treatment

Cell type

—>

—

Same antibodies

Density
n

0
O Paris vs Edinburgh
0 Heidelberg vs Paris
0 Edinburgh'vs Heidelberg

Sample
preparation

Y RLRL]
A RARL]
A RLRL]
R RLERLL]
Y RERL]
A RLRL]

ro=
ro=
re=

-1.0 -0.5 0.0

05 1.0

Spearman rank correlation coefficient

Integrated dataset

0
O Like antigens
o All antigens |1 11l

r;=022

P<10°®

-1.0 -0.5

0.0 0.5 1.0

Spearman rank correlation coefficient

Different antibodies
3

Density

o
i Paris vs Edinburgh

i Heidelberg vs Paris

r,=0.46!
r;=0.701
r,=0.64]

|

i Edinburgh vs Heidelberg

-1.0 -05

0.0 0.5 1.0

Spearman rank correlation coefficient

r,=0.70

Like antigens

Density

0
O Same antibodies
i Different antibodies

|
I
|
1y
I
|
I
|
I3
i
I
I
|
I
|
|
I
|
|
|
1

-1.0 -0.5

0.0 0.5 1.0

Spearman rank correlation coefficient

Different antibodies

0
O Same platforms
Different platforms

-10 -05

0.0 0.5 1.0

Spearman rank correlation coefficient

Figure 3. Correlations of RPPA data used for integrative analysis of drug-treated breast cancer

cell lines. (a) Schematic illustration of the drug treatment experiment. Samples were processed as

part of the same workflow shown in Fig. 1. (b) Correlations of RPPA data derived from

antibodies recognising the same antigen class (like antigens) were compared to those derived

from all antibodies used in the integrated multi-platform RPPA dataset. (c) For like antigens,

correlations of RPPA data derived from the same antibodies were compared to those derived
from different antibodies. (d,e) Correlations between RPPA data generated at the different RPPA

platforms were compared for data derived from the same antibodies (d) and different antibodies

recognising like antigens (e). (f) Correlations of RPPA data derived from different antibodies

recognising like antigens generated on the same RPPA platform were compared to those

generated on different RPPA platforms. For b—f, kernel density estimates of Spearman rank

correlation coefficients for every pair-wise combination of unique antibody identifiers were

computed. Spearman rank correlation coefficient data points for each set of comparisons are

indicated by rug plots. For each set of comparisons, the median Spearman rank correlation

coefficient (r;) is shown (dashed lines). NS, not significant. For further details, see Supplementary

Fig. 3.
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Figure 4. Integrative multi-platform RPPA analysis of drug-treated breast cancer cell lines. (a)
Principal component analyses of integrated RPPA data of SKBR3 cells (top) or MDA-MB-231
cells (bottom) treated with lapatinib, selumetinib or vehicle control (DMSO) at two timepoints.
(b) Volcano plots of RPPA data of SKBR3 cells treated with lapatinib (top) or MDA-MB-231
cells treated with selumetinib (bottom) compared to those treated with vehicle control (DMSO)
for 20 min. Differentially regulated phosphoproteins are labelled. Grey curves indicate 5% false
discovery rate (n = 3 independent samples). (¢) Integrated multi-platform RPPA data of drug-
treated breast cancer cell lines were clustered on the basis of antibody-wise and sample-wise
dissimilarities (Spearman rank correlation coefficient-based distance). Annotation bars indicate
cell type, cell type receptor status, drug treatment and RPPA platform. (d) Clustered antibody
antigen map for all antibodies used in the integrative analysis. The map is aligned with the
hierarchical clustering results in ¢ (grey dashed line indicates alignment of first antibody
(column) end-node) and coloured and ordered as for Fig. 2. For further details, see

Supplementary Figs 4 and 5 and Supplementary Table 6.
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