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Abstract

Small RNAs (sRNAs) encompass a great variety of different molecules of different kinds,
such as micro RNAs, small interfering RNAs, Piwi-associated RNA, among other.
These sRNA have a wide range of activities, which include gene regulation, protection
against virus, transposable element silencing, and have been identified as a key actor to
study and understand the development of the cell. Small RNA sequencing is thus
routinely used to assess the expression of the diversity of sSRNAs, usually in the context
of differentially expression, where two conditions are compared. Many tools have been
presented to detect differentially expressed micro RNAs, because they are well
documented, and the associated genes are well defined. However, tools are lacking to
detect other types of sSRNAs, which are less studied, and have an imprecise “gene”
structure. We present here a new method, called srnadiff, to find all kinds of
differentially expressed sSRNAs. To the extent of our knowledge, srnadiff is the first tool
that detects differentially expressed sRNAs without the use of external information,
such as genomic annotation or reference sequence of sSRNAs.

Author summary

We present here a new method for the ab initio discovery of differentially expressed
small RNAs. The standard method, sometimes named annotate-then-identify, first finds
possible genes, and tests for differential expression. In contrast, our method skips the
first step and scans the genome for potential differentially expressed regions (the
identify-then-annotate strategy). Since our method is the first one to use the
identify-then-annotate strategy on sRNAs, we compared our method against a similar
method, developed for long RNAs (derfinder), and to the annotate-then-identify
strategy, where the SRNAs have been identified beforehand using a segmentation tool,
on three published datasets, and a simulated one. Results show that srnadiff gives much
better results than derfinder, and is also better than the annotate-then-identify strategy
on many aspects. srnadiff is available as a Bioconductor package, together with a
detailed manual:
https://bioconductor.org/packages/release/bioc/html/srnadiff.html

Introduction

The eukaryotic small RNA (sRNA) repertoire has been greatly enriched by the use of
small RNA sequencing, which provides a wide range of small RNAs (usually defined as
RNAs with size not greater than 200) of a set of given cells. These sSRNAs include the
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well-known micro RNAs, but also tRNA-derived RNA fragments (tRFs), small
interfering RNAs (siRNAs), Piwi-associated RNAs (piRNAs), among others [1,2].
These sRNAs are involved in many stages of development and diseases, in genetic and

epigenetic pathways. The interest in these small molecules has been constantly growing.

The role of these SRNAs is usually understood via a differential expression protocol,
e.g. healthy wvs sick, or wild type vs mutant. Most analyses only focus on miRNAs;,
partly because miRNAs genes (pre-miRNAs or mature miRNAs) are known, or can be
efficiently discovered. These genes are then used in the standard (messenger) RNA-Seq
protocol for differential expression: reads are mapped to the reference genome, gene
expression is quantified using read counts, and differential expression is tested.

While this approach can be used for other SRNAs, such as tRFs (because they
originated from tRNAs), it is not directly applicable to all sSRNAs, such as siRNAs or
piRNAs, because the corresponding “genes” are not known (and possibly even not
defined). Finding boundaries of SRNAs based on the expression profile is also a difficult
task, because the expression profile of the sSRNAs can be very diverse: miRNAs and
tRNAs, for instance, exhibit sharp peaks, whose sizes are approximately the size of a
read. The expression profiles of sSiRNAs and piRNAs are usually wider, ranging possibly
several kilo-bases or more, with an extremely irregular contour. These SRNAs can even
be found in clusters, and the aggregation of several, possibly very different, profiles,
makes it hard to discriminate them.

So far, current researchers have three options. First, the reads can be mapped to a
set of reference sequences, such as miRBase [3], which stores all the known miRNAs.
The counts are then stored in a matrix, where the rows are the features (here, the
miRNAs), the columns are the samples, and the cells are the number of reads that
match a given feature, in a given sample. This method has been used by [4], who
analyzed the SRNA-Seq data of lung tumors compared to adjacent normal tissues. This
method can obviously only find features that are previous detected, and usually restrict
the analysis to only one, or few, classes of small RNAs.

The second option has been used by an other article, that reused the previous
dataset in order to find differentially expressed snoRNAs and piRNAs [5]. Here, the
authors mapped the reads to the genome, and compared the mapped reads with
external annotations, here piRNAs (from piRNABank [6]), and snoRNAs (from UCSC
genome browser annotation [7]). The authors claimed that the approach is more
exhaustive, since —especially in human— the annotation files which are provided by the
existing repositories include a wide diversity of small RNAs. However, the analysis still
restrict to known and annotatated small RNAs.

Some popular tools for sSRNA differential expression, such as UEA sRNA
Workbench [8] and sRNAtoolBox [9] use a combination of these methods. While these
method works fine for miRNAs, and other well-know sRNAs, they cannot detect other
types of SRNAs, or be applied to an unannotated genome.

Other methods, such as BlockClust [10], SeqCluster [11], or ShortStack [12], include
a clustering step, which assemble the reads into longer transcripts. Then, the user can
proceed to the standard messenger RNA-Seq pipe-line: counting reads that co-localize
with each transcript, and testing for differential expression. These tools may or may not
use an annotation file. The downside of this approach is that it requires significantly
more work and time to cluster the reads into transcripts.

Recently, [13] presented derfinder, a new method for discovering differentially
expressed (long) genes. Briefly, the authors find differentially expressed regions at the
nucleotide resolution, regardless of the annotation. This promising method, however,
has been designed for RNA-Seq and works poorly on sRNA-Seq, because sSRNA
expression profiles are very different from the longer, somewhat uniform, expression
profiles of the exons.
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In this work, we present a new method, srnadiff, that finds differently expressed
small RNAs, using RNA-Seq data alone, without annotation. We show that srnadiff is
more efficient than other methods, and that it detects a wide range of differentially
expressed small RNAs.

Materials and methods

Description of the method

The method is divided into two main steps, which are described hereafter. The outline
of the method is given in Fig 1.

Fig 1. Outline of the method. Files and intermediate data are displayed in blue
rectangles, and algorithms are displayed in red circles. DER: differentially expressed
regions.

Step 1: find candidate regions

In this step, several methods are used to produce genomic intervals that are potential
differentially expressed regions. We implemented three methods: naive, HMM, and IR
(described in the next sections), but, in principle, any method can be added.

Step 2: merge regions

The intervals provided by the previous step may overlap since several methods may give
similar intervals. The aim here is to keep only the best non-overlapping regions.

To do so, the intervals provided in the previous steps are used as standard genes and
we use the RNA-Seq standard pipe-line.

e The expression of the intervals is quantified for each condition (a read is counted
for every interval it overlaps).

e DESeq?2 is used to compute a p-value for each intervals.

When two regions, i1 and iy, overlap, i1 dominates io iff its p-value is less than the
p-value of i5. A first possibility is to give undominated intervals to the user, but we
found that it removes many interesting intervals (see Fig 2).

Fig 2. Merge step. Each interval i; to i3, is associated to a p-value, written on the
right of the interval. A naive approach would discard is and i3 because they are
dominated by i; and i respectively. However, i3 may be an interesting interval,
although the signal is not as strong as the signal of i;. We can notice that i both
dominates (i3) and is dominated (by i1). Only this interval is discarded.

Our method only discards all the intervals that are both dominated, and dominate
other intervals. When these intervals have been discarded, only undominated intervals
remain, and they are given to the user (together with their p-values).

Strategies
Preprocessing

Prior to the analysis of the data, the samples are first normalized using the CPM
procedure, as done in edgeR [14].
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Moreover, most of the strategy use a run-length encoding representation of the data,
which is a compact way to store the expression of each nucleotide of the genome. This
process is described in Fig 3.

Fig 3. Transformation from mapped reads to run-length encoding. The reads
themselves are lost, only the coverage is kept. For the sake of memory compactness, the
coverage is stored as a vector of pairs (coverage, length) per chromosome.

Annotation

This step simply provides the intervals corresponding to the annotation file that is
optionally given by the user. It can be a set of known miRNAs, siRNAs, piRNAs, or a
combination thereof.

Naive

The outline of the method is shown in Fig 4. This strategy compute the average of the
expression in each condition. Then, the (log2) fold change of the expression is then
computed. All the regions with a fold change greater than n, a parameter provided by
the user, are kept as putative regions. The putative regions that are distant by no more
than d nucleotides are then merged. However, we do not merge two regions if their log2
fold change have different signs. The remaining intervals are provided as candidate
regions.

Fig 4. The naive method. In a first step, the samples are averaged for each
condition, then the (log2) fold change is computed. All those regions with a fold change
not less than n are kept. Regions distant than no more than d base pairs are then
merged, and given as output of the method.

HMM

We first form a matrix, where each line is a nucleotide, each column a sample, and each
cell is the corresponding expression. This matrix is given to DESeq2. We then proceed
to the standard DESeq2 workflow, and we compute an adjusted p-value for each
nucleotide (see Fig 5).

Fig 5. First step of the HMM method. The coverage of each nucleotide is
computer for every condition. A p-value is produced for each position.

We then build an hidden Markov model (HMM) on each chromosome, where the
first state is “differentially expressed”, and the second state is “not differentially
expressed”, the observations are the p-values (see Fig 6). This HMM has been given
sensible emission, transition, and starting probabilities values, but these parameters can
be tuned by the user (S1 Appendix shows that the method does not seem sensitive to
parameters). We then run the Viterbi algorithm, in order to have the most likely
sequence of states. The regions that are most likely to be differentially expressed are
given as output of the method.

In practice, the p-value is not computed for every nucleotide. Regions where the sum
of the coverage is less than a threshold (editable by the user) are given a p-value of 1,
because these poorly expressed regions are unlikely to provide a differentially expressed
sRNA. In the HMM, all the regions with a p-value of 1 (the majority of the genome,
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Fig 6. Second step of the HMM method. An HMM is run on each chromosome.
The states are the red circles, and the emission probabilities are the blue rectangles.
diff: the “differentially expressed” state. not diff: the “not differentially expressed”
state. tp1 and tpy are the transition probabilities. The emission of each state follows a
binomial distribution. For instance, the diff. state emits a p-value less than pt with
probability ep. All the parameters (¢p;, pt and ep) are editable by the user.

because small RNA transcription is restricted to a minority of loci) are not stored and
are assumed to have the default value. This significantly reduces the memory
consumption. During the Viterbi algorithm, the most frequent state is “not differentially
expressed”, and the most frequent p-value is 1. In this configuration, if the probability
of “not differentially expressed” is significantly larger than the probability of the other
state, we directly skip to the next nucleotide with a p-value < 1. Indeed, the difference
of the probabilities of the “not differentially expressed” and “differentially expressed”
states are, in this case, constant, and do not change the results the Viterbi algorithm.

Slice

The average (normalized) coverage of each condition is then computed. We then

compute the (log2) fold change, and find irreducible regions (IRs), as presented in [15].

The method is presented in figure 7. Briefly, the method extracts all the regions where
the fold change is above a threshold (given by the user). The IR method is simple and
efficient way to merge such regions when they are not very far away, and the drop in
fold changed is not too deep.

Fig 7. IR step. The (log2) fold change is printed in red, 0 is given in solid grey, and
the dashed line is the (user given) threshold. Every region above the threshold is a
putative differentially expressed region. A simple method could give three regions
(between p; and pe, between ps and py, and between ps and pg). The IR method aims
at merging close-by regions, with no additional parameter (contrary to the naive
method). Briefly, the method considers every interval (p;—pg, for instance), computes
the area above the threshold (in light red), and divides it by the size (here, ps — p1). We
will call the mean area above the threshold MAAT. The method then considers all the
positions, for instance p3, between p; and pg. If the MAAT between p; and ps, or the
MAAT between p3 and pg, is not above the threshold, the interval is split. In the
example, the MAAT between p3 and pg is visibly less than the threshold, so the region
is split at p3. However, the region between p; and p4 is not split, since the MAATSs
between p; and po, p1 and ps, p2 and ps, ps and ps are all greater than the threshold.

In practice, the IR method can be very efficiently implemented. It simply requires a
linear time algorithm, that considers all the points where the fold change intersects the
threshold.

We also take care not to merge regions with positive log fold change, and regions
with negative log fold change.

Implementation of srnadiff
Example of use

srnadiff can be installed through R Bioconductor [16]. As every Bioconductor package,
it has a dedicated Web page
(https://bioconductor.org/packages/release/bioc/html/srnadiff.html) and
contains an extensive description of the tool.
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We provide here an introduction on how to use the package.

The information about the data set can be conveniently stored in a data.frame.
This table should contain three columns, and each row describes a sample. The columns
should refer to the name of the BAM files, the name of the sample, and the condition
(e.g. wild_type vs mutant).

If the table is stored into a file named data.csv, the minimal code to run srnadiff is:

library(srnadiff)

data <- read.csv("data.csv")
bamFiles <- file.path(dir, data\$FileName)
exp <- srnadiffExp(bamFiles = bamFiles,
sampleInfo = data,
annotReg = "annotation.gtf")
exp <- srnadiff (exp)

diffRegions <- regions(exp, 0.05)
plotRegions (exp, diffRegions[1])

In this code, annotationFile.gtf is a GTF file that contains the known
annotation. It is an optional parameter.

The srnadiffExp function reads the input data, and transforms the BAM files into
run-length encoding data. It returns an object of class srnadiffExp.

The srnadiff function performs the main tasks of the package: segmentation,
reconciliation, and computation of the p-values. The parameters that control the
algorithms can be changed using this function. The segMethod parameter takes the list
of the segmentation methods that should be used (default is “HMM” and “IR”). The
nThreads parameter controls the number of threads used. The other fine-tuning
parameters (such as the minimum sequencing depth, the minimum and maximum
feature ranges, etc.) are stored into the srnadiffDefaultParameters object. This
object can be changed as desired, and provided to the srnadiff method.

The regions function provides the differentially expressed regions, in a
GenomicRanges object [17]. A minimum (adjusted) p-value can be provided as
parameter.

The plotRegions function is a utility tool, which plots the coverage of the different
samples around a region of interest (usually a prediction of srnadiff). This function
accept a great number of parameters to customize the plot (visual aspect, other
annotation, etc.)

Benchmarking

We benchmarked srnadiff on three real, already published datasets, and a synthetic one.

The published datasets encompass a variety of model organisms (Homo Sapiens,

Arabidopsis thaliana and Drosophila melanogaster), protocols, and sequencing machines.

All the publications provided a list of differentially expressed miRNAs, and we
compared the different methods with this list of miRNAs.

srnadiff was run with no annotation, and an adjusted p-value threshold of 5%. We
also run derfinder [13] on the same datasets, with a g-value of 10%. We used a third
method, which first clusters the reads with ShortStack [12] (comparing several
clustering methods is out of the scope of this article), quantified the expression of the
regions found by ShortStack with featureCounts, tested for differential expression with
DESeq2, and kept the regions with an adjusted p-value of at most 5%. We refer to this
method as the ShortStack method. The reason why we chose a g-value of 10% for
derfinder, instead of 5%, is that the statistics produced by derfinder is significantly
more conservative, and it produces much less predicted regions than other approaches.
For a fair comparison, we decided to lower the stringency for this tool.
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We then wanted to know which regions found by a given method were also detected
by an other method.

We also compared srnadiff with another straightforward method: we downloaded
available annotations of different sSRNA-producing loci, and followed the previously
presented method: expression quantification, and test for differential expression. These
regions can be considered as true positives. For the human dataset, miRNAs were taken
from miRBase [3], tRNAs (in order to find tRFs) from GtRNAdb [18], piRNAs from
piRBase [19], snoRNAs from Ensembl [20], and genes (to find possible degradation
products), from Ensembl too. The cress data was extracted from the TAIR annotation
file [21], and from the FlyBase annotation file [22] for the fly. We then compared these
differentially expressed regions with the predicted regions. Here, we stated that the two
predicted regions A and B were similar when at least 80% of A overlaps with B, or at
least 80% of B overlaps with A. The reason is that some annotation (such as genes, or
tRNAs which are substentially largers that tRFs) as not expected to be differentially
expressed. Moreover, ShortStack provides also significantly larger differentially
expressed regions than srnadiff or derfinder.

For each tool, we plotted different results. First, we provided the size and the
adjusted p-value distributions of the regions found. Then, we provided the number of
differentially expressed features (e.g. differentially expressed miRNAs, tRFs, etc.) which
overlap a given region found. The aim here was to test whether a method would “merge’
several potential candidates into a unique, longer, differentially expressed region. Then,
we focused on the regions found by srnadiff and another tool (derfinder or ShortStack).
For each such region, we compared its size, and its (adjusted) p-value found by each
method.

The code used for the benchmarking, and the versions of the tools used, are given
in S1 Appendix.

)

Datasets

Preprocessing

Published data sets were downloaded from SRA [23] using the SRA Toolkit. We cleaned
the data with fastx_clipper
(http://hannonlab.cshl.edu/fastx_toolkit/index.html), mapped them with
bowtie [24] (because it was ranked favorably in a recent benchmark [25]).

Human Dataset

The first data set compared healthy cells vs tumor cells of lungs of smokers. This data
set has been sequenced on a Illumina GA-IIx, and contains 6 replicates per condition,
with about 26 millions reads per sample. It has been published by [4], and re-analyzed
by [5]. Both papers analyzed the sSRNA-Seq data of lung tumors compared to adjacent
normal tissues.

A. thaliana dataset

This dataset evaluated the difference of expression of small RNAs in two different
concentrations of COq in A. thaliana [26]. Each condition contained two replicates, with
about 11 millions reads each.

D. melanogaster dataset

In this dataset, [27] sequenced small RNAs of young and aged D. melanogaster flies
circulating in the hemolymph. Each condition contained 8 and 4 replicates, with an
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average of 13 millions reads each.

Synthetic dataset

We also generated a synthetic dataset, extracted from the human genome. We first
selected 1000 miRNAs from miRBase [3], and 1000 piRNAs from piRNABank [6]. We
randomly selected 100 upregulated miRNAs (2-fold change), 100 downregulated
miRNAs (2-fold change), and the same for the piRNAs. We randomly assigned a
baseline expression following a power law (k = 1.5) on the miRNAs and the piRNAs,
which reflected a low expression for most of the RNAs, and a few very expressed RNAs,
as observed on our data. We generated 6 replicates per condition using the polyester
package [28]. Obviously some RNAs may be differentially expressed, but with a very
low expression, they are almost impossible to detect. As a results, we quantified the
expression of the features with featureCounts [29], tested for differential expression with
DESeq2 [30], and restricted to all the features with an adjusted p-value of at most 5%.
We considered these regions as our “truth” dataset.

Results

Human dataset

Results can be found in Table 1.

Table 1. Comparison of several approaches with srnadiff, derfinder, and a
clustering method. The second column gives the number of regions found by each
method named in the first column. The three last columns give the number of common

regions that where also found by another method (srnadiff, derfinder, and ShortStack).

The next two lines give the number of regions found by the two articles. The last four
lines are the features that are detected as differentially expressed using the direct
annotate-then-identify method.

source # regions | srnadiff | derfinder | ShortStack
[4] 48 34 17 37

[5] 23 19 13 10
srnadiff 1968 — 255 579
derfinder 464 256 — 196
ShortStack 617 463 169 —
miRNAs 240 181 48 169
tRF's 95 52 24 58
snoRNAs 42 29 1 29
piRNAs 10 6 4 8
genes 772 292 117 151

The first article found 48 differentially expressed miRNAs, and the second, only 23.

Only 5 miRNAs were common in both analyses. We first wondered whether we could
also detect these differentially expressed miRNAs using our method. First, the
expression of six miRNAs found by [4] could not be correctly estimated because they
belonged to duplicated regions in the new assembly (and not in the assembly used in
the paper). Second, a miRNA found by [5] was missed because it was considered as an
outlier by DESeq2.

We then compared these results with srnadiff (run with no annotation, and an
adjusted p-value threshold of 5%). srnadiff finds 1968 differentially expressed regions in
total. It missed a few miRNAs, because of an adjusted p-value threshold effect: when
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the test for differential expression is performed on a few miRNAs (here, 48 and 23
respectively), the adjustment is not expected to change the p-values. However, srnadiff
has much more candidates (a few thousands), that should be tested. As a consequence,
the adjustment is much stronger in this case, and many miRNAs have an adjusted
p-value which is (slightly) greater than 5%. It is a usual trade-off between sensitivity
and specificity.

Then, we compared the results with derfinder, which finds 464 differentially
expressed regions. Most of the regions found by derfinder are also found by srnadiff.
srnadiff missed some regions, because of the adjusted p-value threshold effect. Of note,
no region found by derfinder with adjusted p-value less than 10~° was missed. However,
srnadiff provided significantly more regions.

We then compared with the ShortStack method, which finds 617 differentially
expressed regions. Results show that srnadiff misses several regions. The main reason is
that ShortStack accepts very large regions that may have a low p-value on the whole
region even if the difference point-wise is not significant. The ShortStack method also
finds a few more miRNAs found by the articles. However, srnadiff finds, in general,
more than thrice as many regions.

Then, we compared all the results with a “truth set” (see Methods), where we
retrieved several annotations, performed differential expression, and kept the regions
with an adjusted p-value of 5%. We found, for instance, 240 differentially expressed
miRNAs, 95 differentially expressed tRFS, etc. srnadiff usually is the method that
recovers the greatest number of regions, although ShortStack sometimes provides more.
It found 181 of the 240 differentially expressed miRNAs, 52 of the 97 tRFs, etc. Again,
most of the missed features were due to the adjusted p-value threshold effect.

Last, srnadiff discovered 1581 differentially expressed regions outside of known small
RNA genes, and 809 differentially expressed regions outside of known small RNA genes
and any Ensembl annotation.

A. thaliana dataset
Results can be found in Table 2.

Table 2. Results on the A. thaliana dataset.

method # regions | srnadiff | derfinder | ShortStack

[26] 27 12 12 11
srnadiff 10975 — 3489 7569
derfinder 4974 4245 — 3274
ShortStack 7287 467 112 —
genes 1455 796 472 759
miRNAs 29 29 24 29
tRFs 62 38 35 39
snoRNAs 3 0 0 3

We applied the same methodology as previously. Here, more than half of the
miRNAs found in the article was not detected by any other method, mostly because of
the p-value threshold effect.

Here again, srnadiff usually gives better results than any other tool, with the
exception of the differentially expressed snoRNAs.

D. melanogaster dataset

Results can be found in Table 3.
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Table 3. Results on the D. melanogaster dataset.

method # regions | srnadiff | derfinder | ShortStack

[27] 19 4 1 4
srnadiff 2069 — 164 1152
derfinder 229 164 — 201
ShortStack 1203 911 98 —
genes 721 447 60 304
miRNAs 33 22 7 16
snoRNAs 9 7 0 8
tRFs 13 7 0 6

Similar conclusion can be drawn from this data set.

Synthetic reads

The “truth” set contains 44 differentially expressed features. The results of each tool is
given in Table 4. Precisions and recall are defined as = PT+P +p and = ijﬁ“ ~ respectively,
where T'P is the number of true positives, F'P is the number of false positives, and FFN
the number of false negatives. The F] score is the harmonic mean of precision and

recall, 2 x 2 i:, where p and r are precision and recall. srnadiff gives the best recall,

ShortStack has the best precision, but srnadiff has a better combined F} score. Oddly,
derfinder did not give any predicted differentially expressed regions in this data set.

Table 4. Results on the synthetic dataset. TP: true positives.

method # regions | TP | precision | recall Fy
srnadiff 71 | 43 61% | 98% | 7%
derfinder 0 0 0% 0% | 0%
ShortStack 18 | 17 94% | 39% | 55%

Time and memory usage

Table 5 provides time and memory usage of the tools used in the previous datasets.

Table 5. Time and memory usage of the tools. The first number in each cell is
the time (in seconds), and the second is the memory (in Mb).

method human A. thaliana | D. melanogaster simulated
srnadiff 753 1824 | 134 2050 | 240 1518 | 240 1575
derfinder 491 2514 | 62 1327 | 59 1150 | 257 2066
ShortStack | 1784 1304 | 232 901 | 582 2917 | 1274 689

Results clearly show that derfinder is the fastest tool, and ShortStack the slowest.
However, srnadiff still provides results within 15 minutes. The reason of the difference
between srnadiff and derfinder is that the former implements two methods, and thus
processes the data twice. Second, derfinder uses bigWig files, whereas srnadiff readily
uses BAM files (and internally converts them into a similar format, which is the
bottleneck of the method). ShortStack is a Perl file, that requires significantly more
time to process the data.

Concering the memory usage, derfinder is also the most efficient, and srnadiff usually
the least efficient. However, all these computations fit in a standard computer.
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All the computation has been performed on a personal computer running Linux
Ubuntu 19.04, with Intel Xeon Processor E5-1650 v4 running 6 cores at 3.6 GHz and
32GB RAM.

Benchmarking the preprocessing steps (i.e. conversion from BAM to bigWig, and
merging the BAM files for input of ShortStack) is not straightforward, because several
pipelines are possible. We provide the usage we observed with deepTools [31] to convert
BAM files to bigWig and samtools [32] to merge the BAM files in S1 Appendix.

Other benchmarking, available in S1 Appendix, show that changing srnadiff
parameter does not significantly alter the results. We also show that time increases
linearly with the input size. On the other hand, we also showed (see S1 Appendix) that
the coverage does not have a dramatic influence on the results.

Conclusion

In this paper, we propose a new method, called srnadiff, for the detection of
differentially expressed small RNAs. The method offers several advantages. First, it can
be applied to detect any type of small RNA: miRNAs, tRFs, siRNAs, etc. Second, it
does not need any other knowledge on the studied small RNAs, such as an genome
annotation, or a set of reference sequences. Moreover, results are comparable to ad hoc
methods, which detect only a given type of small RNAs.

Our aim is to provide a simple tool that is able to extract all the information given
by sRNA-Seq, not only restricting to miRNAs. We hope that srnadiff will make it
possible to find new mechanisms involving understudied small RNAs.

Future directions for improvement include broaden the regions found, and providing
new strategies to find differentially regions (besides the HMM and the IR methods).

Supporting information

S1 Appendix. Additional Data. Supplementary figures, other benchmarking,
code used, and tool versions are given in the Additional Data file.
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