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Abstract

Small RNAs (sRNAs) encompass a great variety of different molecules of different kinds,
such as micro RNAs, small interfering RNAs, Piwi-associated RNA, among other.
These sRNA have a wide range of activities, which include gene regulation, protection
against virus, transposable element silencing, and have been identified as a key actor to
study and understand the development of the cell. Small RNA sequencing is thus
routinely used to assess the expression of the diversity of sRNAs, usually in the context
of differentially expression, where two conditions are compared. Many tools have been
presented to detect differentially expressed micro RNAs, because they are well
documented, and the associated genes are well defined. However, tools are lacking to
detect other types of sRNAs, which are less studied, and have an imprecise “gene”
structure. We present here a new method, called srnadiff, to find all kinds of
differentially expressed sRNAs. To the extent of our knowledge, srnadiff is the first tool
that detects differentially expressed sRNAs without the use of external information,
such as genomic annotation or reference sequence of sRNAs.

Author summary

We present here a new method for the ab initio discovery of differentially expressed
small RNAs. The standard method, sometimes named annotate-then-identify, first finds
possible genes, and tests for differential expression. In contrast, our method skips the
first step and scans the genome for potential differentially expressed regions (the
identify-then-annotate strategy). Since our method is the first one to use the
identify-then-annotate strategy on sRNAs, we compared our method against a similar
method, developed for long RNAs (derfinder), and to the annotate-then-identify
strategy, where the sRNAs have been identified beforehand using a segmentation tool,
on three published datasets, and a simulated one. Results show that srnadiff gives much
better results than derfinder, and is also better than the annotate-then-identify strategy
on many aspects. srnadiff is available as a Bioconductor package, together with a
detailed manual:
https://bioconductor.org/packages/release/bioc/html/srnadiff.html

Introduction 1

The eukaryotic small RNA (sRNA) repertoire has been greatly enriched by the use of 2

small RNA sequencing, which provides a wide range of small RNAs (usually defined as 3

RNAs with size not greater than 200) of a set of given cells. These sRNAs include the 4

August 22, 2019 1/13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2019. ; https://doi.org/10.1101/768838doi: bioRxiv preprint 

https://doi.org/10.1101/768838
http://creativecommons.org/licenses/by/4.0/


well-known micro RNAs, but also tRNA-derived RNA fragments (tRFs), small 5

interfering RNAs (siRNAs), Piwi-associated RNAs (piRNAs), among others [1, 2]. 6

These sRNAs are involved in many stages of development and diseases, in genetic and 7

epigenetic pathways. The interest in these small molecules has been constantly growing. 8

The role of these sRNAs is usually understood via a differential expression protocol, 9

e.g. healthy vs sick, or wild type vs mutant. Most analyses only focus on miRNAs, 10

partly because miRNAs genes (pre-miRNAs or mature miRNAs) are known, or can be 11

efficiently discovered. These genes are then used in the standard (messenger) RNA-Seq 12

protocol for differential expression: reads are mapped to the reference genome, gene 13

expression is quantified using read counts, and differential expression is tested. 14

While this approach can be used for other sRNAs, such as tRFs (because they 15

originated from tRNAs), it is not directly applicable to all sRNAs, such as siRNAs or 16

piRNAs, because the corresponding “genes” are not known (and possibly even not 17

defined). Finding boundaries of sRNAs based on the expression profile is also a difficult 18

task, because the expression profile of the sRNAs can be very diverse: miRNAs and 19

tRNAs, for instance, exhibit sharp peaks, whose sizes are approximately the size of a 20

read. The expression profiles of siRNAs and piRNAs are usually wider, ranging possibly 21

several kilo-bases or more, with an extremely irregular contour. These sRNAs can even 22

be found in clusters, and the aggregation of several, possibly very different, profiles, 23

makes it hard to discriminate them. 24

So far, current researchers have three options. First, the reads can be mapped to a 25

set of reference sequences, such as miRBase [3], which stores all the known miRNAs. 26

The counts are then stored in a matrix, where the rows are the features (here, the 27

miRNAs), the columns are the samples, and the cells are the number of reads that 28

match a given feature, in a given sample. This method has been used by [4], who 29

analyzed the sRNA-Seq data of lung tumors compared to adjacent normal tissues. This 30

method can obviously only find features that are previous detected, and usually restrict 31

the analysis to only one, or few, classes of small RNAs. 32

The second option has been used by an other article, that reused the previous 33

dataset in order to find differentially expressed snoRNAs and piRNAs [5]. Here, the 34

authors mapped the reads to the genome, and compared the mapped reads with 35

external annotations, here piRNAs (from piRNABank [6]), and snoRNAs (from UCSC 36

genome browser annotation [7]). The authors claimed that the approach is more 37

exhaustive, since —especially in human— the annotation files which are provided by the 38

existing repositories include a wide diversity of small RNAs. However, the analysis still 39

restrict to known and annotatated small RNAs. 40

Some popular tools for sRNA differential expression, such as UEA sRNA 41

Workbench [8] and sRNAtoolBox [9] use a combination of these methods. While these 42

method works fine for miRNAs, and other well-know sRNAs, they cannot detect other 43

types of sRNAs, or be applied to an unannotated genome. 44

Other methods, such as BlockClust [10], SeqCluster [11], or ShortStack [12], include 45

a clustering step, which assemble the reads into longer transcripts. Then, the user can 46

proceed to the standard messenger RNA-Seq pipe-line: counting reads that co-localize 47

with each transcript, and testing for differential expression. These tools may or may not 48

use an annotation file. The downside of this approach is that it requires significantly 49

more work and time to cluster the reads into transcripts. 50

Recently, [13] presented derfinder, a new method for discovering differentially 51

expressed (long) genes. Briefly, the authors find differentially expressed regions at the 52

nucleotide resolution, regardless of the annotation. This promising method, however, 53

has been designed for RNA-Seq and works poorly on sRNA-Seq, because sRNA 54

expression profiles are very different from the longer, somewhat uniform, expression 55

profiles of the exons. 56
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In this work, we present a new method, srnadiff, that finds differently expressed 57

small RNAs, using RNA-Seq data alone, without annotation. We show that srnadiff is 58

more efficient than other methods, and that it detects a wide range of differentially 59

expressed small RNAs. 60

Materials and methods 61

Description of the method 62

The method is divided into two main steps, which are described hereafter. The outline 63

of the method is given in Fig 1. 64

Fig 1. Outline of the method. Files and intermediate data are displayed in blue
rectangles, and algorithms are displayed in red circles. DER: differentially expressed
regions.

Step 1: find candidate regions 65

In this step, several methods are used to produce genomic intervals that are potential 66

differentially expressed regions. We implemented three methods: näıve, HMM, and IR 67

(described in the next sections), but, in principle, any method can be added. 68

Step 2: merge regions 69

The intervals provided by the previous step may overlap since several methods may give 70

similar intervals. The aim here is to keep only the best non-overlapping regions. 71

To do so, the intervals provided in the previous steps are used as standard genes and 72

we use the RNA-Seq standard pipe-line. 73

• The expression of the intervals is quantified for each condition (a read is counted 74

for every interval it overlaps). 75

• DESeq2 is used to compute a p-value for each intervals. 76

When two regions, i1 and i2, overlap, i1 dominates i2 iff its p-value is less than the 77

p-value of i2. A first possibility is to give undominated intervals to the user, but we 78

found that it removes many interesting intervals (see Fig 2). 79

Fig 2. Merge step. Each interval i1 to i3, is associated to a p-value, written on the
right of the interval. A näıve approach would discard i2 and i3 because they are
dominated by i1 and i2 respectively. However, i3 may be an interesting interval,
although the signal is not as strong as the signal of i1. We can notice that i2 both
dominates (i3) and is dominated (by i1). Only this interval is discarded.

Our method only discards all the intervals that are both dominated, and dominate 80

other intervals. When these intervals have been discarded, only undominated intervals 81

remain, and they are given to the user (together with their p-values). 82

Strategies 83

Preprocessing 84

Prior to the analysis of the data, the samples are first normalized using the CPM 85

procedure, as done in edgeR [14]. 86
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Moreover, most of the strategy use a run-length encoding representation of the data, 87

which is a compact way to store the expression of each nucleotide of the genome. This 88

process is described in Fig 3. 89

Fig 3. Transformation from mapped reads to run-length encoding. The reads
themselves are lost, only the coverage is kept. For the sake of memory compactness, the
coverage is stored as a vector of pairs (coverage, length) per chromosome.

Annotation 90

This step simply provides the intervals corresponding to the annotation file that is 91

optionally given by the user. It can be a set of known miRNAs, siRNAs, piRNAs, or a 92

combination thereof. 93

Näıve 94

The outline of the method is shown in Fig 4. This strategy compute the average of the 95

expression in each condition. Then, the (log2) fold change of the expression is then 96

computed. All the regions with a fold change greater than n, a parameter provided by 97

the user, are kept as putative regions. The putative regions that are distant by no more 98

than d nucleotides are then merged. However, we do not merge two regions if their log2 99

fold change have different signs. The remaining intervals are provided as candidate 100

regions. 101

Fig 4. The näıve method. In a first step, the samples are averaged for each
condition, then the (log2) fold change is computed. All those regions with a fold change
not less than n are kept. Regions distant than no more than d base pairs are then
merged, and given as output of the method.

HMM 102

We first form a matrix, where each line is a nucleotide, each column a sample, and each 103

cell is the corresponding expression. This matrix is given to DESeq2. We then proceed 104

to the standard DESeq2 workflow, and we compute an adjusted p-value for each 105

nucleotide (see Fig 5). 106

Fig 5. First step of the HMM method. The coverage of each nucleotide is
computer for every condition. A p-value is produced for each position.

We then build an hidden Markov model (HMM) on each chromosome, where the 107

first state is “differentially expressed”, and the second state is “not differentially 108

expressed”, the observations are the p-values (see Fig 6). This HMM has been given 109

sensible emission, transition, and starting probabilities values, but these parameters can 110

be tuned by the user (S1 Appendix shows that the method does not seem sensitive to 111

parameters). We then run the Viterbi algorithm, in order to have the most likely 112

sequence of states. The regions that are most likely to be differentially expressed are 113

given as output of the method. 114

In practice, the p-value is not computed for every nucleotide. Regions where the sum 115

of the coverage is less than a threshold (editable by the user) are given a p-value of 1, 116

because these poorly expressed regions are unlikely to provide a differentially expressed 117

sRNA. In the HMM, all the regions with a p-value of 1 (the majority of the genome, 118
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Fig 6. Second step of the HMM method. An HMM is run on each chromosome.
The states are the red circles, and the emission probabilities are the blue rectangles.
diff: the “differentially expressed” state. not diff: the “not differentially expressed”
state. tp1 and tp2 are the transition probabilities. The emission of each state follows a
binomial distribution. For instance, the diff. state emits a p-value less than pt with
probability ep. All the parameters (tpi, pt and ep) are editable by the user.

because small RNA transcription is restricted to a minority of loci) are not stored and 119

are assumed to have the default value. This significantly reduces the memory 120

consumption. During the Viterbi algorithm, the most frequent state is “not differentially 121

expressed”, and the most frequent p-value is 1. In this configuration, if the probability 122

of “not differentially expressed” is significantly larger than the probability of the other 123

state, we directly skip to the next nucleotide with a p-value < 1. Indeed, the difference 124

of the probabilities of the “not differentially expressed” and “differentially expressed” 125

states are, in this case, constant, and do not change the results the Viterbi algorithm. 126

Slice 127

The average (normalized) coverage of each condition is then computed. We then 128

compute the (log2) fold change, and find irreducible regions (IRs), as presented in [15]. 129

The method is presented in figure 7. Briefly, the method extracts all the regions where 130

the fold change is above a threshold (given by the user). The IR method is simple and 131

efficient way to merge such regions when they are not very far away, and the drop in 132

fold changed is not too deep. 133

Fig 7. IR step. The (log2) fold change is printed in red, 0 is given in solid grey, and
the dashed line is the (user given) threshold. Every region above the threshold is a
putative differentially expressed region. A simple method could give three regions
(between p1 and p2, between p3 and p4, and between p5 and p6). The IR method aims
at merging close-by regions, with no additional parameter (contrary to the näıve
method). Briefly, the method considers every interval (p1–p6, for instance), computes
the area above the threshold (in light red), and divides it by the size (here, p6 − p1). We
will call the mean area above the threshold MAAT. The method then considers all the
positions, for instance p3, between p1 and p6. If the MAAT between p1 and p3, or the
MAAT between p3 and p6, is not above the threshold, the interval is split. In the
example, the MAAT between p3 and p6 is visibly less than the threshold, so the region
is split at p3. However, the region between p1 and p4 is not split, since the MAATs
between p1 and p2, p1 and p3, p2 and p3, p2 and p3 are all greater than the threshold.

In practice, the IR method can be very efficiently implemented. It simply requires a 134

linear time algorithm, that considers all the points where the fold change intersects the 135

threshold. 136

We also take care not to merge regions with positive log fold change, and regions 137

with negative log fold change. 138

Implementation of srnadiff 139

Example of use 140

srnadiff can be installed through R Bioconductor [16]. As every Bioconductor package, 141

it has a dedicated Web page 142

(https://bioconductor.org/packages/release/bioc/html/srnadiff.html) and 143

contains an extensive description of the tool. 144
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We provide here an introduction on how to use the package. 145

The information about the data set can be conveniently stored in a data.frame. 146

This table should contain three columns, and each row describes a sample. The columns 147

should refer to the name of the BAM files, the name of the sample, and the condition 148

(e.g. wild type vs mutant). 149

If the table is stored into a file named data.csv, the minimal code to run srnadiff is: 150

1 library(srnadiff) 151

2 data <- read.csv("data.csv") 152

3 bamFiles <- file.path(dir , data\$FileName) 153

4 exp <- srnadiffExp(bamFiles = bamFiles , 154

5 sampleInfo = data , 155

6 annotReg = "annotation.gtf") 156

7 exp <- srnadiff(exp) 157

8 diffRegions <- regions(exp , 0.05) 158

9 plotRegions(exp , diffRegions [1]) 159

In this code, annotationFile.gtf is a GTF file that contains the known 160

annotation. It is an optional parameter. 161

The srnadiffExp function reads the input data, and transforms the BAM files into 162

run-length encoding data. It returns an object of class srnadiffExp. 163

The srnadiff function performs the main tasks of the package: segmentation, 164

reconciliation, and computation of the p-values. The parameters that control the 165

algorithms can be changed using this function. The segMethod parameter takes the list 166

of the segmentation methods that should be used (default is “HMM” and “IR”). The 167

nThreads parameter controls the number of threads used. The other fine-tuning 168

parameters (such as the minimum sequencing depth, the minimum and maximum 169

feature ranges, etc.) are stored into the srnadiffDefaultParameters object. This 170

object can be changed as desired, and provided to the srnadiff method. 171

The regions function provides the differentially expressed regions, in a 172

GenomicRanges object [17]. A minimum (adjusted) p-value can be provided as 173

parameter. 174

The plotRegions function is a utility tool, which plots the coverage of the different 175

samples around a region of interest (usually a prediction of srnadiff). This function 176

accept a great number of parameters to customize the plot (visual aspect, other 177

annotation, etc.) 178

Benchmarking 179

We benchmarked srnadiff on three real, already published datasets, and a synthetic one. 180

The published datasets encompass a variety of model organisms (Homo Sapiens, 181

Arabidopsis thaliana and Drosophila melanogaster), protocols, and sequencing machines. 182

All the publications provided a list of differentially expressed miRNAs, and we 183

compared the different methods with this list of miRNAs. 184

srnadiff was run with no annotation, and an adjusted p-value threshold of 5%. We 185

also run derfinder [13] on the same datasets, with a q-value of 10%. We used a third 186

method, which first clusters the reads with ShortStack [12] (comparing several 187

clustering methods is out of the scope of this article), quantified the expression of the 188

regions found by ShortStack with featureCounts, tested for differential expression with 189

DESeq2, and kept the regions with an adjusted p-value of at most 5%. We refer to this 190

method as the ShortStack method. The reason why we chose a q-value of 10% for 191

derfinder, instead of 5%, is that the statistics produced by derfinder is significantly 192

more conservative, and it produces much less predicted regions than other approaches. 193

For a fair comparison, we decided to lower the stringency for this tool. 194
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We then wanted to know which regions found by a given method were also detected 195

by an other method. 196

We also compared srnadiff with another straightforward method: we downloaded 197

available annotations of different sRNA-producing loci, and followed the previously 198

presented method: expression quantification, and test for differential expression. These 199

regions can be considered as true positives. For the human dataset, miRNAs were taken 200

from miRBase [3], tRNAs (in order to find tRFs) from GtRNAdb [18], piRNAs from 201

piRBase [19], snoRNAs from Ensembl [20], and genes (to find possible degradation 202

products), from Ensembl too. The cress data was extracted from the TAIR annotation 203

file [21], and from the FlyBase annotation file [22] for the fly. We then compared these 204

differentially expressed regions with the predicted regions. Here, we stated that the two 205

predicted regions A and B were similar when at least 80% of A overlaps with B, or at 206

least 80% of B overlaps with A. The reason is that some annotation (such as genes, or 207

tRNAs which are substentially largers that tRFs) as not expected to be differentially 208

expressed. Moreover, ShortStack provides also significantly larger differentially 209

expressed regions than srnadiff or derfinder. 210

For each tool, we plotted different results. First, we provided the size and the 211

adjusted p-value distributions of the regions found. Then, we provided the number of 212

differentially expressed features (e.g. differentially expressed miRNAs, tRFs, etc.) which 213

overlap a given region found. The aim here was to test whether a method would “merge” 214

several potential candidates into a unique, longer, differentially expressed region. Then, 215

we focused on the regions found by srnadiff and another tool (derfinder or ShortStack). 216

For each such region, we compared its size, and its (adjusted) p-value found by each 217

method. 218

The code used for the benchmarking, and the versions of the tools used, are given 219

in S1 Appendix. 220

Datasets 221

Preprocessing 222

Published data sets were downloaded from SRA [23] using the SRA Toolkit. We cleaned 223

the data with fastx clipper 224

(http://hannonlab.cshl.edu/fastx_toolkit/index.html), mapped them with 225

bowtie [24] (because it was ranked favorably in a recent benchmark [25]). 226

Human Dataset 227

The first data set compared healthy cells vs tumor cells of lungs of smokers. This data 228

set has been sequenced on a Illumina GA-IIx, and contains 6 replicates per condition, 229

with about 26 millions reads per sample. It has been published by [4], and re-analyzed 230

by [5]. Both papers analyzed the sRNA-Seq data of lung tumors compared to adjacent 231

normal tissues. 232

A. thaliana dataset 233

This dataset evaluated the difference of expression of small RNAs in two different 234

concentrations of CO2 in A. thaliana [26]. Each condition contained two replicates, with 235

about 11 millions reads each. 236

D. melanogaster dataset 237

In this dataset, [27] sequenced small RNAs of young and aged D. melanogaster flies 238

circulating in the hemolymph. Each condition contained 8 and 4 replicates, with an 239
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average of 13 millions reads each. 240

Synthetic dataset 241

We also generated a synthetic dataset, extracted from the human genome. We first 242

selected 1000 miRNAs from miRBase [3], and 1000 piRNAs from piRNABank [6]. We 243

randomly selected 100 upregulated miRNAs (2-fold change), 100 downregulated 244

miRNAs (2-fold change), and the same for the piRNAs. We randomly assigned a 245

baseline expression following a power law (k = 1.5) on the miRNAs and the piRNAs, 246

which reflected a low expression for most of the RNAs, and a few very expressed RNAs, 247

as observed on our data. We generated 6 replicates per condition using the polyester 248

package [28]. Obviously some RNAs may be differentially expressed, but with a very 249

low expression, they are almost impossible to detect. As a results, we quantified the 250

expression of the features with featureCounts [29], tested for differential expression with 251

DESeq2 [30], and restricted to all the features with an adjusted p-value of at most 5%. 252

We considered these regions as our “truth” dataset. 253

Results 254

Human dataset 255

Results can be found in Table 1. 256

Table 1. Comparison of several approaches with srnadiff, derfinder, and a
clustering method. The second column gives the number of regions found by each
method named in the first column. The three last columns give the number of common
regions that where also found by another method (srnadiff, derfinder, and ShortStack).
The next two lines give the number of regions found by the two articles. The last four
lines are the features that are detected as differentially expressed using the direct
annotate-then-identify method.

source # regions srnadiff derfinder ShortStack

[4] 48 34 17 37
[5] 23 19 13 10

srnadiff 1968 — 255 579
derfinder 464 256 — 196

ShortStack 617 463 169 —

miRNAs 240 181 48 169
tRFs 95 52 24 58

snoRNAs 42 29 1 29
piRNAs 10 6 4 8

genes 772 292 117 151

The first article found 48 differentially expressed miRNAs, and the second, only 23. 257

Only 5 miRNAs were common in both analyses. We first wondered whether we could 258

also detect these differentially expressed miRNAs using our method. First, the 259

expression of six miRNAs found by [4] could not be correctly estimated because they 260

belonged to duplicated regions in the new assembly (and not in the assembly used in 261

the paper). Second, a miRNA found by [5] was missed because it was considered as an 262

outlier by DESeq2. 263

We then compared these results with srnadiff (run with no annotation, and an 264

adjusted p-value threshold of 5%). srnadiff finds 1968 differentially expressed regions in 265

total. It missed a few miRNAs, because of an adjusted p-value threshold effect: when 266
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the test for differential expression is performed on a few miRNAs (here, 48 and 23 267

respectively), the adjustment is not expected to change the p-values. However, srnadiff 268

has much more candidates (a few thousands), that should be tested. As a consequence, 269

the adjustment is much stronger in this case, and many miRNAs have an adjusted 270

p-value which is (slightly) greater than 5%. It is a usual trade-off between sensitivity 271

and specificity. 272

Then, we compared the results with derfinder, which finds 464 differentially 273

expressed regions. Most of the regions found by derfinder are also found by srnadiff. 274

srnadiff missed some regions, because of the adjusted p-value threshold effect. Of note, 275

no region found by derfinder with adjusted p-value less than 10−5 was missed. However, 276

srnadiff provided significantly more regions. 277

We then compared with the ShortStack method, which finds 617 differentially 278

expressed regions. Results show that srnadiff misses several regions. The main reason is 279

that ShortStack accepts very large regions that may have a low p-value on the whole 280

region even if the difference point-wise is not significant. The ShortStack method also 281

finds a few more miRNAs found by the articles. However, srnadiff finds, in general, 282

more than thrice as many regions. 283

Then, we compared all the results with a “truth set” (see Methods), where we 284

retrieved several annotations, performed differential expression, and kept the regions 285

with an adjusted p-value of 5%. We found, for instance, 240 differentially expressed 286

miRNAs, 95 differentially expressed tRFS, etc. srnadiff usually is the method that 287

recovers the greatest number of regions, although ShortStack sometimes provides more. 288

It found 181 of the 240 differentially expressed miRNAs, 52 of the 97 tRFs, etc. Again, 289

most of the missed features were due to the adjusted p-value threshold effect. 290

Last, srnadiff discovered 1581 differentially expressed regions outside of known small 291

RNA genes, and 809 differentially expressed regions outside of known small RNA genes 292

and any Ensembl annotation. 293

A. thaliana dataset 294

Results can be found in Table 2. 295

Table 2. Results on the A. thaliana dataset.

method # regions srnadiff derfinder ShortStack

[26] 27 12 12 11

srnadiff 10975 — 3489 7569
derfinder 4974 4245 — 3274
ShortStack 7287 467 112 —

genes 1455 796 472 759
miRNAs 29 29 24 29
tRFs 62 38 35 39
snoRNAs 3 0 0 3

We applied the same methodology as previously. Here, more than half of the 296

miRNAs found in the article was not detected by any other method, mostly because of 297

the p-value threshold effect. 298

Here again, srnadiff usually gives better results than any other tool, with the 299

exception of the differentially expressed snoRNAs. 300

D. melanogaster dataset 301

Results can be found in Table 3. 302
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Table 3. Results on the D. melanogaster dataset.

method # regions srnadiff derfinder ShortStack

[27] 19 4 1 4

srnadiff 2069 — 164 1152
derfinder 229 164 — 201
ShortStack 1203 911 98 —

genes 721 447 60 304
miRNAs 33 22 7 16
snoRNAs 9 7 0 8
tRFs 13 7 0 6

Similar conclusion can be drawn from this data set. 303

Synthetic reads 304

The “truth” set contains 44 differentially expressed features. The results of each tool is 305

given in Table 4. Precisions and recall are defined as TP
TP+FP and TP

TP+FN respectively, 306

where TP is the number of true positives, FP is the number of false positives, and FN 307

the number of false negatives. The F1 score is the harmonic mean of precision and 308

recall, 2 × p×r
p+r , where p and r are precision and recall. srnadiff gives the best recall, 309

ShortStack has the best precision, but srnadiff has a better combined F1 score. Oddly, 310

derfinder did not give any predicted differentially expressed regions in this data set. 311

Table 4. Results on the synthetic dataset. TP: true positives.

method # regions TP precision recall F1

srnadiff 71 43 61% 98% 75%
derfinder 0 0 0% 0% 0%
ShortStack 18 17 94% 39% 55%

Time and memory usage 312

Table 5 provides time and memory usage of the tools used in the previous datasets. 313

Table 5. Time and memory usage of the tools. The first number in each cell is
the time (in seconds), and the second is the memory (in Mb).

method human A. thaliana D. melanogaster simulated

srnadiff 753 1824 134 2050 240 1518 240 1575
derfinder 491 2514 62 1327 59 1150 257 2066
ShortStack 1784 1304 232 901 582 2917 1274 689

Results clearly show that derfinder is the fastest tool, and ShortStack the slowest. 314

However, srnadiff still provides results within 15 minutes. The reason of the difference 315

between srnadiff and derfinder is that the former implements two methods, and thus 316

processes the data twice. Second, derfinder uses bigWig files, whereas srnadiff readily 317

uses BAM files (and internally converts them into a similar format, which is the 318

bottleneck of the method). ShortStack is a Perl file, that requires significantly more 319

time to process the data. 320

Concering the memory usage, derfinder is also the most efficient, and srnadiff usually 321

the least efficient. However, all these computations fit in a standard computer. 322
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All the computation has been performed on a personal computer running Linux 323

Ubuntu 19.04, with Intel Xeon Processor E5-1650 v4 running 6 cores at 3.6 GHz and 324

32GB RAM. 325

Benchmarking the preprocessing steps (i.e. conversion from BAM to bigWig, and 326

merging the BAM files for input of ShortStack) is not straightforward, because several 327

pipelines are possible. We provide the usage we observed with deepTools [31] to convert 328

BAM files to bigWig and samtools [32] to merge the BAM files in S1 Appendix. 329

Other benchmarking, available in S1 Appendix, show that changing srnadiff 330

parameter does not significantly alter the results. We also show that time increases 331

linearly with the input size. On the other hand, we also showed (see S1 Appendix) that 332

the coverage does not have a dramatic influence on the results. 333

Conclusion 334

In this paper, we propose a new method, called srnadiff, for the detection of 335

differentially expressed small RNAs. The method offers several advantages. First, it can 336

be applied to detect any type of small RNA: miRNAs, tRFs, siRNAs, etc. Second, it 337

does not need any other knowledge on the studied small RNAs, such as an genome 338

annotation, or a set of reference sequences. Moreover, results are comparable to ad hoc 339

methods, which detect only a given type of small RNAs. 340

Our aim is to provide a simple tool that is able to extract all the information given 341

by sRNA-Seq, not only restricting to miRNAs. We hope that srnadiff will make it 342

possible to find new mechanisms involving understudied small RNAs. 343

Future directions for improvement include broaden the regions found, and providing 344

new strategies to find differentially regions (besides the HMM and the IR methods). 345

Supporting information 346

S1 Appendix. Additional Data. Supplementary figures, other benchmarking, 347

code used, and tool versions are given in the Additional Data file. 348
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