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Summary statement  15 

We combine physiological, environmental and evolutionary aspects of fish growth in a state-16 

dependent model where the optimal regulation of growth and survival is achieved through hormonal 17 

regulation of behaviour.  18 

Abstract  19 

Growth is an important theme in many biological disciplines. Physiologists often relate growth rates 20 

to hormonal control of essential processes. Ecologists often study growth as function of gradients or 21 

combinations of environmental factors. Fewer studies have investigated the combined effects of 22 

environmental and hormonal control on growth. Here, we present an evolutionary optimization 23 

model of fish growth that combines internal regulation of growth by hormone levels with the 24 

external influence of food availability and predation risk. Hormones are represented by growth 25 

hormone, thyroid hormone and orexin functions. By studying a range from poor to rich 26 

environments, we find that the level of food availability in the environment results in different 27 

evolutionarily optimal strategies of hormone levels. With more food available, higher levels of 28 

hormones are optimal, resulting in higher food uptake and growth. By using this fitness-based 29 

approach we also find a consequence of evolutionary optimization of survival on optimal hormone 30 

use. Where foraging is risky, aerobic scope can be used strategically to increase the chance of 31 

escaping from predators. By comparing model results to empirical observations, many mechanisms 32 

can be recognized, for instance a change in pace-of-life due to resource availability, and reduced 33 

emphasis on reserves in more stable environments.  34 

Introduction  35 

It is a central aim of biology to understand how evolution has led to a specific organism design 36 

through natural selection. As Tinbergen (1963) pointed out, any trait can be understood both in 37 

terms of its mechanism and its evolution, and the philosopher Daniel Dennett (2017) has simplified 38 

this into two questions. If one for example is interested in fish growth, one may first ask “How come 39 

fish grow?” The discipline of physiology has excelled at answering this type of questions about 40 

underlying mechanisms, and has detailed triggers, pathways, intermediates, regulation, 41 

development, and function from the molecular level to that of the organism. There is another set of 42 

explanations for fish growth if one asks: “What do fish grow for?” “What for” questions are about the 43 

adaptive significance, about the effects a trait has on survival, growth, reproduction, and ultimately 44 

fitness. This evolutionary dimension introduces purposiveness to biology (Dennett 2017): a goal-45 

directedness that goes beyond blind chains of causation like Hume’s billiard balls that crash into each 46 

other. Rather, processes occur to fill a purpose, to obtain some kind of aim, for example feedback 47 

processes that restore homeostasis, or drives or urges that ensure survival, growth, and 48 

reproduction. It must be emphasized that this is not an externally imposed or top-down purpose. It is 49 

a historic consequence of natural selection, where alleles with positive effects on survival and 50 

reproduction become more common in the gene pool, and their consequence is that organisms 51 

appear as goal-driven in their development, physiology, endocrinology, cognition, and behaviour 52 

(Andersen et al., 2016; Budaev et al., 2019; Giske et al., 2013). 53 
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“What for” questions have been addressed by evolutionary ecology, life history theory, and 54 

behavioural ecology, where empirical experiments and observations have often been inspired by 55 

theoretical considerations that have had one important limitation: they have typically ignored the 56 

proximate level of “how come” questions. This was epitomized by Alan Grafen as the phenotypic 57 

gambit, inspired by the chess move where one makes a sacrifice to gain a longer-term advantage 58 

(Grafen, 1984). The phenotypic gambit was a methodological tactic where one tossed away all the 59 

mechanistic detail and simply assumed unbounded phenotypic flexibility. Then and now, this was in 60 

many cases a necessary assumption to be able to answer “what for” questions. If models concluded 61 

that a trait had an adaptive advantage, the evolutionary ecologist would expect to see that trait to 62 

have evolved in real organisms in the wild. Any physiologist will immediately react to this as naïve 63 

and utterly unrealistic: Real traits originate from genes, are built through biochemistry, obey the laws 64 

of physics, and any information used must emerge from a sensory organ or use local molecules 65 

directly. The organisms that live today share many design features that have evolved precisely 66 

because they allow flexibility within the boundaries set by these constraints. Over time this has led to 67 

descendant lineages that were more likely to evolve to fill new niches and respond to new selection 68 

pressures. The combination of “how” and “what for” questions, thus, reveals insights that one of 69 

them alone could not give (Sinervo and Svensson, 1998). On the other hand, the traditional 70 

separation of mechanisms from the individual’s experienced selection pressures or ecological 71 

challenges, tears them out of a natural framework of constraints. It also builds on the assumption 72 

that selection pressures influence underlying mechanisms much less than the actual behaviour or 73 

adaptation they produce (Garland et al., 2016).  74 

In this paper, we focus on one architectural design feature for control of the organism, its hormone 75 

system, and with a model we ask several questions that we believe are useful to stimulate thought 76 

both among physiologists and evolutionary ecologists. For example, are key hormone systems 77 

sufficient to enact the adaptive flexibility seen in growth across different environments? Are there 78 

ways in which we can conclude that the major hormone systems are adaptive? If we treat the model 79 

as a thought experiment with unlimited flexibility in hormone expression, will observed correlations 80 

emerge between environments and hormones? Between hormones? And with ontogeny? The model 81 

is about growth and related survival in juvenile fish, but more importantly it aims to show how one 82 

can overcome the phenotypic gambit, not only in the model specification, but hopefully also by 83 

helping scientists from the two disciplines in asking and answering questions together. 84 

It can be instructive to compare our process-based model with other modelling approaches to better 85 

see the type of questions we can reach for. One type of well-known modelling tool in physiology are 86 

the dynamic energy budget models (DEB, (Kooijman, 2001; Kooijman, 1993; Nisbet et al., 2000; 87 

Zonneveld and Kooijman, 1989)). These follow resources and energy in great physiological detail 88 

from ingestion to growth and reproduction, and may provide good fit between predicted growth 89 

patterns and those observed in experiments and in the wild. One can describe DEB as “feed-forward 90 

bioenergetics”, where processes run as fast as resources or constraints allow. This perspective is 91 

similar to a combustion engine where the amount of gas fed into the carburettor determines the 92 

engine’s power and speed. Models of feed-forward bioenergetics are designed to question what 93 

happens to metabolic processes if more or less food is processed, when external conditions change, 94 

for example temperature, or when there are extra costs due to e.g. disease or reproduction. These 95 

are analogous to how fast a car would go if it is loaded heavy with passengers, if cooling is difficult on 96 

a particularly warm day, or if one of the spark plugs doesn’t fire.  97 
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In contrast, our model optimizes survival through the juvenile phase, where the optimal growth rate 98 

emerges from the effects of growth on fitness. These may depend on the abundance of predators, 99 

food availability or duration of the growth season. Here, behaviour and physiology have to provide 100 

the resources required to achieve the target growth rate. This can be described as “by-demand 101 

bioenergetics”; a goal-driven control system that translates fitness incentives emerging in ecology 102 

into physiological responses that endow the phenotype with a performance to fulfil the set goal. This 103 

would be analogous to how hard the driver presses the gas pedal, which can depend on the speed 104 

limit, whether the driver is heading for the nearest hospital with a passenger about to give birth, or 105 

whether the passenger is a child who easily becomes car-sick. The car is a tool to achieve a goal in 106 

the driver’s mind, much like the physiology of an organism has potentials that can, if regulated 107 

appropriately, achieve fitness. So, while evolutionary ecology often seeks the optimal behavioural 108 

route to a goal, we here seek the optimal control mechanism along a given road.  109 

There are several ways in which these control mechanisms can regulate and interfere with the 110 

individual’s bioenergetics. As the system is goal-driven a certain amount of energy has to be directed 111 

to mechanisms needed to achieve the goal. The process of allocation of limited resources towards 112 

competing uses (Fisher, 1930) is essential here. Also, as resources must be acquired before they can 113 

be distributed, the acquisition rate is of importance. Often models deal with either acquisition or 114 

allocation. Here we combine the two in one model organism and under one control system. In this 115 

way “by-demand bioenergetics” can drive the phenotype towards its goal by increasing the goal-116 

directed energy supply through acquisition and allocation. Upregulating “by-demand bioenergetics” 117 

in such a way can push the organisms into a state of fast growth and early maturation. From an 118 

evolutionary point of view this would mean that life history changes from slow to fast.  119 

Changes in growth rate are always accommodated by changes in other physiological, endocrinal and 120 

behavioural properties. This is due to the fact that mechanisms supporting growth have to be 121 

adapted to the new circumstances of fast growth, but also because of the cross-linking of mechanism 122 

and pleiotropic effects of hormones. Consequently, can a change in growth rate entail many other 123 

behavioural, physiological, endocrinal and life-history traits, which altogether form a suite of traits. 124 

This suite has been called pace-of-life syndrome (POLS, (Reale et al., 2010)). A special case of a fast 125 

life history is the “super” phenotype (Reznick et al., 2000) that makes use of rich environments by 126 

increasing its acquisition rate. “Super” phenotypes upregulate their energy-supply to all processes 127 

keeping allocation proportions constant. Thus, the whole phenotype is pushed into a highly energy-128 

demanding but fast processing state.  129 

To be specific about the goal-directness of growth in a proximate and mechanistic perspective, we 130 

treat the phenotype as having potential for a range of physiological rates, and focus on a simplified 131 

set of hormones as the control system. Because there are hundreds of hormones and associated 132 

signalling molecules in a typical fish or mammal, it was necessary to simplify to a level of complexity 133 

that is easier to grasp and analyse. We therefore first describe how we have interpreted the major 134 

regulatory routes that control growth in fish, and end up using three hormones and a neuropeptide 135 

that each play a specific role in our model. To a physiologist this simplification is most certainly 136 

incomplete as it definitely leaves out important elements, but our aim is to stimulate thinking, and 137 

we therefore ask the reader to follow us into this intermediate level of complexity. We now first 138 

describe how we have implemented our model, before we use the model to point to some 139 
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interesting insights of the hormone system as adaptive, and ways forward to further bridging the 140 

proximate “how come” and the ultimate “what for” traditions in biology. 141 

 142 

Model  143 

The model organism is a generalized juvenile fish, and we choose parameters mostly from Atlantic 144 

cod (Gadus morhua) which is a well-studied species. The model follows juvenile fish as they grow 145 

through a size window where they typically remain immature. During this juvenile phase we let 146 

internal mechanisms like metabolism and growth be regulated by two hormones, growth hormone 147 

and thyroid hormones, and the neuropeptide orexin. They determine growth, metabolic rate, and 148 

appetite, respectively, but importantly for the model they are also involved in trade-offs related to 149 

risk.   150 

We use a state-dependent dynamic model (Clark and Mangel, 2000). This algorithm first optimizes a 151 

strategy that can be considered the evolutionary adaptation to a certain environment. In the case of 152 

this model the strategy is the optimal hormone levels for any combination of a fish’ size and energy 153 

reserves. When the optimal strategy has been found, we investigate this adaptation by simulating 154 

individuals that live in the given environment and use the calculated optimal policy, and we record its 155 

trajectory of growth, hormone expression, and individual states.  156 

Methods 157 

Simplifying the hormone systems for model implementation 158 

The central challenge for our model organism is to grow (and survive) up to adult size. Although a 159 

high number of hormonal molecules and mechanisms are used to dynamically control physiology and 160 

behaviour in natural fish, we single out three clusters: growth, energy acquisition, and overall 161 

metabolism. When combined in a life history model, these also determine energy allocation to 162 

reserves. Below we describe the main hormones that work along these axes, and we call them 163 

“hormone functions” to distinguish them from real molecules. The main components of our mode 164 

are thus the growth hormone function, the orexin function, and the thyroid hormone function. 165 

Leptin also plays a role as it contains information about the individual’s energy reserves. 166 

Decisions connected to growth influence the individual’s life history. For example, fast growth 167 

enables organisms to reach sexual maturity relatively early in their lives and start reproducing prior 168 

to conspecifics. Growth processes can make up a major part of energy use. The main endocrinal 169 

driver of growth in fish and mammals is growth hormone and its associated hormone cascade 170 

(Björnsson, 1997; Jönsson and Björnsson, 2002). Thus, in terms of “by-demand bioenergetics”, 171 

growth hormone drives the fish towards sizes at which they can mature and reproduce, implying that 172 

fitness considerations have set up an energy-demand that the organism needs to fulfil.  173 

Part of the growth processes initiated by the secretion of growth hormone is the accretion of 174 

proteins and breakdown of lipids. Both processes influence the individual’s condition, and they 175 

increase metabolism. To maintain its condition, the individual must increase its energy uptake 176 

through foraging. Appetite and the initiation of feeding behaviour are very complex processes, 177 

comprising central nervous system and peripheral signals. An important group of neuropeptides are 178 
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orexins, as they are produced in the hypothalamus, where signals on condition and energy-budget of 179 

the individual are integrated. Thus, orexins are the second step in the physiological response of the 180 

“by-demand bioenergetics” model, as they regulate the individual’s energy acquisition in order to 181 

fulfil the growth goal set by growth hormone.  182 

To achieve growth, growth hormone as initiator and orexin as energy-suppliant are important factors 183 

influencing growth rate. Diving into growth mechanisms, there is another hormone and its associated 184 

cascade being ubiquitous for growth to happen: thyroid hormones. Hormones from the growth 185 

hormone cascade and the thyroid hormone cascade make up a complicated network in which they 186 

promote each other’s secretion, conversion, receptor activity and, in a chronological order, the 187 

developments of both cartilage and bone (Cabello and Wrutniak, 1989; Robson et al., 2002). Another 188 

reason for implementing a function on thyroid hormones is their regulating effect on metabolism 189 

(see below). On the one hand, an upregulated metabolism can be of advantage when energy is 190 

abundant. This would push the individual into a state of high energy turn-over. On the other hand, 191 

any increase in foraging exposes the individual to a trade-off between energy provisioning and 192 

foraging-related risk. The increased metabolism due to thyroid hormones can weaken this trade-off 193 

by allowing for faster metabolism and higher potential activity level, in turn causing higher escaping 194 

ability in case of a predator attack. In terms of the “by-demand bioenergetics” model the individual’s 195 

performance to fulfil the set growth goal is improved by higher energy turn-over and oxygen uptake 196 

rates when conditions allow.  197 

Starting with empirical data on stimuli, hormone regulation, and effects, we now present the 198 

functions and mechanisms of these three clusters. Thereafter we will use this as background for the 199 

implementation in model code.  200 

The Growth Hormone Function (GHF) 201 

Effects Growth hormone (GH) is expressed throughout life. In humans, maximal secretion is seen 202 

during puberty, then decreasing with age (Vermeulen, 2002; Zadik et al., 1985). GH seems to affect 203 

metabolism and body composition (Velez et al., 2019; Vermeulen, 2002; Yang et al., 2018), but main 204 

effects are directed towards growth in bone (Nilsson et al., 2005; Robson et al., 2002) and muscles 205 

(Grossman et al., 1997). For fish, a relationship between GH levels and compensatory growth is 206 

suggested (Ali et al., 2003). To some extent GH also influences behaviour, either in a direct or indirect 207 

way (Jönsson and Björnsson, 2002). As growth rates can be constrained by environmental factors as 208 

food availability, GH levels and levels of its mediator IGF-1 should underlie seasonal fluctuations. 209 

Fluctuations, which might be stimulated by changes in photoperiod, have been observed in reindeer 210 

(Rangifer tarandus) (Suttie et al., 1991; Suttie et al., 1993) and Arctic char (Salvelinus alpinus) 211 

(Jørgensen and Johnsen, 2014).  212 

Axis GH production is controlled by a hormonal cascade, the somatotrophic axis. On top, GH-213 

releasing factor (GRF) and/or somatostatin (SRIF) are released by the hypothalamus upon 214 

environmental or peripheral stimuli. These regulate the anterior pituitary activity, which alters the 215 

rate of GH secretion. GH effects are mediated by IGF-1 in most tissues. Both GH and IGF-1 can affect 216 

mechanisms in target tissues (Gatford et al., 1998; Peter and Marchant, 1995).  217 

Stimuli Through evolution the number of factors regulating GH release has decreased, while it is 218 

multifactorial in fish, regulation in mammals is mostly achieved by a “dual control system” (Gahete et 219 
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al., 2009). The mammalian system consists of one main stimulator, growth hormone-releasing 220 

hormone (GHRH) and one main inhibitor, somatostatin (SRIF). Additional stimulators of minor 221 

importance are neuropeptide Y (NPY), ghrelin, exercise, and in some species leptin (Gahete et al., 222 

2009; Hamrick and Ferrari, 2008; Kojima et al., 1999; Lanfranco et al., 2003). Leptin signals the 223 

current reserve size (Cammisotto and Bendayan, 2007), while ghrelin prepares the digestive tract for 224 

incoming food (Müller et al., 2015). In fish, a second main stimulator is pituitary adenylate cyclase 225 

activating polypeptide (PACAP). Additional weaker stimuli come from thyrotropin-releasing hormone 226 

(TRH), gonadotropin-releasing hormone (GnRH) and others. Leptin does not exert a direct stimulus in 227 

fish (Gahete et al., 2009). 228 

Melatonin (Suttie et al., 1992; Suttie et al., 1991) regulates IGF-1 secretion. It is important to notice 229 

that one stimulus can have different effects on GH and IGF-1. This is for example the case in a study 230 

on fasted tilapia (Oreochromis mossambicus), where both body growth rates and body weight in 231 

males decreased due to fasting. IGF-1 levels correlated with growth rates, but GH levels were 232 

unchanged. A possible explanation is that available energy is used to cover basal metabolism first, 233 

while hormone levels are adapted to reduce or cease growth (Uchida et al., 2003).  This is also the 234 

case for a diet experiment with Arctic char. Concentrations of growth hormone did not reflect 235 

changes in body weight, but IGF-1 concentrations did (Cameron et al., 2007). Unchanged or even 236 

elevated levels of GH can be part of a fasting response in which GH impels lipolysis and prevents 237 

protein degradation (Richmond et al., 2010).  238 

Inhibition of GH is also exerted via IGF-1 in a long feedback loop, in both fish and mammals (Gahete 239 

et al., 2009).  240 

The Orexin Function (OXF) 241 

Effects Orexin is a neuropeptide known from humans (Kalamatianos et al., 2014; Oka et al., 2004; 242 

Tomasik et al., 2004), pigs (Kaminski et al., 2013), rats (Dube et al., 1999), and fish (Facciolo et al., 243 

2010). There are two types of orexin, A and B, which have several effects, including feeding-related 244 

and behavioural effects (Cai et al., 2002; Rodgers et al., 2002). Orexin A stimulates foraging in 245 

goldfish (Carassius auratus) (Volkoff et al., 1999) and rats (Dube et al., 1999; Rodgers et al., 2000). 246 

Positive correlations between caloric demand and both orexin A and B exist for children (Tomasik et 247 

al., 2004). Observations of orexin A and B injected mice revealed no effect of orexin B on food intake, 248 

while orexin A increased food intake and metabolism (Lubkin and Stricker-Krongrad, 1998). One 249 

mechanism by which orexin can act on food intake is via regions in the brain as the arcuate nucleus 250 

(ARC) (Rodgers et al., 2002), where also leptin influences energetic processes in the body. It has also 251 

been suggested that foraging activity is increased by delaying satiety, as shown for low dose 252 

treatments in rats (Rodgers et al., 2000).  Effects not related to feeding include a general arousal, 253 

reduced pain perception, increased locomotion etc. (Rodgers et al., 2002), and many of these can be 254 

seen as enabling for foraging. Despite of both orexins being present in a variety of organisms, the 255 

effect of orexin A on feeding behaviour seems to be much stronger than that of orexin B (Edwards et 256 

al., 1999; Haynes et al., 1999; Nakamachi et al., 2006; Sakurai et al., 1998).  257 

Stimuli Factors influencing the secretion of orexin describe the body’s current state in terms of 258 

energy availability. A stimulating factor reported for rats is the fall in plasma glucose levels, 259 

eventually in combination with an empty stomach (Cai et al., 2002; Cai et al., 1999). However, a study 260 

on rats with insulin-induced fall in plasma glucose only showed an increase in hypothalamic orexin B 261 
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(Cai et al., 2001). When energy is available to the organism, orexin secretion is inhibited. A signal of 262 

ingested food can be gastric distension (Cai et al., 1999). Leptin receptors have been found linked to 263 

orexin neurons in rodents and primates (Horvath et al., 1999) and may decrease the secretion of 264 

orexin in the hypothalamus (Kalra et al., 1999). Orexin A is believed to be part of a short-term 265 

response to ensure energy balance in the body (Cai et al., 1999; Rodgers et al., 2002).  266 

Orexin effects in fish are similar to those in mammals (Matsuda et al., 2012) and they have been 267 

detected in several fish species (Miura et al., 2007; Nakamachi et al., 2006; Volkoff et al., 2003). Most 268 

experiments are done on goldfish (Penney and Volkoff, 2014), but also cavefish (Astyanax fasciatus 269 

mexicanus) show an increase of orexin A in relation to food intake (Penney and Volkoff, 2014). An 270 

interplay between orexin and ghrelin is suggested for foraging initialisation, in which ghrelin 271 

stimulates food intake and mediates orexin effects (Miura et al., 2007; Penney and Volkoff, 2014). 272 

Ghrelin is known from several fish species (Matsuda et al., 2011). In mammals, an increase in ghrelin-273 

concentrations can be observed before food intake (Müller et al., 2015). In fish, it seems that 274 

patterns in ghrelin secretion are more species-specific. Several species show increases, as in 275 

mammals, but also decreasing concentrations are found (Jönsson, 2013; Penney and Volkoff, 2014; 276 

Rønnestad et al., 2017). Despite of differing mechanisms, it seems that the positive effect of ghrelin 277 

on foraging is similar across fish species.    278 

The Thyroid Function (THF) 279 

Effects In mammals and fish, thyroid hormones (TH) are major factors regulating metabolism and 280 

development. The hormones affect brain development (Di Liegro, 2008), metamorphosis (Youson et 281 

al., 1994) and, in combination with growth hormone, bone growth (Nilsson et al., 2005; Robson et al., 282 

2002). Throughout life the basal metabolic rate is regulated by TH (Heilbronn et al., 2006; Herwig et 283 

al., 2008; Kitano et al., 2010; Webb, 2004). Due to their effect on metabolism they also play an 284 

important role in preparing organisms for seasons of low temperature and food availability (e.g. in 285 

red deer (Cervus elaphus) (Kuba et al., 2015), red knot (Calidris canutus canutus) (Jenni-Eiermann et 286 

al., 2002), reindeer (Bubenik et al., 1998) and white grouper (Epinephelus aeneus) (Abbas et al., 287 

2012)). Consequently, some seasonal variation in circulating hormone levels can be detected. A 288 

reduction of up to 30% in basal metabolic rate in the absence of TH is documented for endotherms, 289 

and this reduction can be linked to thermogenesis (Heilbronn et al., 2006; Mullur et al., 2014; Silva, 290 

2003). Non-thermogenic effects include the regulation of body weight and metabolism of 291 

triglycerides and carbohydrates (Mullur et al., 2014; Varghese and Oommen, 1999; Varghese et al., 292 

2001). In both mammals and fish an impact on cardiac output is documented (Carr and Kranias, 2002; 293 

Little and Seebacher, 2014), and effects of TH on resting hearts has been shown in zebrafish (Danio 294 

rerio) (Little and Seebacher, 2014). As cardiac output contributes to maintain aerobic scope, TH also 295 

impacts the animal’s ability to sustain sufficient oxygen uptake under changing temperatures (Little 296 

and Seebacher, 2014).  297 

Axis TH secretion depends on a hormone cascade sustaining relatively constant circulating hormone 298 

levels. On environmental or peripheral stimulation, thyroid releasing hormone (TRH) is secreted by 299 

neurons in the hypothalamus. In mammals, it promotes thyroid-stimulating hormone (TSH) release 300 

from the pituitary. In fish, the relation between TRH and TSH is not as clearly defined (Abbott and 301 

Volkoff, 2011; Chatterjee et al., 2001). In both mammals and fish, TSH acts on the thyroid gland, the 302 

actual place of TH production, which is stimulated to release TH into the blood. Those are mainly 303 
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thyroxine (T4) but also triiodothyronine (T3), which differ in the number of their iodide ions (Han et 304 

al., 2004; Zoeller et al., 2007). Relatively constant hormone levels in the body are accomplished by 305 

negative feedbacks in the hormone cascade (Fekete and Lechan, 2014; Zoeller et al., 2007). TH are 306 

mainly eliminated from the blood by deiodination in the liver (Malik and Hodgson, 2002; Zoeller et 307 

al., 2007). The first deiodination-process forms the bioactive T3 from T4. There is also some evidence 308 

on the direct effect of TRH on feeding and locomotor activity (Abbott and Volkoff, 2011).  309 

Target tissues, such as the brain, bones, and kidneys, contain different kinds of metabolic enzymes, 310 

deiodinases, to remove iodide from the hormones (Friesema et al., 1999; Miura et al., 2002). 311 

Biological inactive T4 has to be converted to T3 in order to have an effect on tissues (Zoeller et al., 312 

2007). There are three deiodinases, which successively can remove iodide ions to form T3, T2, and T1. 313 

An inactive form called reverseT3 can also be produced (Zoeller et al., 2007). Although it seems that 314 

most studies concern the actions of T3, there is some evidence on effects of T2 (Lanni et al., 2001) and 315 

T4 (Robson et al., 2002).  316 

Stimuli Several factors stimulating the release of TH have been identified, e.g. leptin (Abel et al., 317 

2001; Herwig et al., 2008; Nillni et al., 2000) and insulin (Lartey et al., 2015). Leptin transfers 318 

information based on individual fat stores to the brain (Cammisotto and Bendayan, 2007), where the 319 

signal influences secretion of TRH positively (Fekete and Lechan, 2014). Inhibiting effects are known 320 

from stress (Silberman et al., 2002), exhaustive exercise (Hackney and Dobridge, 2009), and 321 

melatonin (Ikegami and Yoshimura, 2013; Ono et al., 2008).  322 

Model Implementation 323 

GHF: As our interest is in hormone strategies for growth, the growth hormone cascade is reduced to 324 

one variable in the model. This is a proxy for a fish’s IGF-1 blood plasma concentration and regulates 325 

the amount of energy drained from reserves and used for building all kinds of somatic structures, 326 

including bones. The complex hormonal network of ghrelin, leptin and the somatotrophic axis is 327 

resembled in the interaction of GH and current body states, notably energy reserves and satiety. In 328 

the model the axis, its effects, and stimuli are referred to as the growth hormone function (GHF) 329 

(Eales, 1988).  330 

OXF: The orexin function (OXF) represents stimuli, hormone secretion, and effects of orexin as one 331 

value. For the model, only orexin A is regarded. To simplify its effects, the OXF only affects foraging 332 

behaviour in a positive manner. Foraging is assumed to include a series of other effects, such as 333 

arousal and increased locomotion, and in the model these are reflected in energetic foraging costs. 334 

Motivated from behavioural ecology, there comes a mortality cost with increasing foraging activity as 335 

looking for food involves potential encounters with predators. In the model we consider the longer 336 

term effect of the orexin function as a proxy for the mean orexin A concentration in the body during 337 

this period of time. Neither the effect of leptin nor ghrelin are modelled directly, but are integrated 338 

in the OXF hormonal mechanism.  339 

THF: For the purpose of the model, a long-term effect of TH is of interest. Stress from predation, 340 

insulin and other factors that signal environmental or individual conditions on a short timescale are 341 

hence neglected. In the model the thyroid cascade is reduced to a simple factor resembling blood 342 

concentrations of bioactive T3. Negative feedbacks and elimination in order to receive relatively 343 

constant concentrations of TH in the body are disregarded; this is also done for the minor effect of T2 344 
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and T4. Effects of TH are reduced to an influence of thyroid on metabolism. Metabolism is regarded 345 

as the mean turnover of energy from food to reserves, soma, or activities. The influence of TH on 346 

metabolic mechanisms in the model is summarized in a positive linear correlation between TH 347 

concentration and standard metabolic rate (SMR). While this correlation is regarded as the cost of 348 

TH, a benefit comes with the positive linear correlation between TH and potential oxygen uptake, for 349 

example partly mediated through heart function. Increases in potential oxygen uptake through TH 350 

result in a greater free aerobic scope, which in turn contributes to higher escape rates in case of a 351 

predator attack. Non-metabolic processes as brain development or metamorphosis are not part of 352 

the model or the model fish’s life. As the “thyroid axis” in the model covers response to stimuli, the 353 

hormones themselves and their effects, it is called Thyroid hormone function (THF) (Eales, 1988).  354 

Model description 355 

Hormones regulate physiological and behavioural processes, and these in turn achieve benefits and 356 

incur costs that may depend on the environmental conditions and the state of the organism. When 357 

we say we model hormones, it is therefore the effects of hormones that are in focus, in our case their 358 

consequences for growth and survival of juvenile fish. We first give the four central equations that 359 

describe growth and survival in our model, then detail the underlying processes. Throughout, capital 360 

letters are used for array variables that describe the organism and may change over time or with 361 

state, while lowercase is used for parameters that have a specific value (listed in Table 1). Greek 362 

letters denote the strategies, i.e. the hormone levels that the model optimizes. 363 

The model characterizes fish body mass � [g] as being separated into two components, where the 364 

structural body mass ���������� [g] grows irreversibly. On top of that are the energy reserves � [J] 365 

that can be built or tapped, having an energy density ���������  [J g
−1

]: 366 

� � ���������� � �

	��������
.               (Eqn 1) 367 

Growth ∆����������[g week-1], the irreversible increase in structural body mass, depends on the level 368 

� [ng ml−1] of the growth hormone function (GHF) relative to its maximum value �
�� [ng ml−1], 369 

current structural weight, and 	
����� [week−1], which sets the upper limit for proportional increase 370 

in structural body mass per time step (weeks): 371 

∆���������� � �

����

 	
����� 
 ����������.                                                                                 (Eqn 2) 372 

From the bioenergetics budget it follows that all energy taken up as food � [J min−1] is used for either 373 

metabolic processes P [J min−1] or to pay energetic costs of building tissues � [J min−1]. These new 374 

tissues include both new soma and changes in reserves. 375 

� � 
 � �.                                                                                                                                       (Eqn 3) 376 

The details of �, 
, and � are described in detail further down. Hormonally, � is controlled by the 377 

OXF, � by the GHF through tissue costs of growth, and 
 is influenced by the extra metabolic costs of 378 

expressing the THF. 379 

The last central equation relates to surviva4 i l probability � [year-1], which is given by � � e��/�� 380 

where � [year
−1

] is the total mortality rate compounded by several components: 381 

� � ������ � ����� � �����
��
 � ������ � �����
��
������.                                           (Eqn 4) 382 
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Here ������ is a constant irrespective of size, state, or strategy. ����� is a predation rate that declines 383 

with size. �����
��
 is predation resulting from exposure while foraging. ������ is increased 384 

vulnerability when the individual’s overall metabolic rate is close to its maximum aerobic capacity, 385 

because it is then harder to escape an attack. Similarly, �����
��
������ is extra mortality when the 386 

individual exposes itself to predators while it is exhausted, which would put it in double jeopardy. 387 

The thyroid hormone function affects both ������ and �����
��
������. 388 

Understanding the model requires that the equations above are interpreted in light of three key 389 

trade-offs that we describe here and give details and equations for further down.  390 

First, the energy requirement of growth and everything else has to be met by foraging for food, 391 

which involves taking some level of extra risk (Krause and Godin, 1996; Lima and Dill, 1990; Sih, 392 

1992). A resting fish often seeks safety in a shelter but needs to leave this to seek habitats where 393 

prey, and most often predators, are more common. Acquisition of more food thus involves more 394 

encounters with predators, and when food is scarce the fish needs to search for longer and expose 395 

itself more to forage the same amount.  396 

Second, aquatic breathing is rapidly limited by surface-to-volume ratios and gas diffusion, even for 397 

small organisms. Although respiratory organs such as gills have evolved to overcome these 398 

constraints, there are physical limits to permissible total metabolic rate (Priede, 1985). Maximum 399 

aerobic capacity is often measured on fish that swim in respirometers, but digestion and growth are 400 

also variable processes that contribute to total metabolic rate. When the overall level of metabolic 401 

processes requires a lot of oxygen, the fish is quickly exhausted and therefore less efficient at 402 

evading predators should it encounter one. 403 

Third, a trade-off that has received less attention is how spending energy can help an organism to 404 

manage, mitigate, or reduce risk. It is known that immune systems incur energetic costs, and that the 405 

optimal level of immune function depends on energetic status, the risk of infections, and availability 406 

of resources. Here we use thyroid regulation of metabolic level to achieve a similar exchange 407 

between energy and risk. The model assumes metabolic level can be upregulated by thyroid at an 408 

energetic cost (subject to trade-off 1), and the extra metabolic capacity is modelled as an elevated 409 

aerobic scope (alleviating trade-off 2). Consequently, the model allows metabolic rate to vary 410 

systematically between ecological settings. 411 

We use a state-dependent model to find the optimal hormonal control of acquisition and allocation 412 

of energy. This type of mechanistic model finds the evolutionary endpoint (beyond which further 413 

changes cannot improve fitness) for a given environment. The model first uses dynamic programming 414 

(Clark and Mangel, 2000; Houston and McNamara, 1999) to find the optimal hormone expression, 415 

the strategy, for each combination of the individual’s states. The individual states included are the 416 

body length of the fish and its energy reserves. Thereafter, an individual that makes use of the 417 

optimal strategy according to its current individual state is simulated. We record its trajectory of 418 

growth, physiology, behaviour, and risk-taking to quantify and analyse effects. The model optimizes 419 

the state-dependent trajectory of the three hormones (GHF, OXF, and THF) by maximizing juvenile 420 

survival between 10 cm and 30 cm body length. The time steps are set to one week to represent 421 

typical dynamics of hormone levels and growth processes, which means that more rapid processes 422 

like behaviours are not modelled in minute-to-minute detail but for their cumulative effects at a 423 

weekly scale. The model describes growth of a juvenile fish in environments with constant food 424 

availability, and we compare several different environments in our analyses. 425 
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Energy budgets and metabolic rate 426 

The total metabolic rate 
 [J min−1] is the sum of all respiratory processes, all with unit joules: 427 


 � 
 !" � 
����
��
 � 
 #$ � 
�������� � 

����� . (Eqn 5) 428 

Here 
 !" [J min−1] is the standard metabolic rate, 
����
��
 [J min−1] the swimming cost of foraging 429 

behaviour, 
 #$ [J min
−1

] the cost of digestion and energy uptake (SDA) until the resources are 430 

available in the bloodstream, and 
�������� [J min
−1

] and 

����� [J min
−1

] the metabolic costs of 431 

converting between resources in the bloodstream and reserve and structural tissue, respectively.  432 

On top of that, the organism uses its digested resources for incorporation as new structural tissue 433 

(�
����� [J]) or by adding to or using from energy reserves (Δ� [J]). The net rate � [J min−1] of such 434 

incorporation of energy into tissue is thus: 435 

� � ��
����� � Δ��/	!������%��&��' (Eqn 6) 436 

Note that while 
 and � both contribute to the individual’s energy budget (Eqn 3), only 
 uses 437 

oxygen through aerobic respiration (Eqn 24). 438 

The basis, standard metabolic rate (SMR), scales allometrically with body mass as the fish grow from 439 

juvenile to adult size. Other contributors to an individual’s overall metabolic rate are factors like 440 

locomotion, digestion, and growth, and many of these may change with ontogeny (Mozsar et al., 441 

2015). 442 

The model uses variants of SMR in several ways. For what is measured experimentally as SMR and 443 

that we refer to as 
 !" is the standard oxygen consumption of the organism’s total body mass as it 444 

is affected by the level of the thyroid hormone function. The standard level of SMR at a mean level of 445 

THF expression is: 446 


�������� � 	 !" 
 �( , (Eqn 7) 447 

Where 	 !" has unit [J min−1 g−a]. 
�������� can be up- or downregulated under the influence of THF, 448 

modelled as the concentration � [ng l−1] and relatively to a maximum concentration �
�� [ng ml-1]: 449 


 !" � �1 � � )

)���
� 0.5� 
 	*+,_ !"� 
 
�������� . (Eqn 8) 450 

Here 	*+,_ !" determines the strength of the effect of THF on metabolic rate, or in other words, the 451 

energetic cost of upregulating the scope for metabolic activity. It is 
 !" that enters the individual’s 452 

metabolic rate (Eqn 5).  453 

When we model food intake as a multiple of SMR, it is unlikely that a chubby individual has higher 454 

foraging success per time and energy investment compared to a leaner fish, so we scale food intake 455 

with 
���������, a measure of SMR calculated from the lean body mass only and not affected by THF:  456 


��������� � 	 !" 
  ����������
( ! . (Eqn 9) 457 

Foraging and digestion 458 

Energy from foraging is ultimately used to drive all energy-dependent processes in the organism. We 459 

model foraging as controlled by appetite through the orexin function where the relative 460 

concentration of OXF (
.

.���
) is proportional to the target intake rate � of the individual. 461 
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� � .

.���

 	/0, 
 
��������� . (Eqn 10) 462 

Intake � [J min
-1

] is defined as metabolizable energy absorbed by the gut; urinary and fecal loss of 463 

energy are implicitly included in the dimensionless coefficient 	/0,  (Bureau et al., 2003). Here 464 


��������� is a standardized metabolic rate of the lean body mass, explained in Eqn 9 above, used 465 

because it is unrealistic that having large reserves contributes to more efficient foraging. 466 

The foraging behaviour "����
��
 [dimensionless, given in multiples of 
���������] required to meet 467 

the energetic demand depends on food availability in the environment. We first rescale foraging 468 

intake to multiples of SMR and then assume that food is quicker and safer to find in rich food 469 

environments # [dimensionless]:  470 

"����
��
 � 1

2���	
�	��34
 . (Eqn 11) 471 

The cost of foraging activity (
5�������� ) is proportional to foraging activity and SMR with a 472 

coefficient 	����
��
  [dimensionless]. Physical activity during foraging requires moving the whole 473 

body, including soma and reserves, so SMR is based on total weight.  474 


����
��
 � 	����
��
 
 "����
��
 
 
�������� . (Eqn 12) 475 

Food eaten is processed by the digestive system and taken up into the bloodstream. Specific dynamic 476 

action SDA (
 #$), representing the cost of digestion, is the product of intake and a constant 	 #$ 477 

[dimensionless].  478 


 #$ � 	 #$ 
 � .  (Eqn 13) 479 

Growth and reserves 480 

Structural weight (����������) is calculated based on length $ [cm] using Fulton’s condition factor for 481 

lean fish (	,�6����_
�� , [g cm
-1

]) 482 

���������� � 	 ,�6����_
��

 $7  . (Eqn 14) 483 

Likewise, maximum storage depends on body size and is calculated from the difference between 484 

maximum (	,�6����_
��, [g cm-1]) and lean condition factor, and the energy density of the reserves 485 

(��������� , [J g-1]):  486 

�
�� �  ��������� 
 �	,�6����_
�� � 	,�6����_
��� 
 $7 .  (Eqn 15) 487 

The cost of structural growth �
����� follows directly from the amount of new tissue produced (Eqn 488 

2) and the somatic energy density ����������  [J g
−1

]: 489 

�
����� � ∆���������� 
 ���������� . (Eqn 16) 490 

While reserves may vary in size, the model assumes that structural growth is irreversible (�
����� %491 

0). A breakdown of soma, e.g. muscle tissue during starvation as seen in nature, is thus restricted to 492 

the part included in the reserves. 493 

To meet the requirements of different tissues, nutrients have to be converted, and conversion of 494 

metabolites comes with a cost. When storing energy, processing of nutrients into storage molecules 495 

is based on a conversion efficiency 	����������_��������  [dimensionless]. The model assumes this 496 

conversion to be biochemical processes that requires oxygen and therefore will contribute to overall 497 

metabolic rate:  498 
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�������� � Δ��1 � 	����������_���������/	!������%��&��' ,    if ∆� % 0 . (Eqn 17) 499 

If energetic expenses exceed the energy available from digestion, reserves have to be drained. Then 500 

a conversion cost has to be paid for making those reserves accessible:   501 


�������� � �∆�

9
������
��_��������
�1 � 	����������_���������/	!������%��&��' ,    if ∆� ) 0 .  (Eqn 18) 502 

In the case of growth, metabolites are drawn from reserves and converted into building blocks. The 503 

cost 

�����  of conversion into growth is also calculated using a conversion efficiency parameter 504 

	����������_
�����  [dimensionless].  505 



����� � :������

9
������
��_������
�1 � 	����������_
������/	!������%��&��'  . (Eqn 19) 506 

Aerobic scope  507 

The maximum rate of oxygen uptake has to accommodate all oxygen-dependent processes such as 508 

digestion, locomotion, foraging, conversion of energy, and other metabolic activities (Fry, 1971). We 509 

refer to the unused surplus as the free aerobic scope (Holt and Jørgensen, 2015). 510 

We calculate potential oxygen uptake *��������  [J min-1] following Claireaux et al. (2000) as an 511 

allometric function with exponent + < 1. Because it is unrealistic that variations in reserve size affect 512 

an individual’s capacity for oxygen uptake, we base calculations of aerobic scope on the structural 513 

body mass only:  514 

*�������� � 	����� 
 �����������
; � . (Eqn 20) 515 

Here 	����� has unit J min
−1

 g
−b

. 516 

A key assumption of our model is that the thyroid hormone function THF increases aerobic scope 517 

through increasing capacity for oxygen uptake, thus permitting higher levels of metabolic processes, 518 

but at a cost on SMR (Eqn 8):  519 

*
�� � �1 � � )

)���
� 0.5� 
 	*+,_������ 
 *�������� . (Eqn 21) 520 

Here 	*+,_����� [dimensionless] sets the strength of the effect of THF on increased scope.  521 

Food availability 522 

Across model runs we vary food availability, implemented as the factor # [dimensionless]. When 523 

food availability is good (high #), less foraging activity is required to obtain the given amount of 524 

resources (Eqn 11). Contrary, when # is low, the individual needs more time to gather the amount of 525 

food it aims for. Consequently, #, through B_foraging, determines the exposure to predators in Eqn 526 

23, and the energetic cost of foraging in Eqn 12. In this version of the model, there is no stochasticity 527 

influencing foraging success. 528 

Mortality rates 529 

Mortality is decompounded into discrete risk factors (Eqn 4) that through separate trade-offs 530 

contribute to an individual’s risk of being depredated or otherwise die (extended from Holt and 531 

Jørgensen (2014)). The first is a constant component ������ that represents death due to causes that 532 

are independent of the individual’s state or behaviour, e.g. some types of disease. Second is size-533 

dependent mortality, with reduced risk of mortality with larger body size, as is both observed 534 

(Gislason et al., 2010; Peterson and Wroblewski, 1984) and resulting from the size-structure of 535 
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marine food webs and scaling relationships (Brown et al., 2004). We model this as an allometric 536 

relationship with a negative exponent: 537 

����� � ����� 
 $<�
��  . (Eqn 22) 538 

The next mortality component reflects the well-known trade-off between risk of predation and 539 

foraging intensity (e.g., Lima, 1998).The model assumes that individuals expose themselves to 540 

predation risk while foraging, and that this risk accelerates with increasing foraging because the 541 

safest habitats and time periods are assumed exploited first: 542 

�����
��
 � �����
��
 
 ����� 
 "����
��
 
<�����
��  . (Eqn 23) 543 

For this and the risk components below, it is assumed that predation is the ultimate cause for death 544 

and therefore that the risk declines with size in the same way as the size-dependent predation 545 

mortality. 546 

The final two components relate to oxygen use and aerobic scope, i.e. the difference between 547 

maximum oxygen uptake and actual rate of oxygen use. Fleeing from predators demands burst 548 

swimming, which is achieved anaerobically by white muscle (Johnston, 1981; Rome et al., 1988; 549 

Weber et al., 2016). Recovery is aerobic and faster if there is free aerobic scope to provide abundant 550 

oxygen (Killen et al., 2014; Marras et al., 2010), thus preparing the individual for a repeated attack or 551 

the next encounter. We model this based on the ratio between used and available oxygen, raised to 552 

a power to describe how predation risk increases rapidly as maximum oxygen uptake is approached 553 

or even temporarily exceeded: 554 

������ � ������ 
 ����� 
 � 2

=���
�

<�
���
 . (Eqn 24) 555 

The model finally assumes that it is particularly risky for an individual to expose itself (high �����
��
) 556 

when oxygen use is high (high ������) because attacks would be frequent and recovery at the same 557 

time slow: 558 

�����
��
������ � �����
��
������ 
 �����
��
 
 ������ . (Eqn 25) 559 

The mortality rates stemming from each risk factor are then summed (Eqn 4) and survival per time 560 

step given as � � e��. 561 

Implementation 562 

The model follows juvenile fish as they grow from 10 cm to 30 cm body length. Optimal solution is 563 

found for each combination of individual states length (21 steps) and reserves (10 steps). 564 

Discretization 160 steps for each hormone. Time step 1 week. Sufficient time horizon, normally 200 565 

weeks. 566 

Parameterization 567 

Parameters used in the model were chosen from different fish species to create a generalized, 568 

juvenile fish. Many of the studies used were performed on cod, which makes cod the fish most 569 

similar to the model fish.  570 
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For orexin A no studies on hormone concentrations in fish are known. In this case measurements on 571 

mammals were used.  572 

The water temperature is constant at 5°C and water is saturated with oxygen.  573 

Energy density for reserves is chosen to be 5 000 J/g. This is based on a calculation of mean protein 574 

and fat contents in storage tissues. A fish of 750 g serves as template. Energy density is based on the 575 

weight of liver and white muscle tissue and their proportional content of fat and proteins. For 576 

proteins, the weight of cellular water is taken into account.   577 

Since growth requires development of more specialized tissue than storing molecules in reserves, the 578 

conversion efficiency for growth is lower than for reserves. 579 

Fulton’s condition factors for fish with full reserves (��������_	
� ) and depleted reserves were 580 

chosen following a study on cod (Lambert and Dutil, 1997b). 581 

Variables used in calculations of SMR (�
�� , �) are based on Clarke and Johnston (1999), Mozsar et 582 

al. (2015) and Pangle and Sutton (2005) accounting for the resting metabolic rate of a general teleost 583 

fish. In line with earlier models built on a similar bioenergetics template (e.g. Jørgensen and Fiksen 584 

2010), we use a scaling exponent a=0.7 which is within the range of intraspecific scaling exponents 585 

for in teleosts (Killen et al., 2007). Also, studies show that there is a great variation for scaling 586 

exponents in animals and the value chosen here is in the range of this variation (Holdway and 587 

Beamish, 1984; Kjesbu et al., 1991; Lambert and Dutil, 1997a). Units are converted to fit the model. 588 

The coefficient ������  used in calculations is derived from a study on cod (Claireaux et al., 2000). The 589 

scaling exponent for aerobic scope (�) is chosen in accordance to SMR scaling (Holt and Jørgensen, 590 

2014). 591 

Hormone Concentrations 592 

Concentrations of IGF-1 are given in ng/ml blood plasma and range from 0 to 200. In experiments 593 

with tilapia concentrations of 70 – 120 ng/ml plasma were measured (Uchida et al., 2003). A study on 594 

Arctic char revealed concentration up to approximately 250 ng/ml plasma (Cameron et al., 2007). 595 

Orexin A has been detected in ranges up to roughly 350 pg/ml porcine blood plasma (Kaminski et al., 596 

2013). A range assumed to be normal for adult men and women (Oka et al., 2004). The range is 597 

higher for children, where measurements up to roughly 1300 pg/ml have been observed (Tomasik et 598 

al., 2004). For the model orexin A adopts a range up to 2000 pg/ml blood plasma. Its existence and 599 

function in fish has mainly been documented in goldfish (Abbott and Volkoff, 2011; Hoskins et al., 600 

2008; Volkoff et al., 1999) and zebrafish (Matsuda et al., 2012).   601 

Concentrations of T3 are given in ng/ml of blood plasma and range from 0 to 5. The range is chosen 602 

according to measurements on teleosts like one-year old rainbow trout (Oncorhynchus mykiss) 603 

(Eales, 1988), Anabas testudineus (Varghese and Oommen, 1999; Varghese et al., 2001) and chum 604 

salmon (Oncorhynchus keta) (Tagawa et al., 1994) revealing concentrations up to roughly 4.5 ng/ml 605 

plasma for normal individuals.  606 
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Results  607 

During the fish’s growth phase, the optimal strategy for the hormone profile changes, resulting in a 608 

near-linear length growth and decreased mortality rate over time (Fig. 2). While energy gain and 609 

oxygen budgets are relatively stable per unit body mass, mortality decreases with size. The optimal 610 

level of GHF falls throughout the growth phase (Fig. 2A), but as their effect is relative to body size, 611 

the resulting growth in length is near-linear (Fig. 2D). 612 

The optimal level of OXF (green) is relatively constant through the growth phase (Fig. 2B), which gives 613 

a stable food intake rate per body mass. Energy from feeding is allocated to SMR, SDA, soma, 614 

metabolic processes involved in conversion of food to reserves and growth, and the activity associate 615 

with searching for food (Fig. 2E).  Since the food environment is not changing over time, the fish does 616 

not benefit from storing energy in reserves, but rather allocates all somatic investments in structural 617 

growth (Fig. 2E).   618 

There is some variation seen in the levels of THF over the growth period for the fish (Fig. 2C). This 619 

variation is too small to have a visible effect on SMR or maximum oxygen uptake per metabolic mass 620 

(Fig. 2E & F). However, both SMR and maximum oxygen uptake for the individual increase due to 621 

increases in total body mass (not shown).  622 

The instantaneous mortality rate decreases during development (Fig. 2G), mainly because size-623 

dependent mortality (grey area, Fig. 2G) is smaller for larger fish (Eqn 22). Foraging mortality (Eqn 624 

23), scope-related (Eqn 24), and active-while-vulnerable mortality components (Eqn 25) also drop. 625 

Foraging activity and free scope are relatively constant, hence changes in these mortality 626 

components are mainly due to lower predation risk with increasing size.  627 

 628 

If we study how the optimal hormone strategies change along an environmental gradient that varies 629 

in food availability, we see that the levels of OXF, GHF, and in particular THF are higher in 630 

environments with more abundant food (Fig. 3A). Individuals in rich food environments grow faster, 631 

and have higher oxygen-uptake and better survival probabilities. Faster juvenile growth requires 632 

increased energy intake, which results in higher SDA and conversion-related costs. Oxygen 633 

requirements also increase, which selects for higher THF levels that increases maximum oxygen 634 

uptake and secures free scope (Fig. 3C). THF also upregulates SMR, hence the optimal hormone level 635 

depends on the availability of energy in the environments and costs in terms of energy and mortality 636 

that come with gathering food. The energy allocation trade-off, between investments in 637 

maintenance and survival on the one hand, and growth on the other, changes with food availability. 638 

Throughout the growth phase this trade-off is influenced by THF, deducting energy to support a 639 

higher metabolic rate that in turn increases escapement probability from predators. As energy is 640 

more accessible when food abundance is higher, activity costs are unchanged even when intake 641 

increases (Fig. 3B). Due to higher hormone levels, fish in habitats with high food availability have 642 

higher growth rates, intake, and SMR (Fig. 3).  643 

Comparing oxygen budgets (Fig. 3B), we see a slight increase in free scope from the poorest to the 644 

richest food environment. THF enables the organism to increase its free scope despite higher oxygen 645 

use, thus permitting higher growth and foraging through the other hormones. Oxygen used for 646 
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preparing metabolites for new soma reduces free scope, while THF works against this process by 647 

elevating maximum oxygen uptake.  648 

Simplified, GHF sets energetic needs, OXF meets the needs by determining foraging activity and 649 

providing metabolites for growth. The increased energy turnover has to be supported by THF, 650 

regulating maximum oxygen uptake to reduce mortality rate when energy is readily accessible and 651 

high turnover desirable (Fig. 3D). 652 

Adaptations in hormone levels cause fish in rich environments to have a shorter juvenile phase (Fig. 653 

3E). Despite similar instantaneous mortality rates (Fig. 3D), the probability of surviving to the end of 654 

the growth phase differs substantially between food environments because the duration of the 655 

growth phase is longer when food is scarcer. 656 

Discussion 657 

Most evolutionary optimization models of animal growth and survival focus on behaviour, size, or 658 

other phenotypic traits while the internal regulatory processes are often ignored (Fawcett et al., 659 

2014; Grafen, 1984). For fish, this includes social behaviour (Rountree and Sedberry, 2009; van der 660 

Post and Semmann, 2011), diel vertical migration (Burrows, 1994), and habitat choice (Fiksen et al., 661 

1995; Kirby et al., 2000), but see Salzman et al. (2018). Here we take the opposite perspective, and 662 

study optimal internal regulation by hormone systems for animals that cannot choose their external 663 

environment. Obviously, most animals can do both at the same time, and habitat selection can have 664 

direct impact on the physiological needs and priorities of the animal (Elton, 1927). But by removing 665 

the movement options in this model, we can isolate how internal mechanisms can be used to 666 

optimize trajectories of growth and mortality risk. We found variation in optimal hormone levels 667 

across different food environments and throughout ontogeny. We modelled adaptive evolution in 668 

three hormone functions, where the growth hormone function (GHF) sets the fitness-optimizing 669 

growth rate, the orexin function (OXF) provides the required resources through appetite control and 670 

foraging, while the thyroid hormone function (THF) adjusts trade-offs between bioenergetics and 671 

survival. The effects of the hormonal control are evident in growth patterns, energy allocation, 672 

oxygen budget, activity levels, and in survival.  673 

Increased food availability enables organisms to grow faster, which is achieved by speeding up 674 

metabolism to accommodate increased physical and biochemical activity. Model fish adapted to high 675 

food availability by having higher optimal concentrations of GHF and THF than those adapted to 676 

food-restricted habitats (Fig. 3). Empirical studies testing for changes in hormone concentrations in 677 

relation to diet quantity focus on short-time experiments, often with feeding – starvation – refeeding 678 

cycles. Similar to the predictions of the model, these generally find a positive correlation between 679 

hormone concentrations in plasma and the amount of food eaten by the fish (Lescroart et al., 1998; 680 

MacKenzie et al., 1998; Power et al., 2000; Toguyeni et al., 1996; Van der Geyten et al., 1998) or 681 

mammal (Herwig et al., 2008; Lartey et al., 2015; Nillni, 2010). Adaptive regulation of growth 682 

processes is indicated by the often-observed positive relation between ration size and growth rate in 683 

short-time experiments, e.g. in tilapia (Dong et al., 2015; Fox et al., 2010; Toguyeni et al., 1996), 684 

white sturgeon (Acipenser transmontanus) (Cui et al., 1996), gilthead sea bream (Sparus aurata) 685 

(Bermejo-Nogales et al., 2011), cod (Berg and Albert, 2003) and polar cod (Boreogadus saida) (Hop et 686 

al., 1997). Food availability is suggested to be one of the most important environmental factors 687 
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influencing growth rates in fish (Dmitriew, 2011; Enberg et al., 2012; MacKenzie et al., 1998). We 688 

have not been able to find studies following hormone levels and growth rates of animals on 689 

differently sized rations throughout their growth phase.  690 

Higher food availability in the model habitats results in higher optimal GHF levels and thus higher 691 

growth rates. Even if GHF in the model is a simplified version of the GH–IGF-1 axis, its response to 692 

stimuli like food availability resembles results from empirical studies. These studies show that 693 

concentrations of insulin-like growth factor-1 (IGF-1), a mediator of growth hormone (GH), decrease 694 

when food is less available (Bermejo-Nogales et al., 2011; Fox et al., 2010; Lescroart et al., 1998). 695 

Even though both GH and IGF-1 are essential for growth in natural individuals, growth rate typically 696 

exhibits positive correlations with IGF-1 but not with GH (see below). In addition to promoting 697 

growth in natural fish, GH has a lipolytic effect, amplifying the use of reserves during times of food 698 

restriction (Jönsson and Björnsson, 2002). In the model, we assume stable environments and thus 699 

conflate the multiple effects of GH to a single effect on growth, thus, the lipolytic effect of GH cannot 700 

arise as a GHF-effect but would need to be prescribed through explicit assumptions.  701 

Increasing food availability in the environment triggers high growth rates via a combined effect of 702 

THF and GHF, although THF has no direct effect on growth in the model. Empirical studies account 703 

for the effect of hormones from both hormone axes on growth, which makes the emergent 704 

correlation in THF and GHF levels plausible. Somatic growth depends on several different processes, 705 

including bone and muscle growth, which in turn combine processes regulated by hormones such as 706 

T3 and IGF-1, from the two hormone functions. A study on tilapia documented a correlation between 707 

T3 and specific growth rates (Toguyeni et al., 1996). In mammals, T3 is involved in maintenance of 708 

chondrocytes and osteoblasts (Waung et al., 2012). It may have a direct effect on bone growth by 709 

local conversion and binding to thyroid receptors or an indirect effect via GH and IGF-1 (Nilsson et al., 710 

2005). The interplay of TH and GH is also seen in chondrocyte development, in which a first phase is 711 

triggered by IGF-1 while the second phase depends on T3 (Robson et al., 2002). The GH dynamics 712 

follow the Dual Effector Theory, in which GH can act directly on cells or indirectly via IGF-1 (Jönsson 713 

and Björnsson, 2002). Despite their actions taking place at different locations in the bones or cells, or 714 

at different times during bone maturation, bones cannot grow if one of the hormones is missing. IGF-715 

1 also plays an important role in muscle growth (Dai et al., 2015; Grossman et al., 1997), but to our 716 

knowledge effects of thyroid on muscle growth have not been documented.  717 

Achieving high growth rates is always related to an increased demand for energy. This demand can 718 

be met by changes in energy acquisition and allocation, and in the model we see that energy 719 

acquisition is higher in environments where food is more accessible (Fig. 3). Optimally, roughly a 720 

third of intake is allocated directly to growth while the remainders is lost to other metabolic costs on 721 

the way (Fig. 3b). The calculated average for six different teleost fish allocating metabolizable energy 722 

to growth at maximum rations of food is at about 40% (Cui and Liu, 1990). Minimum and maximum 723 

allocation rates were 21.3% and 63.4%, respectively. Thus, the optimal allocation rate found in this 724 

model is within the observed range.  725 

From a life history perspective one would expect a decrease in length growth as the individual gets 726 

larger, due to fewer potential predators for larger fish (Bystrom et al., 2015; Persson et al., 1996) and 727 

how the increased survival prospects lead to slower optimal growth that put more weight on survival 728 

and the future. However, larger fish are more efficient feeders because they are less exposes to risk 729 
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when they are foraging (Claireaux et al., 2018), countering the first effect. These two opposing forces 730 

explain the rather linear growth seen in the predicted juvenile growth from this model, an 731 

observation also seen in other adaptive models for the ontogeny of growth when acquisition is 732 

flexible (Claireaux et al., 2018; Jørgensen and Holt, 2013). 733 

The challenges for the internal regulation mechanisms concerning storage of energy depend on the 734 

past, current, and expected food environment. In natural environments, this can include preparing 735 

for environmental change, by storing energy in reserves. In a stable food environment as in our 736 

model, building reserves is not necessary and because it involves costs it never becomes optimal, and 737 

there will be no variation in condition factor among individuals. A modelling approach analysing 738 

energy allocation in environments varying in food availability (Fischer et al., 2011) concluded that 739 

energy storage can be advantageous, but depends on the size of current reserves and how variable 740 

the environment is. An empirical study of more than 40 fish species or genera found that fish in 741 

stable habitats often have lower condition factors than fish in more unstable habitats (Fonseca and 742 

Cabral, 2007). This supports the fact that fish from the completely stable model environment have 743 

minimal reserves.  744 

As preparation for foraging, orexin A pathways are activated when food gets scarce, while in the 745 

model impacts of OXF on intake are strongest in rich environments. In the model, we see a positive 746 

correlation between food availability and optimal OXF levels. Due to easily accessible energy in rich 747 

environments it is optimal to invest more into growth. This creates a higher energy demand in the 748 

model fish, which is met by increasing OXF levels and foraging activity. From empirical studies, orexin 749 

A is known to affect the individual’s energy budget on a short-time scale. It is negatively correlated to 750 

leptin, which serves as a proxy for the amount of stored energy in adipose tissue. Food restriction 751 

can result in higher orexin mRNA production, orexin receptor and neuron activity (Rodgers et al., 752 

2002). This is also the case for ghrelin, acting together with orexin to prepare for and initiate foraging 753 

(Matsuda et al., 2011; Miura et al., 2007). Under fasting conditions, ghrelin levels can increase 754 

(Iwakura et al., 2015; Jönsson, 2013). Despite of the trigger, low levels of stored energy, being the 755 

same in experiments and the model, the context in which the trigger occurs is different. This results 756 

in high levels of orexin A and OXF at different food abundances.  757 

The shift described in our model cascades from endocrinal changes affecting energy allocation and 758 

acquisition, oxygen budgets, growth, and mortality risk, which in total causes a concerted response 759 

towards more rapid growth in rich food environments. Comparing poor to rich food environments, 760 

higher growth rates are supported by THF levels that upregulate SMR and increase maximum oxygen 761 

uptake. A positive correlation between metabolic rate and a range of traits contributing to rapid 762 

growth rate was found in Trinidadian guppies (Poecilia reticulata) (Auer et al., 2018), and this is also 763 

the case for our model fish.  764 

Shorter growth periods with higher growth rates in rich food environments result in higher survival. 765 

Besides supporting growth, high GHF levels contribute to reducing size-dependent mortality by 766 

growing out of vulnerable size windows more quickly. High THF levels also lower mortality, by making 767 

escapement once predators are encountered more likely to be successful. Thus, total mortality 768 

experienced through the growth phase is lower and survival at the end of the growth phase 769 

increased. To our knowledge, only GH excretion has been linked to mortality in empirical studies. The 770 

special interest assigned to GH is probably due to husbandry in which several land-living and aquatic 771 
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animals have been genetically modified to excrete more GH and thus could grow faster to 772 

slaughtering size, e.g.  coho salmon (Oncorhynchus kisutch) (Raven et al., 2008) and pig (Ju et al., 773 

2015). Several studies have been conducted with both transgenic and hormone-implanted trout and 774 

coho salmon. Even if salmon fry can experience lower survival in the presence of predators 775 

(Sundström et al., 2005), several studies have found that fish treated with GH, thus having higher 776 

growth rates, have mortality rates similar to non-treated fish (Johnsson and Björnsson, 2001; 777 

Johnsson et al., 1999; Sundström and Devlin, 2011). In our model, these effects would come about 778 

because growth hormone increases the demand for food, and the resulting increase in appetite and 779 

foraging involves risk taking that elevates mortality rates. 780 

The selection of fast-growing individuals over several generations also influences their 781 

endocrinology, as seen in salmon (Fleming et al., 2002). A better understanding of the combination 782 

of endocrinology and its consequences for growth is relevant also for animal breeding programs, 783 

including fish farming. Many physiological processes and traits are linked by the endocrinal network. 784 

Selecting on one of those traits will inevitably lead to changes in the endocrinal network and affect 785 

other traits. For example, selection for high growth rates could increase oxygen use in metabolic 786 

processes to a level where fish cannot sustain other metabolig processes simultaneously, something 787 

which can be described as a limited ability to multitask physiologically. This means that the majority 788 

of available oxygen is used for metabolic processes supporting growth, while little or no oxygen is left 789 

to assure free scope as is required for predator escape in the model. Other processes not modelled, 790 

like immune function, could suffer from constraints on oxygen uptake and use. A study on first-791 

feeding salmon fry showed increases in mortality for GH-transgenic individuals under natural 792 

conditions (Sundström et al., 2004).  793 

This model is a first step to combine internal and external control of appetite with energy allocation, 794 

growth and survival in teleost fishes. To reflect mechanisms in nature, McNamara and Houston 795 

(2009) argue that models should consist of complex environments and simplified organisms.  In our 796 

case, the environment is simple while the animal model is complex. Even with this simple one-factor 797 

environment, we see a gradual change in optimal strategies for hormone expression and resulting in 798 

concerted trait differences between populations in poor and rich habitats. The model suggests an 799 

adaptive interplay of hormone functions, where GHF, OXF, and THF act together to cause an adaptive 800 

life history strategy that balances growth and survival throughout the juvenile phase. Often, effects 801 

of the internal control by means of hormones are studied in isolation from the selection pressure of 802 

the external environment. For the future, we suggest it is not sufficient to study only how hormones 803 

carry signals from tissues and sensory organs to control centres like the hypothalamus, or only how 804 

the control centre influences the decision processes in the body at many levels. Rather, there is a 805 

need to view the entire organisms as an evolved system, where key hormones mirror internal states 806 

and respond to external factors. Such decisions concern growth and survival, as in this study, but also 807 

other life history traits linked to maturation time or physiological preparations for maturation. It is 808 

this combination of emphasis on the endocrinal network in the model fish and its impacts on 809 

ultimate mechanisms as growth and survival that is characteristic of the model. It makes the model a 810 

tool for understanding processes and mechanisms underlying adaptations of growth. We think this is 811 

a fruitful path where many studies may follow. 812 
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 1393 

Figure legends 1394 

Figure 1. Energetics and endocrinology of the model organism. Energy from food is made accessible 1395 

for the body by digestion (SDA). This energy is then used in metabolism to maintain life-supporting 1396 

metabolic pathways (SMR) and supply the organism with oxygen. Also activities like foraging use 1397 

energy. The surplus is stored in reserves. Hormonal regulation determines the foraging intensity 1398 

(OXF), in- or decreases of metabolism rates (oxygen uptake & SMR), and the allocation of energy to 1399 

growth (GHF). Throughout the simulation decisions regarding hormone levels are based on the two 1400 

states of the fish – reserve and body size.  1401 

Figure 2. Endocrine regulation, energy and oxygen budget, mortality and growth of juvenile fish in 1402 

a stable food environment. The simulation starts when the fish is 10 cm and ends at 30 cm, with the 1403 

x-axis giving time (in weeks since 10 cm) in all panels.  In A) the growth hormone function, B) orexin 1404 

function, and C) thyroid hormone function, is given as a function of time. D) Weekly growth and 1405 

accumulated body mass, E-G) energy budget, oxygen budget and mortality rate, respectively.  1406 

Figure 3 Environmental impact on hormone levels, energy and oxygen budgets, survival and 1407 

generation time. The x-axis is the same in all panels, with a gradual increase in food abundance 1408 

relative to the average food environment used in Fig. 2. Simulations of fish in 13 food environments 1409 

are compared, at individual length around 20 cm.  A) Hormone levels B) Energetic costs from growth 1410 

and metabolism. C) Free scope, as the difference between maximum oxygen uptake and the sum of 1411 

processes consuming oxygen. D) Five different components contribute to mortality. E) Growth time 1412 

and survival over the entire juvenile life phase of the fish.  1413 

Appendices 1414 

Table A1 Parameters used in the growth model of a generalized fish using hormonal strategies to 1415 

adapt to environmental challenges. 1416 

Parameters 

Name Value Unit Definition Literature 

�
 

0.7 - Exponent for standard metabolic rate (Clarke and 

Johnston, 1999) 
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�
 

0.7 - Exponent for calculation of maximum 

aerobic scope 

- 

���������  5 000 J g
-1 

Energy density of reserves - 

����������  4 000 J g-1 Energy density of soma - 

�����������_������ 0.75 - Efficiency of converting metabolites 

from reserves to soma 

- 

�����������_�������� 0.85 - Efficiency of converting metabolites 

between blood and reserves 

- 

����
����  0.2 - Scaling factor for energetic cost of 

foraging 

- 

 

������� 0.28 - Upper limit for proportional increase 

in structural body mass 

- 

��������_	
�  
1.2 * 10-8 g cm-1 Fulton‘s condition factor for fish with 

full reserves 

(Lambert and 

Dutil, 1997b) 

� �������_	��  
0.85 * 

10-8 

g cm
-1 

Fulton‘s condition factor for lean fish (Lambert and 

Dutil, 1997b) 

���������������  10080 - Number of minutes in one time step - 

���� 5 - Scaling factor for effect of OXF on 

intake (including urinary and fecal 

energy loss) 

- 

������  2.58 * 

10-5
  

J min−1 

g−b 

Coefficient for calculation of 

maximum aerobic scope 

(Claireaux et al., 

2000) 

�
�  0.15 - Coefficient for calculation of SDA - 

�
��  89596.7 J min
−1

 

g−a 

Scaling factor for standard metabolic 

rate 

(Clarke and 

Johnston, 1999) 

�!"�_�����  0.24 - Scaling factor determining the 

strength of THF on AMR 

- 

�!"�_
��  0.23 - Scaling factor determining the 

strength of THF on SMR 

- 

�#���$ 0.0002 year-1 Background mortality rate (constant) - 

����
���� 0.08 - Coefficient for calculation of foraging-

related mortality rate 

- 

����
����%����� 0.9 year Coefficient for calculation of active-

while-vulnerable mortality rate 

- 

������ 0.8 - Coefficient for calculation of scope-

related mortality rate 

- 

���&�  0.038 year-1 

cm
-xsize

 

Coefficient for calculation of size-

dependent mortality rate 

- 

����
���� 2 - Exponent for calculation of foraging-

related mortality rate 

- 

������ 3 - Exponent for calculation of scope-

related mortality rate 

- 

���&� -0.75 - Exponent for calculation of size-

dependent mortality rate 

- 

�	
�  1500 pg ml
-1 

Maximum value of OXF - 

�	
�  200 ng ml-1 Maximum value of GHF - 

		
�  5 ng ml-1 Maximum value of THF - 
 1417 

Table A2 Variables used in a state-dependent fish growth model using optimized hormonal 1418 

strategies. 1419 
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Variables 

Name  Unit Definition 


	
� J min-1 Maximum aerobic scope under influence of THF 


��
�$
�$  J min
-1

 Maximum aerobic scope (AMR) 

����
����  - Foraging behaviour 

� J min-1 Energetic costs of building new tissue (soma and reserves) 

������� J Energy incorporated in new structural tissue 


 - Food abundance in environment 

� J min-1 Intake (corresponds to metabolizable energy) 

� cm Body length 

� year
-1

 Total mortality rate 

����
���� year-1 Foraging-related mortality rate 

����
����%����� year-1 Active-while-vulnerable mortality rate 

������ year-1 Scope-related mortality rate 

���&�  year-1 Size-dependent mortality rate 

� J min-1 Metabolic processes 

����
���� J min
-1

 Swimming cost of foraging behaviour 

�������  J min
-1

 Cost of converting metabolites from reserves into new structural 

tissue 

��������� J min
-1

 Cost of converting metabolites from bloodstream into fat and 

proteins for storage 

�
�  J min
-1

 Cost of digestion and energy uptake into bloodstream 

�
�� J min-1 Standard metabolic rate (SMR) under influence of THF 

���
�$
�$ J min-1 Standard metabolic rate (SMR) 

���������� J min
-1

 Standard metabolic rate based on structural weight 

� J Energy reserves 

�	
�  J Maximum reserves depending on body size 

Δ� J Energy incorporated in reserves (when negative, reserves are 

drained) 

� year
-1

 Survival probability 

� G Body mass (structural and reserves) 

���������� G Structural body mass 

∆���������� g week
-1

 Growth 

� pg ml-1 Level of OXF 

� ng ml-1 Level of GHF 

	 ng ml
-1 

Level of THF 

 1420 

 1421 
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