

Trypsin treatment unlocks barrier for zoonotic coronaviruses infection.

Vineet D. Menachery^{1,2, a}; Kenneth H. Dinnon III^{2,3, a}; Boyd L. Yount Jr.²; Eileen T. McAnarney^{1,2};
Lisa E. Gralinski²; Andrew Hale³; Rachel L. Graham²; Trevor Scobey²; Simon J. Anthony^{4,5};
Lingshu Wang⁶, Barney Graham⁶, Scott H. Randell⁷, W. Ian Lipkin^{4,5}; Ralph S. Baric^{2,3}

^aCo-first Authors

¹Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555

²Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27514

³Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27514

⁴Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, 10032

⁵Dept of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY

⁶Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892

⁷Department of Cell Biology and Physiology, and Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, NC 27514

Corresponding Author: Ralph S. Baric

Address: University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg Hall
CB 7435, Chapel Hill, NC 27599-7435

Telephone: 919-966-7991 **Fax:** 919-966-0584

Email: Rbaric@email.unc.edu

Running Title: Trypsin unlocks barrier for zoonotic CoV infection.

Keywords: coronavirus, MERS-CoV, zoonotic, PDF2180, emergence

1 **Abstract**

2 Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor
3 binding in a new host. Our previous work with SARS-like viruses argued that bats already
4 harbor CoVs with the ability to infect humans without adaptation. These results suggested that
5 additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming
6 host restriction of two MERS-like bat CoVs using exogenous protease treatment. We found that
7 the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate
8 infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show
9 that the bat virus spike can mediate infection of human gut cells, but is unable to infect human
10 lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike
11 does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike
12 receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera.
13 Finally, we found that addition of exogenous trypsin also rescues replication of HKU5-CoV, a
14 second MERS-like group 2c CoV. Together, these results indicate that proteolytic cleavage of
15 the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs.
16 Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate
17 emergence potential of CoVs and offer a means to recover previously unrecoverable zoonotic
18 CoV strains.

19 **Importance**

20 Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a
21 subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding
22 and proteolytic cleavage of the spike are critical factors that must be considered for evaluating
23 the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also
24 offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue
25 that other tissues, including the digestive tract, could be a site for future coronavirus emergence
26 events in humans.

27 **Introduction**

28 Since the beginning of the 21st century, public health infrastructures have been required
29 to periodically respond to new and reemerging zoonotic viral diseases, including influenza,
30 Ebola, and Zika virus outbreaks (1). Severe acute respiratory syndrome coronavirus (SARS-
31 CoV), the first major outbreak of the century, highlighted the global impact of a newly emerging
32 virus in the context of expanding development, increased globalization, and poor public health
33 infrastructures (2-4). A decade later, the emergence and continued outbreaks of the Middle East
34 respiratory syndrome coronavirus (MERS-CoV) further illustrate the ongoing threat posed by
35 circulating zoonotic viruses (5). Together, the outbreaks of the early part of this century argue
36 that continued preparations and vigilance are needed to maintain global public health.

37 Despite their spontaneous emergence, several research approaches to rapidly respond
38 and even predict outbreak strains already exist. During the MERS-CoV outbreak, our group and
39 others were able to leverage reagents generated against related group 2C coronaviruses,
40 HKU4- and HKU5-CoV (6, 7). These reagents, created independent of viable virus replication,
41 provided valuable insights and models for testing serologic responses during the early stages of
42 the MERS-CoV outbreak. Similarly, reverse genetics systems permitted the exploration of
43 zoonotic coronaviruses (8); using the known SARS spike/ACE2 receptor interaction, chimeric
44 viruses containing the backbones of bat CoVs were generated to evaluate the efficacy of both
45 vaccines and therapeutics (9-12). The inverse approach placed the zoonotic spike proteins in
46 the context of the epidemic SARS-CoV backbone (13, 14). These studies provided insight into
47 potential threats circulating in bats as well as the efficacy of current therapeutic treatments (15).
48 While far from comprehensive, the results indicated that these approaches, reagents, and
49 predictions may prove useful in preparations for future CoV outbreaks.

50 In this study, we extend examination of zoonotic viruses to a novel MERS-like CoV strain
51 isolated from a Ugandan bat, PDF-2180 CoV (MERS-Uganda). Our initial attempt to cultivate a
52 chimeric MERS-CoV containing the Ugandan MERS-like spike produced viral sub-genomic

53 transcripts, but failed to result in infectious virus after electroporation (16). However, in the
54 current study, we demonstrate that exogenous trypsin treatment produced high-titer virus
55 capable of plaque formation and continued replication. The chimeric Ugandan MERS-like spike
56 virus could replicate efficiently in both Vero and Huh7 cells in the context of trypsin-containing
57 media, but failed to produce infection of either continuous or primary human respiratory cell
58 cultures. Importantly, the MERS-Uganda chimeric virus successfully infected cells of the human
59 digestive tract, potentially identifying another route for cross-species transmission and
60 emergence. Notably, blockade of human DPP4, the receptor for MERS-CoV, had no significant
61 impact on replication of the chimeric MERS-Uganda virus, suggesting the use of an alternative
62 receptor. Similarly, addition of trypsin also rescued replication of full-length HKU5-CoV, a
63 related group 2C bat CoV, and showed no replication defect during DPP4 blockade. Together,
64 the results indicate that proteolytic activation of the spike protein is a potent constraint to
65 infection for zoonotic CoVs and expands the correlates for CoV emergence beyond receptor
66 binding alone.

67 **Results**

68

69 Utilizing the MERS-CoV infectious clone (17), we previously attempted to evaluate the potential
70 of the PDF-2180 CoV to emerge from zoonotic populations. Replacing the wild-type MERS-CoV
71 spike with the PDF-2180 spike produced a virus capable of generating viral transcripts in vitro,
72 but not sustained replication (16). These results suggested that the significant amino acid
73 differences observed within the receptor-binding domain precluded infection of Vero cells.
74 However, amino acid changes were not confined only to the receptor-binding domain (RBD);
75 highlighting changes between the Uganda spike on the MERS-CoV trimer revealed significant
76 differences throughout the S1 region of spike (**Fig. 1A & B**). While the S2 remained highly
77 conserved (**Fig. 1C**), changes in the C- and N-terminal domains of S1, in addition to the RBD,
78 may also influence entry and infection compatibility. Notably, recent reports had also indicated
79 differential protease cleavage of wild-type MERS-CoV based on cell types, suggesting that
80 spike processing influences docking and entry of pseudotyped virus (18). To explore if spike
81 cleavage impaired infectivity, we evaluated MERS-Uganda virus replication in the presence of
82 trypsin-containing media. The addition of trypsin to the chimeric virus resulted in cytopathic
83 effect, fusion of the Vero monolayer, formation of plaques under a trypsin-containing overlay,
84 and collection of high-titer infectious virus stock (**Fig. 1D**). The requirement for trypsin
85 complicated these studies due to cell toxicity; to overcome this issue, we utilized both trypsin-
86 adapted Vero cells and a MERS-Uganda chimera encoding RFP in place of ORF5, similar to a
87 previously generated MERS-CoV reporter virus (17). Following MERS-Uganda infection,
88 cultures with trypsin containing media showed evidence for replication of viral genomic RNA
89 (**Fig. 1E**). Similarly, the nucleocapsid protein was only observed in the presence of exogenous
90 trypsin following infection with the MERS-Uganda chimera (**Fig. 1F**). Notably, wild-type MERS-
91 CoV was also augmented in the presence of trypsin with increased genomic RNA and
92 nucleocapsid protein relative to no trypsin control (**Fig. 1E &F**). Examination of RFP signal
93 confirmed these RNA and protein results (**Fig. 1G**), as RFP was only observed in MERS-

94 Uganda chimeric infection in the presence of trypsin. Similarly, RFP expression was more
95 robust in trypsin-treated cells following MERS-CoV infection. Together, these data indicate that
96 the PDF-2180 spike can mediate infection of Vero cells in a trypsin-dependent manner.

97 **MERS-Uganda spike replicates in human cells**

98 Having demonstrated infection and replication, we next sought to determine the capacity of
99 MERS-Uganda chimeric virus to grow in human cells. Previously, MERS-CoV had been shown
100 to replicate efficiently in Huh7 cells (19). Using the Huh7 liver cell line, infection with MERS-
101 Uganda RFP chimeric virus resulted in RFP-positive cells and cell fusion (**Fig. 2A**). In contrast,
102 while a few RFP-positive cells were observed in the non-trypsin-treated group, neither
103 expanding RFP expression nor cytopathic effect were seen in the absence of trypsin. Our
104 observation may have been the result of residual trypsin activity from the undiluted virus stock,
105 resulting in low-level infection. Exploring further, N protein analysis by Western blot indicated
106 that the PDF-2180 spike chimera could produce significant viral proteins in the presence of
107 trypsin (**Fig. 2B**); only low levels of protein were observed in the control-treated infection. While
108 replication of the MERS-Uganda chimera was not equivalent to that of wild-type MERS-CoV, the
109 results clearly demonstrate the capacity of the PDF-2180 spike to mediate infection of human
110 cells in the presence of trypsin.

111 We next examined the capacity of MERS-Uganda spike to infect human respiratory
112 cells, the primary targets of SARS-CoV, MERS-CoV, and other common-cold human CoVs.
113 Using Calu3 cells, a human lung epithelial cell line, we observed robust replication of wild-type
114 MERS-CoV based on RFP expression, consistent with previous studies (17). However, no
115 evidence of infection was noted in MERS-Uganda-infected Calu3 cells in the presence or
116 absence of trypsin. We subsequently explored primary human airway epithelial (HAE) cultures.
117 Grown on an air-liquid interface, HAE cultures have a propensity to facilitate improved
118 infections of several human CoVs and may be more permissive for infection with the PDF-2180
119 spike chimera (20). However, infection with PDF-2180 spike-containing virus showed no

120 evidence of RFP expression, even after several trypsin washes of the apical surface (**Fig. 2C**).
121 Similarly, RNA expression analysis found no evidence for accumulation of viral genomic RNA,
122 indicating no evidence for replication in HAE cultures (**Fig. 2D**). In contrast, wild-type MERS-
123 CoV efficiently infects these HAE cultures, as demonstrated by both RFP expression and viral
124 genomic RNA accumulation. Together, the Calu3 and HAE results suggest that the PDF-2180
125 spike is unable to infect respiratory cells in humans, even in the presence of exogenous trypsin.

126 We next evaluated the capacity of the PDF-2180 chimera to infect cells of the digestive
127 tract. While uncommon in humans, several animal CoVs have been shown to cause severe
128 disease via the enteric pathway (21, 22). In addition, most bat CoV sequences, including PDF-
129 2180-CoV, were isolated from bat guano samples, suggesting an enteric etiology. Importantly,
130 the presence of trypsin and other soluble host proteases in the digestive tract may facilitate
131 infection with PDF-2180 spike in humans. To test this question, we infected Caco-2 cells, a
132 human epithelial colorectal adenocarcinoma cell line, with wild-type MERS-CoV and MERS-
133 Uganda spike chimera in the presence or absence of trypsin (**Fig. 2E**). For MERS-CoV,
134 infection of Caco-2 cells resulted in robust infection and spread with or without trypsin in the
135 media. For the MERS-Uganda chimera, the addition of trypsin facilitated infection with abundant
136 RFP-positive Caco-2 cells; however, infection was not as robust as in the wild-type MERS-CoV
137 infection. Examination of N protein by Western blot indicated that the MERS-Uganda spike
138 could produce infection in Caco-2 cells, but confirmed replication at levels lower than with wild-
139 type MERS-CoV (**Fig. 2F**). Together, the results indicate that human cells, including gut cells,
140 can support infection with MERS-Uganda chimera in the presence of trypsin.

141 **MERS-Uganda spike does not use DPP4 for entry**

142 The absence of infection of human respiratory cells coupled with significant changes in the RBD
143 suggested that MERS-Uganda does not utilize the MERS-CoV receptor, human DPP4, for entry
144 (16). To explore this question, we utilized antibodies to block DPP4 in Vero cells to determine
145 the effect on MERS-Uganda chimeric virus replication. As expected, anti-DPP4 antibody

146 successfully ablated replication of wild-type MERS-CoV in both the presence and the absence
147 of trypsin treatment, as measured by both RFP and N protein expression (**Fig. 3A & B**). In
148 contrast, the human DPP4-blocking antibody had no impact on infection with the MERS-Uganda
149 chimera virus in the presence of trypsin, confirming that the MERS-CoV receptor is not required
150 to mediate infection with the PDF-2180 spike. Together, these results indicate that while the
151 MERS-Uganda spike infects human cells, it does not require human DPP4 to mediate infection.

152 **MERS-CoV therapeutics are ineffective against MERS-Uganda spike.**

153 Having established replication capacity in human cells, we next sought to determine if
154 therapeutics developed against the MERS-CoV spike could disrupt infection with the MERS-
155 Uganda spike chimera. Several monoclonal antibodies have been identified as possible
156 therapeutic options for treatment of MERS-CoV, including LCA60 and G4. We first evaluated
157 LCA60, a potent antibody that binds adjacent to the spike RBD of MERS-CoV (23). However,
158 the major changes in the RBD region of MERS-Uganda spike predicted a lack of efficacy (**Fig.**
159 **4A**). LCA60 potently neutralized wild-type MERS-CoV grown in both the presence and the
160 absence of trypsin (**Fig. 4B**). However, consistent with expectations, the LCA60 antibody had
161 no impact on infection with the MERS-Uganda chimera, failing to neutralize the bat spike-
162 expressing virus (**Fig. 4B**). We subsequently examined a second monoclonal antibody, G4,
163 which had previously mapped to a conserved portion of the S2 region of the MERS-spike (**Fig.**
164 **4A**) (24). With the epitope relatively conserved in MERS-Uganda spike, we tested the efficacy
165 against the zoonotic spike chimera. However, the results demonstrate no neutralization of
166 MERS-Uganda spike virus by the S2-targeted antibody (**Fig. 4C**). Notably, G4 also failed to
167 neutralize wild-type MERS-CoV grown in the the presence of exogenous trypsin (**Fig. 4C**).
168 Together, the results indicate that both group 2C CoV spikes could escape neutralization by the
169 S2-targeted antibody in the presence of exogenous trypsin. Overall, these experiments suggest
170 that antibodies targeted against MERS-CoV, even to regions in the highly conserved S2
171 domain, may not have utility against viruses expressing the PDF-2180 spike.

172 **Trypsin treatment rescues the replication of zoonotic HKU5-CoV**

173 Based on the MERS-Uganda chimera virus, we wondered if a similar barrier prevented
174 replication of other zoonotic CoVs. Previously, our group had generated a full-length infectious
175 clone for HKU5-CoV, another group 2C coronavirus sequence isolated from bats. Similar to the
176 MERS-Uganda chimera, the infectious clone of HKU5-CoV produced sub-genomic transcripts,
177 but failed to achieve productive infection (6). Revisiting the full-length recombinant virus, we
178 sought to determine if trypsin treatment could also rescue HKU5-CoV. Following HKU5-CoV
179 infection, addition of trypsin to the media resulted in cytopathic effect and cell fusion. In contrast,
180 cultures lacking trypsin showed no signs of viral infection. Exploring viral genomic RNA, trypsin
181 in the culture media permitted robust infection with HKU5-CoV that increased over time and was
182 absent in cells not treated with trypsin (**Fig. 5A**). Similarly, trypsin in the media also permitted
183 the accumulation and proteolytic cleavage of the HKU5 spike protein in a dose and time
184 dependent manner (**Fig. 5B**). Importantly, the addition of anti-DPP4 antibody had no impact on
185 HKU5-CoV infection, suggesting the use of a different receptor than used by wild-type MERS-
186 CoV, similar to the findings with MERS-Uganda spike (**Fig. 5C**). Together, these results
187 demonstrate that protease cleavage is a primary barrier to infection of Vero cells with HKU5-
188 CoV.

189 **Discussion**

190 In this manuscript, we expanded our examination of circulating zoonotic viruses and identified
191 protease cleavage as an important barrier to emergence of some group 2C zoonotic CoVs. The
192 chimeric virus containing the spike protein from PDF-2180 was capable of replication in Vero
193 cells and human cells (Huh7, Caco-2) if treated with exogenous trypsin. However, neither
194 continuous nor primary human airway cultures were susceptible to infection, contrasting wild-
195 type MERS-CoV. The MERS-Uganda chimera also maintained replication despite treatment
196 with antibodies blocking human DPP4, suggesting use of either an alternative receptor or a
197 different entry mechanism for infection. Importantly, current therapeutics targeting the MERS
198 spike protein showed no efficacy against the MERS-Uganda chimera, highlighting a potential
199 public health vulnerability to this and related group 2C CoVs. Finally, the trypsin-mediated
200 rescue of a second zoonotic group 2C CoV, HKU5-CoV, validates findings that suggested that
201 protease cleavage may represent a critical barrier to zoonotic CoV infection in new hosts (25,
202 26). Together, the results highlight the importance of spike processing in CoV infection, expand
203 the correlates associated with emergence beyond receptor binding alone, and provide a
204 platform strategy to recover previously non-cultivable zoonotic CoVs.

205 With the ongoing threat posed by circulating zoonotic viruses, understanding the barriers
206 for viral emergence represents a critical area of research. For CoVs, receptor binding has been
207 believed to be the primary constraint to infection in new host populations. Following the SARS-
208 CoV outbreak, emergence in humans was attributed to mutations within the receptor-binding
209 domain that distinguished the epidemic strain from progenitor viruses harbored in bats and
210 civets (27). Yet, work by our group and others has indicated that zoonotic SARS-like viruses
211 circulating in Southeast Asian bats are capable of infecting human cells by binding to the known
212 human ACE2 receptor without adaptation (13, 14, 28). Similarly, pseudotyped virus studies
213 have identified zoonotic strains HKU4-CoV and NL140422-CoV as capable of binding to human
214 DPP4 without mutations to the spike (26, 29). In this study, we demonstrate that both PDF-2180

215 and HKU5-CoV spikes are capable of binding to and infecting human cells if primed by trypsin
216 cleavage. Together, the results argue that several circulating zoonotic CoV strains have the
217 capacity to bind to human cells without adaption and that receptor binding may not be the only
218 barrier to CoV emergence.

219 Data from this study implicates the processing of the spike protein as a critical factor for
220 CoV infection. In the absence of trypsin, the MERS-Uganda and HKU5-CoV spikes were unable
221 to mediate infection and initially suggested a lack of receptor compatibility (6, 16). However,
222 exogenous trypsin treatment produced robust infection, indicating that despite binding to human
223 cells, CoVs cannot overcome incomplete spike processing. As such, evaluating zoonotic virus
224 populations for emergence threats must also consider the capacity for CoV spike activation in
225 addition to receptor binding. In this new paradigm, the combination of receptor binding and
226 proteolytic activation by endogenous proteases permits zoonotic CoV infection, as with MERS-
227 CoV and SARS-CoV (**Fig. 6**). The absence of receptor binding (**Fig. 6A**) or compatible host
228 protease activity (**Fig. 6B**) restricts infection with certain zoonotic strains like PDF-2180 or
229 HKU5-CoV. These barriers can be overcome with the addition of exogenous proteases,
230 disrupting the need for host proteases and permitting receptor-dependent or receptor-
231 independent entry (**Fig. 6C**). Overall, the new paradigm argues that both receptor binding and
232 protease activation barriers must be overcome for successful zoonotic CoV infection of a new
233 host.

234 The requirement for exogenous trypsin treatment is not unique to MERS-Uganda or
235 HKU5-CoV. Influenza strains are well known to require trypsin treatment to facilitate their
236 release in cell culture (30). In addition, highly pathogenic avian influenza strains have been
237 linked to mutations that improve cleavage by ubiquitous host protease, augmenting their tissue
238 tropism and virulence (31). Similarly, a wealth of enteric viruses, including polio, cowpox, and
239 rotaviruses, depend on trypsin to prime, modulate, and/or expand infection (32, 33). Even within
240 the CoV family, enteric viruses, including PEDV, porcine delta CoV, and swine acute diarrhea

241 syndrome (SADS) CoV require trypsin for replication *in vitro* (34-36). Together, these prior
242 studies illustrate the importance of protease activation in virus infections. However, the protease
243 barrier to PDF-2180 and HKU5-CoV spike-mediated infection may also reflect on the
244 emergence of SARS-CoV and MERS-CoV. While initial studies argued that receptor binding
245 was the primary barrier, the existence of zoonotic strains capable of efficiently using the same
246 human entry receptors contradicts that suggestion (13, 14). It is possible that emergence of
247 epidemic CoV strains also requires modifying protease cleavage in either humans or an
248 intermediate host, such as camels or civets, in addition to increased receptor-binding affinity.
249 Consistent with this idea, reports have detailed differential infection with MERS-CoV based on
250 host protease expression (18). Similarly, mouse adaptation of MERS-CoV resulted in spike
251 modifications that alter protease activation and entry *in vivo* (37). While group 2B bat CoV
252 strains (WIV1-CoV, WIV16-CoV and SHC014-CoV) do not require trypsin for infection (9, 13,
253 14, 38), differences in protease activation may contribute to infection changes relative to the
254 epidemic SARS-CoV. In this context, our findings expand the importance of protease cleavage
255 as a criterion to consider for zoonotic virus emergence in a new host population.

256 In evaluating the threat to humans posed by PDF-2180 and HKU5-CoV, the results
257 demonstrate a pathway to emergence. Neither CoV spike uses human DPP4 for entry, and the
258 PDF-2180 chimera failed to replicate in human respiratory models, even in the presence of
259 trypsin. However, replication in Huh7 and Caco-2 cells indicates human infection compatibility
260 and may portend differential tropism, possibly in the alimentary or biliary tracts, as has been
261 described for several mammalian CoVs (34-36). MERS-Uganda or HKU5-CoV could utilize this
262 same trypsin-rich environment in the gut to emerge as an enteric pathogen in humans, although
263 its pathology and virulence would be hard to predict. Evidence from both SARS-CoV and
264 MERS-CoV outbreaks suggests the involvement of enteric pathways during infection (39, 40).
265 Replication in the gut might select for mutations that expand spike processing/tropism and allow
266 replication in other tissues, including the lung, and lead to virulent disease in the new host

267 population, as seen with Porcine Respiratory Coronavirus (41). In examining the threat posed
268 by PDF-2180 and HKU5-CoV, we must consider the emergence of these CoVs in tissues other
269 than the lung and harboring distinct pathologies compared to epidemic SARS and MERS-CoV.

270 The receptor dynamics of MERS-Uganda and HKU5-CoV also remain unclear in the
271 context of this study. In the presence of trypsin, neither spike protein requires the MERS-CoV
272 receptor, DPP4 for entry, which is consistent with the differences between the receptor-binding
273 domains of the bat and epidemic strains. Therefore, it was not surprising that antibodies that
274 target the RBD of the MERS-CoV spike were ineffective in blocking infection of the PDF-2180
275 chimera. However, the S2-targeted antibody, G4, also had no efficacy against MERS-Uganda,
276 despite a relatively conserved binding epitope. This result is possibly explained by differing
277 amino acid sequences between MERS-CoV and PDF-2180 at the G4 epitope, specifically
278 residue 1175, which is associated with G4 escape mutants in MERS-CoV (24). Alternatively, the
279 G4 antibody also failed to neutralize wild-type MERS-CoV grown in the presence of trypsin,
280 indicating that entry is still possible, despite treatment with antibody binding the S2 domain.
281 Conversely, the presence of trypsin may prime a receptor-independent entry for the MERS-
282 Uganda chimera, similar to the JHVM strain of MHV (42). Yet, this result would contrast PEDV,
283 which requires receptor binding prior to trypsin activation to facilitate infection (35). Importantly,
284 the lack of infection in respiratory cells suggests that some receptor or attachment factor is
285 necessary to mediate entry with the PDF-2180 spike. Recent work with MERS-CoV binding
286 sialic acid supports this idea (43) and indicates that the PDF-2180 spike may not have a similar
287 binding motif. Overall, further experimental studies are required to fully understand the receptor
288 dynamics of the PDF-2180 spike.

289 While providing a new strategy to recover zoonotic CoVs, this manuscript highlights
290 proteolytic cleavage of the spike as a major barrier to group 2C zoonotic CoV infection. For both
291 MERS-Uganda and HKU5-CoV, the addition of exogenous trypsin rescues infection, indicating
292 that spike cleavage, not receptor binding, limits these strains in new hosts and tissues. The

293 adaptation of the protease cleavage sites or infection of tissues with robust host protease
294 expression could permit these two zoonotic CoV strains to emerge and may pose a threat to
295 public health due to the absence of effective spike-based therapeutics. In considering cross-
296 species transmission, our results using reconstructed bat group 2C CoVs confirm spike
297 processing as a correlate associated with emergence. Adding spike processing to receptor
298 binding as primary barriers offers a new framework to evaluate the threat of emergence for
299 zoonotic CoV strains.

300

301 **Methods**

302 **Cells, viruses, in vitro infection, and plaque assays.** Vero cells were grown in DMEM (Gibco,
303 CA) supplemented with 5% FetalClone II (Hyclone, UT) and antibiotic/antimycotic (anti/anti)
304 (Gibco, CA). Huh7 cells were grown in DMEM supplemented with 10% FetalClone II and
305 anti/anti. Caco-2 cells were grown in MEM (Gibco, CA) supplemented with 20% Fetal Bovine
306 Serum (Hyclone, UT) and anti/anti. Human airway epithelial cell (HAE) cultures were obtained
307 from the UNC CF Center Tissue Procurement and Cell Culture Core from human lungs
308 procured under University of North Carolina at Chapel Hill Institutional Review Board-approved
309 protocols. Wild-type MERS-CoV, chimeric MERS-Uganda and HKU5-CoV were cultured on
310 Vero cells in OptiMEM (Gibco, CA) supplemented with anti/anti. For indicated experiments,
311 trypsin (Gibco, CA) was added at 0.5 μ g/ml unless otherwise indicated.

312 Generation of wild-type MERS-CoV, MERS-Uganda, and HKU5-CoV viruses utilized
313 reverse genetics and have been previously described (6, 17, 44). For MERS-Uganda chimera
314 expressing RFP, we utilized the MERS-CoV backbone, replacing ORF5 with RFP as previously
315 described (17). Synthetic constructions of chimeric mutant and full-length MERS-Uganda and
316 HKU5-CoV were approved by the University of North Carolina Institutional Biosafety Committee.
317 Replication in Vero, Calu-3 2B4, Caco-2, Huh7, and HAE cells was performed as previously
318 described (12, 45-47). Briefly, cells were washed with PBS and inoculated with virus or mock
319 diluted in OptiMEM for 60 minutes at 37 °C. Following inoculation, cells were washed 3 times,
320 and fresh media with or without trypsin was added to signify time 0. Three or more biological
321 replicates were harvested at each described time point. For HAE cultures, apical surfaces were
322 washed with PBS containing 5ug/ml trypsin at 0, 8, 18, 24, and 48 hours post infection. No
323 blinding was used in any sample collections, nor were samples randomized. Microscopy photos
324 were captured via a Keyence BZ-X700 microscope.

325 For antibody neutralization assays, MERS-CoV and MERS-Uganda stocks were grown
326 in OptiMEM both with and without trypsin. All stocks were quantified via plaque assay by

327 overlaying cells with 0.8% agarose in OptiMEM supplemented with 0.5 µg/ml trypsin and
328 anti/anti. MERS-Uganda stocks grown without trypsin had low titers but were sufficient for
329 neutralization assays.

330 For anti-DPP4 blocking experiments, Vero cells were preincubated with serum-free
331 OptiMEM containing 5ug/ml anti-human DPP4 antibody (R & D systems, MN) for one hour.
332 Media was removed and cells were infected for 1 hour with virus or mock inoculum at a
333 multiplicity of infection of 0.1. The inoculum was removed, cells were washed three times with
334 PBS, and media was replaced.

335 **RNA isolation and quantification.** RNA was isolated via TRIzol reagent (Invitrogen, CA) and
336 Direct-zol RNA MiniPrep kit (Zymo Research, CA) according to the manufacturer's protocol.
337 MERS-CoV and MERS-Uganda gRNA was quantified via TaqMan Fast Virus 1-Step Master Mix
338 (Applied Biosystems, CA) using previously reported primers and probes targeting ORF1ab (47)
339 and normalized to host 18S rRNA (Applied Biosystems, CA). HKU5-CoV RNA was first reverse
340 transcribed using SuperScript III (Invitrogen) and was, CA) then assayed using SsoFast
341 EvaGreen Supermix (Bio-Rad, CA) and scaled to host GAPDH transcript levels. HKU5 gRNA
342 was amplified with the following primers: Forward – 5'-CTCTCTCTCGTTCTTTGCAGAAC-3',
343 Reverse – 5'-GTTGAGCTCTGCTCTATACTTGCC-3'. GAPDH RNA was amplified with the
344 following primers: Forward – 5'-AGCCACATCGCTGAGACA- -3', Reverse – 5'-
345 GCCCAATACGACCAAATCC-3'. Fold change was calculated using the $\Delta\Delta Ct$ method and was
346 scaled to RNA present at 0 hours post-infection.

347 **Generation of VRP, polyclonal mouse antisera, and western blot analysis.** Virus replicon
348 particles (VRPs) expressing the MERS-CoV nucleocapsid or HKU5-5 CoV spike were
349 constructed using a non-select BLS2 Venezuelan Equine Encephalitis (VEE) virus strain 3546
350 replicon system as previously described (48). Briefly, RNA containing the nonstructural genes of
351 VEE and either MERS-CoV nucleocapsid or HKU5-5 CoV spike was packaged using helper

352 RNAs encoding VEE structural proteins as described previously (49). Six-week-old female
353 BALB/c mice were primed and boosted with VRPs to generate mouse anti-sera towards either
354 MERS-CoV nucleocapsid or HKU5-5 CoV spike. Following vaccination, mouse polyclonal sera
355 were collected as described previously (50). For Western blotting, lysates from infected cells
356 were prepared as described before in detail (51), and these blots were probed using the
357 indicated mouse polyclonal sera. MERS-CoV N sera was able to detect to HKU5-CoV N protein
358 via Western blot as previously described (7).

359 **Virus neutralization assays.** Plaque reduction neutralization titer assays were preformed with
360 previously characterized antibodies against MERS-CoV as previously described (23, 24).
361 Briefly, antibodies were serially diluted 6- to 8-fold and incubated with 80 PFU of the indicated
362 viruses for 1 h at 37°C. The virus and antibodies were then added to a 6-well plate of confluent
363 Vero cells in triplicate. After a 1 hour incubation at 37°C, cells were overlaid with 3 ml of 0.8%
364 agarose in OptiMEM supplemented with 0.5 µg/ml trypsin and anti/anti. Plates were incubated
365 for 2 or 3 days at 37°C for MERS-CoV or MERS-Uganda, respectively, and were then stained
366 with neutral red for 3 h, and plaques were counted. The percentage of plaque reduction was
367 calculated as $[1 - (\text{no. of plaques with antibody}/\text{no. of plaques without antibody})] \times 100$.

368 **Biosafety and biosecurity.** Reported studies were initiated after the University of North
369 Carolina Institutional Biosafety Committee approved the experimental protocols. All work for
370 these studies was performed with approved standard operating procedures (SOPs) and safety
371 conditions for MERS-CoV and other related CoVs. Our institutional CoV BSL3 facilities have
372 been designed to conform to the safety requirements recommended in Biosafety in
373 Microbiological and Biomedical Laboratories (BMBL), the U.S. Department of Health and
374 Human Services, the Public Health Service, the Centers for Disease Control (CDC) and the
375 National Institutes of Health (NIH). Laboratory safety plans have been submitted, and the facility
376 has been approved for use by the UNC Department of Environmental Health and Safety (EHS)
377 and the CDC.

378 **Acknowledgments**

379 The research described in this manuscript was supported by grants from the United States
380 Agency for International Development (USAID) Emerging Pandemic Threats PREDICT project
381 (cooperative agreement number GHN-A-OO-09-00010-00) and from the National Institute of
382 Allergy & Infectious Disease and the National Institute of Aging of the NIH under awards
383 U19AI109761 and AI110700 to RSB; R00AG049092 to VDM. HAE cultures were supported by
384 the National Institute of Diabetes and Digestive and Kidney Disease under award NIH
385 DK065988 to SHR. Trypsin resistant Vero cells were kindly provided by Linda Saif. Monoclonal
386 antibody LCA60 was provided by Davide Corti and Humabs Biomed SA. The content described
387 herein is solely the responsibility of the authors and does not necessarily represent the official
388 views of the NIH.

389
390

391 **References**

392

393 1. **Reperant LA, Osterhaus A.** 2017. AIDS, Avian flu, SARS, MERS, Ebola, Zika... what
394 next? *Vaccine* **35**:4470-4474.

395 2. **Perlman S, Netland J.** 2009. Coronaviruses post-SARS: update on replication and
396 pathogenesis. *Nat Rev Microbiol* **7**:439-450.

397 3. **Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Zambrana-
398 Torrelio C, Lipkin WI, Daszak P.** 2012. Prediction and prevention of the next pandemic
399 zoonosis. *Lancet* **380**:1956-1965.

400 4. **Cunningham AA, Daszak P, Wood JLN.** 2017. One Health, emerging infectious
401 diseases and wildlife: two decades of progress? *Philos Trans R Soc Lond B Biol Sci*
402 **372**.

403 5. **Chafekar A, Fielding BC.** 2018. MERS-CoV: Understanding the Latest Human
404 Coronavirus Threat. *Viruses* **10**.

405 6. **Agnihothram S, Yount BL, Jr., Donaldson EF, Huynh J, Menachery VD, Gralinski
406 LE, Graham RL, Becker MM, Tomar S, Scobey TD, Osswald HL, Whitmore A, Gopal
407 R, Ghosh AK, Mesecar A, Zambon M, Heise M, Denison MR, Baric RS.** 2014. A
408 mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5
409 variant. *MBio* **5**:e00047-00014.

410 7. **Agnihothram S, Gopal R, Yount BL, Jr., Donaldson EF, Menachery VD, Graham
411 RL, Scobey TD, Gralinski LE, Denison MR, Zambon M, Baric RS.** 2014. Evaluation of
412 serologic and antigenic relationships between middle eastern respiratory syndrome
413 coronavirus and other coronaviruses to develop vaccine platforms for the rapid response
414 to emerging coronaviruses. *J Infect Dis* **209**:995-1006.

415 8. **Johnson BA, Graham RL, Menachery VD.** 2018. Viral metagenomics, protein
416 structure, and reverse genetics: Key strategies for investigating coronaviruses. *Virology*
417 **517**:30-37.

418 9. **Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ,
419 Corti D, Johnston RE, Baric RS, Denison MR.** 2008. Synthetic recombinant bat
420 SARS-like coronavirus is infectious in cultured cells and in mice. *Proc Natl Acad Sci U S
421 A* **105**:19944-19949.

422 10. **Rockx B, Baas T, Zornetzer GA, Haagmans B, Sheahan T, Frieman M, Dyer MD,
423 Teal TH, Proll S, van den Brand J, Baric R, Katze MG.** 2009. Early upregulation of
424 acute respiratory distress syndrome-associated cytokines promotes lethal disease in an
425 aged-mouse model of severe acute respiratory syndrome coronavirus infection. *J Virol*
426 **83**:7062-7074.

427 11. **Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, Baric R.** 2008.
428 Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range
429 expansion in human airway epithelium. *J Virol* **82**:2274-2285.

430 12. **Sheahan T, Rockx B, Donaldson E, Corti D, Baric R.** 2008. Pathways of cross-
431 species transmission of synthetically reconstructed zoonotic severe acute respiratory
432 syndrome coronavirus. *J Virol* **82**:8721-8732.

433 13. **Menachery VD, Yount BL, Jr., Sims AC, Debbink K, Agnihothram SS, Gralinski LE,
434 Graham RL, Scobey T, Plante JA, Royal SR, Swanstrom J, Sheahan TP, Pickles
435 RJ, Corti D, Randell SH, Lanzavecchia A, Marasco WA, Baric RS.** 2016. SARS-like
436 WIV1-CoV poised for human emergence. *Proc Natl Acad Sci U S A* **113**:3048-3053.

437 14. **Menachery VD, Yount BL, Jr., Debbink K, Agnihothram S, Gralinski LE, Plante JA,
438 Graham RL, Scobey T, Ge XY, Donaldson EF, Randell SH, Lanzavecchia A,
439 Marasco WA, Shi ZL, Baric RS.** 2015. A SARS-like cluster of circulating bat
440 coronaviruses shows potential for human emergence. *Nat Med* **21**:1508-1513.

441 15. **Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist**
442 **SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis D, Clarke MO,**
443 **Mackman RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R,**
444 **Denison MR, Baric RS.** 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic
445 and zoonotic coronaviruses. *Sci Transl Med* **9**.

446 16. **Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R,**
447 **Navarrete-Macias I, Liang E, Wells H, Hicks A, Petrosov A, Byarugaba DK, Debbink**
448 **K, Dinnon KH, Scobey T, Randell SH, Yount BL, Cranfield M, Johnson CK, Baric**
449 **RS, Lipkin WI, Mazet JA.** 2017. Further Evidence for Bats as the Evolutionary Source
450 of Middle East Respiratory Syndrome Coronavirus. *MBio* **8**.

451 17. **Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD,**
452 **Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS.** 2013. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory
453 syndrome coronavirus. *Proc Natl Acad Sci U S A* **110**:16157-16162.

454 18. **Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, Jr., Gallagher T.** 2016. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands
455 virus tropism. *Proc Natl Acad Sci U S A* **113**:12262-12267.

456 19. **de Wilde AH, Raj VS, Oudshoorn D, Bestebroer TM, van Nieuwkoop S, Limpens**
457 **RW, Posthuma CC, van der Meer Y, Barcena M, Haagmans BL, Snijder EJ, van den**
458 **Hoogen BG.** 2013. MERS-coronavirus replication induces severe in vitro cytopathology
459 and is strongly inhibited by cyclosporin A or interferon-alpha treatment. *J Gen Virol*
460 **94**:1749-1760.

461 20. **B SB, Orenstein JM, Fox LM, Randell SH, Rowley AH, Baker SC.** 2009. Human
462 airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a
463 model. *J Virol Methods* **156**:19-26.

464 21. **Tekes G, Thiel HJ.** 2016. Feline Coronaviruses: Pathogenesis of Feline Infectious
465 Peritonitis. *Adv Virus Res* **96**:193-218.

466 22. **Song D, Park B.** 2012. Porcine epidemic diarrhoea virus: a comprehensive review of
467 molecular epidemiology, diagnosis, and vaccines. *Virus Genes* **44**:167-175.

468 23. **Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, Fernandez-**
469 **Rodriguez B, Foglierini M, Agatic G, Vanzetta F, Gopal R, Langrish CJ, Barrett NA,**
470 **Sallusto F, Baric RS, Varani L, Zambon M, Perlman S, Lanzavecchia A.** 2015. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against
471 MERS coronavirus. *Proc Natl Acad Sci U S A* **112**:10473-10478.

472 24. **Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell**
473 **CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison**
474 **MR, Chappell JD, Graham BS, Ward AB, McLellan JS.** 2017. Immunogenicity and
475 structures of a rationally designed prefusion MERS-CoV spike antigen. *Proc Natl Acad*
476 *Sci U S A* **114**:E7348-E7357.

477 25. **Zheng Y, Shang J, Yang Y, Liu C, Wan Y, Geng Q, Wang M, Baric R, Li F.** 2018. Lysosomal Proteases Are a Determinant of Coronavirus Tropism. *J Virol* **92**.

478 26. **Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F.** 2014. Receptor
479 usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human
480 transmission of MERS coronavirus. *Proc Natl Acad Sci U S A* **111**:12516-12521.

481 27. **Graham RL, Baric RS.** 2010. Recombination, reservoirs, and the modular spike:
482 mechanisms of coronavirus cross-species transmission. *J Virol* **84**:3134-3146.

483 28. **Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W,**
484 **Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang**
485 **LF, Daszak P, Shi ZL.** 2013. Isolation and characterization of a bat SARS-like
486 coronavirus that uses the ACE2 receptor. *Nature* **503**:535-538.

487 490

491 29. **Luo CM, Wang N, Yang XL, Liu HZ, Zhang W, Li B, Hu B, Peng C, Geng QB, Zhu**
492 **GJ, Li F, Shi ZL.** 2018. Discovery of Novel Bat Coronaviruses in South China That Use
493 the Same Receptor as Middle East Respiratory Syndrome Coronavirus. *J Virol* **92**.

494 30. **Klenk HD, Rott R, Orlich M, Blodorn J.** 1975. Activation of influenza A viruses by
495 trypsin treatment. *Virology* **68**:426-439.

496 31. **Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J.** 2015. Molecular
497 pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin
498 cleavage site motif. *Rev Med Virol* **25**:406-430.

499 32. **Clark SM, Roth JR, Clark ML, Barnett BB, Spendlove RS.** 1981. Trypsin
500 enhancement of rotavirus infectivity: mechanism of enhancement. *J Virol* **39**:816-822.

501 33. **Rovainen M, Hovi T.** 1987. Intestinal trypsin can significantly modify antigenic
502 properties of polioviruses: implications for the use of inactivated poliovirus vaccine. *J*
503 *Virol* **61**:3749-3753.

504 34. **Hu H, Jung K, Vlasova AN, Chepnceno J, Lu Z, Wang Q, Saif LJ.** 2015. Isolation and
505 characterization of porcine deltacoronavirus from pigs with diarrhea in the United States.
506 *J Clin Microbiol* **53**:1537-1548.

507 35. **Wicht O, Li W, Willems L, Meuleman TJ, Wubbolts RW, van Kuppeveld FJ, Rottier**
508 **PJ, Bosch BJ.** 2014. Proteolytic activation of the porcine epidemic diarrhea coronavirus
509 spike fusion protein by trypsin in cell culture. *J Virol* **88**:7952-7961.

510 36. **Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani**
511 **S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX,**
512 **Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo**
513 **Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y,**
514 **Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY.** 2018. Fatal swine acute diarrhoea
515 syndrome caused by an HKU2-related coronavirus of bat origin. *Nature* **556**:255-258.

516 37. **Li K, Wohlford-Lenane CL, Channappanavar R, Park JE, Earnest JT, Bair TB, Bates**
517 **AM, Brogden KA, Flaherty HA, Gallagher T, Meyerholz DK, Perlman S, McCray PB,**
518 **Jr.** 2017. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4
519 knockin mice. *Proc Natl Acad Sci U S A* **114**:E3119-e3128.

520 38. **Zeng LP, Gao YT, Ge XY, Zhang Q, Peng C, Yang XL, Tan B, Chen J, Chmura AA,**
521 **Daszak P, Shi ZL.** 2016. Bat Severe Acute Respiratory Syndrome-Like Coronavirus
522 WIV1 Encodes an Extra Accessory Protein, ORFX, Involved in Modulation of the Host
523 Immune Response. *J Virol* **90**:6573-6582.

524 39. **Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HH, Poon VK, Wen L, Wong BH, Zhao X,**
525 **Chiu MC, Yang D, Wang Y, Au-Yeung RKH, Chan IH, Sun S, Chan JF, To KK,**
526 **Memish ZA, Corman VM, Drosten C, Hung IF, Zhou Y, Leung SY, Yuen KY.** 2017.
527 Human intestinal tract serves as an alternative infection route for Middle East respiratory
528 syndrome coronavirus. *Sci Adv* **3**:eaao4966.

529 40. **Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng**
530 **J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S.** 2004. Organ distribution of
531 severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in
532 SARS patients: implications for pathogenesis and virus transmission pathways. *J Pathol*
533 **203**:622-630.

534 41. **Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Stollar S, Janies D, Hadya N,**
535 **Tang Y, Ghedin E, Saif L.** 2007. Complete genomic sequences, a key residue in the
536 spike protein and deletions in nonstructural protein 3b of US strains of the virulent and
537 attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory
538 coronavirus. *Virology* **358**:424-435.

539 42. **Gallagher TM, Buchmeier MJ, Perlman S.** 1992. Cell receptor-independent infection
540 by a neurotropic murine coronavirus. *Virology* **191**:517-522.

541 43. **Li W, Hulswit RJJ, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici**
542 **MA, van Dieren B, Lang Y, van Lent JWM, Paulson JC, de Haan CAM, de Groot RJ,**
543 **van Kuppeveld FJM, Haagmans BL, Bosch BJ.** 2017. Identification of sialic acid-
544 binding function for the Middle East respiratory syndrome coronavirus spike
545 glycoprotein. *Proc Natl Acad Sci U S A* **114**:E8508-E8517.

546 44. **Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R,**
547 **Navarrete-Macias I, Liang E, Wells H, Hicks A, Petrosov A, Byarugaba DK, Debbink**
548 **K, Dinnon KH, Scobey T, Randell SH, Yount BL, Cranfield M, Johnson CK, Baric**
549 **RS, Lipkin WI, Mazet JAK.** 2017. Further Evidence for Bats as the Evolutionary Source
550 of Middle East Respiratory Syndrome Coronavirus. *Mbio* **8**.

551 45. **Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schafer A, Matzke MM, Webb-**
552 **Robertson BJ, Chang J, Luna ML, Long CE, Shukla AK, Bankhead AR, 3rd, Burkett**
553 **SE, Zornetzer G, Tseng CT, Metz TO, Pickles R, McWeeney S, Smith RD, Katze MG,**
554 **Waters KM, Baric RS.** 2013. Release of severe acute respiratory syndrome coronavirus
555 nuclear import block enhances host transcription in human lung cells. *J Virol* **87**:3885-
556 3902.

557 46. **Sims AC, Burkett SE, Yount B, Pickles RJ.** 2008. SARS-CoV replication and
558 pathogenesis in an in vitro model of the human conducting airway epithelium. *Virus Res*
559 **133**:33-44.

560 47. **Almazan F, DeDiego ML, Sola I, Zuniga S, Nieto-Torres JL, Marquez-Jurado S,**
561 **Andres G, Enjuanes L.** 2013. Engineering a replication-competent, propagation-
562 defective Middle East respiratory syndrome coronavirus as a vaccine candidate. *MBio*
563 **4**:e00650-00613.

564 48. **Agnihothram S, Menachery VD, Yount BL, Lindesmith LC, Scobey T, Whitmore A,**
565 **Schafer A, Heise MT, Baric RS.** 2018. Development of a Broadly Accessible
566 Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. *Journal of*
567 **Virology** **92**.

568 49. **Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, Funkhouser**
569 **W, Gralinski L, Totura A, Heise M, Baric RS.** 2011. A double-inactivated severe acute
570 respiratory syndrome coronavirus vaccine provides incomplete protection in mice and
571 induces increased eosinophilic proinflammatory pulmonary response upon challenge. *J*
572 *Virol* **85**:12201-12215.

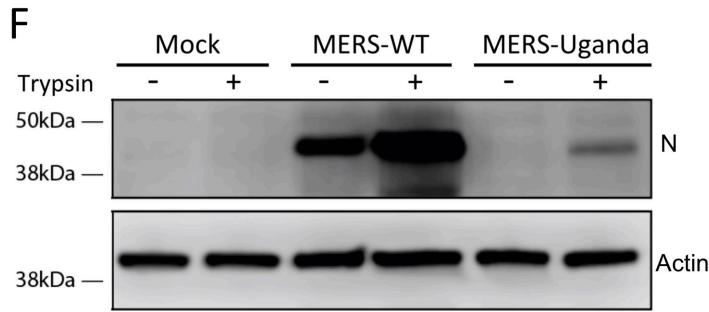
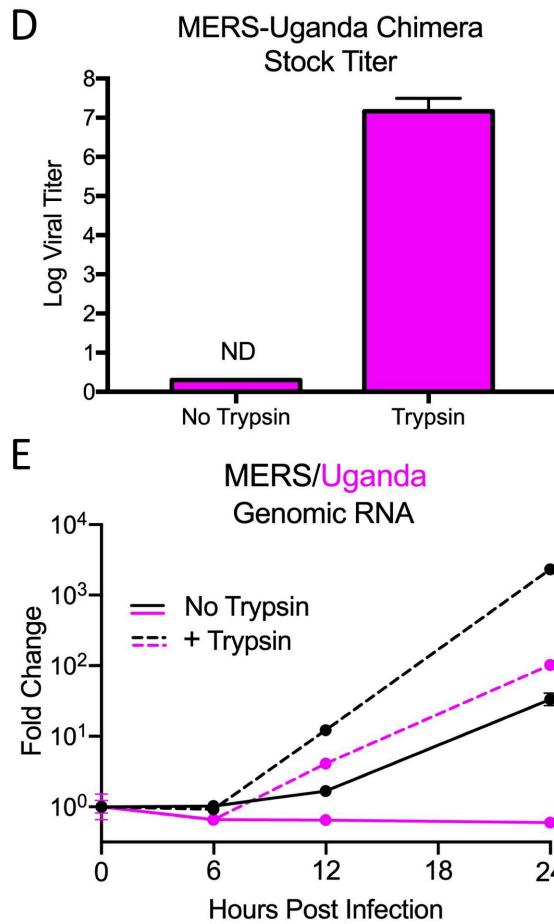
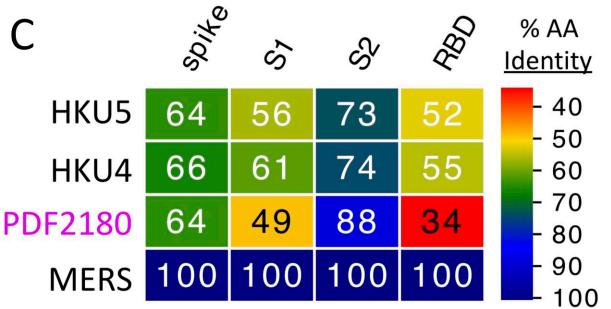
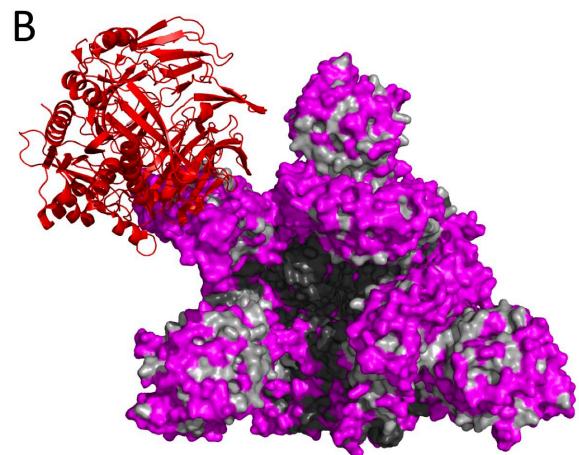
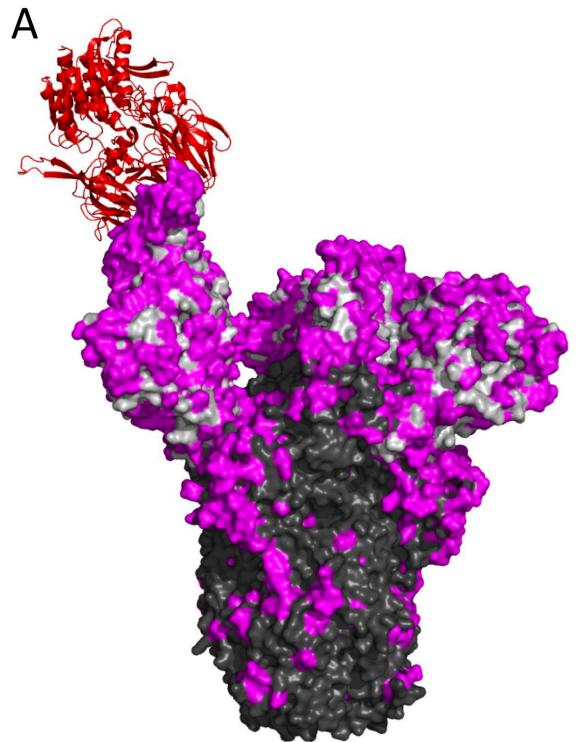
573 50. **Sheahan T, Whitmore A, Long K, Ferris M, Rockx B, Funkhouser W, Donaldson E,**
574 **Gralinski L, Collier M, Heise M, Davis N, Johnston R, Baric RS.** 2011. Successful
575 vaccination strategies that protect aged mice from lethal challenge from influenza virus
576 and heterologous severe acute respiratory syndrome coronavirus. *J Virol* **85**:217-230.

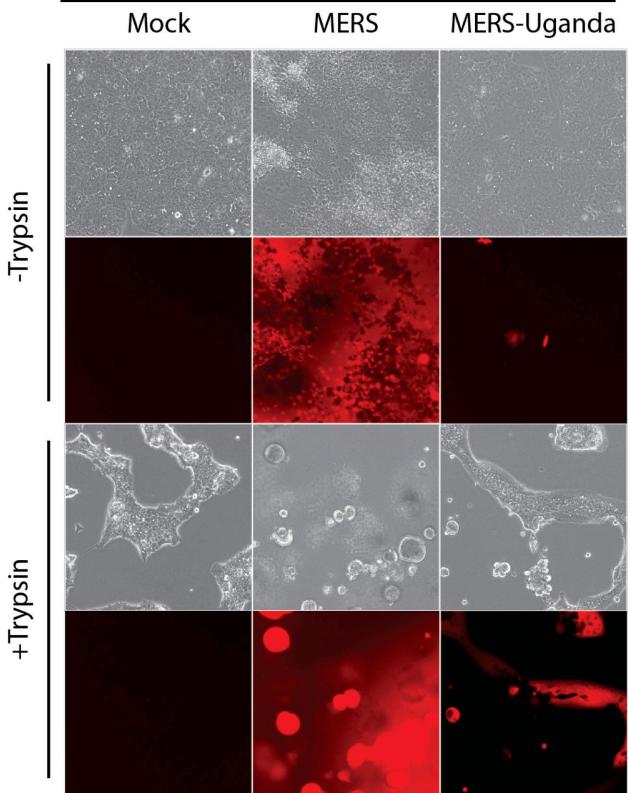
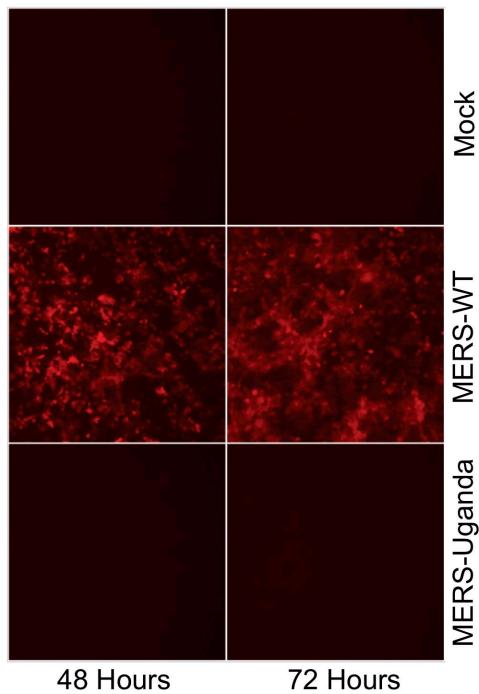
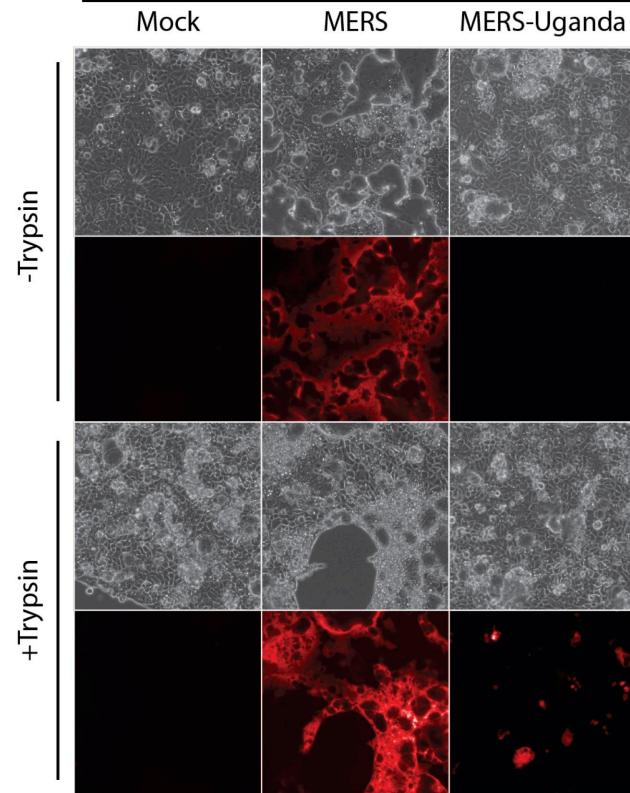
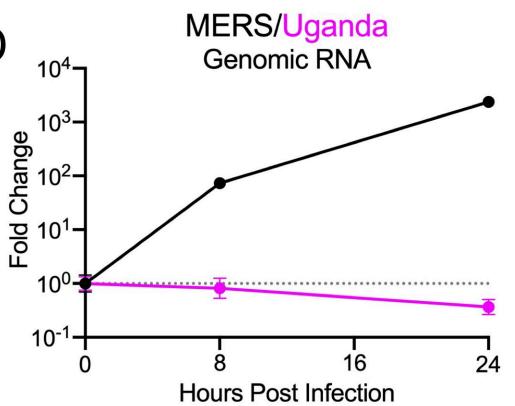
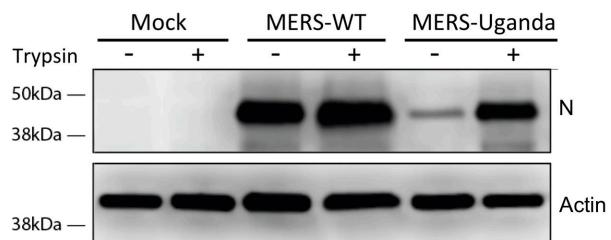
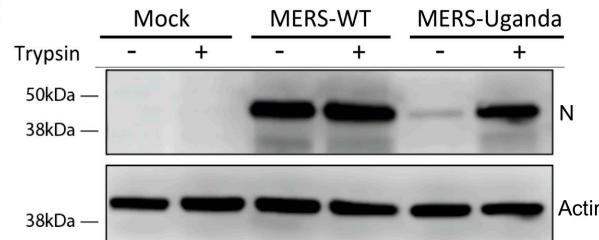
577 51. **Huynh J, Li S, Yount B, Smith A, Sturges L, Olsen JC, Nagel J, Johnson JB,**
578 **Agnihothram S, Gates JE, Frieman MB, Baric RS, Donaldson EF.** 2012. Evidence
579 supporting a zoonotic origin of human coronavirus strain NL63. *J Virol* **86**:12816-12825.

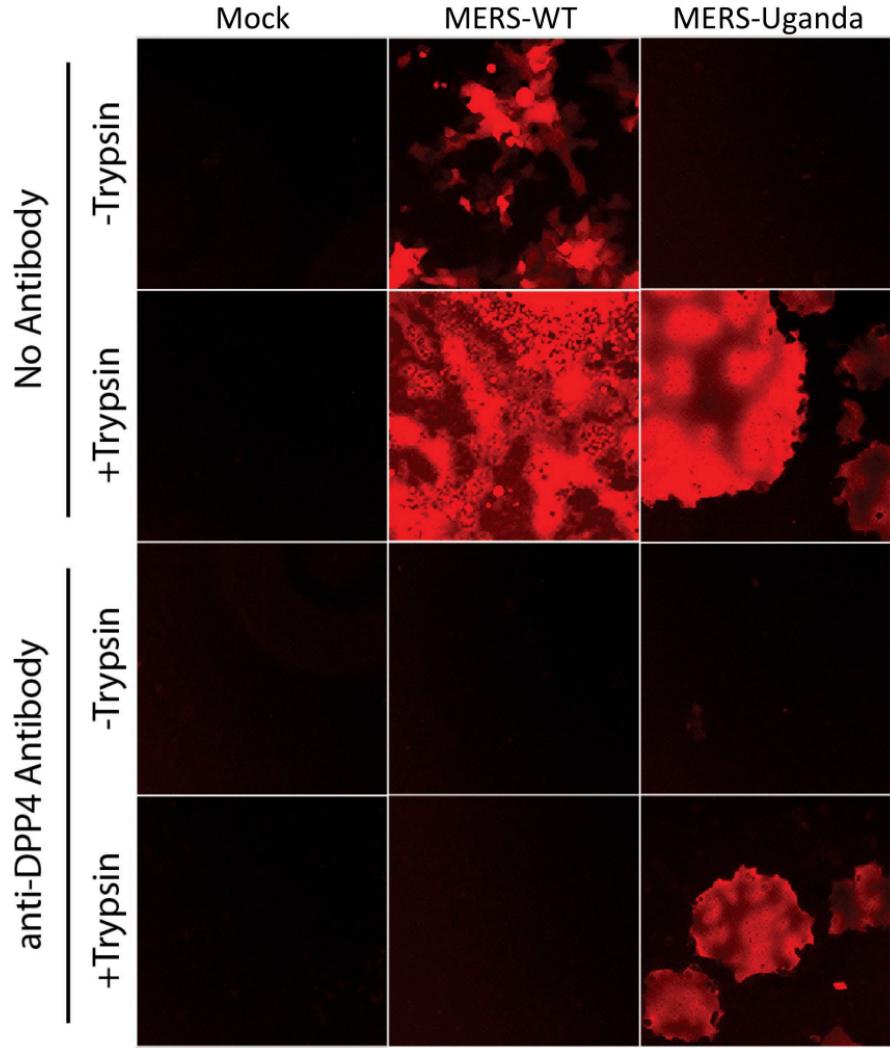
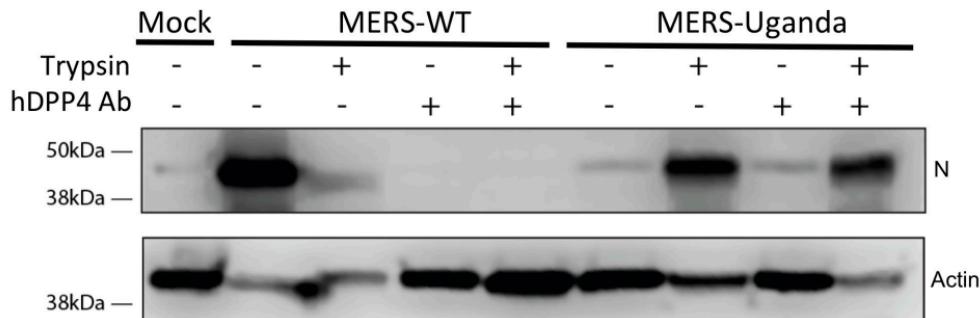
580

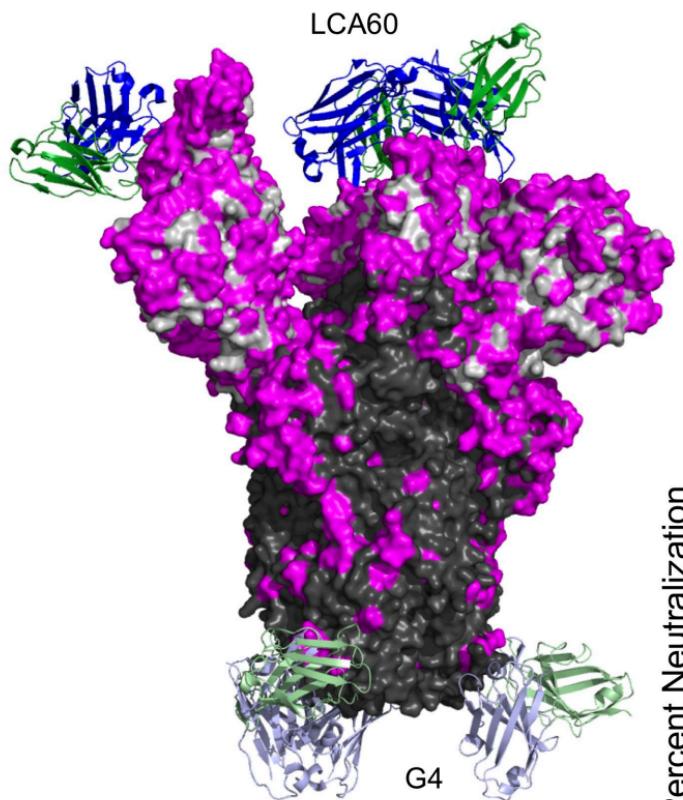
582 **Figure Legends**

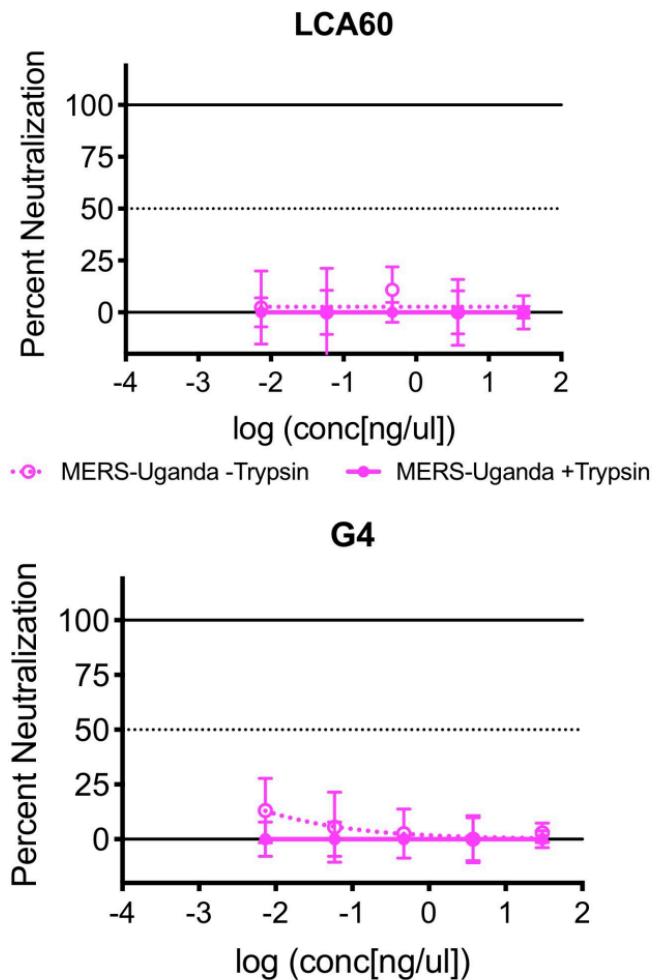
583 **Figure 1. Exogenous trypsin rescues MERS-Uganda spike replication.** A & B) Structure of
584 the MERS-CoV spike trimer in complex with the receptor human DPP4 (red) from the A) side
585 and B) top. Consensus amino acids are outlined for the S1 (grey) and S2 (black) domains, with
586 PDF-2180 differences noted in magenta. C) Spike protein sequences of the indicated viruses
587 were aligned according to the bounds of total spike, S1, S2, and receptor-binding domain
588 (RBD). Sequence identities were extracted from the alignments, and a heatmap of sequence
589 identity was constructed using EvolView (www.evolgenius.info/evolview) with MERS-CoV as the
590 reference sequence. D) MERS-Uganda chimera stocks were grown in the presence or absence
591 of trypsin and were quantitated by plaque assay with a trypsin-containing overlay (n = 2). E)
592 Expression (qRT-PCR) of MERS-CoV (black) and MERS-Uganda (magenta) genomic RNA
593 following infection of Vero cells in the presence or absence of trypsin (n=3 for each time point).
594 F) Protein expression of MERS-CoV nucleocapsid (N) and actin 18 hours post-infection of Vero
595 in the presence or absence of trypsin in the media. G) Phase-contrast and RFP expression
596 microscopy in Vero cells infected with MERS-CoV, MERS-Uganda spike chimera, or mock in
597 the presence or absence of trypsin.






598 **Figure 2. MERS-Uganda spike chimera replicates in human cells.** A & B) Huh7 cells were
599 infected with MERS-CoV or MERS-Uganda chimeric viruses, showing A) microscopy images of
600 cell monolayer and RFP expression with and without trypsin treatment and B) N protein
601 expression following infection of Huh7 cells in the presence or absence of trypsin. C & D)
602 Primary HAE cultures were infected with MERS-CoV or MERS-Uganda chimera, showing C)
603 RFP expression and D) genomic viral RNA following infection (n = 3 for 8, 24 HPI). E & F) Caco-
604 2 cells were infected with MERS-CoV or MERS-Uganda chimeric viruses expressing RFP,
605 showing E) microscopy images of cell monolayer and RFP expression with and without trypsin
606 treatment and F) N protein expression following infection of Caco-2 cells in the presence or
607 absence of trypsin.

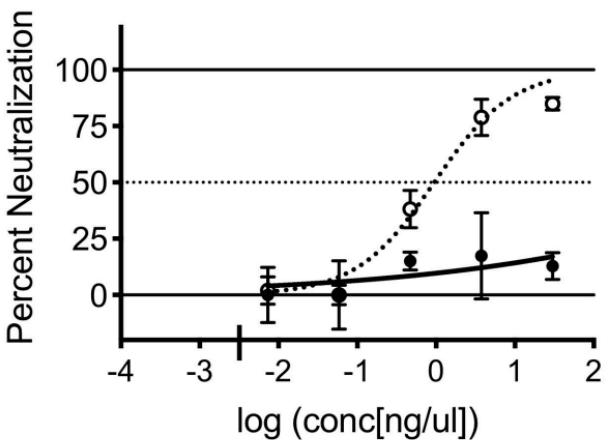
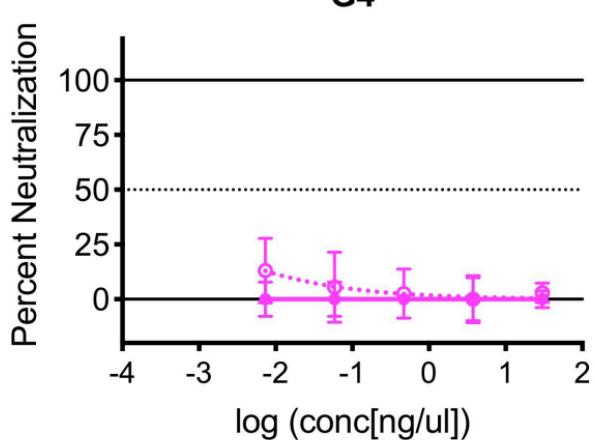






608 **Figure 3. MERS-Uganda spike does not utilize DPP4 for infection.** A & B) Vero cells were
609 infected with MERS-CoV or MERS-Uganda chimeric virus in the presence or absence of trypsin
610 and a blocking antibody against human DPP4. A) Fluorescent microscopy showing RFP
611 expression 24 hours post-infection for each treatment group. B) Western blot of N protein and
612 actin 24 hours post-infection.

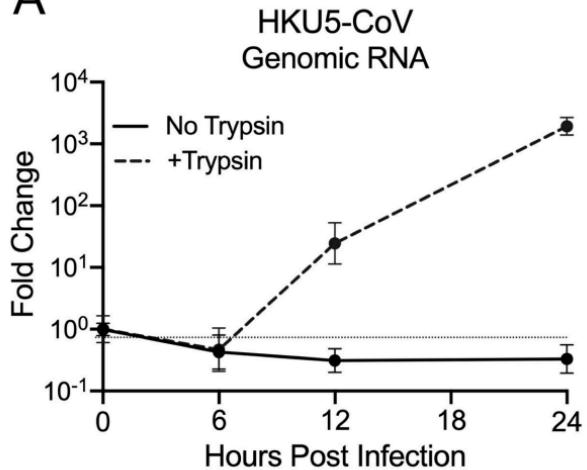
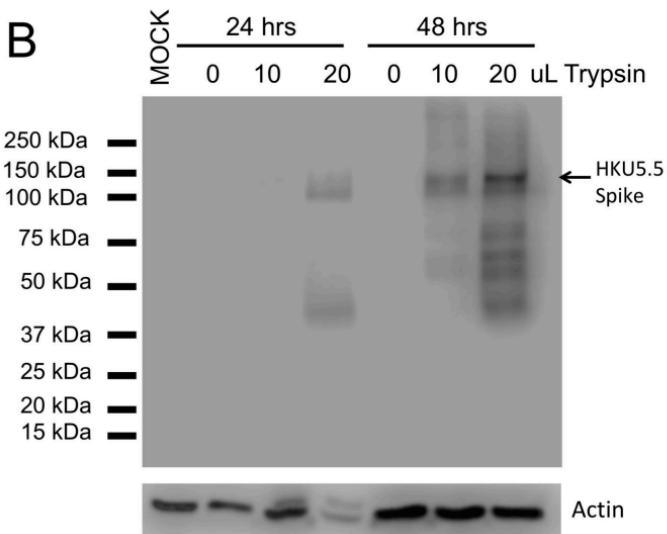
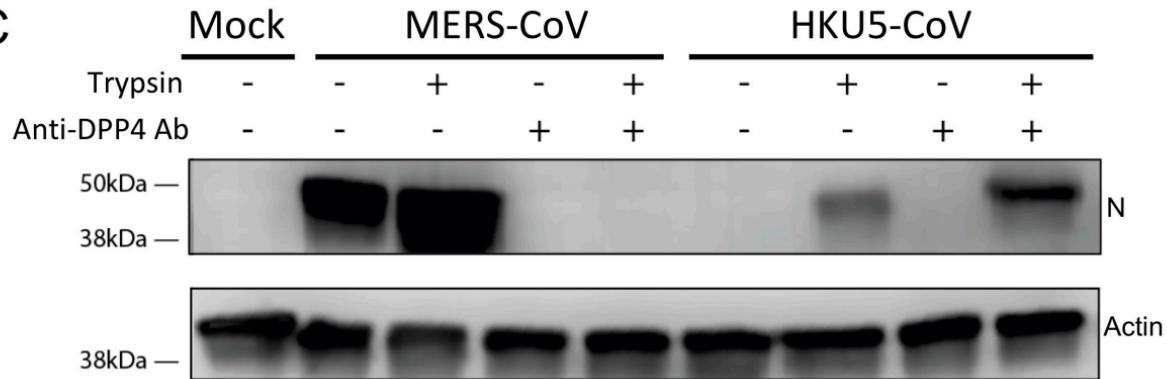


613 **Figure 4. Antibodies against MERS-CoV fail to neutralize MERS-Uganda chimera.** A)
614 Structure of the MERS-CoV spike trimer with therapeutic antibody LCA60 bound adjacent to the
615 receptor-binding domain and the antibody G4 bound to the S2 portion. Consensus amino acids
616 are outlined for the S1 (grey) and S2 (black) domains, with PDF-2180 differences noted in
617 magenta. B & C) Plaque neutralization curves for B) LCA60 and C) G4 with (solid) and without
618 (dotted) trypsin treatment for MERS-CoV (black) and MERS-Uganda chimera (magenta) (n=3
619 per concentration).

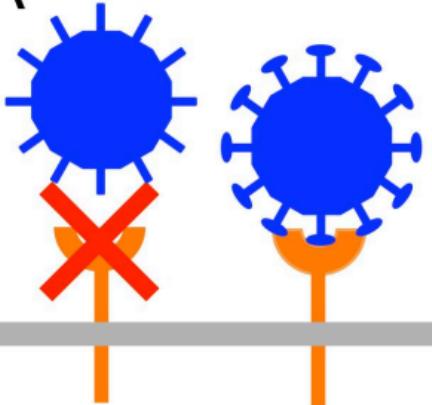



620 **Figure 5. Exogenous trypsin rescues replication of HKU5-CoV.** Vero cells were infected
621 with full-length HKU5-CoV in the presence or absence of trypsin. A) Expression (qRT-PCR) of
622 HKU5-CoV viral genome in the presence or absence of trypsin (n=3). B) Immunoblotting of
623 HKU5 spike protein and cellular actin 24 and 48 hours post-infection with varying concentrations
624 of trypsin in the media. C) Immunoblotting for MERS N protein and cellular actin following
625 infection in the presence or absence of trypsin and human DPP4 antibody.

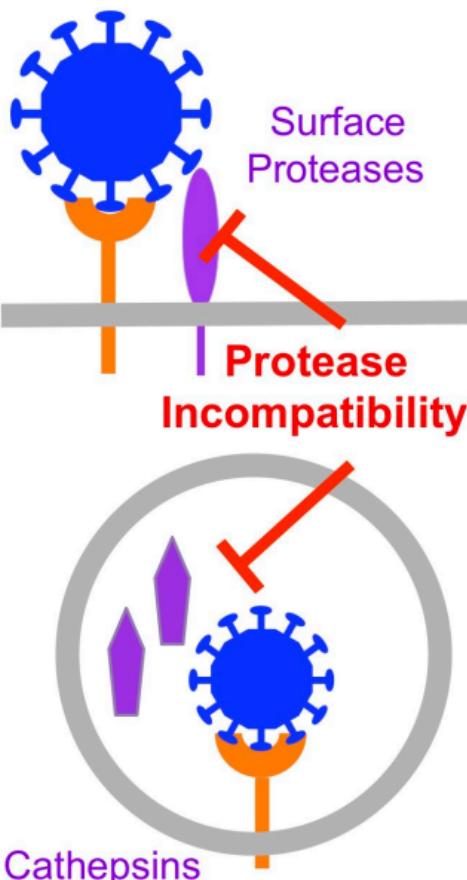
626 **Figure 6. Barriers to zoonotic coronavirus emergence.** Both receptor binding and protease
627 activation are key correlates that govern zoonotic coronavirus emergence. A) A lack of
628 receptor binding with zoonotic CoVs precludes the infection of new host cells. B) Despite
629 receptor binding, the absence of compatible host proteases for spike cleavage restricts infection
630 in new hosts. C) The addition of exogenous protease overcomes the host protease barriers and
631 may or may not require receptor binding.




A**Huh7****C****Primary HAE****E****Caco-2****D****E****F**

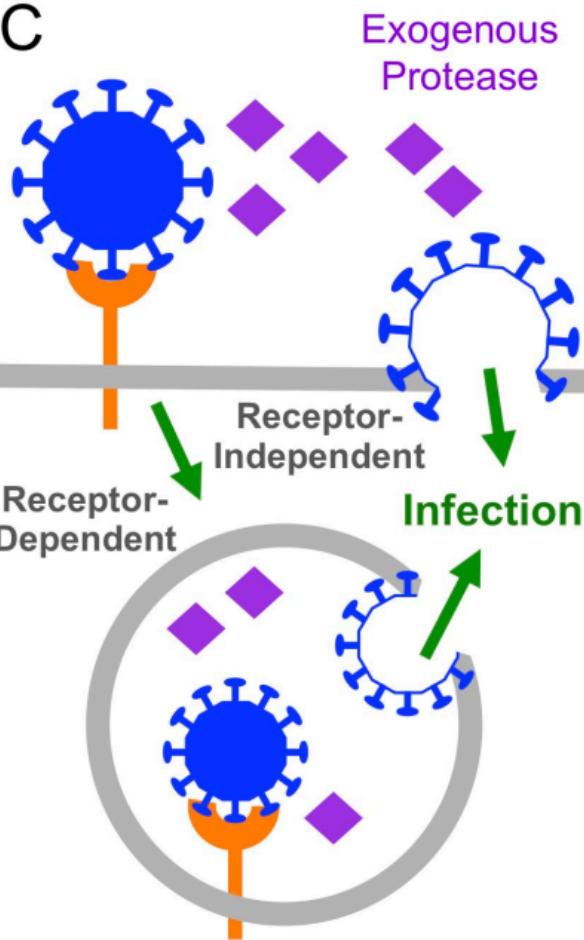

A**B**

A**B****C**


Percent Neutralization

 $\log (\text{conc[ng/ul]})$ **G4****E****G4**

A**B****C**


A

Receptor Incompatibility

B

Surface
Proteases

Protease
Incompatibility

C

Exogenous
Protease

Receptor-
Independent

Receptor-
Dependent

Infection