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Abstract

In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically
switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence. Inter-
mittent emissions create multiple localizations belonging to the same molecule, a phenomenon known as
blinking. Blinking distorts SMLM images and confound quantitative interpretations by forming artificial
nanoclusters, which are often interpreted as true biological assemblies. Multiple methods have been de-
veloped to eliminate these artifacts, but they either require additional experiments, arbitrary thresholds,
or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction
(DDC), to eliminate fluorophore blinking in superresolution imaging without any additional calibrations.
The approach relies on the finding that the true pairwise distance distribution of different fluorophores
in an SMLM image can be naturally obtained from the imaging sequence by using the distances between
localizations separated by a time much longer than the average fluorescence survival time. We show that
using the true pairwise distribution we can define and then maximize the likelihood of obtaining a partic-
ular set of localizations without blinking and generate an accurate reconstruction of the true underlying
cellular structure. Using both simulated and experimental data, we show that DDC surpasses all previous
existing blinking correction methodologies, resulting in drastic improvements in obtaining the closest esti-
mate of the true spatial organization and number of fluorescent emitters. The simplicity and robustness of
DDC will enable its wide application in SMLM imaging, providing the most accurate reconstruction and
quantification of SMLM images to date.
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Introduction

In recent years the development of superresolution fluorescence microscopy has enabled the probing of
macromolecular assemblies in cells with nanometer resolutions. Amongst different superresolution imaging
techniques, single-molecule localization superresolution microscopy (SMLM) has gained wide popularity
due to its relatively simple implementation, which is based on post-imaging analysis of single-molecule
detection.

SMLM reconstructs a superresolution image by stochastic photo-activation of individual fluorophores and
subsequent accurate post-imaging localization determination (1-3). One major advantage of SMLM is that
due to its single-molecule detection nature, one can determine the number of molecules in a macromolec-
ular assembly quantitatively, allowing the investigation of both the molecular composition and spatial
arrangement at a level unmatched by other ensemble imaging-based superresolution imaging techniques.
In the past few years SMLM has led to novel discoveries and quantitative characterizations of numerous
biological assemblies (4, 5) such as those composed of RNA polymerase (6-8), membrane proteins (9), bac-
terial divisome proteins (10-13), synaptic proteins (14, 15), the cytoskeleton (16), DNA binding proteins
(17, 18), chromosomal DNA (19), viral proteins (20), and more.

One critical aspect in realizing the full quantitative potential of SMLM relies on the careful handling of
the blinking behavior of fluorophores. A photo-switchable fluorophore can switch multiple times between
activated and dark states before it is permanently photobleached, leading to repeated localizations from
the same molecule. These repeated localizations are often mis-identified as multiple molecules, resulting
in the appearance of false nanoclusters and counting errors in the number of molecules and stoichiometry
of complexes (Fig. 1A) (21-25).

Multiple groups have developed different methods to correct for blinking effects in SMLM. These methods
can be coarsely divided into two categories depending on whether a method provides a blinking-corrected
image at the single molecule level or a statistical analysis summarizing the properties of the image at the
ensemble level. Methods in the first category commonly use a variety of threshold values both in time and
space to group localizations that likely come from the same molecule (1, 2, 21, 23, 25, 26). The advantage
of using thresholds is that it results in a blinking-corrected image, allowing one to observe the spatial distri-
bution of fluorophores in cells and apply other quantitative analyses as needed. The disadvantage is that a
constant threshold value is often insufficient in capturing the stochastic nature of fluorophore blinking and
heterogeneous molecular assemblies. Furthermore, calibration experiments and/or a priori knowledge of
the fluorophore’s photochemical properties are often needed to determine the appropriate threshold values
(21, 23, 25, 27, 28). Statistical analyses such as maximum likelihood or Bayesian approaches have been
developed to take into account the stochastic behavior of blinking to count the number of fluorophores,
but have yet to produce a blinking-corrected superresolution image (29-31). Additionally, many of these
approaches are dependent on specific photokinetic models for the fluorophore, which can be complex and
difficult to determine (27, 28, 32-35).

The second category of methods analyze raw, uncorrected SMLM images using statistical methods to
characterize the mean properties of the organization of molecules at the ensemble level. Pair- or auto-
correlation-based analyses (PCA) have been used extensively within the field (24, 36). The long tail of the
correlation function can often be fit to a specific model to extract quantitative parameters. This class of
methods is prone to model-specific errors, especially if the underlying structures of the molecular assemblies
are heterogeneous and vary throughout the image (37). A recently developed method analyzes the clus-
tering of a protein with experimentally varied labeling densities, which was robust in determining whether
membrane proteins form nanoclusters and was insensitive to many imaging artifacts (22). A post-imaging
computational analysis capitalizing on the same principle has also been developed (38). Although these
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methods are powerful in determining whether a protein of interest forms clusters or not, they provide a
quantification at the ensemble level but not a blinking-corrected image, which limits their use in analyzing

heterogeneously distributed molecular assemblies and their spatial arrangement in cells.

Here, we present an algorithm, termed Distance Distribution Correction (DDC), to enable robust recon-
struction and quantification of blinking-free SMLM superresolution images without the need of setting
empirical thresholds or performing experiments to calibrate a fluorophore’s blinking kinetics. We first
validate our approach using a diverse set of simulated and experimental data and compare DDC to other
existing methods. In each situation DDC outperformed the existing methods in obtaining the closest rep-
resentation of the underlying blinking-free image and in determining the accurate number of fluorophores.
We also applied DDC to experimentally collected SMLM images of two orthologs of a scaffolding protein
that is important for the organization of membrane microdomains, A-Kinase Anchoring Protein 79/150
(AKAP79 and AKAP150) (39, 45, 46). Both proteins showed clustered organizations, but with signifi-
cantly reduced numbers and sizes of clusters when compared to the commonly used thresholding method,
changing the quantitative properties of membrane microdomains organized by these proteins. Finally, we
discuss critical considerations of how to apply DDC to experiments successfully.

Results

Principle of DDC

DDC is based on the principle that the pairwise distance (Ar) distribution, Py;(Ar|An), of the localiza-
tions separated by a frame difference (An) much larger than the average number of frames a molecule’s
fluorescence lasts (N) approximates the true pairwise distance distribution Pr(Ar). Note that N does
not need to be precisely determined as long as it is in the regime where Py(Ar|An) approaches a steady
state, as we show below. One intuitive way to understand this principle is that, if one collects an imaging
stream that is long enough so that all the localizations in the first and last frames of the stream come
from distinct sets of fluorophores, the pairwise distance distribution between the localizations of the two
frames will then be devoid of blinking and will reflect the true pairwise distance distribution (Pr(Ar)).
A mathematical justification of this principle is provided in the supplemental material with an in-depth
discussion and illustration (Fig. S1).

To demonstrate the principle of DDC, we used simulated SMLM images of randomly distributed fluo-
rophores that followed the photokinetic model shown in Fig. S2A. One representative superresolution
image and the corresponding scatter plot, colored through time, with and without blinking are shown in
Fig. 1A. Apparent clustering was observed in images when blinking was not corrected. Using the un-
corrected images, we computed the pairwise distance distributions at all frame differences An (Fig. 1B).
As shown in Fig. 1C and Fig. S3, at small An there are large peaks at short distances, indicating that
there were repeated localizations from the same fluorophores closely spaced in time and space. When An
is large, the pairwise distance distributions approach a steady state converging upon the true pairwise
distance distribution (Fig. 1C, dotted curve). This behavior supports the principle that when An is large
the pairwise distance distribution represents the true pairwise distance distribution. Using simulations,
we also show that the pairwise distance distributions converge upon the true distributions at large An ir-
respective of the underlying photokinetics or molecular spatial distributions (Fig. S3, Supporting Material).

Next, we used experimentally obtained SMLM images of three molecular assemblies labeled with dif-
ferent fluorophores in E. coli cells, the bacterial transcription elongation factor NusA fused with the
reversibly switching green fluorescent protein Dronpa (40), E. coli RNA Polymerase fused with the
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photoactivatable red fluorescent protein PAmCherry (41), and precursor ribosomal RNAs (pre-rRNA)
labeled with organic fluorophore Alexa647-conjugated DNA probes (42) (Fig. S4, Supporting Mate-
rial). We determined the pairwise distance distribution for each fluorophore and calculated the nor-
malized, summed differences of the cumulative distributions for each An, relative to that of An = 1,
(Z(An) = > |edf (Py(Ar|An)) — cdf (Py(Ar|An = 1))]). As shown in Fig. 1D, in all cases the correspond-
ing normalized Z reach plateaus at large An despite different photokinetics and spatial distributions. The
rate at which each fluorophore reaches the plateau for the normalized Z reflects the photokinetics of the
fluorophore; the longer a fluorophore blinked (such as Alexa647 compared to Dronpa), the longer the time
until Z plateaued. These experimental results further verify the principle of DDC by showing that the
pairwise distance distributions converge upon a steady state distribution as An increases.

It is important to note that the determination of Pr(Ar) is not dependent upon a particular photokinetic
model of the fluorophore nor does it require experimental characterizations of the fluorophore. Pr(Ar)
can be determined solely from the SMLM image stream as long as it is long enough so that a steady state
of P;(Ar|An) can be reached (Fig. 1C, Fig. S3).

Once determined, Pr(Ar) can then be used to calculate the likelihood to have a particular subset of true
localizations (Fig. S5-S9, Supporting Material) using the following equation:

LAB, TYrn) = [ Pr(ariy) x  []  Poi(AriylAng), (1)

i,5€{T} i€{B},je{B,T}

where {B, T} are sets that contain the indices of the localizations that are considered blinks { B} and the
true localizations {7} given the coordinates r and associated frame numbers n obtained from experiment.
The first term on the right of the equation is the probability of observing all distances Ar between every
pair of true localizations (i & j € {T'}). Here the probability distribution Pr(Ar; ;) is the true pairwise
distance distribution. The second term is the probability of observing all distances between pairs of lo-
calizations with at least one being a blink (i € {B} and j € {B,T}). Here, the probability distribution
Pgi(Ar; j|An; ;) gives the probability of observing a distance between a pair of localizations with a frame
difference An, ; if at least one of the localizations is a blink. This probability distribution can be easily
determined once Pr(Ar) is known (Supporting Material). Here, maximizing the likelihood with respect
to {B, T} results in a subset of true localizations where the pairwise distance distributions P;(Ar|An) are
equal to Pr(Ar) (Fig. S6). DDC maximizes the likelihood with respect to the two sets ({B, T}) using a
Markov Chain Monte Carlo (MCMC) (43, 44), to result in the blinking corrected image (Fig. S8 and S9,
Supporting Material).

To validate Equation 1, we show that only when greater than 97% of the final localizations are the true
localizations does the likelihood reach its maximum (Fig. S7). This result was observed regardless of
distinct spatial distribution or photo-kinetics of the fluorophore in six different simulations (Fig. S7).

DDC outperforms existing methods in both image reconstruction and count-
ing the number of molecules

To compare the performance of DDC with commonly used thresholding methods, we simulated four
systems, random distribution (no clustering), small clusters, dense clusters, and filamentous structures
(Fig. 2, Supporting Material). In these simulations the fluorophore had two dark states and followed
the photokinetic model shown in Fig. S2A. The raw images without any blinking-correction for each
simulation are shown in Fig. 2A. We applied DDC, three published thresholding methods (T1 to T3
(21, 23, 25))(Supporting Material, Fig. S10 and S11) and a customized thresholding method (T4, Sup-
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porting Material) to all the images. Method T1 links together localizations using a time threshold that
is determined using an empirical estimation of the photokinetics of the fluorophore (21) (Fig. S10, Sup-
porting Material). Method T2 uses the experimentally quantified photo-kinetics of the fluorophore to set
extreme thresholds so that the possibility of overcounting is extremely low (25). Method T3 uses the
experimentally determined number of blinks per fluorophore to choose thresholds that result in the correct
number of localizations within each image (23)(Fig. S11, Supporting Material). T2 and T3, but not T1,
require additional experiments to characterize fluorophore photo properties. Method T4 is a customized,
ideal thresholding method that scans all possible thresholds and uses the thresholds that result in the
least Image Error for each system (Supporting Material). T4 cannot be applied in real experiments since
the true, blink-free image is unknown, and we included it here to illustrate the best scenario of what a
thresholding method could achieve. To quantitatively compare the ability of these methods in producing a
blinking-corrected image we calculated two metrics, the Image Error and Counting Error ( Fig. 2B, Sup-
porting Material). The Image Error was calculated by first summing the squared difference of each pixel’s
normalized intensity between the blinking-corrected images and the true image, and then dividing this
squared difference by the error between the uncorrected image and the true image (Supporting Material).
The Image Error quantifies the amount of error in determining the distribution of localizations without
being penalized for the error in the number of localizations. The Counting Error was calculated as the
difference between the true number of fluorophores and that determined from the blinking-corrected image
divided by the actual number of fluorophores (Supporting Material).

As shown in Fig. 2B, DDC outperforms all four methods by having the lowest Image Errors and lowest
(or close-to-lowest) Counting Errors. Interestingly, even with the best possible thresholds (T4), DDC still
outperforms T4 in determining the correct spatial distribution and numbers of localizations. This result
suggests that thresholds cannot adequately account for the stochastic nature of blinking. Similar results
are shown in Fig. S12 for a fluorophore with one dark state (Fig. S2B). When counting the number
of localizations is the main concern, T3 performs equally or slightly better than DDC because T3 was
applied with an experimental calibration that provides the average number of blinks per fluorophore (Fig.
2, Supporting Material). Nonetheless, DDC outperforms T3 by having lower Image Errors across all four
different simulation systems, especially for the dense cluster system, where the average Image Error of T3
is seven times that of DDC (Fig. 2B). In conclusion, these results indicate that DDC can be used to obtain
the correct number of true localizations and at the same time produce the most accurate SMLM images.

DDC identifies differential clustering properties of membrane microdomain
proteins AKAP79 and AKAP150

Membrane microdomains formed by membrane proteins have been commonly observed in super-resolution
imaging studies and have raised significant interest in their molecular compositions and associated bio-
logical functions (9). However, concerns remain as of whether the characterizations of these microdomain
protein clusters were impacted by blinking (22). Here we used DDC to investigate a membrane scaf-
folding protein, A-Kinase Anchoring Protein (AKAP), which plays an important role in the formation of
membrane microdomains (39, 45, 46). The two orthologs AKAP79 (human) and AKAP150 (rodent) were
previously shown to form dense membrane clusters, which are likely important for regulating anchored
kinase signaling.

We performed SMLM imaging on AKAP150 in murine pancreatic beta cells using an anti-AKAP150
antibody and analyzed the resulting SMLM data using DDC (Supporting Material). For AKAPT79, we
applied DDC to previously acquired SMLM data from HeLa cells (39). For comparison, we also applied
the T'1 method to both scaffolding proteins as it was used in the previous study of the AKAP79 (21, 39) (Fig.
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S13, S14). We found that the images from DDC still showed significant deviations from what was expected
from simulated random distributions, indicating the presence of clustering. We also observed that DDC
images exhibited dramatically reduced clustering when compared to the uncorrected and T1-corrected
images for both proteins (Fig. 3A). To quantitatively compare these images, we used a tree-clustering
algorithm (Supporting Material) to group localizations in individual clusters and show the corresponding
cumulative distributions in Fig. 3B. The cumulative distributions show that the degrees of clustering
for both proteins are significantly reduced when DDC was applied. Interestingly, AKAP150 shows a
higher degree of clustering when compared to AKAP79, with more than 50% of the localizations within
clusters containing greater than 15 localizations, twice that of AKAP79. Nevertheless, DDC-corrected
AKAP79/150 images show significant deviations from the simulated random distributions, indicating the
presence of clustering (Fig. 3B, compare yellow and purple curves). These results suggest that the
clustering of the AKAP scaffolds are differentially regulated and the context dependence is likely important
in considering the microdomain-specific signaling functions of the clusters.

Considerations in the application of DDC

As with any method, successful application of DDC to SMLM images requires an understanding of critical
factors that could influence the performance of DDC. In this section, we evaluate the impact of localization
density and activation rate on the performance of DDC using simulations. We also demonstrate that the
commonly used practice of ramping the UV activation power in SMLM imaging should be avoided when
applying DDC.

To quantify the influence of localization density on the performance of DDC, we simulated random distri-
butions of fluorophores with different densities ranging from 1000 raw localizations to 15000 localizations
per 1um?. Note that a density greater than 5000 localizations/um? corresponds to a Nyquist resolution of
30 nm or better. As shown in Fig. 4A, the Image Error increases as the localization density increases and
reaches a plateau at ~ .35. We found that the increase in Image Error at high localization densities was
mostly due to the decreased raw Image Error of the uncorrected images at high localization densities (Fig.
S15A). The decreasing improvement of DDC at increasing sampling rate suggests that a high sampling rate
of the underlying structure reduces the image distortion caused by blinking, although very high labeling
densities (> 10,000 localizations/um?) is usually difficult to achieve for protein assemblies.

Next, to quantify the influence of the activation rate, we varied the activation probability of each simulated
fluorophore from .025 to .15 per frame, with 1000 fluorophores randomly distributed throughout a 1m?
area. Fig. 4B shows that the Image Error of DDC steadily increases with the activation rate. This increase
was because at high activation rates, the temporal overlaps of individual fluorophores that were spatially
close to each other increased, which made it difficult to distinguish blinks from different fluorophores. Thus,
as with all the other blinking methodologies, DDC obtains the best images when the activation rate is slow.

Finally, we illustrate one critical requirement for the successful application of DDC, that is, the photoki-
netics (blinking behavior) of the fluorophore, must be kept constant throughout the acquisition of the
SMLM imaging stream (Supporting Material). Note that this requirement is also needed for all other
blinking correction methods (21, 23, 25). One common practice in SMLM imaging is to ramp the acti-
vation power gradually throughout the SMLM imaging sequence in order to speed up the acquisition at
later times when the number of fluorophores in the view field gradually deplete. The assumption is that
activation power only changes the activation rate of a fluorophore (i.e. the probability of a fluorophore
being activated per frame), but not the photokinetics of its blinking behavior (i.e. number of blinks, dark
time and fluorescence-on time). Such a scenario indeed was shown for the photoactivatable fluorescent
protein Dendra (28), but there are also reports showing that the photokinetics of mEos2 and PAmCherry
are sensitive to the activation intensity (27, 28).
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We further investigated the activation dependence of the blinking behaviors of two commonly used fluo-
rophores for SMLM imaging, the photoactivatable fluorescent protein mEos3.2 and the organic fluorophore
Alexa647 with different activation (405nm) intensities. We quantified three parameters, number of blinks,
off-times (7,) and on-times (77, ), and report the mean value for each parameter as a function of activation
intensity (Fig. 4C and Fig. S16.) We define one blink event as one continuous emission event that could
span multiple fluorescence on-frames, the number of blinks as the number of repeated emissions separated
by dark frames from the same fluorophore, T;; as the time between each blink and 75, as the time that
the fluorophore remained fluorescent at each blink-on event (Fig. 4C). We observed that both fluorophores
had a similar dependence of T,, with UV intensity, where T,, initially increased and then decreased at
higher UV intensities (Fig. 4D, top), suggesting that UV also participates in the fluorescence emission
cycle of the fluorophores. Next, we found that 7;;¢ decreased non-linearly as the UV intensity increased
for both fluorophores (Fig. 4D, middle). Finally, we observed that the average number of blinks for the
Alexa647 molecule increased dramatically with UV intensity while that of mEos3.2 remained largely con-
stant (Fig. 4D, bottom), suggesting a differential influence of UV in changing the photokinetics of different
fluorophores. Thus, varying the activation intensity during the acquisition of a SMLM image can indeed
change the blinking characteristics of the fluorophores, which would affect the performance of DDC. These
results suggest that changing the activation intensity should only be done when a quantitative approach
is not needed, or the proper controls have been performed to show that the fluorophore is insensitive to
variations in the activation intensity.

Discussion

In this work we provided a blinking-correction methodology, DDC, that does not depend upon exact
thresholds, additional experiments, or a specific photo-kinetic model of the fluorophore to obtain an ac-
curate reconstruction and quantification of SMLM superresolution images. DDC works by determining a
“ground truth” about the underlying organization of fluorophores, the true pairwise distance distribution.
We verified by simulations and experiments that such a true pairwise distance distribution can be obtained
by taking the distances between localizations that are separated by a frame difference much longer than the
average lifetime of the fluorophore. Using the true pairwise distribution, the likelihood can be calculated,
where upon maximization of the likelihood one obtains an accurate representation of the true underlying
structure.

We compared the performance of DDC with four different thresholding methods using simulated data with
various spatial distributions and on fluorophores with different photokinetic models. DDC outperformed
these methods by providing the “best” blinking-corrected images as well as excellent estimates of the num-
ber of molecules in each image.

We also used DDC to investigate the spatial organizations of two scaffolding proteins AKAP79 and
AKAP150, which have been shown to form microdomain-like structures (39, 46). DDC resulted in signifi-
cantly less degrees of clustering for the two proteins when compared to that resulted from the thresholding
method. Most interestingly, DDC’s ability to count the number of true localizations in SMLM images
allowed quantitative comparison between the clusters formed by the two proteins: AKAP150 was about
2-fold more clustered than AKAP79. Such a difference in clustering could indicate that the two proteins
are differentially regulated in separate cell types and this context dependence could be important for the
signaling functions of the clusters. Further experiments are required to explore these possibilities. An
additional note is that DDC only counts the number of emitters, which does not necessarily equal to the
number of molecules that are labeled using dye-conjugated antibodies (47).
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Finally, we demonstrated that the higher the activation rate and the density of fluorophores, the smaller
the relative improvement of DDC. We also showed that in order to use DDC, the common practice of ramp-
ing the UV should be avoided in certain cases (depending upon the particular fluorophore), as we verified
that mEos3.2 and Alexa647 exhibited activation power-dependent photokinetics. In essence, DDC is best
suited for SMLM imaging when quantitative characterizations of heterogenous cellular structures are re-
quired. The complete package of DDC is available for download at https://github.com/XiaoLabJHU/DDC.
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Figure 1: A. Simulated SMLM superresolution images (top panel) of randomly distributed molecules
without blinking (Truth) and with blinking (No correction). The corresponding scatter plots (colored
through time) are displayed in the bottom panel. B. Schematics of how the pairwise distance distributions
at different frame differences (An) were calculated. C. Pairwise distance distributions at different An (black
to gray curves) converge to the true pairwise distribution (black dots) when An is large. D. Normalized
7 values measured for three commonly used fluorophores and a simulated fluorophore as that used in A.
All Z values reach plateaus at large An, indicating that at large An, the pairwise distance distributions
converge to a steady state. The normalized Z value was calculated by taking the difference between the
cumulative pairwise distance distribution at a An and that at An = 1: (Z(An) = >_ |edf (Py(Ar|An)) —
cdf (Py(Ar|An = 1))] ).
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Figure 2: Comparison of four different thresholding methods with DDC on four spatial distributions
(randomly distributed, small clusters, dense clusters and filaments). A. True, uncorrected and DDC-
corrected images for each spatial distribution. B. Image Error and Counting Error calculated from T1
to T4 and DDC for each spatial distribution. The whiskers extend to the most extreme data points not
considered outliers, and the red pluses are the outliers (greater than 2.7 std).
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Figure 3: Application of DDC to experimentally measured spatial distributions of AKAP79 and AKAP150.
A. SMLM images of the two scaffold proteins without correction, corrected using the thresholding method
T1 and DDC, and that of a simulated random distribution using the same number of localizations of
DDC-corrected images. B. Cumulative distributions for the number of localizations within each cluster for
each protein. (Scale bar, 1um)
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Figure 4: Image Error at different densities of localizations (A) and activation probability per frame (B).
The raw data points are shown as gray points and the moving average is shown in black (Supporting
Material). C. An intensity trajectory of a single mEos3.2 molecule with labels showing the definitions of
T, and T,pr. D. The average Ty, T,sr, and number of blinks for Alexa647 and mEos3.2 at different UV
activation intensities (405 Power, error bars are standard deviation of mean using two repeats).
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