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ABSTRACT   

A major function of the gut microbiota is to provide colonization resistance, wherein pathogens 

are inhibited or suppressed below infectious level. However, the fraction of gut microbiota 

required for colonization resistance remains unclear. We used culturomics to isolate a gut 

microbiota culture collection comprising 1590 isolates belonging to 102 species. Estimated by 

metagenomic sequencing of fecal samples used for culture, this culture collection represents 

50.73% of taxonomic diversity and 70% functional capacity. Using whole genome sequencing 

we characterized species representatives from this collection, and predicted their phenotypic 

traits, further characterizing isolates by defining nutrient utilization profile and short chain fatty 

acid (SCFA) production. When screened using a co-culture assay, 66 species in our culture 

collection inhibited C. difficile. Several phenotypes, particularly, growth rate, production of 

SCFAs, and the utilization of mannitol, sorbitol or succinate correlated with C. difficile 

inhibition. We used a combinatorial community assembly approach to formulate defined 

bacterial mixes inhibitory to C. difficile. When 256 combinations were tested, we found both 

species composition and blend size to be important in inhibition. Our results show that the 

interaction of bacteria with each other in a mix and with other members of gut commensals must 

be investigated for designing defined bacterial mixes for inhibiting C. difficile in vivo. 

IMPORTANCE  

Antibiotic treatment causes instability of gut microbiota and the loss of colonization resistance, 

allowing pathogens such as C. difficile to colonize, causing recurrent infection and mortality. 

Although fecal microbiome transplantation has shown to be an effective treatment for C. difficile 

infection (CDI), a more desirable approach would be the use of a defined mix of inhibitory gut 

bacteria. C. difficile-inhibiting species and bacterial combinations we identify herein improve our 

understanding of the ecological interactions controlling colonization resistance against C. 

difficile, and could aid the design of defined bacteriotherapy as a non-antibiotic alternative 

against CDI.  
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INTRODUCTION 

Normal functioning of the human gut requires a balanced interaction between our mucosal 

surface, diet, the microbiota, and its metabolic by-products. A major determinant of the gut 

homeostasis is the presence of a healthy, diverse commensal microbiota which prevents 

pathogenic bacteria from colonizing the gut or keeping their number below pathogenic levels. 

This function of the gut microbiome is called colonization resistance [1, 2]. Perturbations of the 

gut microbiome referred to as dysbiosis could result in the loss of colonization resistance[3]. 

Dysbiosis and loss of gut microbiome colonization resistance caused by antibiotics, for example, 

can predispose people to enteric infections. Clostridioides difficile infection (CDI) of the gut 

following antibiotic treatment is a clear demonstration of this phenomenon. Clostridioides 

difficile is a Gram-positive, spore forming anaerobe and is the leading cause of antibiotic induced 

diarrhea in hospitalized patients[4].  

Antibiotic treatment of CDI often causes recurrence [5]. It has been shown that infusion of fecal 

microbiome from healthy people into CDI patients gut can resolve CDI and prevent recurrence 

[6, 7]. This procedure termed as fecal microbiome transplantation (FMT) has become a common 

treatment for CDI[8]. However, there has been concerns regarding the long term health 

consequence of FMT. Recently, there has been reports of weight gain [9] and mortality due to 

transfer of multi-drug resistant organisms following FMT[10].  

 

The development of defined bacterial mixes from the healthy microbiota, which can resolve 

CDI, poses an alternative to FMT [11]. However, the exact number of species needed in an 

efficacious defined bacterial mix for CDI remains unknown, and was reportedly in the range of 

10–33 species when defined bacteriotherapy was tested in a limited number of patients [12, 13]. 

A mix of spore-forming species tested in phase II clinical trials, despite its initial success, 

resulted later in recurrence [14]. The use of high-throughput anaerobic gut bacterial culturing, 

coupled with sequencing, improves the cultivability of the gut microbiota [15-17], facilitating the 

development of culture collections of gut commensals screenable for identification of species 

conferring colonization resistance, or an understanding of the ecological interactions stabilizing 

or destabilizing colonization resistance.  
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Here we report the cultivation, using culturomics, of 1590 gut commensals comprising 102 

species from healthy human donors. We phenotyped and sequenced genomes of the 

representative species in this culture collection. We then screened the strains to identify species 

inhibiting C. difficile. A combinatorial community assembly approach in which 256 strain 

combinations were tested to identify the species interactions that improve or diminish C. difficile 

inhibition. Our results show that both species composition and interactions are both important 

determinants of C. difficile inhibition phenotype.   Our approach and culture library—besides 

advancing the understanding of bacterial community interactions determining colonization 

resistance—could prove useful in other studies probing the role of gut microbiota in host health. 

 

RESULTS 

Single medium based culturomics retrieves high species diversity from donor fecal samples:  

In this study, we used metagenome sequencing to characterize the fecal microbiome composition 

of healthy human donors and culturomics to develop a strain library to identify C. difficile 

inhibiting species. As a first step, donor’s fecal samples were characterized using shotgun 

metagenome sequencing.  To this end, fecal samples from six donors were sequenced 

individually and also after pooling in equal proportion. We used high sequencing depth for the 

metagenome sequencing. Collectively, the datasets from all samples constituted 48.9 Gb of data.  

To determine the taxonomic composition and diversity of the samples, Simpson dominance 

index (D), Shannon diversity index (H) and Shannon equitability index (EH) were calculated for 

individual samples as well the pooled material. This analysis revealed that all donor samples 

were similar in diversity indices and pooling the samples in equal proportion maintained the 

overall population structure of the individual samples (Figure 1A). The donors in this study were 

recent migrants to the United States from Asia and were expected to have a high proportion of 

Prevotella (Prevotella enterotype) in the gut microbiome. Consistent with this expectation, 

taxonomic diversity of the samples in phylum level (Figure 1B)  showed the dominance of 

Bacteriodetes while the most abundant genus was Prevotella (Figure 1C).  

Using culturomics, we developed a strain library from the pooled fecal samples. Previous studies 

have prevalently used assorted media to isolate gut bacteria [15]. For mechanistic studies to 

understand the microbial community interaction, strains need to be pooled in a single nutrient 

medium. While the approach of using different media conditions is useful in retrieving high 
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diversity, strains isolated in various media conditions may not be able to grow in a single media. 

This would prevent the use of a culture library in community assembly studied in a universal 

medium. To avoid this problem, we used a modified Brain Heart Infusion (mBHI) as the base 

medium for culturing. We isolated several strains from nine species from the mBHI medium. We 

reasoned that if the species that were growing fast in the mBHI medium is suppressed, additional 

species diversity could be isolated using the same medium. . We therefore supplemented mBHI 

with different combinations of antibiotics selected to suppress the formerly dominant strains, 

also using heat shock and chloroform treatment to select for spore-forming species. We used 12 

conditions for culturing (Supplementary Table S1), selecting 1590 colonies from these 

conditions. We determined strain species identity using MALDI-ToF, and 16S rRNA sequencing 

(Supplementary Table S2). We thus isolated 93 more species from the same sample, increasing 

the total diversity in our strain library to 102 species (Figure 2). In Figure 3A we present the 

frequency of each species isolated in each culture condition. We further examined whether our 

approach could isolate high- and low-abundance species from the sample. We therefore 

sequenced the genome of one representative isolate from each species in our library 

(Supplementary Table 3), mapping the metagenome reads (Supplementary Table 4) against the 

individual species genomes. We mapped 37,669,789 reads obtained from the pooled sample to 

species whole genomes (Figure 3B), matching 19,109,642 reads—50.73% of the total 

metagenomic diversity—to the metagenomic reads. Our single medium-based culturomics 

method was able to isolate about 50% of the pooled culture sample diversity. We mapped about 

20% reads against the Prevotella copri SG-1727 genome isolated from six different conditions—

unsurprising, as the fecal donors belonged to the Prevotella enterotype. However, we isolated 

low-abundance species such as Olsonella umbonate, for which only 0.5% reads were mapped, in 

eight different conditions (Figure 3B). We isolated both low- and high abundance species with 

our technique, and used metagenome binning to estimate the number of species missed by our 

method. Matching metagenome bins against cultured species genomes, we found 50 matching 

culture isolates and 33 bins matching none, indicating that our method failed to cultivate those 

metagenome bins (Supplementary Table 5). 

  

Single medium based culturomics retrieves most frequent gut bacteria in human populations 

and increases gene repertoire in the integrated gene catalog of the gut microbiome: The 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/767715doi: bioRxiv preprint 

https://doi.org/10.1101/767715
http://creativecommons.org/licenses/by-nc/4.0/


availability of high-quality metagenome data from many human samples facilitates the 

identification of frequently present gut bacterial species in healthy populations. A recent study 

defined 71 bacteria present across 2144 human fecal metagenomes [18]. To quantify the number 

of these present in our culture library, we matched the whole genomes of 102 bacterial species 

and 33 metagenome bins against these 71 frequent species [18], finding our culture library 

contained 65 of these most frequent bacteria (Supplementary Table 5). To determine the 

relationship between the gene repertoire in our culture library and the integrated gene catalog 

(IGC) of the human microbiome, we compared the two datasets. For the comparison against 

IGC, a non-redundant gut microbiome gene set of 9.879 million genes generated using 1,267 

human gut metagenomes from Europe, America and China [19], we generated a non-redundant 

gene set from our cultured genomes and the sample metagenome used for culturing. We created 

984,515 open reading frames (ORFs) from sample metagenomes and 285,672 ORFs from 

cultured species genomes (Supplementary Figure 1A and Supplementary Table 6), and mapped 

them against the IGC. Of 285,672 ORFs obtained from cultured genomes, we matched 208,708 

ORFs (73.05%) to the IGC, while 572,437 ORFs (58.14%) of 984,515 ORFs obtained from the 

sample metagenome matched the IGC (Supplementary Figure 1B and 1C). In other words, the 

IGC lacked 26.94% of the ORFs from the cultured isolates and 41.85% of the ORFs from the 

sample metagenome. This shows the potential for expansion of the IGC if more Prevotella 

enterotype donor fecal samples, such as those used in our study, are sequenced. Our results also 

show that sequencing cultured species genomes identifies genes otherwise missing in 

metagenome sequencing because of low depth or assembly issues.  

 A large number of species in the culture library inhibits C. difficile in vitro: A healthy 

microbiota suppresses pathogen growth in the gut. To identify C. difficile-inhibiting species in 

our culture library, we screened it against C. difficile using a co-culture assay. Slow-growing 

strains would be outcompeted by C. difficile. We therefore used 82 moderately- or fast-growing 

species in the co-culture assay. When tested, 66 species inhibited C. difficile to varying degrees 

(Figure 4). In this screen, Bifidobacterium adolescentis strain SG-742 was the most efficient 

inhibitor. Furthermore, all Bifidobacteria inhibited C. difficile, signifying their importance in 

colonization resistance to this pathogen. The Lachnospiraceae family were major inhibitors. In a 

surprising result, 16 species in our co-culture assay increased the growth of C. difficile (Figure 
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4), a finding of clinical significance, in that a high abundance of these species may confer a 

higher risk of CDI.  

 

Most inhibitors are acetate or butyrate producers: Gut bacteria metabolize diverse substrates to 

produce short chain fatty acids (SCFAs) in the gut [20, 21]. SCFAs—particularly butyrate—act 

as gut epithelial immune modulators, energy sources for host intestinal cells, and pathogen-

inhibitors [22, 23]. To determine the relationship between SCFAs produced and C. difficile 

inhibition, we estimated the SCFAs produced by all species used in the co-culture assay (Figure 

5). Our results show that the strains produce mainly acetate (Figure 5A, Supplementary Table 7). 

Comparing all strains at phylum level using the non-parametric Kruskal–Wallis test, we found 

Actinobacteria and Bacteroidetes to yield the most acetate (Figure 5B). Firmicutes produced 

significantly higher butyrate than Bacteroidetes (Figure 5C). Other SCFA production did not 

differ significantly (Figure 5D & 5E). The majority of high acetate- or butyrate producers were 

C. difficile-inhibitors. 

Relationship between nutrient utilization, C. difficile inhibition and species prevalence in 

patient pouplations : Commensal species suppress pathogens in the gut chiefly by competing for 

nutrients [24-26]. The Biolog AN MicroPlate™ test panel provides a standardized method to 

identify the utilization of 95 nutrient sources by anaerobes. Investigating the relationship 

between nutrient utilization and pathogen inhibition, we determined the nutrient utilization of all 

species in our library. C. difficile is known to exploit mannitol, sorbitol or succinate to invade 

and produce infection in the human gut [27, 28]. Consistent with this observation, we found 27 

C. difficile-inhibitors that utilized all three nutrients as carbon sources (Figure 6, Supplementary 

Table 8).  We hypothesized that if the C. difficile-inhibitors we identified were active in C. 

difficile suppression in vivo, their abundance would be reduced in the gut during antibiotic 

treatment and CDI. Hence, we determined the abundance of the top 16 (top 25%) C. difficile-

inhibitors in our library from a study of healthy and CDI patient gut microbiomes [29]. We 

determined the frequency of the top 16 C. difficile-inhibiting isolates in the following groups of 

human gut metagenomes; (a) CDI patients, (b) antibiotic-exposed but no CDI patients, and (C) 

no antibiotic exposure and no CDI (healthy) people. Consistent with our hypothesis, the top 16 

C. difficile-inhibitors in our screen constituted about 20% of total abundance in the heathy 

microbiome, but were in low-abundance in both antibiotic-treated and CDI patient gut samples 
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(Figure 7A). Interestingly, Prevotella copri (SG-1727)—among the most abundant species in the 

donor samples—was among the species depleted during antibiotic treatment and CDI (Figure 

7B).  

 

Analysis of genotype–phenotype relationships: To identify other phenotypes not covered in our 

phenotype assays and to link phenotype with genotype, we used Traitar [30] to predict 67 

phenotypes from the genomes of all species in our library. The substrate utilization phenotypes 

based on the Traitar prediction mostly matched the Biolog phenotypes (Figure 8A). The first two 

clusters (green and red, lower Figure 8A) comprised mostly the pathogen-inhibitors tested here. 

The defining traits in these clusters related to sugar hydrolysis, mostly matching the Biolog 

phenotype data. The other two clusters (sky blue and mixed) comprised mostly pathogenic 

species and slow growers. Notable traits for pathogen clusters were catalase activity, beta 

hemolysis activity, growth in glycerol and high osmo-tolerance (Figure 8A). To further 

differentiate these traits, we performed principal component analysis (PCA) on the Traitar data. 

The PCA plot (Figure 8B) revealed four distinct clusters (C. difficile-inhibitors, -non-inhibitors, 

pathogens, and slow-growing strains) that explained 67.1% total variance in the first two 

principal components. Slow-growing strains clustered furthest from C. difficile-inhibitors—

logically for any colonization-resistant bacteria, as a fast growth rate would more likely 

outcompete the pathogen. 

 

To understand the genomic basis of colonization-resistant and pathogen-inhibiting strain 

genomes, we used KEGG modules—characteristic gene sets that can be linked to specific 

metabolic capacities or other phenotypic features of a genome. We identified 515 modules in the 

sample metagenome and 476 modules in the strain genomes. 432 modules were common 

between our sample metagenome and our strain genomes, demonstrating our ability to retrieve 

77.28% of the metabolic functional capacity of the fecal microbiome using our culture method. 

82 modules unrecovered in our isolated species comprised pathways related to environmental 

information processing, several components of cell signaling, DNA replication and repair 

pathways, lipid metabolism, RNA and protein processing, and the ubiquitin system 

(Supplementary Figure 2, Supplementary Table 9). We then tried to identify differences in 

KEGG modules associated with pathogen-inhibiting and -non-inhibiting strain genomes, finding 
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26 modules present in C. difficile-inhibitors were absent in non-C. difficile-inhibitors. Some 

important modules absent in non-inhibiting species genomes were M00698 (multidrug resistance 

efflux pump BpeEF-OprC), M00332 (Type III secretion system), M00438 (Nitrate/nitrite 

transport system), and M00551 (Benzoate degradation). Further work is necessary to understand 

how these functional modules relate to colonization resistance. 

 

Design of defined mix of C. difficile-inhibitors: While single strain vs pathogen co-culture 

assay is informative in identifying pathogen inhibiting strains, the inhibition patterns are likely to 

change when inhibiting species interact as a community. These communities may express 

emergent properties difficult to predict from the individual members [30]. After defining the 

isolate phenotypes, we used a combinatorial assembly of bacteria from our culture collection to 

design a tractable mix of C. difficile-inhibiting isolates. In the first set of experiments, we mixed 

15 inhibiting species in equal proportion and tested them against C. difficile using the co-culture 

assay used for individual strains. Table 1 describes the overall properties of these isolates, 

selected based on the criteria of the medium pH not dropping below 5.6 after 24 h growth, and 

representation of overall taxonomic diversity at the family level. Investigating how changes in 

the mix composition could affect the inhibition capacity, we removed one or two species at a 

time from the mix of 15 species to create additional mixes, thus testing 121 mixes listed in 

Supplementary Table 10 against C. difficile in co-culture assay format. As shown in Figure 9, the 

removal of strains from the15-species mix had both positive and negative effects. When we 

removed species, several mixes were less effective than the 15-species mix, and the removal of 

two species increased the inhibition efficiency in a species dependent manner. Out of 121 mixes 

tested, mix number 22, comprising the species listed in Supplementary Table 10, most 

effectively inhibited C. difficile growth (by 79.41%). This clearly demonstrates the dependence 

of inhibition efficiency on the species composition of the defined mix used in the co-culture 

assay. Seeking the minimum number of species necessary for an effective C. difficile-inhibiting 

mix, we performed another set of experiments in which either one or two species at a time were 

removed from the parent mix of 12 species. In this round, we tested 79 bacterial mixes 

comprising species listed in Supplementary Table 10 in the co-culture assay. As shown in Figure 

9, removal of species mostly reduced inhibition efficiency when compared with the parent blend. 

Again, the efficiency was dependent on the species composition of the mix. We performed a 
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third set of experiments to determine mixes comprising under ten species that would impact C. 

difficile inhibition efficiency. Removal of species from the 10-species parent set diminished 

inhibition efficiency overall; however, some mixes increased the growth of C. difficile. Since all 

the strains we used individually inhibited C. difficile, the enhancement of C. difficile growth by 

these set mixes clearly demonstrates that individual strain phenotype can be overridden by 

species community interactions. In this case, a set of C. difficile-inhibitory species, when mixed 

in a particular combination, increased C. difficile growth. Overall, our results demonstrate that 

new phenotypes masking the individual strain phenotype could emerge when microbial consortia 

are formed, and this emergent property needs to be taken into account while designing defined C. 

difficile-inhibiting bacterial mixes. 

DISCUSSION  

We developed a gut commensal culture collection from healthy human donors and identified C. 

difficile-colonization-resistant strains. As human gut microbiome composition varies across 

populations, donor selection for culture is an important consideration. Depending on the 

proportion of Bacteriodes and Prevotella, the human gut microbiome has been classified into 

enterotypes [31]. The Asian and African populations—two-thirds of the human population—fall 

into the Prevotella enterotype. [32]. Information about the colonization-conferring species in 

Prevotella-dominant gut microbiomes is limited; we therefore chose recent Asian immigrants in 

the US as the fecal donors in this study. For culture, we used a pooled sample from six donors 

before culturing, which could have positive and negative consequences. Pooling can save 

substantial time and resources. For instance, after pooling we analyzed 1590 colonies; were this 

to be done individually, the number of analyzed colonies would have been 9540. Pooling, 

however, may distort the microbiome composition of individual samples, creating artificial 

population assemblages [33]. For gut microbiome ecology studies, a gut commensal culture 

collection isolated from fecal donors of similar gut microbiome composition could be more 

useful than that from many different people. The publicly available gut microbiota culture 

collection from the human microbiome project is isolated from 265 people [34]. Other similar 

culture collections are also isolated from at least over 100 donors [15, 17]. Although such 

collections are useful as reference strains, since the donors may have different microbiome 

compositions, the strains isolated may not form stable ecologies if mixed together. In contrast, 
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our collection, from a limited number of donors having similar microbiome composition, may 

form a stable ecology when mixed, and could be more useful for studies to understand 

underlying interactions determining colonization resistance and other traits. 

 

Two general approaches have been used previously for developing gut microbiota culture 

collections: the use of culturing samples in several—often up to 64—different nutrient media 

conditions, to isolate diversity [15, 35, 36]; or the use of a single medium, needing less time and 

resource but retrieving fewer species [37]. In understanding the types of bacterial communities 

responsible for suppressing pathogen growth in the gut, the assemblage of simple to complex 

bacterial communities from cultured strain libraries and testing of such consortia against 

pathogens is commonly performed. Although the use of different nutrient media is highly 

efficient in isolating the maximum number of species from gut samples, strains so isolated may 

not grow in a common nutrient medium, diminishing the utility of the strains in community 

assembly studies. We therefore used a single medium-based approach using mBHI for culturing 

of the fecal bacteria. As shown in Figures 2 and 3, we isolated 102 species—representing about 

50% species diversity determined by sequencing the donor fecal sample—by adjusting the mBHI 

medium (Supplementary Figure 1)—comparable to other single medium-based approaches [37-

39]. Furthermore, results in Supplementary Table 4 and Supplementary Figure 2 shows that the 

50% diversity isolated represents over 70% functional capacity of the donor gut microbiome. 

According to the insurance hypothesis of microbiota function, more than one species performing 

the same function is recruited in an ecosystem to allow for functional redundancy [40, 41], 

possibly explaining the recovery of 70% function from 50% species diversity in our library.  

Many strains in our culture collection shown in Figures 4 inhibit C. difficile at varying 

levels. Several phenotypes—particularly, growth rate, production of SCFAs, and the utilization 

of mannitol, sorbitol or succinate—correlated with the C. difficile-inhibitor phenotype, consistent 

with previous reports that restoration of depleted SCFAs in the gut resolved CDI [42, 43] and 

competition between C. difficile and commensals for nutrients and increased availability of 

mannitol, sorbitol or succinate allowed C. difficile invasion of the gut [27, 28]. Top inhibiting 

species in our collection were also depleted in the CDI patient gut, indicating their role in 

providing colonization resistance against C. difficile (Figure 7). The formation of many different 
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defined bacterial mixes using these inhibitory strains may improve the inhibition capacity of the 

individual strains. Overall, we tested 256 defined mixes using the combinatorial community 

assembly approach. The combinatorial community assembly method presented in Figure 9 shows 

two important parameters defining the efficacy of the defined mixes—the number and type of 

species in the mix. Reducing the number of species in the mix from 15 to 12, did not diminish 

the overall inhibition capacity, but reducing the number to ten species did so. Furthermore, many 

of those mixes increased, rather than inhibiting, C. difficile growth. Clearly, adding too many 

species in a mix does not improve inhibition. The threshold of peak efficacy is 12 species in the 

conditions we tested. Our results also underline how, when species are pooled in a sub-optimal 

ecology, undesirable traits could emerge; strains in combination could produce new phenotypes 

not observed individually. Previous work to identify a defined mix of C. difficile-inhibiting 

bacteria also identified varying mix numbers. For instance, more than 20 years ago, Tvede and 

Rask-Madsen showed that infusion of a 10-bacterial mix into a patient’s colon could resolve CDI 

[12]. Another study in a small patient population found treatment with a 33-bacterial mix could 

alleviate CDI. In a mouse model, Clostridium scindens was a more efficient C. difficile-inhibitor 

when mixed with a defined pool of other commensal bacteria [44]. Likewise, a mix of six 

phylogenetically diverse bacteria alleviated CDI in a mouse model [45]. The complexity of the 

gut microbiota and its variations across populations make the design of defined bacterial C. 

difficile-inhibiting mix not simply a matter of mixing large numbers of diverse species. Since our 

results show that the C. difficile-inhibiting phenotype changes substantially depending on the 

microbial interaction, design of a defined bacterial mix requires a deeper understanding of how 

inhibiting species interact with themselves and the members of the total commensal community.  

Conclusion: Overall, we demonstrated that a high percentage of the cultivable fraction of gut 

microbiota from healthy human donors are C. difficile-inhibitors in vitro. Defined bacterial mixes 

can enhance the inhibition capacity of individual strains. However, depending on the ecology of 

the mix, new phenotypes could emerge. For instance, a mix of bacteria, rather than inhibiting, 

can increase the growth of C. difficile. In designing defined C. difficile-inhibiting bacterial mixes 

in vivo, the interaction of bacteria with each other in a mix and with other members of gut 

commensals demands investigation. The approach of combinatorial testing of strains with well-

defined phenotypes used in the present study is a step in that direction.  
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MATERIALS AND METHODS  

Fecal sample collection, culture conditions, isolate identification, and genome sequencing: 

We collected fecal samples with the approval of the Institutional Review Board (IRB), South 

Dakota State University. All procedures were performed following IRB guidelines. We collected 

fresh fecal samples from six healthy adult donors from Brookings, South Dakota, USA with no 

antibiotic consumption during the previous year. We transferred fecal samples to an anaerobic 

chamber within 10 minutes of voiding and diluted them 10-fold with phosphate-buffered saline, 

and mixed individual fecal samples in equal ratio to make the pooled sample for culturing. We 

used a modified brain heart infusion (mBHI) broth (ingredients listed in Supplementary Table 1) 

for culture. We used chloroform and heat treatment to isolate spore-forming species. We plated 

the 104 dilution of the pooled sample on each of the media conditions described above in strictly 

anaerobic conditions. We selected 1590 isolates from all culture conditions and identified them 

using MALDI-ToF (MALDI Biotyper, Bruker Inc) against reference spectra (Supplementary 

Table 2). We identified isolates unidentified at this step using 16S rRNA gene sequencing, for 

which we prepared total genomic DNA using the OMEGA E.Z.N.A genomic DNA isolation kit 

(Omega Bio-tek, GA) according to the manufacturer’s protocol. We amplified full length 

bacterial 16s rDNA using the universal forward (27F) and reverse (1492R) primers, respectively, 

under standard PCR conditions. We sequenced the amplified DNA using the Sanger dideoxy 

method. We trimmed raw sequences generated for low-quality regions from either end and 

constructed consensus sequences from multiple primers using Genious [46]. Based on full length 

16S rRNA gene sequence similarities, we determined the phylogenetic relationships of the 

isolates. For bacteria initially identified using MALDI-TOF, we extracted full length 16s RNA 

gene sequences from the genome using Barrnap (https://github.com/tseemann/barrnap) for 

phylogenetic tree creation. After obtaining the initial Neighbor-Joining tree, we performed 

heuristic searches for likelihood using the Nearest–Neighbor–Interchange and Close–Neighbor–

Interchange branch swapping algorithms. Finally we created the Maximum Likelihood tree with 

a bootstrap of 1000 replicates using MEGA6 [47].  

To further characterize the strain library, we selected representative isolates from each species 

for whole genome sequencing, extracting genomic DNA from overnight culture of the isolates 

using the OMEGA E.Z.N.A genomic DNA isolation kit (Omega Bio-tek, GA) according to the 

manufacturer’s protocol. We prepared sequencing libraries the Nextera XT kit, sequencing them 
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using Illumina 2x 300 paired-end sequencing chemistry on the Miseq platform. We first filtered 

the raw reads for quality and sequencing adaptors with PRINSEQ [48], and then assembled them 

de novo using Unicycler [49], performing quality check of the assembly results with QUAST 

[50] and Bandage [51]. We performed gene calling using Prokka [52] with a minimum ORF 

length of 100 bp.  

 

Characterization of donor fecal samples using shotgun metagenome sequencing  

We extracted total community DNA from 0.25 g of each donor fecal sample using MoBio 

Powersoil DNA isolation kit according to the manufacturer’s instructions. To enrich microbial 

DNA, using previously published protocol, we depleted host DNA in the isolated total DNA 

before sequencing [53]. We prepared the sequencing library from 0.3 ng of the enriched DNA 

using the Nextera XT library preparation kit (Illumina inc. San Diego, CA), performing 

sequencing following the protocols used for bacterial genomes described above. After quality 

correction, we removed human host reads using Bowtie2 v.1.1.2[54] and performed taxonomy 

assignment using Kaiju [55]. We searched reads against the proGenomes [56] reference database 

of protein sequences containing a non-redundant set from more than 25,000 genomes from every 

species cluster recovered by specI [57], using the NCBI non-redundant database for comparative 

analysis. Thereafter, we calculated the Simpson dominance index (D), Shannon Diversity Index 

(H) and Shannon Equitability Index (EH), using an assembly-based approach to characterize the 

donor fecal metagenomes. For this, we assembled reads de novo using metaSPAdes [58], 

specifically designed for assembly of complex metagenomic communities. For initial assembly, 

we error corrected reads using spades-hammer with default parameters, thereafter checking 

assembly results with MetaQUAST [59]. We removed contigs of less than 500 bp from the 

resultant datasets, and performed ORF predictions on the filtered contigs with MetaGeneMark 

[60] with a minimum length cutoff of 100 bp. 

 

Computation of gene repertoire and the functional analysis of isolate genomes and donor 

fecal metagenomes 

To determine the gene repertoire in the isolate genomes and donor fecal metagenomes, we 

constructed a non-redundant gene catalog from our total data using cd-hit [61, 62] for 

comparison against the previously published integrated catalog of reference genes in the human 
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gut microbiome [19]. After gene calling, we clustered the concatenated datasets from the culture 

library using cd-hit at >95% identity with 90% overlap. We checked these datasets using BLAT 

to avoid over-representation in the gene catalog. We then compared our gene dataset against the 

previously mentioned integrated catalog [19]. For functional mapping, we mapped amino acid 

sequences from all the individual datasets and clustered non-redundant sets against the EggNOG 

database v3.0 [63].  

For gaining a better insight into the putative and hypothetical population genomes present within 

the donor fecal samples, but not isolated using the culturomics approach, population genome bin 

creation is considered superior to taxonomy assignment of the raw reads. We therefore 

constructed population genome bins from the metagenomes using MaxBin2 ), mapping back raw 

reads on the assembled contigs using Bowtie2 [64] for coverage information. We further 

analyzed all high-confidence bins with specI [57] for species cluster determination. To determine 

the abundance of isolated species from the pooled donor fecal samples, we measured the 

coverage by read mapping with Bowtie2 [64] at 95% identity level. For the functional analysis, 

we performed KEGG annotation for the ORFs obtained from the pooled donor fecal 

metagenome and the isolate genomes. We searched data from all comparisons for KO modules 

using GhostKOALA [65], and performed hierarchical clustering of the datasets to generate heat 

maps with R (http://www.R-project.org/). We used Traitar[66] under default parameters to 

predict 67 phenotypes from the whole genomes of all species in the culture collection.  

 

Phenotypic characterization of the isolated strains  

To correlate the genomic features with phenotypes, we further characterized the strains for which 

genomes were sequenced by determining the following phenotypic properties: 

Carbon source utilization: We determined the ability to utilize 95 carbon sources using Biolog 

Biolog AN MicroPlateTM. Briefly, we grew strains on mBHI plates anaerobically for 24 h–48 h 

at 370C. We used a sterile cotton swab to scrape cells from the plates and suspended them in AN 

inoculating fluid (OD650 < 0.02), using 100 µl of this suspension to inoculate AN MicroPlateTM 

in duplicate, and incubated them at 370C anaerobically. We took OD650 readings at 0 h and 48 h 

post-inoculation and normalized the results for growth against water and 0-h OD650 values. 

Production of SCFA: To analyze the SCFAs produced by isolates, we grew strains in mBHI for 

24 hours in anaerobic conditions, and added 800 µl of the bacterial culture to 160 µl of freshly 
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prepared 25% (w/v) m- phosphoric acid, and froze them at −800C. We thawed samples and 

centrifuged them (>20,000�g) for 30 min. We used 600 µl supernatant for injection into the 

TRACE1310 GC system (ThermoScientific, USA) for SCFA analysis. 

 

Identification of C. difficile-inhibiting strains: We used a co-culture assay in which pathogen and 

test strains were cultured together at a ratio of 1:9 to identify C. difficile-inhibiting strains in our 

library, using only those strains reaching OD600  of 1.5 after 24 h of growth in mBHI; 82 species 

met this criterion. We used C. difficile strain R20291 as the reference strain in the first assay. 

Briefly, we grew all test strains and C. difficile R20291 in mBHI medium anaerobically at 370C 

and adjusted the OD600 to 0.5. The pathogen and the test were mixed together at a ratio of 9:1 

and incubated for 18 hours anaerobically at 370C. We then plated 10−5 & 10−6 dilutions onto C. 

difficile selective agar, using mono-culture of C. difficile R20291 as a positive control. We 

compared colony forming units (CFUs) enumerated from co-culture plates against the C. difficile 

R20291 control. In identifying C. difficile-inhibitors in healthy and CDI patients, we calculated 

the frequency of 16 top C. difficile-inhibitors in our collection by metagenome read mapping 

from a previously published dataset [29]. 
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Figures  

 
Figure 1: Gut microbiome composition of donor’s fecal samples. A. Variations in the 
Simpson Dominance (D), Shannon Diversity (H) and Shannon Equitability (EH) indices 
calculated based on the raw reads taxonomic affiliations for individual fecal samples (S1–S6) 
and pooled fecal sample (S7). B. Phylum level distribution of bacteria for individual fecal 
samples (S1–S6) and pooled fecal sample (S7). We calculated relative abundance values as 
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compared to the total identifiable reads from any dataset. C. Species-level distribution of the 
pooled donor fecal sample (S7). We performed taxonomic classification using Kaiju. We 
referred all species with under 1% abundance to “other” category.  
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Neighbor-Joining tree of the full length 16S rRNA gene sequences of 102 cultured 
species isolated using single medium from the pooled donor fecal sample. We computed the 
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evolutionary distances using the Jukes-Cantor method, presented in the units of the number of 
base substitutions per site in MEGA X. Symbols and colors represent four different bacterial 
phyla, as referred to the legend. We have highlighted putative novel species (n = 2) with “green” 
text.  

 
 
Figure 3: Efficiency of species retrieval in the culture conditions tested. A. Frequency of 
isolation of 102 species recovered. B. Prevalence of individual species as found from read 
mapping against donor fecal  metagenome.  
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Figure 4: Inhibition of C. difficile by individual species in vitro. C. difficile CFU counts were 
plotted for every individual co-culture assay performed for 82 test species in triplicate. Error bars 
represent standard deviations of the three independent experiments for each inhibition assay for 
individual species. “Green,” “yellow” and “gray” bars represent CFU counts of C. difficile for 
inhibitors, control C. difficile, and non-inhibitors, respectively in co-culture.  
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 Figure 5: Short chain fatty acid (SCFA) produced by cultured species. A. SCFA production 
by 82 species used for inhibition assay against C. difficile. We measured acetate, propionate, 
isobutyrate, butyrate, isovalerate and valerate using gas chromatography, expressed in mM 
concentration. The figure represents mean SCFA measurements from duplicate samples. Color 
scale bar: “white”: no SCFAs production; “dark”: ≥5 mM SCFA production. B. Acetate, C. 
butyrate, D. propionate and E. isovalerate production in three major phyla from 80 bacteria when 
oriented according to phyla (Kruskal–Wallis tests, p<0.05). SCFAs levels for two members of 
Proteobacteria phyla are not shown in B, C, D, and E.  
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Figure 6: Comparison of nutrient utilization of 95 nutrient sources by the  cultured species 
against C. difficile. The heatmap represents two independent substrate utilization tests 
normalized against control. Columns and rows represents nutrients and strains respectively. We 
considered growth of ≥ 20% in any substrate as compared to the control as positive. “Blue,” 
“white” and “red” represent high, medium and no utilization of the carbon source, respectively. 
Top row shows nutrient utilization of C. difficile. All other strains are arranged in descending 
order of nutrient utilization similarity when compared to C. difficile. We used nearest neighbor 
clustering based on the Pearson correlation to identify nutrient utilization similarity of other 
strains when compared to C. difficile.  
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Figure 7: Frequency of the top 25% C. difficile inhibitors obtained in this study in the gut 
metagenome of C. difficile infected (CDI) and non-CDI patients. AB+ and AB- represent 
samples from non-C. difficile infected patients treated with antibiotics and non-C. difficile 
infected patients without antibiotic treatment, respectively. A. The combined abundance of top 
25% CD-inhibitors (n = 16) from this study in CDI, AB+, and AB- metagenomes. B. Individual 
abundance of the same 16 strains in CDI, AB+, and AB- metagenomes. We obtained public 
metagenomes for CDI, AB+, and AB- from Milani et al., 2016. 
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Figure 8: Prediction of phenotypes from the genomes of the 102 species  in the culture library. 
A. Clustering of 102 species based on 67 traits predicted using the Traitar package. Each column 
represents one of 67 traits whereas rows represent 102 species from this study. The color scheme 
of the columns further depicts 11 phenotypic properties from proteolysis to enzyme production. 
The cluster colorings of the cladograms are tentative. B. PCA using the combined predicted traits 
from Pfam annotation. X- and Y-axes show Principal Component 1 & 2, explaining 57.5% and 
9.6% of the total variance, respectively. Prediction ellipses are based on 0.95 confidences. Color 
scheme in the legends represents four different categories of isolates.  
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Figure 9: Inhibition of C. difficile by different consortia formed (Supplementary table 9) by
combining individual C. difficile-inhibitors in different consortium sizes A. n =15, n =14, and n =
13; B. n = 12, n = 11, and n = 10; and C. n =10, n = 9, and n = 8. “Green,” “blue” and “gray”
bars represent the parent blend, blend with one bacterial species removed at a time and blend
with two bacterial species removed at a time, respectively. “Red” line represents C. difficile
control growth. We normalized the growth of C. difficile in each consortium to control C.
difficile growth, so as to obtain relative C. difficile growth (represented as %C. difficile growth)
in each consortium condition in vitro. We performed each experiment with co-cultures, in
triplicate, and error bars represent the standard error of the mean.  
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Supplementary Figures 

 
Supplementary Figure 1: A. Numbers of non-redundant ORFs predicted in 102 cultured 
species and metagenomes (S1–S7). We generated the number of non-redundant ORFs at 95% 
identity cutoff for donor metagenomes and 102 isolates. B. Comparison of the non-redundant 
ORFs generated form 102 cultured species with the existing integrated human gene catalog 
(IGC). C. Comparison of the non-redundant ORFs generated from donor metagenomes with the 
existing IGC. 
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Supplemtary Figure 2: Hierarchical clustering of KEGG modules from fecal sample 
metagenome , all the 102 species (All_isolates), and subsets that were found to inhibit C. difficile 
R20291 (CD_inhibitors). We annotated predicted ORFs from the pooled donor (S7) metagenome 
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and consortium of cultures for KO modules by searching against the KEGG database using 
Ghostkoala. We indicate the completeness of the KEGG modules by the color gradient where we 
refer to a complete module by “0” and the absence of a whole module by “4.” For detailed 
naming of the KEGG modules see Supplementary Table S6.  
 
Table 1–Strains used in the combinatorial mix assembly. C. difficile inhibtion efficiency of 
strains are denoted as; high inhibition = ***, moderate inhibition = **, and low inhibition = *.  

Strain Family  
C. 
difficile 
inhibition  

pH after 
growth in 
mBHI 

Number of 
carbon 
sources 
utilized  

Bifidobacterium bifidum SG-1310 Bifidobacteriaceae *** 6.333 30 
Bacteroides eggerthi SG-431 Bacteroidaceae ** 6.100 35 
Bacteroides finegoldii SG-1092 Bacteroidaceae ** 5.713 62 
Bacteroides vulgatus SG-619 Bacteroidaceae ** 5.917 70 
Parabacteroides merdae SG-560 Tannerellaceae ** 5.913 74 
Prevotella copri SG-1727 Prevotellaceae *** 6.013 39 
Lactobacillus rogosae SG-1170 Lactobacillaceae ** 6.003 22 
Clostridium nexile SG-586 Lachnospiraceae ** 6.307 32 
Eubacterium eligens SG-1791 Eubacteriaceae ** 6.237 26 
Blautia wexlerae SG-1662 Lachnospiraceae ** 5.733 34 
Sellimonas intestinalis SG-522 Lachnospiraceae ** 6.103 49 
Drancourtella massiliensis SG-
1321 

Ruminococcaceae ** 5.770 5 

Meghasphaera indica SG-518 Veillonellaceae *** 5.640 75 
Bacillus licheniformis SG-1680 Bacillaceae ** 5.927 35 
Clostridium sp. SG502 Erysipelotrichaceae * 5.880 30 

 

 

Supplementary Tables  

Supplementary Table S1: Composition of modified brain heart infusion (mBHI) medium along 
with antibiotic dosages used for isolation of individual isolates from pooled donor sample (S7). 

Supplementary Table S2: Summary of identification strategy and taxonomic classification of 
all 1590 bacterial isolates used for the culturomics study.  

 

Supplementary Table S3: Summary of metagenomic investigation of the six donors (S1–S6) 
and pooled donor (S7) fecal sample. We deposited all samples under the BioProject 
PRJNA494584. 
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Supplementary Table S4: Summary of metagenomic assembly of the six donors (S1–S6) and 
pooled donor (S7) fecal metagenomic samples used for this study. 

Supplementary Table S5: Summary of the genomic features and sequence accession numbers 
for 102 bacterial species isolated using culturomics from the pooled donor fecal sample (S7). We 
deposited all samples under the BioProject PRJNA494608. 
 

Supplementary Table S6: Comparison of the 102 species isolated in culture and high-quality 
bins obtained from metagenomes (S1–S7) from this study, with the most abundant 71 species 
and 20 species reported by Costea et al., 2017 and Froster et al., 2019, respectively. The numbers 
“1” and “0” denote presence and absence of the bacteria in the studies. 

Supplementary Table S7: Differential presence of KEGG modules in pooled donor fecal 
sample (S7), all cultured 102 species and C. difficile R20291 (n = 66) inhibitors. The table 
provides supplementary data for Supplementary Figure 2, where 0 refers to a complete module 
and 4 refers to a module completely absent. 1 and 2 refer to number of absent modules.  
 

Supplementary Table S8: Average short chain fatty acids (SCFAs) in mBHI medium for 82 
species for which we performed an inhibition assay against C. difficile R20291. 
 
Supplementary Table S9: Bacterial combinations formed to generate different consortium sizes 
A) n = 15, n = 14, and n = 13; B) n = 12, n = 11, and n = 10; and C) n = 10, n = 9, and n = 8. We 
formed consortia using the parent blend of 15 strains, 12 strains, and 10 strains, for three 
different experiments. For each experiment, we formed a parent blend, a blend with one bacterial 
strain removed at a time, and a blend with two bacterial strains removed at a time. “Green,” 
“blue” and “gray” colors represent the parent blend, the blend with one bacterial strain removed 
at a time, and the blend with two bacterial strains removed at a time, respectively. The blend 
numbers correspond to those in Figure 9.  
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