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2 Deep convolutional neural networks (CNNs) have emerged as the state of the art
3 for predicting neural activity in visual cortex. While such models outperform classical
4 linear-nonlinear and wavelet-based representations, we currently do not know what
5 computations they approximate. Here, we tested divisive normalization (DN) for
6 its ability to predict spiking responses to natural images. We developed a model
7 that learns the pool of normalizing neurons and the magnitude of their contribution
8 end-to-end from data. In macaque primary visual cortex (V1), we found that
9 our interpretable model outperformed linear-nonlinear and wavelet-based feature
10 representations and almost closed the gap to high-performing black-box models.
11 Surprisingly, within the classical receptive field, oriented features were normalized
12 preferentially by features with similar orientations rather than non-specifically as
13 currently assumed. Our work provides a new, quantitatively interpretable and
14 high-performing model of V1 applicable to arbitrary images, refining our view on

15 gain control within the classical receptive field.
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17 A crucial step towards understanding the visual system is to build models that predict neural
18 responses to arbitrary stimuli with high accuracy (Carandini et al., 2005). The classical standard
19 models of the primary visual cortex (V1) are based on linear-nonlinear models (Simoncelli
20 et al., 2004), energy models (Adelson and Bergen, 1985) and subunit (LN-LN) models (Rust
a1 et al., 2005; Touryan et al., 2005; Willmore et al., 2008; Butts et al., 2011; McFarland et al.,
22 2013; Vintch et al., 2015). Fueled by advances in machine learning technology, recent studies
23 have shown that multi-layer convolutional neural networks (CNNs) can significantly improve
2 prediction of neural responses to complex images at several stages of the visual pathway
s (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; MclIntosh et al., 2016; Zhang
% et al., 2018; Cadena et al., 2019; Kindel et al., 2019), outperforming classical models. The
27 current state-of-the-art data-driven model of single-unit activity in monkey V1 is a three-layer
s black-box CNN (Cadena et al., 2019). However, such models are difficult to interpret, limiting
20 our understanding of V1 function. In particular, we do not have first principles explaining what
s0 kind of nonlinear mapping the black-box CNNs approximate.

31 A promising candidate to facilitate a more principled description of V1 neurons is to replace
32 the black-box computations by divisive normalization (Heeger, 1992), which has been proposed
33 to be a canonical neural computation throughout the visual pathway (Carandini and Heeger,
s 2012) because it explains a wide variety of neurophysiological phenomena (Carandini and
35 Heeger, 2012; Sawada and Petrov, 2017) and can be derived from first principles of redundancy
36 reduction (Schwartz and Simoncelli, 2001; Sinz and Bethge, 2008). A prominent example for
37 such normalization phenomena in V1 is cross-orientation inhibition. Here, the response of a
38 neuron to a driving grating stimulus in the receptive field (RF) is suppressed by superimposing
30 a second grating that would not elicit a response when presented alone: for instance, a grating
s with orientation orthogonal to the neuron’s preferred orientation (Bonds, 1989; Morrone et al.,
s 1982; DeAngelis et al., 1992; Heeger, 1992; Carandini et al., 1997; Busse et al., 2009).

22 The basic idea of divisive normalization (Fig. 1A) is that a neuron’s driving input is normalized
53 divisively by a weighted sum over nearby neurons’ responses (Heeger, 1992; Carandini and
s Heeger, 2012). While the general idea is simple, elegant and powerful, our current knowledge of
55 DN is limited in two important ways: (1) DN has been studied mostly using simple stimuli
46 and we do not know whether incorporating DN into predictive models of neural responses
a7 improves these models’ performance on natural images, and (2) we currently do not know how
as  receptive field location and response properties determine whether a neuron contributes to the
20 normalization pool and, if so, with what normalization weight.

so0 To explain normalization phenomena within the classical receptive field like cross-orientation
51 inhibition, current models of divisive normalization assume that all nearby neurons with diverse
52 orientation tuning preferences and with similar receptive field locations contribute equally to
53 the normalization pool (Heeger, 1992; Carandini et al., 1997; Busse et al., 2009). However,
s« some original experimental studies suggest that this assumption may not be correct for some
ss neurons (Bonds, 1989; DeAngelis et al., 1992), and normative models of normalization predict
s6 that the magnitude with which a given neuron contributes to another neuron’s normalization
s7 depends on the relationship of their response properties (Schwartz and Simoncelli, 2001).
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ss In this paper, we address two main questions raised above: (1) can an interpretable model based
50 on divisive normalization match the superior performance of black-box CNNs over simpler,
60 interpretable subunit or energy models when predicting spiking responses to natural images
st and (2) how are V1 neurons normalized? We focus on responses to stimuli mostly restricted
62 to the classical receptive field and on models that account only for normalization by neurons
63 with overlapping receptive field locations. We developed an end-to-end trainable divisive
e normalization model to predict V1 spike counts from natural stimuli. Our model learns the
o5 filter coeflicients of all neurons as well as their normalization weights directly from the data.

66 We applied our model to natural image responses in monkey V1 and found that it outperforms
67 linear-nonlinear and subunit models, and is competitive with that of state-of-the-art CNNs
6s while requiring much fewer parameters and being directly interpretable. This result implies
60 that divisive normalization is an important computation under stimulation with natural images.
70 Importantly, we found that oriented features were normalized preferentially by features with
71 similar orientation, in contrast to the current standard model of nonspecific normalization
72 (Heeger, 1992; Busse et al., 2009). Our work thus advances our understanding of V1 function
73 by establishing a new state-of-the-art interpretable model and predicting an orientation-specific
74 divisive normalization mechanism under stimulation with natural stimuli.
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7 2.1 Learning divisive normalization

The basic idea of divisive normalization (Fig. 1A) is that the response of neuron [

yi(x)
01+ D ke Pri - Yk(2) @)

zi(z) =

77 is given by its driving input activity y;(x) divisively normalized by a weighted sum over nearby
73 neurons’ responses yi(z) (Heeger, 1992; Carandini and Heeger, 2012), where z represents the
79 stimulus and o7 is a semi-saturation constant. Here, the set of normalizing neurons K and the
so normalization weights p;; define which neurons contribute to the normalization pool of neuron
st [ and with what strength, respectively.

g2 While this formulation is straightforward to write down, it is challenging to build quantitative
83 models based on it that are applicable to arbitrary inputs. The denominator depends on a
s« potentially large population of neurons — which is unknown in general — and the structure of
85 the normalization weights has been studied only using very restricted sets of simple stimuli such
s as oriented gratings and bars. Previous modeling work on divisive normalization has therefore
&7 made specific assumptions about the filter properties of the underlying neuronal population
s and either modeled only a closed set of stimuli such as gratings of different orientation (Heeger,
g0 1992; Carandini et al., 1997; Freeman et al., 2002; Heuer and Britten, 2002; Busse et al., 2009)
o or evaluated models only qualitatively (Schwartz and Simoncelli, 2001; Wainwright et al., 2002;
o1 Froudarakis et al., 2014).

92 We developed a general, image-computable predictive model of divisive normalization following
o3 Eq. (1), which is applicable to arbitrary images and whose parameters are learned by optimizing
94 the accuracy of the model in predicting the spiking activity of a large number of neurons in
os response to natural images (see Fig. 1). Our model builds on a recent innovation in predictive
o modeling (Antolik et al., 2016; Klindt et al., 2017; Batty et al., 2016; McIntosh et al., 2016;
o7 Cadena et al., 2019), jointly modeling all recorded neurons instead of learning a predictive
98 model for each neuron individually. Because many neurons perform similar computations — up
99 to shifts in receptive field location — jointly modeling them makes more efficient use of the data
100 and we can learn more complex models. The basic idea is to split the model into two parts
w1 (Fig. 1): (1) a core that transforms the input image into nonlinear features shared among all
102 neurons, and (2) a readout that linearly combines the features to produce a prediction of each
103 neuron’s response.

104 We use a convolutional network for the core, whose architecture lends itself very well to model
105 divisive normalization. By construction, we have a model that contains all filters necessary
106 to account for the recorded neurons’ responses. All of these filter responses are automatically
107 extracted at each location, providing a good approximation of the underlying population
108 of neurons in the brain although it is only sparsely sampled during the experiment. As a
100 consequence, we can optimize the pool of neurons providing normalizing inputs and their
uo corresponding weights px; (Eq. 1) to account for the neural responses.
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Figure 2: Experimental paradigm from Cadena et al. (2019). Natural images were flashed to a monkey
covering 2° of their visual angle, and located at the center of the multi-unit receptive field. Multiple
neurons were isolated from recordings with silicon probes inserted into V1 (Denfield et al., 2018). Natural
images were shown in a fast sequence without blanks, each presented for 60 ms. Spike counts from all
isolated neurons corresponding to each image were extracted from a window 40 ms after the image onset
lasting 60 ms.

m  In summary, our model’s core (Fig. 1A) consists of a set of convolutional filters (we use 32)
12 that provide the driving inputs, followed by a DN stage (Eq.1). This core is shared among all
13 neurons and converts the image into a set of feature maps. These feature maps are converted
s into response predictions by a linear readout step (Fig. 1B) that picks the relevant features
s and spatial locations for each neuron. To ensure that the readout does not model any complex
16 computation, we constrain its weights to be non-negative. The non-negativity ensures that
u7 activations can only add, preventing the readout stage from accounting for any suppressive
us effects. The readout can, however, account for response invariances such as phase invariance of
1o complex cells; see Methods for an in-depth explanation. While our model reflects the general
120 formulation of divisive normalization, in this paper we mostly focus on normalization from the
121 vicinity of the receptive field.

122 2.2 DN model achieves competitive accuracy with fewer parameters

123 We fit the model described above to a dataset of 166 neurons recorded in V1 of two awake,
124 fixating monkeys (data from Cadena et al. 2019), who viewed a fast sequence of localized natural
125 images and textures (Fig. 2). The stimuli were centered on the neurons’ receptive fields and
126 covered about twice the area of the classical receptive fields, mostly stimulating the near vicinity
17 of the RFs’ center. Images were shown for 60 ms each, without blanks in between. Single unit
128 activity was recorded with laminar silicon probes sampling from all cortical layers. We fit the
120 model jointly to the responses of all neurons. As neurons were recorded in 17 recording sessions,
130 the dataset sampled a diverse range of preferred orientations. The objective function during
131 training was to minimize the difference between the model’s prediction and the observed spike
132 counts of the neurons in a time window 40-100 ms after image onset (to account for response
133 latency).
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Figure 3: Performance comparison of our models fitted to the data from Cadena et al. (2019) relative
to the gap between the best interpretable model — a subunit one layer convolutional neural network
(CNN) — and the data-driven state-of-the-art three-layer CNN (Cadena et al., 2019) that offers little
interpretability (black-box). Non-specific divisive normalization (DN) accounts for 56% of this gap,
while specific DN improves it up to 72%. Absolute values in terms of percentage of explainable variance
explained (FEV) on the right (mean over the ten best models selected in terms of validation set accuracy).
Error bars show the corresponding standard error of the mean.

To evaluate model performance, we estimated the fraction of explainable variance explained
(FEV), which quantifies the fraction of the stimulus-driven response variance that is accounted
for by the model, and ignores unexplainable trial-to-trial variability in the response of the
neurons (see Methods). A perfect model would reach a FEV of 100%.

Subunit models are an established approach to model primary visual cortex responses (Rust
et al., 2005; Touryan et al., 2005; Willmore et al., 2008; Butts et al., 2011; McFarland et al., 2013;
Vintch et al., 2015). In addition to capturing a fair portion of the explainable variance, they
provide interpretability in the form of linear projections applied to the input images. Therefore,
we considered a convolutional subunit model — currently the best-performing interpretable
model of V1 (Cadena et al., 2019) — as a strong baseline for our model. It consists of a first
stage of rectified linear filtering followed by a static nonlinearity, and then a linear pooling
stage. Structurally, it is the same as our DN model, but without the normalization stage. This
subunit model accounted for 45.9% FEV. In comparison, a regularized linear nonlinear Poisson
model (LNP) only accounted for 16.3% FEV on the same dataset (Cadena et al., 2019) due to
its inability to model complex cells.

As recent developments in machine learning technology have allowed us to improve predictive
performance, we used the current best data-driven model as a gold standard. This model is a
black-box convolutional neural network with three convolutional layers and a linear-nonlinear
readout, reaching a performance of 49.8% FEV (Cadena et al., 2019). However, although this
model outperforms the simpler subunit model, we currently do not understand how it does
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2 Results
Number of parameters
Model Core Readout per neuron
Subunit model 5440 816
Nonspecific divisive normalization 5536 816
Divisive normalization 6528 816
Black-box CNN (Cadena et al., 2019) 23936 867

Table 1: Number of parameters for different models.

SO.

To evaluate how well our DN model accounts for the data, we placed its performance on a scale
between 0% (baseline: subunit model) and 100% (gold standard: black-box CNN). On that scale,
our DN model achieved a score of 72% between the baseline and gold standard (48.7% FEV on
test set, mean over the ten best models selected in terms of validation set accuracy, Fig. 3), being
the new state-of-the-art interpretable model of primary visual cortex. Notably, we achieved
this performance gain by simply adding the trainable DN stage to the convolutional subunit
model, which shows that divisive normalization is an important computational mechanism in
V1 under stimulation with natural images.

While our DN model’s accuracy comes close to that of the state-of-the-art black-box CNN; it
requires substantially fewer parameters to achieve this performance (Table 1): The DN model’s
core — i.e. the shared computational backend before the linear readout — uses only 27.3% of
the parameters of the black-box CNN model’s core. This saving in parameters suggests that
the DN model captures important structure in the data, which we elaborate in the next section.
Compared to the number of parameters required by the subunit model’s core, the DN model
requires 20.0% more parameters (allocated to the divisive normalization module). The number
of readout parameters — i.e. the part that turns the shared nonlinear feature representation
into individual neurons’ responses — is very similar for all models.

2.3 Normalization is feature-specific

Having established that the DN model outperforms the current best interpretable model
and performs close to the black-box gold standard, we next investigated the structure of the
normalizing input, i.e. the sum in the denominator of Eq. (1) and how strongly different
features contribute to it. For this analysis, we focus on orientation-selective features. Visually
inspecting the strength of the normalizing inputs suggests that oriented features are normalized
preferentially by features with similar orientation preference (Fig. 4). In contrast, orthogonal
features seem to contribute less.

To quantify the difference with which the two groups contribute to normalization, we split
the sum in Eq. (1) into two parts and collect the contribution of normalizing features with
similar (< 45°) orientation as the driving feature and that of features with dissimilar (> 45°)
orientations. Analyzing the normalization of each oriented feature individually, we found that
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Figure 4: Structure of divisive normalization. The matrix shows the average strength (over images)
of the normalizing inputs for each combination of filter response being normalized (rows) and filter
response providing normalizing input (columns). Darker shades of blue indicate stronger normalization.
Orientation-selective filters are grouped at the top, ordered by preferred orientation and marked by the
black square. The dashed black lines within the square separate pairs of filters with similar (< 45°) and
dissimilar (> 45°) orientations. Normalizing inputs are stronger for similarly tuned filters (see Fig. 6 for
a quantification). Data of the model with highest accuracy on the validation set is shown.
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Figure 5: Normalization input from similar orientations (< 45°) compared to the normalization input
from dissimilar orientations (> 45°) for each feature. Grey line: identity. Most features are normalized
preferentially by the responses of filters with similar preferred orientations. Data of the model with
highest accuracy on the validation set is shown.

most oriented features are more strongly normalized by features with similar orientations
(Fig. 5). To assess whether our qualitative observation above is a general property of the data
or a spurious characteristic of that one particular model we selected, we repeated this analysis
for the top-10 models (assessed in terms of performance on the validation set) and observed
similar behavior. Averaging over the features, we found that, for all of these models, similar
orientations contributed more strongly than dissimilar orientations. Taking the data of all
top-10 models into account, we found that, on average, similarly oriented features contributed
75% more normalizing input than dissimilar features (Wilcoxon signed rank test; p < 0.006,
N = 10 models; Cohen’s d = 1.9).

Having established that normalizing inputs are orientation-specific, we analyzed this specificity
in more detail. Instead of using just two groups as before, we split up the normalizing inputs
into nine bins of 10° width each and averaged those bins across the top-10 models. This analysis
revealed that the strength of the normalizing inputs decreased as the difference in orientation
increased (Fig. 6). Hence, the more similar a normalizing feature’s orientation was to the
feature to be normalized, the stronger was its contribution to normalization. In fact, features in
the group most similar to the driving input contributed 133% more than those in the orthogonal
group (Cohen’s d = 2.1).

2.3.1 Control: Nonspecific divisive normalization reduces accuracy

To determine how important orientation-specific normalization is, we performed a control
experiment: For each feature [ being normalized, we constrained all of its incoming normalization
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Figure 6: Normalization input, binned into orientation difference of 10°. Each bin was averaged over
the top-10 models (assessed on the validation set). The shaded area depicts the standard deviation per
bin.

weights pg; to be identical. This constraint resembles non-specific normalization from all features,
as assumed in previous models (Heeger, 1992; Carandini et al., 1997; Busse et al., 2009). This
model achieved a performance of 56% between the baseline and gold standard (48.1% FEV).
While it does not match the performance of our more general DN model, it does outperform
the subunit baseline. Thus, orientation-specific normalization is necessary to achieve full
performance.

2.3.2 Control: All channels contribute to our model’s prediction

One potential caveat of our analyses so far is that we analyzed the orientation specificity of
DN in terms of the convolutional feature maps in our model’s core rather than the actual
neurons we recorded. These features provide a much more compact view of the population of
neurons, because they are invariant to the receptive field locations and the neural responses
are simple linear combinations of those features. However, it is not clear a-priori whether all
features are equally important for predicting the activity of the neurons in our population.
Thus, considering convolutional features instead of actual neurons may lead to a skewed view
of the population. To verify that this is not an issue, we quantified how much each feature
contributed to the overall activity of all neurons by normalizing the feature readout weights
across channels and averaging across neurons. The resulting distribution (Fig. 7) containing
these averaged feature readout weights for the best ten models had a coefficient of variation of
0.2. We therefore concluded that all features were read out by roughly the same number of
neurons and hence were similarly important to predict neural activity. Thus, our interpretation

10
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Figure 7: Histogram of feature readout weights of the ten best performing models in terms of validation
set accuracy. For each model, feature weights are normalized across channels and averaged across
individual neurons. All model’s channels are used to predict neural activity.

of orientation-specific normalization is unlikely to be an artifact of analyzing the convolutional
features rather than the actual neurons.

2.3.3 Control: No surround influence in our results and dataset

We have observed orientation-specific divisive normalization in the classical receptive field.
Surround suppression is known to be orientation-specific (Blakemore and Tobin, 1972; DeAngelis
et al., 1994; Cavanaugh et al., 2002; Coen-Cagli et al., 2015), so a potential concern would be
that some of the extra-classical surround of a unit’s RF contributed to the results presented
above. To rule out this possibility, we fit a more general DN model, where we additionally
learn the spatial structure of the normalization pool instead of just limiting it to neurons with
overlapping receptive fields (see Methods). This extended DN model included two normalization
pools that could have different patterns of weights along the feature dimension. It is therefore
general enough to account for the standard model of DN with a nonspecific center normalization
pool and orientation-specific surround suppression.

In contrast to what one may expect, spatially expanding the normalization pool to cover
larger surround areas did not increase our model’s accuracy; in fact, for lager surrounds the
performance even decreased (Fig. 8). The best performance was achieved for models with a
normalization pool of approximately the size of the units’ RF (approximately 0.5° diameter).
Since performance for larger normalization pools decreased, we used the model with the smallest
pool. The normalization weights of the extended spatial normalization pool showed no visible
separation into center and surround and exhibited no or only weak contributions from the
classical RF’s surround (Fig. 9). From both the decrease in performance for larger models
and the spatial shape of the normalization pool, we concluded that our model does not learn
influence from the RF surround. The reason for this limitation is very likely that the surrounding
regions in our stimuli were masked out, so there is no surround information available to be
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Figure 8: Validation set performance of our DN model for different normalization pool sizes (in space).
The normalization pool has a square shape; x-axis denotes the edge length of the covered space that can
contribute to normalization in units of visual angle in degrees.

learned. Consequently, our interpretation of orientation-specific normalization from nearby
units has no dependency on surrounding regions either.

3 Discussion

To improve our understanding of primary visual cortex, we asked what function state-of-the-art
black-box CNNs might implement for predicting V1 responses to localized natural stimuli.
To answer this question, we developed an end-to-end learnable divisive normalization model
and fit it to neural responses. Both the unspecific control model and the full model that
learned the normalization pool outperformed the current best-performing interpretable model
of V1, setting the new state-of-the-art. The full DN model improved performance even further,
reaching an accuracy competitive with the black-box CNN gold standard while having fewer
parameters. This result predicts that DN is a relevant mechanism to predict V1 responses to
natural images.

One may ask whether the difference between the non-specific DN model and the full model
learning orientation specific normalization weights is relevant, because the full model may simply
be able to better account for some insignificant biological heterogeneity due to its additional
parameters. Although it is possible, we believe that this explanation is unlikely, because oriented
features are preferentially normalized by channels with similar orientation. If the model was
simply picking up some biological imperfection, we would expect the normalization weights not
to depend systematically on preferred orientation.
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3 Discussion

Previous experimental work investigated suppressive phenomena within the receptive field only
with simple stimuli, mainly consisting of a combination of driving and mask gratings. Morrone
et al. (1982) find suppression at all orientations, but do not investigate orientations similar to
preferred orientation. Bonds (1989) report predominantly orientation-nonspecific suppression,
although three of fourteen cells exhibit stronger suppression with masks oriented similarly
to the neurons’ preferred orientations, and a few other cells are suppressed most strongly by
mask orientations orthogonal to the preferred orientation. Similarly, DeAngelis et al. (1992)
find suppression to be predominantly independent of orientation, although for some cells an
increased suppression for a range of orientations near the optimal excitatory orientation is
apparent. Heeger (1992) explains those results by proposing an orientation-nonspecific divisive
normalization model. Carandini et al. (1997) consider the possibility of orientation-specific
normalization which provides a marginal improvement in the quality of their model fits to the
data. However, they conclude that their dataset was not specifically designed to provide a
strong test of this question and their results are inconclusive in this respect. Busse et al. (2009)
develop a quantitative model for the response of a population of neurons to a combination
of gratings. Assuming nonspecific normalization by overall contrast, their model predicts
the collective action of the whole neuron population better than linear and winner-take-all
baselines, but they do not test against an orientation-specific alternative model. To summarize,
these studies find phenomena that are predominantly explained by nonspecific normalization
(Heeger, 1992), some of them encountering only weak orientation-specific phenomena and only
in relatively few cells.

Thus, our findings are largely consistent with previous experimental results and quantitatively
refine them using a larger dataset, place them in the context of other models of V1 and show
that the same mechanisms observed with simple stimuli also apply under more natural stimulus
conditions. Interestingly, and somewhat unexpectedly based on earlier work, channels with
preferred orientations within 10° of the driving feature provided 133% stronger normalizing
input than those with orthogonal preferred orientations. The reason for this difference between
our findings and previous studies could be that we used natural stimuli, which have different
image statistics compared to simple stimuli used in earlier studies. Furthermore, most previous
studies of divisive normalization were performed in cats (Morrone et al., 1982; Bonds, 1989;
DeAngelis et al., 1992; Busse et al., 2009) and the results therein may not generalize to monkeys,
for which preceding studies are inconclusive regarding orientation specificity (Carandini et al.,
1997).

Recent work modeling a large set of classical psychophysical data also suggests an orientation-
specific divisive normalization:Schiitt and Wichmann (2017) developed an image-computable
model of early vision very similar in structure to ours, and found that in order to explain
classical data on contrast detection, contrast discrimination and oblique masking, their model
required divisive normalization to be orientation-specific. Similar results had been reported in
an earlier study (Itti et al., 2000).

Following a normative approach, Schwartz and Simoncelli (2001) derive an ecologically justified
divisive normalization model from the efficient coding hypothesis (Barlow, 1961) that is able to
describe the orientation masking data of Bonds (1989). Reducing the statistical redundancy of
responses to natural stimuli predicts that normalization should be stronger for neurons that
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4 Methods

exhibit a higher dependency in their unnormalized responses. This theoretical result implies
that normalization weights should not be uniform, consistent with our empirical findings.

Is our discovery of divisive normalization by similar orientations actually implemented by the
connectivity of neurons in primary visual cortex? The answer to this question could be reflected
in the connectivity from inhibitory parvalbumin-expressing (PV) interneurons to pyramidal
cells and their relation to neurons’ tuning properties. Hofer et al. (2011) find that, in the
mouse, pyramidal cells and PV cells are homogeneously connected. Although a weak bias
towards orientation tuning is apparent, they conclude that local inhibition in V1 is primarily
non-specific. However, despite the connection probability between PV and pyramidal cells
being homogeneous, it was found that connection strengths are quite heterogeneous: Individual
PV cells strongly inhibit those pyramidal cells that share their visual selectivity (Znamenskiy
et al., 2018). This result is in line with our finding of orientation-specific normalization.

A limitation of our study is that the stimuli in our dataset are spatially restricted to approx-
imately twice the size of the classical receptive field, which prevented us from learning the
influence of the surround on normalization. Moreover, we here focused on single images to
predict a spike count in a relatively short time window covering the transient response, and
ignored any temporal aspects or more sustained periods of the response. These limitations,
however, are imposed by the available data — the modeling approach generalizes very well to
cover both the surround and the temporal structure — and thus should be addressed in future
work.

In conclusion, we developed a model consisting of one layer of subunits followed by learned
orientation-specific divisive normalization, which accounted remarkably well for the V1 data.
We hope that this quantitative approach of evaluating theories of computation in the brain by
formalizing them as (components of) trainable predictive models will be used more widely in
the future, so the field will (slowly) converge to an accurate and interpretable general-purpose
model of the visual system applicable to natural inputs.

4 Methods

4.1 Experimental details

We used the dataset described in detail in Cadena et al. (2019) and provide a summary of the
most important characteristics here. Electrophysiological recordings from two healthy, male
rhesus macaque monkeys aged 12 and 9 years were performed with a 32-channel linear silicon
probe. The monkeys were head-fixed and placed in front of a screen. They were trained to
fixate on a target located at the center of the screen. The start of a trial was determined by
maintained fixation on the target for 300 ms. The fixation tolerance was set to 0.42° around
the center of the target. At the beginning of each recording session, population receptive
fields were mapped with a sparse random dot stimulus. Each dot was of size 0.12° of visual
angle and was presented over a uniform gray background, changing location and light intensity
(black or white) randomly every 30 ms. The receptive field profiles per electrode channel were
then obtained via reverse correlation (i.e. spike-triggered average). The center location of the
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4 Methods

population receptive field was subsequently estimated by averaging over channels and fitting
a two-dimensional Gaussian to the reverse correlation profiles. Afterwards, this location was
used to place the images of the natural stimulus paradigm.

The dataset in Cadena et al. (2019) consists of 7250 distinct natural, greyscale images which
were presented two to four times each. A fifth of these images (1450) were taken from ImageNet
(Russakovsky et al., 2015). Four additional texturized images were synthesized from each
of them, preserving varying degrees of higher-order statistics. The images were cropped to
140 px x 140 px covering two degrees of visual angle. Before displaying the images on the screen,
the images were normalized such that the central 1° (70 px) of each image had the same mean
and standard deviation. The mean was set to the screen’s mean gray intensity (128) and the
standard deviation was set to the average standard deviation of the original images. Pixels
with an intensity that fell outside the display’s range [0, 255] where clipped. Afterwards, all
images were overlaid with a circular mask with a soft cosine fade-out and an aperture with a
diameter of 1°.

Images were presented for 60 ms with no blanks in between. Neural responses were extracted
in time windows of 40-100ms after image onset (Fig. 2), accounting for typical response
latencies in primary visual cortex. The image sequence was randomized with the restriction that
consecutive images do not belong to the same type (i.e. natural or one of the four texturized
versions).

We discarded a few isolated neurons if their stimulus driven variability was too low. The
explainable variance in a dataset is smaller than the total variance because the observation
noise prevents even a perfect model to account for all the variance in the data. Thus, targeting
neurons that have sufficient explainable variance is necessary to train meaningful models of
visually driven responses. For a neuron’s spike count r, the explainable variance Varexp[r| is

the difference between the the total variance Var[r] and the variance of the observational noise

2

O noise?

VareXP [T} = Var[r] - Ur%oise . (2)

We estimated the variance of the observational noise by computing the variance of a neuron’s
response r; in multiple trials ¢ in which we presented the same stimulus x; and subsequently
taking the expectation Ej; over all images,
2

Onoise = Ej [Vart [Tt|$j]] : (3)
We removed data of neurons if the ratio between the explainable to total variance was below 0.15.
The resulting dataset includes spike count data for 166 isolated neurons, with an average ratio
of explainable to total variance of 0.285. These neurons were recorded at 1° — 3° eccentricities
and had receptive field size diameters between 0.25° and 0.75°.

To keep our results of the full DN model without the extension to the surround consistent and
comparable to the gold standard baseline from Cadena et al. (2019), we down-sampled the
images by a factor of two to train our models. Likewise, images were cropped symmetrically,
keeping the 40 x 40 central pixels. This size covers all of the recorded neurons’ receptive fields,
with a slight variability in their spatial location. Furthermore, the stimuli light intensities
across all pixels and all images were centered around zero and normalized to have unit standard
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4 Methods

deviation. Additionally, we used the same random dataset splits of Cadena et al. (2019) into
training (64%), validation (16%) and testing (20%). We assessed our models’ accuracy for a
specific architecture or set of hyper-parameters in the validation set and we report performance
on the test set. We consistently used the same split throughout our study.

4.2 Divisive normalization model

Our model consists of two parts, a nonlinear core and a linear readout (Section 2.1 and Fig. 1).
The core (Fig. 1A) processes the input stimulus = by convolving it with 32 filters wy, of size
13 px x 13 px without padding, defining a bank of features indexed by k. Subsequently, we
apply batch normalization without re-scaling (BN*) leading to responses of unit variance (Ioffe
and Szegedy, 2015), followed by a rectified linear unit (ReL.U) nonlinearity

f(+) = max(0, ) . (4)

Hence, the resulting 32 feature maps of size 28 px x 28 px for the excitatory drive are given by

yr = f(BN*(wy x x)) . (5)

Many neurons perform similar computations but respond at different localized areas of the
visual field. Those receptive fields are represented by the kernels wy, which we implemented
convolutionally to exploit this knowledge. Furthermore, the ReLLU nonlinearity (Eq.4) ensures
that all feature maps are positive, yr > 0, which is coherent to the biological interpretation of
an excitatory drive.

The feature maps y; are then normalized divisively to produce 32 output feature maps

n
Yi

Z] = 6

ot + > ek (YY) ©)

shared by all neurons. Here, all operations are element-wise and the scalar semi-saturation
constant o7 > 0 is learned from the data. To include normalization by other channels k, we first
exponentiate the excitatory feature maps y by the scalar ng > 0 element-wise, which is learned
from the data as well. Subsequently, low-pass filtering is performed through average pooling in
space with pool-size 5 px x 5 px, denoted by (y,*). We perform this pooling in order to achieve
(approximate) phase invariance of the normalizing input without requiring a large number of
filters with different phases. Subsequently, the results of the low-pass filtering are summed up,
weighted by the normalization weights py;, and added into the denominator, resembling Eq. (1).
Furthermore, the normalization weights are constrained to be non-negative, px; > 0. Together
with y > 0 and o; > 0, this ensures that the denominator in Eq. (6) is non-negative, hence
having a well-defined biological interpretation.

We converted the core’s output feature maps z;, shared by all neurons, to the activity of
individual neurons via a linear readout for each of them (Fig. 1B). To do so, we factorized the
readout into spatial readout weights a,,; > 0 and feature readout weights b;; > 0 that pick the
relevant locations and features,

Ty = (auv,i bl,i) Zyvl - (7)
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4 Methods

Here, u,v index space and ¢ indexes neurons. This factorization is beneficial because it reduces
the number of parameters in the readout. Also, we wanted to ensure that the readout does
not model any complex computations, which we achieved by this factorization and the non-
negativity of the readout weights. Additionally, we limited complexity by imposing a sparseness
prior on both weights, because each neuron should only respond to its receptive field which
is represented by a sparse spatial readout weight and should not mix many different features
which corresponds to a sparse feature readout weight. The readout can, however, model a
complex cell (Hubel and Wiesel, 1962) by linearly combining multiple channels of the shared
feature space.

To optimize our model’s parameters, we mazimized the log-likelihood of the model’s predictions
given the data. To do so, we assumed that neurons’ spikes are produced by a Poisson process.
Our model predicts the average spike count 7 of a neuron, hence the probability of observing r

spikes in the experiment is
T

Pr|f) = %e—f . (8)

From that follows the Poisson log-likelihood

hlP(T“’f) = Z(’I”l(xj) lnfi(ar:j) — ln(n(:rj)!) — fz(lbj)) (9)

1,

for all neurons ¢ and all stimuli ;. A neuron’s response r; = r;(x;) depends on the stimulus x;,
which we suppress in our further notation for better readability. For implementation reasons,
we wanted to minimize the Poisson loss function

Lpoisson = Z(fz —7riln fz) , (10)
.J

which is the negative of the Poisson log-likelihood (Eq.9), where we omitted In(r;!) since this
term does not depend on our model.

Furthermore, two terms regularizing the model’s parameters were applied to the loss. We
imposed a smoothness prior on the kernels wy to ensure the spatial continuity of the predictors’
receptive fields. The according penalty on the loss for not-smooth weights was determined with
a Laplace filter L to be

0.25 0.5 0.25
Lsmooth = Z (L * wk)%v , L=|05 =3 05 . (11)

Due to their receptive fields, neurons only respond to a small, localized area of the visual field,
which is why we imposed a sparsity regularizer on the spatial readout weights a,,. Furthermore,
neurons should only pool from a small set of feature maps to ensure that the readout does not
perform complex computations. Thus we imposed a sparsity regularizer on the feature readout
weights b; as well. We achieved this by adding the Li-norm of both weights

['sparse = Z Z ‘auv| : ‘bl’ (12)

i u,v,l
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4 Methods

to the loss function.

The final loss function to minimize with respect to our model’s parameters is

L= ﬁPoisson + )\smooth Esmooth + )\Sparse £sparse ) (13)

where Agmooth and Asparse are hyper-parameters which set the strength of the smoothness and
the sparsity regularizer, respectively.

4.3 Divisive normalization model extended to normalization from surround

To extend our DN model to capture normalization from the spatial surround of a unit’s classical
RF, we replaced the weighted sum accounting for normalization (Eq.6) by a convolution that
also covers space, keeping the rest of the original DN model unchanged,

z = s =) Pk x (pt) (14)
B

U?Z + 81

The new shared feature space z; consist of all element-wise operations where the normalization
feature maps s; represent the strength by which the excitatory drive ylm is normalized. The
normalization feature maps are the result of a convolution between (y;") and normalization
pool kernels pgjy. These kernels encode which features (indexed by k) are pooled over what
spatial extent (indexed by wu,v). Note that for an u x v = 1 x 1 convolutional kernel p, this is
equal to the DN model without normalization from the surround (Eq.6).

For a larger convolutional kernel p, the feature maps s have smaller spatial dimensions than the
excitatory feature maps y due to the valid convolution. To be able to perform the element-wise
division, we symmetrically cropped the excitatory feature maps y so that the resulting feature
maps had the same spatial dimensions as s.

Additionally, we wanted to keep the complexity (number of parameters) of the linear readout
constant for all the size choices of the normalization kernel p. To this end, we slightly modified the
image prepossessing: after down-sampling the full images by a factor of two, we symmetrically
cropped them to a size that corresponds — after a forward pass through our model — to a shared
feature space of spatial dimensions 34 px x 34 px. In the particular case of a normalization
kernel p of size 7 px x 7 px, the input images needed to be larger than the actual stimulus size
to fulfill that constraint. Thus, we removed any offset at the masked out edges of the images
by shifting their mean accordingly, and introduced the necessary zero padding. Overall, this
process enabled a fair comparison across all sizes of p.

To keep the kernel size of p computationally tractable, we used convolutions with a dilation
factor of five to be able to pool from a relatively large extra-classical RF while using few
parameters. If we would compute the convolution directly on the feature maps y;*, the dilation
would lead to a situation in which some elements in the feature map y,* are not accounted
for by the convolution’s inner product for one specific position of the convolutional kernel, i. e.
one specific element in the suppression feature maps s;. To consider all those elements in the
inner product computation of the convolution, we introduced a preceding average pooling with
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4 Methods

a b px X 5px pool size (same as the dilation factor) and stride one. Then, all the information is
pooled over and weighted by exactly one weight of the convolutional kernel. In this view, the
pools of neighbouring weights of the dilated kernel have coinciding boundaries. So in addition
to implementing shift invariance (see Section 4.2), the average pooling makes sure that we do
not loose information for the extended DN model. Due to this pooling, a normalization kernel
p of spatial size 3 px x 3px would spatially cover a normalization pool of size 15px x 15 px.
We further reduced the number of parameters by a rank-two decomposition separating spatial
integration ¢ and the feature weighting d,

2
PEluv = Z Cluv,m * dkl,m . (15)

m=1

Like before, u, v index space and k indexes the features to pool from. We constrained ¢ and d
to be non-negative to make sure the denominator in Eq. (14) is strictly non-negative (recall
that in Eq. (14) (y,*) > 0). Our motivation to use two normalization pools (indexed by m)
was to allow for both a localized feature-non-specific normalization pool and a feature-specific
surround normalization as suggested by the standard model of DN. We investigated models
with normalization kernel sizes of 1px x 1px, 3px X 3px, 5px X 5px and 7px X 7 px which
spatially covered a five times larger normalization pool due to dilation. Those normalization
pools covered visual angles of 0.49°, 0.77°, 1.06° and 1.34°, respectively.

4.4 Baseline models
4.4.1 Black-box convolutional neural network

Since the divisive normalization computation in our model was completely learned from the
data, we wanted to compare to a baseline model that is purely data-driven as well. For this,
the current state-of-the-art model is a black-box convolutional neural network with three layers
(Cadena et al., 2019). Its first convolutional layer consists of a kernel with spatial size of
13px x 13px and for the second and third layer of size 3 px x 3px each. All layers use 32
channels, batch normalization (Ioffe and Szegedy, 2015) and ELU nonlinearity (Clevert et al.,
2015)

h ifth>0,

exp(h) —1 else. (16)

ELU(h) = {
Similar to our model’s architecture, the core part of the CNN model results in a nonlinear
feature space shared by all neurons which is mapped to each neuron’s activity with individual
readout weights factorized in spatial and feature weightings. Sparseness of both of them is
achieved by adding an Li-penalty to the according loss function. This readout differs from ours
in having no constraints on the weights and an additional sophisticated point-wise nonlinearity
requiring further parameters.
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4 Methods

4.4.2 Convolutional subunit model

Our convolutional subunit baseline model is structurally a one-layer convolutional neural
network with multiple filters followed by a readout. It is exactly the same as our divisive
normalization model (Section 4.2) but with the normalization function (Eq.6) replaced by the
identity function

21 =1id(y) =y - (17)

Hence, the only difference to our DN model is the lack of normalization. The shared feature
space z; consists of rectified outputs of linear filters (Eq. 5) which approximate simple cells. The
subsequent linear readout can sum up those simple cell responses with additional weightings,
enabling the model to approximate complex cells (Hubel and Wiesel, 1962). We trained the
model with the same loss function (Eq.13) as the divisive normalization model.

4.5 Number of learned parameters

In our model and the baseline models, parameters belong either to the core part that is shared
by all neurons (Table 1) or to the readout part in which parameters are specific for each
individual neuron.

Our DN model’s first convolution consists of kernels wy of spatial size 13 px x 13 px for 32
output channels and batch-normalization without re-scaling, adding 32 bias weights. To learn
the normalization pool, 32 normalization weights py; were learned for each of the 32 output
channels /. Additionally, we learned 32 semi-saturation constants o; and 32 exponents n; (one
for each channel /). Hence, we get 13 -13-32 4+ 32 + 32 - 32 4 32 + 32 = 6 528 weights for the
core. The resulting 32 feature maps are of spatial size of 28 px x 28 px due to no padding in the
convolution. Our linear readout is factorized in spatial and feature weights, thus consisting
of 28 - 28 4+ 32 = 816 parameters per neuron. Note additionally that all weights except for
the convolution kernel and the bias are constrained to be non-negative, halving the according
weight-space.

In the nonspecific divisive normalization model (Section 2.3.1) the normalization weights are
constant for a given feature [, that is py; = p;. Hence, it requires 32 instead of the 32 - 32
normalization weights of the full divisive normalization model. The other parts of the core
remain the same, leading to 6 528 — 32 - 32 4+ 32 = 5536 weights for the core. The readout and
the number of 816 readout weights per neuron is the same for both models.

The spatially extended DN model covering the classical receptive field surround requires more
parameters. As before, we get from the first convolution, bias weights, exponents and semi-
saturation constants 13 - 13 - 32 + 32 4 32 + 32 = 5504 weights. For each normalization pool
component (indexed by m), the factorized convolution learning the normalization contains
32-32 = 1024 feature normalization weights dy; ,, and 32 u v spatial normalization weights ¢y, m-
For the control experiments, we used 2 normalization pool components. So, the core consists in
total of 5504421024+ 2-32uv = 7552 4 64 v v weights. For the fitted spatial normalization
kernel sizes u = v = 1, 3,5, 7 this results in 7616, 8 128, 9152 and 10 688 parameters for the core,
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a2 respectively. The shared feature space for this model is of larger spatial size of 34 px x 34 px.
a3 Hence, the factorized readout consists of 34 - 34 + 32 = 1 188 parameters per neuron.

ass The convolutional subunit model is the same as the divisive normalization model but with
a5 the divisive normalization function (Eq.6) replaced by the identity function (Eq.17). Hence,
a6 compared to the DN model, it saves 32 - 32 normalization weights pg;, 32 semi-saturation
s7  constants o; and 32 exponents n;, leading to 6 528 — (32 - 32 + 32 + 32) = 5440 parameters for
s the core. The number of 816 readout parameters per neuron stays the same as for the divisive
ss9  normalization model.

a0 The black-box CNN was trained on the same data with input stimuli of size 40 px x 40 px
491 (Cadena et al., 2019). We summarize the calculations in the following. The black-box CNN’s
a2 first convolution uses kernels with spatial size of 13 px x 13 px and 32 channels as well as 32
203 biases due to batch normalization, leading to 13 - 13 - 32 4+ 32 = 5440 parameters. The two
a04 subsequent convolutions use kernels of spatial size 3 px x 3 px with 32 input and output channels
a5 as well as 32 biases each, 3-3-32-324 32 = 9248 parameters for each convolution. In total, the
a06 core consists of 5440 + 2 - 9248 = 23 936 parameters. To map to the neurons activities, a readout
a7 is used that is factorized in space and features with one additional bias term. The utilized
s0s nonlinearity is rather sophisticated, adding 50 parameters. In total, the readout consists of
a0 28 - 28 + 32 4+ 1 + 50 = 867 parameters per neuron. Since the CNN model uses smaller input
so0 images than the DN model (Section 4.1), it requires less spatial readout weights.

sa 4.6 Hyper-parameter optimization

s2 Our model’s accuracy depends on several hyper-parameters. We set the initial learning-rate to
s03. 1073 and used an early stopping training scheme: We evaluated the Poisson loss (Eq. 10) every
so4 100 training steps and after ten iterations of no improvement we decayed the learning-rate by a
so5  factor of three. We repeated this four times to follow the same procedure used by Cadena et al.
so6  (2019), because they find best validation set accuracy for this approach. For the filters wy in
so7  the first convolution, we found that a size of 13 px x 13 px was optimal, the same is true for the
sos number of 32 channels.

soo  The weight Agmooth of the smoothness penalty (Eq.11) and the weight Agparse Of the readout
sio  sparsity penalty (Eq.12) in the full loss function (Eq.13) were extensively cross-validated
s using the validation set of our data (Section 4.1). After a first coarse grid search for the
512 divisive normalization model, we narrowed down the relevant parameter-space in which we
513 perform a fine-grained search for the divisive normalization, nonspecific divisive normalization
514 and convolutional subunit model. We randomly sampled the smooth-weight Agnooth from a
515 logarithmic uniform distribution in the interval [10_9, 10_3] for the subunit and nonspecific
si6 DN model. For the full DN Model we sampled from a logarithmic uniform distribution in
517 [10_9, 10_4]. The readout sparse-weight Agparse Was sampled from a logarithmic uniform
518 distribution in the interval [10*9, 10*4] for the subunit and nonspecific DN model, for the full
519 DN model we used a smaller interval of [10_9, 10_5]. For all models, we sampled 1000 runs.

s20 For the divisive normalization model (Section 4.2), we achieved the highest accuracy for
521 Agparse = 2.25 - 1077 and Asmooth = 2-31 - 1072, For the convolutional subunit model, we found
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the optimal parameters to be Agparse = 2.59 - 107% and Asmooth = 4.98 - 107°. The optimal
weights of the nonspecific DN model were Agparse = 3.98 - 1077 and Asmootn = 1.11 - 107°.

4.7 Accuracy evaluation
4.7.1 Average correlation

For architecture search, hyper-parameter optimization and the selection of specific models for
analysis we evaluated models’ accuracies on the validation set with the Pearson correlation
coefficient between the measured spike counts and our models’ predictions, averaged over
neurons. If the prediction for one neuron is constant, the according standard deviation is zero.
Hence, the correlation coefficient was not computable due to division by zero. For those neurons,
we set the correlation coeflicient to zero before averaging. This average correlation measure
does not consider observational noise (Eq. 3).

4.7.2 Fraction of explainable variance explained

For reporting accuracy values in this paper, we used the data’s test set to compute the fraction
of explainable variance explained (FEV)

Varyes[r]

FEV=1—
Varep|r]

(18)
which utilizes the variance that is explainable in principle, Vareg,[r] (Eq.2), and the variance
of the residuals corrected by the observation noise,

N
VarreS[T] = Z(Tﬁ - fZ)Q/N - Ur2101sc : (19)

This measure corrects for observation noise, which variance o2 ;. we estimated with Eq. (3).

4.8 Evaluation of orientation-specific normalization

To analyse how the preferred orientation of the features being normalized depend on that of the
features providing normalizing inputs (Fig. 4-6), we determined for each feature map whether
it extracts oriented features and — if so — its preferred orientation. To do so, we windowed each
convolutional kernel with a Gaussian window (SD: 3 px), normalized it and then computed
its 2D power spectrum (using the discrete Fourier transform with 64 x 64 samples). We then
quantified how power spectral density is distributed across orientations by computing a mean
resultant vector m given by:

m= Y Fue* (20)

u,VER
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where F),, is the Fourier transformed kernel, R = {(u,v) : 0.3 < vVu? + v < 0.7} contains all
frequencies between 0.3 and 0.7 (with 1.0 being the Nyquist frequency), ¢ = atan2(v,u) is
the orientation, ¢ the imaginary unit and the factor 2 in the complex exponential accounts for
the fact that we are interested in orientation, which is periodic in 180° or «. If all power in a
kernel is concentrated in one orientation, the mean resultant vector will be long, whereas an
unoriented kernel will have a mean resultant vector near zero. Based on visual inspection of the
kernels in one model fit, we found m = 0.4 to be a reasonable threshold for separating oriented
from unoriented features and used it as a heuristic for further analyses. We did not explore
other thresholds to avoid issues with multiple comparisons and post-hoc statistical testing.

To quantitify how strong a feature [ is normalized by other features k, we computed the average
normalizing input, which is given as the expected value (over images) of the product px; - Yuv ()
in Eq. (1). Since this normalization input depends on the stimulus, we computed its expected
value of all images in the validation set. We removed the dependence on space by averaging
over all locations within the feature map.

4.9 Control: All channels contribute to our model’s prediction

To verify that all features contribute to normalization, we analyzed the readout feature weights
for the best ten models (assessed in terms of performance on the validation set). However,
there are two issues that prevent a direct comparison across models and neurons of the feature
weightings. First, the factorization of the readout into spatial and feature weightings is not
unique: scaling the spatial weights (a in Eq. (7)) by a factor 8 whilst scaling the feature weights
(b in Eq. (7)) by 1/ yields the same output limiting comparisons across neurons. Second, a
similar exercise between the normalization weights p and the semi-saturation constant o (Eq. 6)
impedes comparison across models. To solve these issues, we normalized the feature readout
weights across channels for this control analysis so that the resulting vectors for each neuron
and model convey how much a certain channel contributes to predict a neuron’s response
compared to the other channels, making the feature readout weights comparable across neurons.
Next, we averaged these weights across neurons to assess the importance of the channels in a
model. Since these normalized feature readout weights were comparable across both neurons
and models, we calculated a collective distribution of the averaged feature readout weights
from the best ten models. To make sense of this distribution’s absolute values, we evaluated its
width in terms of the coefficient of variation, which is the standard deviation in units of the
mean.

4.10 Implementation details

We used Tensorflow (Abadi et al., 2015) to implement models as well as Python, which we
additionally used for data analysis. We optimized models with the Adam optimizer (Kingma and
Ba, 2014) using mini-batches of size 256. In addition, we used the Python packages Numpy /Scipy
(Walt et al., 2011), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), Seaborn (Waskom
et al., 2017) and the tools Jupyter(Kluyver et al., 2016) and Docker (Merkel, 2014).
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