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Abstract 

Single-cell RNA-sequencing (scRNA-Seq) is a compelling approach to simultaneously measure 
cellular composition and state which is impossible with bulk profiling approaches. However, it 
has not yet become a widely used tool in population-scale analyses, due to its prohibitively high 
cost. Here we show that given the same budget, the statistical power of cell-type-specific 
expression quantitative trait loci (eQTL) mapping can be increased through low-coverage per-
cell sequencing of more samples rather than high-coverage sequencing of fewer samples. We 
also show that multiple experimental designs with different numbers of samples, cells per sample 
and reads per cell could have similar statistical power, and choosing an appropriate design can 
yield large cost savings especially when multiplexed workflows are considered. Finally, we 
provide a practical approach on selecting cost-effective designs for maximizing cell-type-specific 
eQTL power. 
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Introduction 
Massively parallel single-cell RNA sequencing (scRNA-Seq) has been increasingly used over the 
past few years as a powerful alternative to bulk RNA-Seq1–3. While the first scRNA-Seq dataset 
in 2009 consisted of only eight cells4, the number of cells in a typical experiment today is 
approaching tens or even hundreds of thousands5,6. Key advantages of scRNA-Seq over bulk 
methods are the ability to reveal complex and rare cell populations, uncover regulatory 
relationships between genes, and track the trajectories of distinct cell lineages in development7. 

Expression quantitative trait loci (eQTL) mapping is a widely-used tool in functional genomics 
used to identify mechanisms underlying the genotype-to-disease connection8–10. Traditionally, 
gene expression measurements used in eQTL studies are obtained from bulk measurements such 
as expression arrays or RNA-Seq8,9. However, cell-type specificity of eQTLs11 suggests that bulk 
approaches are suboptimal if the tissue of interest is composed of multiple cell types. The ability 
to simultaneously estimate cellular composition and state using scRNA-Seq creates an enormous 
opportunity to apply scRNA-seq to large population cohorts to detect subtle shifts in single-cell 
transcriptomics associated with population level variation (e.g., genetics and/or disease status). 
One of the main limitations of scRNA-Seq had been its high cost, which with the development of 
cost-effective multiplexed workflows, has been significantly mitigated enabling the broader 
adoption of population-scale scRNA-Seq and cell-type-specific eQTL studies (ct-eQTL) 12,13. 

Ct-eQTL mapping critically depends on assaying many individuals which is needed to achieve 
sufficient statistical power for detecting true associations. Therefore, despite the recent 
considerable drop in sequencing cost14, the total expense of a large-sample single-cell study can 
still be prohibitively high15. ScRNA-Seq measures transcript abundances for each cell. Obtaining 
highly accurate single-cell expression profiles is important for downstream analyses. For example, 
accurate single-cell expression profiles are required to quantify variance within a homogeneous 
population of cells. Such analyses usually require a high-coverage sequencing (0.5-3 million reads 
per cell)16,17. On the other hand, quantitative genetic analyses such as ct-eQTL mapping, do not 
necessarily require precise single-cell gene expression estimates. Instead, the average gene 
expression estimates within a cell type are used in these settings. In the case of noisy single-cell 
estimates, it is still possible to obtain an adequate level of accuracy given a large enough number 
of cells. In other words, cell-type-specific gene expression can be quantified accurately by high-
coverage RNA-Seq of a single cell or by shallow coverage of multiple cells of a given cell-type 
followed by aggregation of the information within a cell type. Thus, low-coverage sequencing is 
a promising approach to infer cell-type-specific gene expression profiles. 

The impact of per-cell read coverage on downstream analyses such as cell type identification18,19 
and dimensionality reduction20 has been studied from both practical and theoretical perspectives. 
A recent study21 investigated the trade-off between read coverage and the number of cells under a 
fixed budget constraint optimizing for recovering the true underlying gene expression distribution. 
The main result in (21) suggests that only one read per gene per cell is sufficient to accurately 
recover gene expression distributions, but it does not provide any practical guidelines on how to 
choose the number of reads per cell nor the number of cells per sample to maximize the power for 
detecting ct-eQTLs. Additionally, that study does not consider critical factors such as the number 
of sequenced individuals, the impact of cell type identification, and sample multiplexing to reduce 
library preparation cost. Sample multiplexing refers to pooling cells from multiple samples for 
single cell library preparation at increased throughput. It is possible to demultiplex the pooled 
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samples computationally leveraging sample specific barcodes. For example, one of the most 
widely used methods demuxlet leverages genetic variation captured from the transcriptome of each 
cell to accurately assign sample identity to each cell22.  

In this work, we first demonstrate that cell-type-specific gene expression can be accurately inferred 
with low-coverage single-cell RNA sequencing given enough cells and individuals. Namely, we 
show that by aggregating reads across cells within a cell type, it is possible to achieve a high 
average Pearson 𝑅" between the low-coverage estimates and the ground truth values of gene 
expression. Second, we show that by increasing sample size and the number of cells per individual 
while decreasing coverage, it is possible to reduce the cost of the experiment by half (or even 
more) while maintaining the same statistical power. Third, we provide a practical guideline for 
designing ct-eQTL studies which maximizes statistical power. Our results provide a pathway for 
the design of efficient cell-type-specific association studies that are scalable to large populations.   

Results 

Accurate cell-type-specific gene expression at low-coverage RNA sequencing 
To accurately quantify gene expression per cell, it is necessary to sequence each cell at a high 
coverage. However, in ct-eQTL studies, accurate cell-type-specific expression estimates can be 
achieved with low-coverage sequencing by pooling cells of the same type. To demonstrate this, 
we used a Smart-Seq2 dataset23 consisting of 2209 pancreatic cells obtained from 10 individuals. 
In this dataset, each cell was sequenced at high coverage (750,000 reads per cell on average), 
resulting in a reliable estimate of cell-type-specific gene expression. Similar to existing 
works18,21,24, we downsampled the reads uniformly without replacement from the initial dataset. 
At various levels of coverage, for each cell type, we estimated the Pearson’s 𝑅" for every gene 
between the downsampled and the full, “gold standard”, data set (Methods). 10% of the data 
(≈75,000 reads per cell) was sufficient to attain ≈70% average 𝑅"	across 24,181 genes (Figure 
1A). This suggests that under idealistic settings of no library preparation cost, the effective sample 
size can be increased by up to 10-fold by distributing coverage across many individuals. This is 
due to the fact that statistical power in an association study is a function of sample size and both 
the phenotype and genotype measurement accuracy. The power of a study with sample size 𝑁 and 
estimated phenotype (𝑦̃) is approximately the same as the power of a study with sample size 𝛼𝑁 
and true phenotypes 𝑦, where 𝛼 is Pearson 𝑅" between 𝑦̃ and 𝑦25,26. The quantity 𝛼𝑁 will be 
referred to as the effective sample size and denoted as 𝑁+,,. For example, the same total sequencing 
budget can be distributed across 100 individuals yielding an effective sample size of 70 (𝑁 ⋅ 𝑅" = 
100	⋅	0.7 = 70) versus 10 individuals at high-coverage for an effective sample size of 10 (𝑁 ⋅ 𝑅"	= 
10	⋅	1 = 10). 
 
Next, we investigated the properties of genes that are accurately quantified at low-coverage 
sequencing. Low-coverage sequencing expression estimates for highly expressed genes (mean 
cell-type-specific expression value (log-transformed TPM) across individuals greater than 4) are 
highly correlated with the ground truth (𝑅" ≈ 1, Figure 1B). To exclude the inflation of 𝑅" due to 
genes being expressed in only a small number of individuals, we assessed the accuracy of 
expression estimates for genes stratified by the number of individuals they are expressed in. Most 
genes are expressed in 8 out of 10 individuals (Figure S9A, Supplementary) and, although some 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/766972doi: bioRxiv preprint 

https://doi.org/10.1101/766972


 

genes are expressed only in 1 individual and their expression estimates tend to inflate the 𝑅" 
(Figure S9B, Supplementary), their overall impact is negligible due to their small number. 

 
Figure 1: The impact of read coverage on the average 𝑅" between cell-type-specific gene expression estimates 
and their ground truth values (Smart-Seq2 dataset, cell type 1).  A) Average Pearson 𝑅" (± 1 standard error) 
computed across all the genes at different levels of read coverage. B) Pearson 𝑅" at 75,000 reads per cell (± 1 standard 
error) stratified by the expression level.  

Optimal power for ct-eQTL discovery is attained at lower coverage with larger 
number of individuals and cells 
Having quantified the accuracy of cell-type-specific gene expression estimates at low-coverage 
sequencing, we next investigated the relationship between the statistical power for detecting 
eQTLs and effective sample size (Methods). Intuitively, as the number of reads per cell decreases, 
the accuracy of cell-type-specific gene expression estimates decreases due to sampling noise from 
sequencing and/or inaccurate cell-type identification. However, with lower coverage, many more 
individuals can be included in the study, thus increasing 𝑁 for the same cost. To evaluate this 
relationship in realistic settings, which includes the number of cells per individual and sample 
preparation cost, we model the budget as: 

𝐵	 = 	𝐵0 	+ 2⋅3
4
+ 1078 ⋅ 𝑁 ⋅ 𝑀 ⋅ 𝑟 ⋅ 𝑝,  

where 𝑁 is the sample size, 𝑀 is the number of cells per individual, 𝑟 is the read coverage, and 𝑥 
is the degree of sample multiplexing (number of individuals per pool). 𝑝 is the cost of Illumina 
sequencing per 1 million reads, 𝐿 is the library preparation cost per reaction, and 𝐵0 is the budget 
wasted on sequencing multiplets (see Methods).  
 
In what follows, we analyzed a 10X Genomics dataset consisting of 120 individuals each having 
2,750 cells (see Methods) using a budget 𝐵 =	$35,000 (for 120 individuals at 𝐿 = $2,000, 
$30,000 are allocated to library preparation with 15 pools sequencing 8 individuals per pool and 
$5,000 is allocated to sequencing). We use (𝑁,𝑀, 𝑟) to refer to the experimental design. In all 
our experiments, the search space is defined by 𝑁 ranging from 40 to 120 individuals in steps of 
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8 and 𝑀 ranging from 500 to 2,750 cells per individual in steps of 250. First, when the sample 
preparation is $0/sample and each pool contains eight individuals (since according to demuxlet, 
99% of the sample identities can be correctly recovered at this level of multiplexing), we find 
that by sequencing all 2,750 cells for all 120 individuals with a coverage of 𝑟 = 14,500 reads per 
cell results in an 𝑁+,, of at least 102 for all cell types (Figure S1, Supplementary). This is in 
contrast with the recommended strategy of 𝑟 ≈ 50,000 reads per cell (Single Cell 3’ V2 
chemistry, 10X Genomics27) which results in only 40 individuals under the same budget and 
𝑁+,,	= 36.  
 

 
Figure 2: Experimental designs for B cell ct-eQTL with effective sample size 𝑁+,, = 45: A) Comparison of 
different experimental designs. The best design 𝑁 = 96,𝑀 = 2,500, 𝑟 = 1500 yields two-fold reduction in cost than 
the “recommended” design. B) For a fixed sample size and number of cells per individual, increasing coverage implies 
increasing the effective sample size (i.e., power) only up to a point. There is no gain in power at coverages greater 
than 7,500 reads per cell.  
 
Next, we considered the impact of library preparation cost in designing a ct-eQTL study (Figure 
S2, Supplementary). At realistic costs of $2,000/reaction, we find that the maximum 𝑁+,, over 
the search space which can be obtained with $35,000 is in the range of 67 to 86 across different 
cell types (Figure S2, Supplementary). The coverage in this case is 3,000-5,700 reads per cell. 
Note that the maximum effective sample size is not necessarily attained with 120 individuals and 
2,750 cells per individual. For example, for dendritic cells, sequencing 96 samples and 2,750 
cells per sample (at coverage 𝑟 =	5,700) yields 𝑁+,, = 67 which is better than with other 
experimental designs in the search space.  
 
We also consider additional strategies for decreasing library preparation cost. A natural approach 
is to multiplex more individuals when possible (i.e., when 𝑀 is not high). We limit the per reaction 
capacity to 24,000 cells and allow 𝑥 to take on the values up to 16 (see Figure S3, Supplementary). 
This will lower library preparation costs, but will increase the number of multiplets, i.e. droplets 
which contain at least two cells, and which are usually excluded from downstream analyses. In 
this scenario, the effective sample size can be increased considerably. For example, for dendritic 
cells, the experimental design (𝑁 = 120,𝑀 = 2,000, 𝑟 = 8,000) yields 𝑁+,, = 70 versus the 
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case when only eight individuals can be multiplexed per reaction, which yields 𝑁+,, = 48. For a 
small budget, library preparation dominates the total cost, which limits how many individuals and 
cells can be sequenced. However, for a larger budget (≳$35,000), library preparation has less 
impact on the total cost due to multiplexing and the gain in power is incremental (compare Figures 
S2 and S3, Supplementary). 
 
Next, we quantified how uncertainty in cell-type identification at low coverage affects our 
approach (see Figure S4 and S13, Supplementary). The aforementioned results clearly show that 
low-coverage sequencing is beneficial for increasing statistical power when cell types are known. 
However, with extremely low-coverage, assigning a cell to the correct cell type can be problematic 
(see Figure S10A, Supplementary) which affects estimates of cell-type-specific gene expression 
and results in the loss of power. To account for cell-type misclassification, we inferred cell type 
labels by label transfer using a reference PBMC dataset (see Methods section and Figure S10B, 
Supplementary). Using this approach, for B cells, the misclassification rate is in range 10-15% 
across all the experiments (see Figure S11, Supplementary). Assigning cells to the wrong type 
results in reduced power compared to having known cell type labels. Nevertheless, at low 
coverage, the effective sample size is still higher across all cell types (see Figures S12 and S13, 
Supplementary for the coverage and the effective sample size, respectively). For any particular 
cell type (e.g., B cells), low-coverage sequencing delivers high levels of power irrespective of the 
budget which is allocated for the experiment (see Figure S14, Supplementary).  
 
To show the practical value of our approach, we compared different experimental designs for a 
fixed effective sample size. For example, 𝑁+,, = 45 for B cells can be attained by sequencing 
	≈45 individuals with a large number of cells at high coverage (in Figure 2A, “recommended 
design”). In this case, the total cost is $50,000. Marginally increasing either the coverage, or the 
sample size, or the number of cells per individual can reduce the cost of the experiment (Figure 
2A). However, a better experimental design is achieved at a large sample size and large number of 
cells per individual (𝑁 = 96,𝑀 = 2,500) and extremely low coverage (𝑟 ≈ 1,500 reads per cell). 
With this experimental design, we obtain the same power in a ct-eQTL study with half of the 
budget ($25,000 vs $50,000). For this design, increasing coverage up to 7,500 reads per cell drives 
the increase in effective sample size. However, further increase in coverage introduces no 
improvement in 𝑁+,, (Figure 2B).   

Cell-type eQTL power analysis in empirical data  
For the budget 𝐵 =	$35,000, we performed ct-eQTL analyses for each experimental design 
(𝑁,𝑀, 𝑟), where 𝑁 ranged from 40 to 120 with step 8 and 𝑀 ranged from 500 to 2,750 with step 
250. We also ran the ct-eQTL analysis on the original dataset to obtain the “ground truth” set of 
ct-eQTLs and ct-eGenes. We considered the following accuracy metrics: 
● Recall - the percentage of “ground truth” ct-eQTLs (ct-eGenes) recovered in the 

experiment. It is an empirical estimate of the statistical power; 
● Precision - the percentage of “ground truth” ct-eQTLs (ct-eGenes) among all the ones 

called in the experiment. 
Figure 3A shows an upward trend in the estimate of statistical power as the effective sample size 
grows. Due to sampling variance in our experiments (when sampling individuals and cells from 
the full dataset), we do observe some variance along the fitted line. Despite this fact, an experiment 
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with a higher effective sample size leads to higher statistical power to detect true associations. 
Clearly, low-coverage experimental designs (with coverage less than 50,000 reads per cell) yield 
higher estimates of power than the high-coverage ones.  

 

 
Figure 3: Performance of ct-eQTL analysis. Shown here is the ct-eQTL analysis of B cells at fixed budget $35,000: 
A) Recall (power estimate) as a function of effective sample size; B) Precision-recall plot. 
 
The power (and, consequently, the number of discovered ground truth ct-eQTLs and ct-eGenes) 
inversely depends on the coverage (Figure 3A and Figure S15, Supplementary). For a fixed 
number of individuals, the highest power is achieved at the lowest coverage. This means that for 
a ct-eQTL analysis, the best strategy under a fixed budget is to spread the reads across many 
individuals. On average, the optimal design with low-coverage sequencing yields three times more 
power than the designs using current recommended level of coverage (50,000 reads per cell). 
Notably, low-coverage sequencing yields a high level of precision - percentage of the ground truth 
ct-eQTLs (or ct-eGenes) in the output of the analysis.  

Materials and Methods 
 
We assume a fixed budget 𝐵	 = 𝐵3 + 𝐵G + 𝐵0, where 𝐵3  is the cost of the library preparation, 
𝐵G is the cost of sequencing, and 𝐵0 is the extra cost due to non-identifiable multiplets which are 
discarded in the downstream analysis. For 10X Genomics, 𝐵3 ≫ 𝐵G. Recent advances in single-
cell computational methods28 allow to accurately demultiplex cells of individuals with a variable 
genetic background which were pooled in one reaction. This considerably reduces the library 
preparation costs. However, multiplexing usually results in “overloading” of the sequencing 
instrument, which increases the number of multiplets. Identifiable multiplets are excluded from 
downstream analysis. However, the multiplets that cannot be identified remain in the dataset. The 
amount of money spent on sequencing of identifiable multiplets 𝐵0, increases with the number of 
cells per reaction. When conducting an scRNA-Seq experiment, we must decide the number of 
individuals 𝑁 and the number 𝑀 of cells per individual to be sequenced. Based on these two 
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parameters, we can determine 𝑟, the number of reads per cell. Assuming that the library preparation 
cost per reaction is 𝐿, our model for the budget is: 

𝐵	 = 	𝐵0 	+ 2⋅3
4
+ 1078 ⋅ 𝑁 ⋅ 𝑀 ⋅ 𝑟 ⋅ 𝑝, 

𝐵0 = 	𝑓(𝑁,𝑀, 𝑥)	
where 𝑥 is the number of individuals per 10X reaction (sample multiplexing), and 𝑓 is a function 
of sample size, number of cells per individual and the level of multiplexing to the budget spent on 
sequencing the multiplets. The function 𝑓 in non-linear and it is increasing for all three parameters. 
To get an estimate of the number of reads per cell 𝑟 in a scRNA-Seq experiment with 𝑁individuals 
and 𝑀cells per individual, we do the following:  
● Compute the budget for the sequencing itself for one reaction: 𝐵G =

4
2
⋅ (𝐵	 −	2⋅3

4
). 

● For the computed value of 𝐵G and the number of cells in a batch (which is equal to 𝑀 ⋅ 𝑥), 
find the number of reads 𝑟 which can be requested for sequencing. We use the 
computational model for the cost described in the Satija lab single-cell cost calculator 
(https://satijalab.org/costpercell). Our heuristic uses a dichotomy search to determine the 
actual number of reads per cell which we can obtain with the given sequencing budget 𝐵G, 
the given values of cells per reaction, number of multiplexed samples, and other 
experimental details. 

The whole workflow is described in Figure S6, Supplementary. 

Read count simulations for 10X Genomics 
Simulating low-coverage experiments for single-cell RNA-Seq data should be performed by 
downsampling reads. However, this might not be feasible from a computational point of view. The 
large amount of data (several Terabytes) as well as the processing time represent a bottleneck. To 
overcome this issue, we propose the following approach for simulating low-coverage datasets from 
a larger dataset represented by a gene-UMI count matrix 𝑋. First, we assume that the values in 𝑋 
reflect the true gene expression, i.e. 𝑋MN 	is the number of transcripts produced by the gene 𝑖 in cell 
𝑗. Second, we assume that each cell’s transcriptome is sequenced with approximately the same 
number of Illumina reads 𝑟. Third, we assume that the number of reads per transcript is 
approximately the same. Then, to simulate the number of Illumina reads sequenced from each UMI 
of a cell 𝑗 given that the total of 𝑟 Illumina reads were sequenced, we draw them from the following 
multinomial distribution: 

𝑅NQ ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟, Z
G[
(1, 1, . . . , 1)), 

where 𝑆N = ∑ 𝑋MNQ0
Z  is the total number of UMIs in cell 𝑗 and the length of the vector 𝑅NQ	is equal to 

the total number of UMIs in the cell 𝑗. When 𝑟 is small, some of the UMIs can drop out (meaning 
that they were not captured by the in-silico “sequencing” procedure) and as a result, the observed 
UMI counts for the gene 𝑖 can become smaller. When 𝑟 is large, there will be a saturation point 
after which increasing the read coverage will not improve the gene expression estimates (see 
Figure S5, Supplementary). For each gene, we count the number of non-zero values at the 
corresponding positions in 𝑅NQ and set it as the simulated UMI count for the gene 𝑖 in the cell 𝑗 (see 
Figure S7, Supplementary).  
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Datasets 
We used a 10X Genomics dataset consisting of 142 individuals with the number of cells ranging 
from 2000 to 8000 per individual. The dataset has undergone the standard analysis using the 10X 
cellranger software package. For our analysis, we selected only those individuals with at least 
2,750 cells and down-sampled the number of cells for each individual to this value. Thus, we 
obtained a dataset of 120 individuals, each having 2,750 cells. Eight cell types were present in the 
dataset: B cells, CD14+ monocytes, CD4 T cells, CD8 T cells, dendritic cells, FCGR3A+ 
monocytes, megakaryocytes, NK cells (Figure S8, Supplementary).  

Cell type classification 
Cell types were determined by using label transfer feature from Seurat29. As the reference, the 
2700 PBMC 10X dataset was used30. 

Cell-type-specific expression profiles 
Cell types were determined using Seurat. Computing cell-type-specific expression profiles was 
done by grouping the cells based on their cell types and then aggregating the UMI counts (or 
TPMs) across the individuals for every gene. The aggregated expression profiles were scaled by 1 
million and log-normalized. 

ct-eQTL analysis 
For the ct-eQTL analysis, we used MatrixEQTL31 R package. We performed cis-ct-eQTL mapping 
with cis-distance set to 1 Mbp and p-value threshold set to 5%. The resulting SNP-gene pairs were 
filtered at an FDR threshold of 5%. The genomic coordinates for each gene were obtained from 
the GRCh38 genomic annotations downloaded from the Ensemble (release 94). 

 

Supplementary Materials 
Supplementary Materials include 15 figures. 
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Supplementary materials 

 
Figure S1: Effective sample size as a function of number of individuals and number of cells per individual at 
budget $35,000 assuming no library preparation cost, multiplexing of 8 individuals per reaction, and known 
cell types. The dependence on read coverage is implicit. The maximum effective size 𝑁+,,	is a) 105 for B cells (𝑁 =
120,𝑀 = 2,750, 𝑟	 = 14,500); b) 108 for CD14+ cells (𝑁 = 120,𝑀 = 2,750, 𝑟	 = 14,500); c) 107 for 
CD4+ cells (𝑁 = 120,𝑀 = 2,750, 𝑟	 = 14,500); d) 105 for CD8+ cells (𝑁 = 120,𝑀 = 2,750, 𝑟	 =
14,500); e) 102 for dendritic cells (𝑁 = 120,𝑀 = 2,750, 𝑟	 = 14,500); f) 106 for Fcgr3a cells (𝑁 =
120,𝑀 = 2,750, 𝑟	 = 14,500); g) 105 for megakaryocytes (𝑁 = 120,𝑀 = 2,750, 𝑟	 = 14,500); h) 106 
for NK cells (𝑁 = 120,𝑀 = 2,750, 𝑟	 = 14,500).      
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Figure S2: Effective sample size as a function of number of individuals and number of cells per individual at 
budget $35,000 assuming library preparation costs of $2,000 per reaction, multiplexing of 8 individuals per 
reaction, known cell types. The maximum effective size 𝑁+,,	is a) 81 for B cells (𝑁 = 104,𝑀 = 2,750, 𝑟	 =
4,300); b) 82 for CD14+ cells (𝑁 = 104,𝑀 = 2,750, 𝑟	 = 4,300); c) 82 for CD4+ cells (𝑁 = 104,𝑀 =
2,750, 𝑟	 = 4,300); d) 82 for CD8+ cells (𝑁 = 104,𝑀 = 2,750, 𝑟	 = 4,300); e) 67 for dendritic cells (𝑁 =
96,𝑀 = 2,750, 𝑟	 = 5,700); f) 73 for Fcgr3a cells (𝑁 = 96,𝑀 = 2,750, 𝑟	 = 5,700); g) 77 for 
megakaryocytes (𝑁 = 104,𝑀 = 2,750, 𝑟	 = 4,300); h) 86 for NK cells (𝑁 = 112,𝑀 = 2,750, 𝑟	 =
3,100).  
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Figure S3: Effective sample size as a function of number of individuals and number of cells per individual at 
budget $35,000 assuming library preparation costs of $2,000 per reaction, greedy multiplexing, and known cell 
types. The level of multiplexing takes on values from 8 to 16. The maximum effective size 𝑁+,,	is a) 83 for B cells 
(𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); b) 86 for CD14+ cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); c) 86 for 
CD4+ cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); d) 83 for CD8+ cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 =
5,400); e) 70 for dendritic cells (𝑁 = 120,𝑀 = 2,000, 𝑟	 = 8,000); f) 76 for Fcgr3a cells (𝑁 = 120,𝑀 =
2,250, 𝑟	 = 5,400); g) 79 for megakaryocytes (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); h) 86 for NK cells (𝑁 =
120,𝑀 = 2,250, 𝑟	 = 5,400).  
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Figure S4: Effective sample size as a function of number of individuals and number of cells per individual at 
budget $35,000 assuming library preparation costs of $2,000 per reaction, greedy multiplexing and unknown 
cell types. Cell types are inferred using Seurat’s label transfer procedure. The maximum effective size 𝑁+,,	is a) 74 
for B cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); b) 82 for CD14+ cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 =
5,400); c) 71 for CD4+ cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); d) 38 for CD8+ cells (𝑁 = 120,𝑀 =
2,250, 𝑟	 = 5,400); e) 53 for dendritic cells (𝑁 = 120,𝑀 = 2,000, 𝑟	 = 8,000); f) 65 for Fcgr3a cells 
(𝑁 = 120,𝑀 = 2,000, 𝑟	 = 8,000); g) 41 for megakaryocytes (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400); h) 
53 for NK cells (𝑁 = 120,𝑀 = 2,250, 𝑟	 = 5,400).  
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Figure S5: Percent of total detected UMIs at different levels of coverage. At each level of coverage 𝑟, we randomly 
sampled a cell from the 10X dataset and simulated 𝑟 reads. The average number of recovered UMIs per cell is 
computed over 1000 iterations. 
 
 
 
 
 

 
Figure S6: The simulation workflow. The input to the simulation are the parameters 𝑁- the sample size, 𝑀- the 
number of cells per sample, 𝑥 - multiplexing level. We first compute the budget per each individual. Then, by using 
the Satija lab single-cell cost calculator (https://satijalab.org/costpercell) we compute the number of singlets 𝑀_ with 
the coverage 𝑟_ and the number of multiplets 𝑀0 with the coverage 𝑟0. We then randomly “merge” the expression 
profiles of 2𝑀0cells pair-wise to obtain 𝑀0 doublets. Finally, the reads are simulated from each cell and the cell-type 
specific expression is computed for each cell type across all of the samples.  
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Figure S7: Read count simulation for 10X. A) First, samples are collected, then sequenced by using 10X Genomics 
technology. Second, cell-type-specific gene expression is determined for each of the individuals. B) Each RNA 
molecule (or, equivalently, each UMI) regardless of the gene it was transcribed from is an urn, and each Illumina read 
is a ball which is randomly thrown into the urns. Given the ground truth expression of a cell (on the left) as the number 
of RNA molecules in the ground truth, the simulation of gene expression under a specified level of read coverage is 
performed as a random throwing of reads (“balls”) into the corresponding RNA molecules (“urns”). After all the 
“balls” are thrown into the “urns”, some urns remain empty (the gene received 0 reads, consequently, was not 
sequenced). In case a small number of reads is thrown into the “urns”, a considerable number of so-called “drop-out” 
events (i.e., missing all UMIs from a gene) will occur.  
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Figure S8: cell type composition of the 10X dataset. 
 
 
 
 
 

 
Figure S9: Stratification of genes based on the number of individuals they are expressed in (Smart-Seq2 
dataset). A) Distribution of genes by the number of individuals they are expressed in.  B) Average Pearson 𝑅" at 
75000 reads per cell (cell type 1) stratified by the number of individuals they are expressed in (vertical bars indicate 
interquartile range).  
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Figure S10: Cell type identification for the 10X dataset. The dataset consists of cells belonging to 104 
individuals, 2,500 cells per individual, 6,000 reads per cell (budget is $35,000). A) Cells are colored by the ground 
truth cell types; B) Cells are colored by the cell types inferred from label transfer by using Seurat with 2700 PBMC 
reference dataset. 
 
 

 
 
Figure S11: Cell-type misclassification rate of B cells at budget $35,000 assuming library preparation costs and 
greedy multiplexing. Cell types are inferred using Seurat’s label transfer. 
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Figure S12: Coverage, thousands of reads per cell at budget $35,000 assuming library preparation costs of 
$2,000 per reaction and greedy multiplexing. 
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Figure S13: Effective sample size across different cell types at budget $35,000 assuming library preparation 
costs of $2,000 per reaction and greedy multiplexing. The cell types are inferred using Seurat’s label transfer 
procedure with the 2700 PBMC dataset as a reference. 
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Figure S14: Effective sample size for B cells across different budgets assuming library preparation costs of 
$2,000 per reaction and greedy multiplexing. The cell types are inferred using Seurat’s label transfer procedure 
with the 2700 PBMC dataset as a reference. 
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Figure S15: ct-eQTL analysis of the 10X dataset. The budget is fixed at $35,000. A) B cells; B) CD14+ monocytes; 
C) CD4 T cells; D) CD8 T cells; E) Dendritic cells; F) FCGR3A+ monocytes; G) Megakaryocytes; H) NK cells. 
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