bioRxiv preprint doi: https://doi.org/10.1101/766972; this version posted September 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Optimal design of single-cell RNA
sequencing experiments for cell-type-
specific eQTL analysis

Igor Mandric!, Tommer Schwarz®, Arunabha Majumdar’, Richard Perez®%1°,

Meena Subramaniam”®*!°, Chun Jimmie Ye”**!°, Bogdan Pasaniuc**>%*,

Eran Halperin!346*

"Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
?Department of Human Genetics, David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA

3Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine,
University of California Los Angeles, Los Angeles, CA, USA

“Department of Computational Medicine, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA, USA

SDepartment of Pathology and Laboratory Medicine, David Geffen School of Medicine, University
of California Los Angeles, Los Angeles, CA, USA

®Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles,
CA, USA

"Bioinformatics Program, University of California San Francisco, San Francisco, CA, USA
$Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
“Bakar Computational Health Sciences Institute, University of California San Francisco, San
Francisco, CA, USA

Division of Rheumatology, Department of Medicine, University of California San Francisco,
San Francisco, CA, USA

*These authors jointly supervised this work.

Correspondence

Igor Mandric, Department of Computer Science, University of California Los Angeles, Los
Angeles, CA 90024.
Email: imandric@ucla.edu



https://doi.org/10.1101/766972

bioRxiv preprint doi: https://doi.org/10.1101/766972; this version posted September 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Abstract

Single-cell RNA-sequencing (scRNA-Seq) is a compelling approach to simultaneously measure
cellular composition and state which is impossible with bulk profiling approaches. However, it
has not yet become a widely used tool in population-scale analyses, due to its prohibitively high
cost. Here we show that given the same budget, the statistical power of cell-type-specific
expression quantitative trait loci (eQTL) mapping can be increased through low-coverage per-
cell sequencing of more samples rather than high-coverage sequencing of fewer samples. We
also show that multiple experimental designs with different numbers of samples, cells per sample
and reads per cell could have similar statistical power, and choosing an appropriate design can
yield large cost savings especially when multiplexed workflows are considered. Finally, we
provide a practical approach on selecting cost-effective designs for maximizing cell-type-specific
eQTL power.
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Introduction

Massively parallel single-cell RNA sequencing (scRNA-Seq) has been increasingly used over the
past few years as a powerful alternative to bulk RNA-Seq' . While the first sScRNA-Seq dataset
in 2009 consisted of only eight cells*, the number of cells in a typical experiment today is
approaching tens or even hundreds of thousands®®. Key advantages of scRNA-Seq over bulk
methods are the ability to reveal complex and rare cell populations, uncover regulatory
relationships between genes, and track the trajectories of distinct cell lineages in development’.

Expression quantitative trait loci (eQTL) mapping is a widely-used tool in functional genomics
used to identify mechanisms underlying the genotype-to-disease connection®!°. Traditionally,
gene expression measurements used in eQTL studies are obtained from bulk measurements such
as expression arrays or RNA-Seq®’. However, cell-type specificity of eQTLs!! suggests that bulk
approaches are suboptimal if the tissue of interest is composed of multiple cell types. The ability
to simultaneously estimate cellular composition and state using sSCRNA-Seq creates an enormous
opportunity to apply scRNA-seq to large population cohorts to detect subtle shifts in single-cell
transcriptomics associated with population level variation (e.g., genetics and/or disease status).
One of the main limitations of scRNA-Seq had been its high cost, which with the development of
cost-effective multiplexed workflows, has been significantly mitigated enabling the broader
adoption of population-scale scRNA-Seq and cell-type-specific eQTL studies (ct-eQTL) 1213,

Ct-eQTL mapping critically depends on assaying many individuals which is needed to achieve
sufficient statistical power for detecting true associations. Therefore, despite the recent
considerable drop in sequencing cost!*, the total expense of a large-sample single-cell study can
still be prohibitively high!>. SCRNA-Seq measures transcript abundances for each cell. Obtaining
highly accurate single-cell expression profiles is important for downstream analyses. For example,
accurate single-cell expression profiles are required to quantify variance within a homogeneous
population of cells. Such analyses usually require a high-coverage sequencing (0.5-3 million reads
per cell)!®!7, On the other hand, quantitative genetic analyses such as ct-eQTL mapping, do not
necessarily require precise single-cell gene expression estimates. Instead, the average gene
expression estimates within a cell type are used in these settings. In the case of noisy single-cell
estimates, it is still possible to obtain an adequate level of accuracy given a large enough number
of cells. In other words, cell-type-specific gene expression can be quantified accurately by high-
coverage RNA-Seq of a single cell or by shallow coverage of multiple cells of a given cell-type
followed by aggregation of the information within a cell type. Thus, low-coverage sequencing is
a promising approach to infer cell-type-specific gene expression profiles.

The impact of per-cell read coverage on downstream analyses such as cell type identification!®!?

and dimensionality reduction?’ has been studied from both practical and theoretical perspectives.
A recent study?! investigated the trade-off between read coverage and the number of cells under a
fixed budget constraint optimizing for recovering the true underlying gene expression distribution.
The main result in (21) suggests that only one read per gene per cell is sufficient to accurately
recover gene expression distributions, but it does not provide any practical guidelines on how to
choose the number of reads per cell nor the number of cells per sample to maximize the power for
detecting ct-eQTLs. Additionally, that study does not consider critical factors such as the number
of sequenced individuals, the impact of cell type identification, and sample multiplexing to reduce
library preparation cost. Sample multiplexing refers to pooling cells from multiple samples for
single cell library preparation at increased throughput. It is possible to demultiplex the pooled
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samples computationally leveraging sample specific barcodes. For example, one of the most
widely used methods demuxlet leverages genetic variation captured from the transcriptome of each
cell to accurately assign sample identity to each cell®.

In this work, we first demonstrate that cell-type-specific gene expression can be accurately inferred
with low-coverage single-cell RNA sequencing given enough cells and individuals. Namely, we
show that by aggregating reads across cells within a cell type, it is possible to achieve a high
average Pearson R? between the low-coverage estimates and the ground truth values of gene
expression. Second, we show that by increasing sample size and the number of cells per individual
while decreasing coverage, it is possible to reduce the cost of the experiment by half (or even
more) while maintaining the same statistical power. Third, we provide a practical guideline for
designing ct-eQTL studies which maximizes statistical power. Our results provide a pathway for
the design of efficient cell-type-specific association studies that are scalable to large populations.

Results

Accurate cell-type-specific gene expression at low-coverage RNA sequencing

To accurately quantify gene expression per cell, it is necessary to sequence each cell at a high
coverage. However, in ct-eQTL studies, accurate cell-type-specific expression estimates can be
achieved with low-coverage sequencing by pooling cells of the same type. To demonstrate this,
we used a Smart-Seq2 dataset?® consisting of 2209 pancreatic cells obtained from 10 individuals.
In this dataset, each cell was sequenced at high coverage (750,000 reads per cell on average),
resulting in a reliable estimate of cell-type-specific gene expression. Similar to existing
works!82124 we downsampled the reads uniformly without replacement from the initial dataset.
At various levels of coverage, for each cell type, we estimated the Pearson’s R? for every gene
between the downsampled and the full, “gold standard”, data set (Methods). 10% of the data
(~75,000 reads per cell) was sufficient to attain ~70% average R? across 24,181 genes (Figure
1A). This suggests that under idealistic settings of no library preparation cost, the effective sample
size can be increased by up to 10-fold by distributing coverage across many individuals. This is
due to the fact that statistical power in an association study is a function of sample size and both
the phenotype and genotype measurement accuracy. The power of a study with sample size N and
estimated phenotype (y) is approximately the same as the power of a study with sample size aN
and true phenotypes y, where a is Pearson R? between ¥ and y25%. The quantity aN will be
referred to as the effective sample size and denoted as N, sf. For example, the same total sequencing
budget can be distributed across 100 individuals yielding an effective sample size of 70 (N - R? =
100 - 0.7 = 70) versus 10 individuals at high-coverage for an effective sample size of 10 (N - R? =
10-1=10).

Next, we investigated the properties of genes that are accurately quantified at low-coverage
sequencing. Low-coverage sequencing expression estimates for highly expressed genes (mean
cell-type-specific expression value (log-transformed TPM) across individuals greater than 4) are
highly correlated with the ground truth (R? ~ 1, Figure 1B). To exclude the inflation of R? due to
genes being expressed in only a small number of individuals, we assessed the accuracy of
expression estimates for genes stratified by the number of individuals they are expressed in. Most
genes are expressed in 8 out of 10 individuals (Figure S9A, Supplementary) and, although some
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genes are expressed only in 1 individual and their expression estimates tend to inflate the R?
(Figure S9B, Supplementary), their overall impact is negligible due to their small number.
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Figure 1: The impact of read coverage on the average R 2 petween cell-type-specific gene expression estimates
and their ground truth values (Smart-Seq2 dataset, cell type 1). A) Average Pearson R? (+ 1 standard error)
computed across all the genes at different levels of read coverage. B) Pearson R? at 75,000 reads per cell (= 1 standard
error) stratified by the expression level.

Optimal power for ct-eQTL discovery is attained at lower coverage with larger
number of individuals and cells

Having quantified the accuracy of cell-type-specific gene expression estimates at low-coverage
sequencing, we next investigated the relationship between the statistical power for detecting
eQTLs and effective sample size (Methods). Intuitively, as the number of reads per cell decreases,
the accuracy of cell-type-specific gene expression estimates decreases due to sampling noise from
sequencing and/or inaccurate cell-type identification. However, with lower coverage, many more
individuals can be included in the study, thus increasing N for the same cost. To evaluate this
relationship in realistic settings, which includes the number of cells per individual and sample
preparation cost, we model the budget as:

B=Bm+"4110%-N-M-r-p,
X

where N is the sample size, M is the number of cells per individual, r is the read coverage, and x
is the degree of sample multiplexing (number of individuals per pool). p is the cost of Illumina
sequencing per 1 million reads, L is the library preparation cost per reaction, and B™ is the budget
wasted on sequencing multiplets (see Methods).

In what follows, we analyzed a 10X Genomics dataset consisting of 120 individuals each having
2,750 cells (see Methods) using a budget B = $35,000 (for 120 individuals at L = $2,000,
$30,000 are allocated to library preparation with 15 pools sequencing 8 individuals per pool and
$5,000 is allocated to sequencing). We use (N, M, ) to refer to the experimental design. In all
our experiments, the search space is defined by N ranging from 40 to 120 individuals in steps of
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8 and M ranging from 500 to 2,750 cells per individual in steps of 250. First, when the sample
preparation is $0/sample and each pool contains eight individuals (since according to demuxlet,
99% of the sample identities can be correctly recovered at this level of multiplexing), we find
that by sequencing all 2,750 cells for all 120 individuals with a coverage of r = 14,500 reads per
cell results in an N, ¢ of at least 102 for all cell types (Figure S1, Supplementary). This is in
contrast with the recommended strategy of r = 50,000 reads per cell (Single Cell 3’ V2
chemistry, 10X Genomics?”) which results in only 40 individuals under the same budget and
Neff = 36.
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Experimental design
Figure 2: Experimental designs for B cell ct-eQTL with effective sample size N, = 45: A) Comparison of
different experimental designs. The best design N = 96, M = 2,500, = 1500 yields two-fold reduction in cost than
the “recommended” design. B) For a fixed sample size and number of cells per individual, increasing coverage implies
increasing the effective sample size (i.e., power) only up to a point. There is no gain in power at coverages greater
than 7,500 reads per cell.

Next, we considered the impact of library preparation cost in designing a ct-eQTL study (Figure
S2, Supplementary). At realistic costs of $2,000/reaction, we find that the maximum N, over
the search space which can be obtained with $35,000 is in the range of 67 to 86 across different
cell types (Figure S2, Supplementary). The coverage in this case is 3,000-5,700 reads per cell.
Note that the maximum effective sample size is not necessarily attained with 120 individuals and
2,750 cells per individual. For example, for dendritic cells, sequencing 96 samples and 2,750
cells per sample (at coverage r = 5,700) yields N, = 67 which is better than with other
experimental designs in the search space.

We also consider additional strategies for decreasing library preparation cost. A natural approach
is to multiplex more individuals when possible (i.e., when M is not high). We limit the per reaction
capacity to 24,000 cells and allow x to take on the values up to 16 (see Figure S3, Supplementary).
This will lower library preparation costs, but will increase the number of multiplets, i.e. droplets
which contain at least two cells, and which are usually excluded from downstream analyses. In
this scenario, the effective sample size can be increased considerably. For example, for dendritic
cells, the experimental design (N = 120,M = 2,000, = 8,000) yields N,rr = 70 versus the
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case when only eight individuals can be multiplexed per reaction, which yields N,rs = 48. For a
small budget, library preparation dominates the total cost, which limits how many individuals and
cells can be sequenced. However, for a larger budget (=$35,000), library preparation has less
impact on the total cost due to multiplexing and the gain in power is incremental (compare Figures
S2 and S3, Supplementary).

Next, we quantified how uncertainty in cell-type identification at low coverage affects our
approach (see Figure S4 and S13, Supplementary). The aforementioned results clearly show that
low-coverage sequencing is beneficial for increasing statistical power when cell types are known.
However, with extremely low-coverage, assigning a cell to the correct cell type can be problematic
(see Figure S10A, Supplementary) which affects estimates of cell-type-specific gene expression
and results in the loss of power. To account for cell-type misclassification, we inferred cell type
labels by label transfer using a reference PBMC dataset (see Methods section and Figure S10B,
Supplementary). Using this approach, for B cells, the misclassification rate is in range 10-15%
across all the experiments (see Figure S11, Supplementary). Assigning cells to the wrong type
results in reduced power compared to having known cell type labels. Nevertheless, at low
coverage, the effective sample size is still higher across all cell types (see Figures S12 and S13,
Supplementary for the coverage and the effective sample size, respectively). For any particular
cell type (e.g., B cells), low-coverage sequencing delivers high levels of power irrespective of the
budget which is allocated for the experiment (see Figure S14, Supplementary).

To show the practical value of our approach, we compared different experimental designs for a
fixed effective sample size. For example, N.sr = 45 for B cells can be attained by sequencing
~45 individuals with a large number of cells at high coverage (in Figure 2A, “recommended
design”). In this case, the total cost is $50,000. Marginally increasing either the coverage, or the
sample size, or the number of cells per individual can reduce the cost of the experiment (Figure
2A). However, a better experimental design is achieved at a large sample size and large number of
cells per individual (N = 96, M = 2,500) and extremely low coverage (r = 1,500 reads per cell).
With this experimental design, we obtain the same power in a ct-eQTL study with half of the
budget ($25,000 vs $50,000). For this design, increasing coverage up to 7,500 reads per cell drives
the increase in effective sample size. However, further increase in coverage introduces no
improvement in N,y (Figure 2B).

Cell-type eQTL power analysis in empirical data

For the budget B = $35,000, we performed ct-eQTL analyses for each experimental design
(N,M, ), where N ranged from 40 to 120 with step 8 and M ranged from 500 to 2,750 with step
250. We also ran the ct-eQTL analysis on the original dataset to obtain the “ground truth” set of
ct-eQTLs and ct-eGenes. We considered the following accuracy metrics:
e Recall - the percentage of “ground truth” ct-eQTLs (ct-eGenes) recovered in the
experiment. It is an empirical estimate of the statistical power;
e Precision - the percentage of “ground truth” ct-eQTLs (ct-eGenes) among all the ones
called in the experiment.
Figure 3A shows an upward trend in the estimate of statistical power as the effective sample size
grows. Due to sampling variance in our experiments (when sampling individuals and cells from
the full dataset), we do observe some variance along the fitted line. Despite this fact, an experiment
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with a higher effective sample size leads to higher statistical power to detect true associations.
Clearly, low-coverage experimental designs (with coverage less than 50,000 reads per cell) yield
higher estimates of power than the high-coverage ones.
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Figure 3: Performance of ct-eQTL analysis. Shown here is the ct-eQTL analysis of B cells at fixed budget $35,000:
A) Recall (power estimate) as a function of effective sample size; B) Precision-recall plot.

The power (and, consequently, the number of discovered ground truth ct-eQTLs and ct-eGenes)
inversely depends on the coverage (Figure 3A and Figure S15, Supplementary). For a fixed
number of individuals, the highest power is achieved at the lowest coverage. This means that for
a ct-eQTL analysis, the best strategy under a fixed budget is to spread the reads across many
individuals. On average, the optimal design with low-coverage sequencing yields three times more
power than the designs using current recommended level of coverage (50,000 reads per cell).
Notably, low-coverage sequencing yields a high level of precision - percentage of the ground truth
ct-eQTLs (or ct-eGenes) in the output of the analysis.

Materials and Methods

We assume a fixed budget B = BX + BS + B™, where B’ is the cost of the library preparation,
BS is the cost of sequencing, and B™ is the extra cost due to non-identifiable multiplets which are
discarded in the downstream analysis. For 10X Genomics, B > BS. Recent advances in single-
cell computational methods®® allow to accurately demultiplex cells of individuals with a variable
genetic background which were pooled in one reaction. This considerably reduces the library
preparation costs. However, multiplexing usually results in “overloading” of the sequencing
instrument, which increases the number of multiplets. Identifiable multiplets are excluded from
downstream analysis. However, the multiplets that cannot be identified remain in the dataset. The
amount of money spent on sequencing of identifiable multiplets B™, increases with the number of
cells per reaction. When conducting an scRNA-Seq experiment, we must decide the number of
individuals N and the number M of cells per individual to be sequenced. Based on these two
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parameters, we can determine r, the number of reads per cell. Assuming that the library preparation
cost per reaction is L, our model for the budget is:

B=Bm+"410%-N-M-r-p,
X

B™ = f(N,M,x)
where x is the number of individuals per 10X reaction (sample multiplexing), and f is a function
of sample size, number of cells per individual and the level of multiplexing to the budget spent on
sequencing the multiplets. The function f in non-linear and it is increasing for all three parameters.
To get an estimate of the number of reads per cell 7 in a sScRNA-Seq experiment with Nindividuals
and Mcells per individual, we do the following:

e Compute the budget for the sequencing itself for one reaction: Bg = % (B — %).

e For the computed value of Bg and the number of cells in a batch (which is equal to M - x),
find the number of reads r which can be requested for sequencing. We use the
computational model for the cost described in the Satija lab single-cell cost calculator
(https://satijalab.org/costpercell). Our heuristic uses a dichotomy search to determine the
actual number of reads per cell which we can obtain with the given sequencing budget By,
the given values of cells per reaction, number of multiplexed samples, and other
experimental details.

The whole workflow is described in Figure S6, Supplementary.

Read count simulations for 10X Genomics

Simulating low-coverage experiments for single-cell RNA-Seq data should be performed by
downsampling reads. However, this might not be feasible from a computational point of view. The
large amount of data (several Terabytes) as well as the processing time represent a bottleneck. To
overcome this issue, we propose the following approach for simulating low-coverage datasets from
a larger dataset represented by a gene-UMI count matrix X. First, we assume that the values in X
reflect the true gene expression, i.e. X;; is the number of transcripts produced by the gene i in cell
Jj. Second, we assume that each cell’s transcriptome is sequenced with approximately the same
number of Illumina reads r. Third, we assume that the number of reads per transcript is
approximately the same. Then, to simulate the number of [llumina reads sequenced from each UMI
of a cell j given that the total of r [llumina reads were sequenced, we draw them from the following
multinomial distribution:

Rjr ~ Multinomial(r, Sl (1,1,..., 1)),
J

where §; = Y1' X is the total number of UMIs in cell j and the length of the vector R} is equal to
the total number of UMIs in the cell j. When r is small, some of the UMIs can drop out (meaning
that they were not captured by the in-silico “sequencing” procedure) and as a result, the observed
UMI counts for the gene i can become smaller. When 7 is large, there will be a saturation point
after which increasing the read coverage will not improve the gene expression estimates (see
Figure S5, Supplementary). For each gene, we count the number of non-zero values at the
corresponding positions in R} and set it as the simulated UMI count for the gene i in the cell j (see

Figure S7, Supplementary).
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Datasets

We used a 10X Genomics dataset consisting of 142 individuals with the number of cells ranging
from 2000 to 8000 per individual. The dataset has undergone the standard analysis using the 10X
cellranger software package. For our analysis, we selected only those individuals with at least
2,750 cells and down-sampled the number of cells for each individual to this value. Thus, we
obtained a dataset of 120 individuals, each having 2,750 cells. Eight cell types were present in the
dataset: B cells, CD14+ monocytes, CD4 T cells, CD8 T cells, dendritic cells, FCGR3A+
monocytes, megakaryocytes, NK cells (Figure S8, Supplementary).

Cell type classification

Cell types were determined by using label transfer feature from Seurat®®. As the reference, the
2700 PBMC 10X dataset was used*.

Cell-type-specific expression profiles

Cell types were determined using Seurat. Computing cell-type-specific expression profiles was
done by grouping the cells based on their cell types and then aggregating the UMI counts (or
TPMs) across the individuals for every gene. The aggregated expression profiles were scaled by 1
million and log-normalized.

ct-eQTL analysis

For the ct-eQTL analysis, we used MatrixEQTL3! R package. We performed cis-ct-eQTL mapping
with cis-distance set to 1 Mbp and p-value threshold set to 5%. The resulting SNP-gene pairs were
filtered at an FDR threshold of 5%. The genomic coordinates for each gene were obtained from
the GRCh38 genomic annotations downloaded from the Ensemble (release 94).

Supplementary Materials

Supplementary Materials include 15 figures.
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Figure S1: Effective sample size as a function of number of individuals and number of cells per individual at
budget $35,000 assuming no library preparation cost, multiplexing of 8 individuals per reaction, and known

cell types. The dependence on read coverage is implicit. The maximum effective size N,/ is a) 105 for B cells (N =
120,M = 2,750,r = 14,500); b) 108 for CD14+ cells (N = 120,M = 2,750,r = 14,500); c) 107 for
CD4+ cells (N = 120,M = 2,750,r = 14,500); d) 105 for CD8+ cells (N = 120,M = 2,750,r =
14,500); e) 102 for dendritic cells (N = 120,M = 2,750,r = 14,500); f) 106 for Fcgr3a cells (N =
120,M = 2,750,r = 14,500); g) 105 for megakaryocytes (N = 120,M = 2,750,r = 14,500); h) 106
for NK cells (N = 120,M = 2,750,r = 14,500).
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Figure S2: Effective sample size as a function of number of individuals and number of cells per individual at
budget $35,000 assuming library preparation costs of $2,000 per reaction, multiplexing of 8 individuals per

reaction, known cell types. The maximum effective size N, is a) 81 for B cells (N = 104,M = 2,750,r =
4,300); b) 82 for CD14+ cells (N = 104, M = 2,750,r = 4,300); c) 82 for CD4+ cells (N = 104, M =
2,750, = 4,300);d) 82 for CD8+cells(N = 104, M = 2,750,r = 4,300); e) 67 for dendritic cells (N =
96,M = 2,750,r = 5,700); f) 73 for Fcgr3a cells (N =96,M = 2,750,r = 5,700); g) 77 for
megakaryocytes (N = 104, M = 2,750, = 4,300); h) 86 for NK cells (N = 112,M = 2,750,r =
3,100).
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Figure S3: Effective sample size as a function of number of individuals and number of cells per individual at
budget $35,000 assuming library preparation costs of $2,000 per reaction, greedy multiplexing, and known cell
types. The level of multiplexing takes on values from 8 to 16. The maximum effective size N, is a) 83 for B cells

(N =120,M = 2,250,r = 5,400);b) 86 for CD14+cells (N = 120, M = 2,250,r = 5,400); c) 86 for
CD4+ cells (N =120,M = 2,250,r = 5,400); d) 83 for CD8+ cells (N = 120,M = 2,250,r =
5,400); e) 70 for dendritic cells (N = 120,M = 2,000, = 8,000); ) 76 for Fcgr3acells (N = 120, M =
2,250,r = 5,400); g) 79 for megakaryocytes(N = 120,M = 2,250, = 5,400); h) 86 for NK cells (N =
120,M = 2,250,r = 5,400).
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Figure S4: Effective sample size as a function of number of individuals and number of cells per individual at
budget $35,000 assuming library preparation costs of $2,000 per reaction, greedy multiplexing and unknown
cell types. Cell types are inferred using Seurat’s label transfer procedure. The maximum effective size N,y is a) 74

for B cells (N = 120,M = 2,250,r = 5,400); b) 82 for CD14+ cells (N = 120,M = 2,250,r =
5,400); ¢) 71 for CD4+ cells (N = 120,M = 2,250, = 5,400); d) 38 for CD&+ cells (N = 120,M =
2,250,r = 5,400); e) 53 for dendritic cells (N = 120,M = 2,000,r = 8,000); f) 65 for Fcgr3a cells
(N =120,M = 2,000,r = 8,000); g) 41 for megakaryocytes (N = 120, M = 2,250,r = 5,400); h)
53 for NK cells (N = 120,M = 2,250,r = 5,400).
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Figure S5: Percent of total detected UMISs at different levels of coverage. At each level of coverage r, we randomly

sampled a cell from the 10X dataset and simulated r reads. The average number of recovered UMIs per cell is
computed over 1000 iterations.
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Figure S6: The simulation workflow. The input to the simulation are the parameters N- the sample size, M- the
number of cells per sample, x - multiplexing level. We first compute the budget per each individual. Then, by using
the Satija lab single-cell cost calculator (https://satijalab.org/costpercell) we compute the number of singlets M, with
the coverage 7, and the number of multiplets M,,, with the coverage r,,,. We then randomly “merge” the expression
profiles of 2M,,,cells pair-wise to obtain M,,, doublets. Finally, the reads are simulated from each cell and the cell-type
specific expression is computed for each cell type across all of the samples.
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Figure S7: Read count simulation for 10X. A) First, samples are collected, then sequenced by using 10X Genomics
technology. Second, cell-type-specific gene expression is determined for each of the individuals. B) Each RNA
molecule (or, equivalently, each UMI) regardless of the gene it was transcribed from is an urn, and each Illumina read
is a ball which is randomly thrown into the urns. Given the ground truth expression of a cell (on the left) as the number
of RNA molecules in the ground truth, the simulation of gene expression under a specified level of read coverage is
performed as a random throwing of reads (“balls”) into the corresponding RNA molecules (“urns”). After all the
“balls” are thrown into the “urns”, some urns remain empty (the gene received O reads, consequently, was not
sequenced). In case a small number of reads is thrown into the “urns”, a considerable number of so-called “drop-out”
events (i.e., missing all UMIs from a gene) will occur.
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Figure S8: cell type composition of the 10X dataset.
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Figure S9: Stratification of genes based on the number of individuals they are expressed in (Smart-Seq2
dataset). A) Distribution of genes by the number of individuals they are expressed in. B) Average Pearson R? at

75000 reads per cell (cell type 1) stratified by the number of individuals they are expressed in (vertical bars indicate
interquartile range).
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Figure S10: Cell type identification for the 10X dataset. The dataset consists of cells belonging to 104
individuals, 2,500 cells per individual, 6,000 reads per cell (budget is $35,000). A) Cells are colored by the ground
truth cell types; B) Cells are colored by the cell types inferred from label transfer by using Seurat with 2700 PBMC

reference dataset.
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Figure S11: Cell-type misclassification rate of B cells at budget $35,000 assuming library preparation costs and
greedy multiplexing. Cell types are inferred using Seurat’s label transfer.
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Figure S12: Coverage, thousands of reads per cell at budget $35,000 assuming library preparation cos
$2,000 per reaction and greedy multiplexing.
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Figure S13: Effective sample size across different cell types at budget $35,000 assuming library preparation
costs of $2,000 per reaction and greedy multiplexing. The cell types are inferred using Seurat’s label transfer
procedure with the 2700 PBMC dataset as a reference.
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Figure S14: Effective sample size for B cells across different budgets assuming library preparation costs of
$2,000 per reaction and greedy multiplexing. The cell types are inferred using Seurat’s label transfer procedure
with the 2700 PBMC dataset as a reference.
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Figure S15: ct-eQTL analysis of the 10X dataset. The budget is fixed at $35,000. A) B cells; B) CD14+ monocytes;
C) CD4 T cells; D) CD8 T cells; E) Dendritic cells; F) FCGR3A+ monocytes; G) Megakaryocytes; H) NK cells.
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