

1 **Evolutionary history of dimethylsulfoniopropionate (DMSP)**
2 **demethylation enzyme DmdA in marine bacteria**
3
4

5 Laura Hernández^{1,5*}

6 Alberto Vicens²

7 Luis Enrique Eguiarte^{3*}

8 Valeria Souza³

9 Valerie De Anda⁴

10 José M. González¹

11

12

13 ¹Departamento de Microbiología, Universidad de La Laguna, La Laguna, Spain

14 ²Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain

15 ³Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de
16 México, D.F., Mexico

17 ⁴University of Texas Austin, Department of Marine Sciences, Marine Science Institute, Port
18 Aransas

19 ⁵Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional
20 Autónoma de México, Cuernavaca, Mexico

21

22 Correspondence:

23 Laura Hernández

24 lauraher@ccg.unam.mx

25

26 Luis Enrique Eguiarte

27 fruns@unam.mx

28

29

30 Number of words: 7.031

31 Number of figures: 7

32

33

34

35 ABSTRACT

36 Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is
37 predominantly degraded by bacteria belonging to the *Roseobacter* lineage and other marine
38 *Alphaproteobacteria* via DMSP-dependent demethylase A protein (DmdA). To date, the
39 evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry
40 between DmdA and GcvT gene families and a co-evolution between *Roseobacter* and the DMSP-
41 producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the
42 evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of
43 DmdA and GcvT, 2) a coevolution between *Roseobacter* and the DMSP-producing-phytoplankton,
44 and 3) pre-adapted enzymes to DMSP prior to *Roseobacter* origin. Our analyses indicate that
45 DmdA is a new gene family originated from GcvT genes by duplication and functional divergence
46 driven by positive selection before a coevolution between *Roseobacter* and phytoplankton. Our data
47 suggest that *Roseobacter* acquired *dmdA* by horizontal gene transfer prior to exposition to an
48 environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP
49 demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of
50 DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent *Roseobacter* ecoparalogs
51 (copies performing the same function under different conditions), which should be adapted to lower
52 concentrations of DMSP.

53

54 **Keywords: horizontal gene transfer (HGT), molecular evolution, molecular clock, natural
55 selection, phytoplankton, *Roseobacter*, SAR11**

56

57

58 INTRODUCTION

59 Dimethylsulfoniopropionate (DMSP) is an osmolyte synthesized by oceanic phytoplankton
60 (Galinski, 1995; Yoch, 2002). This molecule became abundant in the oceans 250 million years ago
61 (Mya), coinciding with the expansion and diversification of dinoflagellates (Bullock et al., 2017).
62 Since then, it has played an important role in the biogeochemistry of sulfur cycle on Earth
63 (Lovelock, 1983). DMSP is the main precursor of the climate-relevant gas dimethylsulfide (DMS;
64 Reisch et al., 2011). In marine ecosystems, DMSP is rapidly degraded by different bacterial
65 communities (González et al., 1999), and some strains seem to be very efficient and even become
66 dependent on its degradation (Tripp et al., 2008). In fact, DMSP supports up to 13% of the bacterial
67 carbon demand in surface waters, making it one of the most significant substrates for

68 bacterioplankton (Kiene et al., 1999; González et al., 1999). *Candidatus Pelagibacter ubique*
69 (SAR11), dominant in the bacterioplankton and especially in surface waters, can only use sulfur
70 atoms derived organic molecules, such as DMSP (Tripp et al., 2008). In the case of *Ruegeria*
71 *pomeroyi* DSS-3, a model organism for DMSP studies, the turnover rate of DMSP transformation
72 depends on salinity conditions (Salgado et al., 2014).

73

74 The first step in the degradation of DMSP involves two competing pathways, cleavage and
75 demethylation. The DMSP cleavage pathway metabolizes DMSP with the release of DMS (Kiene et
76 al., 1999), a step catalyzed by a number of enzymes (Curson et al., 2011). In the alternative
77 pathway, DMSP is first demethylated by a DMSP-dependent demethylase A protein (DmdA;
78 Howard et al., 2006). Compared to the DMS-releasing pathway, *dmdA* is the most frequent gene in
79 the genomes of oceanic bacteria (Newton et al., 2010). The DmdA enzyme was originally annotated
80 as a glycine cleavage T-protein (GcvT) in the model bacteria *R. pomeroyi* (Reisch et al., 2011a),
81 although it forms a separate clade from the known GcvTs (*gcvT*, *gcvH*, *gcvP* and *gcvT-C*) (Bullock
82 et al., 2017). Despite their structural similarity which might indicate a common ancestry, DmdA and
83 GcvT are mechanistically distinct (Schuller et al., 2012). DmdA produces 5-methyl-THF from
84 DMSP as the result of a redox-neutral methyl transfer while GcvT converts glycine to 5,10-
85 methylene-THF (Reisch et al., 2008).

86

87 Nearly all known DMSP-catabolizing bacteria belong to the phylum *Proteobacteria* with DmdA
88 orthologs found in most of the sequenced members of the *Rhodobacteraceae* family, as well as
89 strains of SAR11, SAR324, SAR116 and in marine *Gammaproteobacteria* (González et al., 1999;
90 González, 2003; Howard et al., 2006; Bürgmann et al., 2007; Reisch et al., 2008; González et al.,
91 2019). This phylogenetic distribution suggests an expansion of *dmdA* through horizontal gene
92 transfer events (HGT) between different lineages of bacteria, presumably through viruses (Raina et
93 al., 2010). Since the genome expansion of *Roseobacter* coincides with the diversification of the
94 dinoflagellates and coccolithophores around 250 Mya (Luo et al., 2013; Luo & Moran, 2014;
95 Bullock et al., 2017) it has been suggested a co-evolutionary event between *Roseobacter* and the
96 DMSP-producing-phytoplankton (González et al., 1999; Zubkov et al., 2001; Moran et al., 2007;
97 Bullock et al., 2017). Under this scenario, the enzymes of the DMSP demethylation pathway could
98 have evolved within the last 250 Mya, as phytoplankton responded to the marine catastrophe at the
99 end of the Permian with the diversification of dinoflagellates that produce DMSP and *Roseobacter*
100 clade expanding by using DMSP as its main sulfur source. Despite this hypothesis, there is a lack of
101 knowledge about the main evolutionary events that lead the DMSP adaptation in *Roseobacter*.

102

103 In terms of production, the biosynthesis of DMSP has been reported in marine heterotrophic
104 bacteria, such as the *Alphaproteobacteria*, i.e. *Labrenzia aggregata* (Curson et al., 2017). Since a
105 common ancestor within the *Roseobacter* originated in the Archean, more than 2 billion years ago
106 (Kumar et al., 2017), the *Roseobacter* and other *Alphaproteobacteria* might have been exposed to
107 this DMSP early (Reisch et al. 2011a,b). According to this hypothesis, the DMSP demethylation
108 and the cleavage pathways arose by the evolution of enzymes that were already present in bacterial
109 genomes and adapted in response to the wide availability of DMSP. As mentioned earlier,
110 *Alphaproteobacteria* in the SAR11 seems to thrive at the expense of organic sulfur compounds,
111 such as DMSP and has a common ancestor that lived ca. 826 Mya, at the end of the Precambrian
112 (Luo et al., 2013). We would then expect a common ancestor of the DmdA gene family during the
113 early Proterozoic Mya and that the functional divergence between DmdA and GcvT gene families
114 was driven by both functional constraints and widespread HGT. Probably in the Huronian snowball
115 earth, a period of planetary crisis where the greatest microbial diversity took refuge in the shallow
116 seas close to the equator (Tang, Thomas, & Xia, n.d.).

117

118 Here, we analyzed the evolutionary history of the DmdA gene family in marine *Proteobacteria* by
119 considering three evolutionary scenarios: 1) a recent common ancestry of DmdA and GcvT, 2) a
120 coevolution between *Roseobacter* and the DMSP-producing-phytoplankton, and 3) pre-adapted
121 enzymes to DMSP prior to *Roseobacter* origin. We first analyzed if convergent, independent or
122 HGT-based evolution can explain the presence of *dmdA* genes in different bacterial lineages of
123 SAR11, SAR116 and *Rhodobacteraceae*. Then, we inferred the most recent common ancestor
124 (MRCA) of the DmdA gene family, the timing of its origin and any duplication events. We also
125 reconstructed the ancestral forms of DmdA enzymes to infer the most likely ecological conditions
126 where DmdA thrive. We provide insights into their function by analyzing DmdA structural
127 evolution. Finally, we examined how natural selection could have driven the divergence of the
128 DmdA gene family. Our results indicate that *dmdA* appeared before the origin of *Roseobacter* clade
129 and the conditions of the late Permian created by eukaryotic phytoplankton. Therefore, DmdA is an
130 adapted version of enzyme that evolved in response to the availability of DMSP.

131

132

133 METHODS

134 Data mining

135 *DmdA* orthologs and *dmdA* homologs were collected from a set of 771 genomes manually curated
136 and hosted in the MarRef database (Klemetsen et al., 2018). The sequences were obtained as
137 described by González et al. (2019). The *DmdA* homologs included were obtained using a HMM
138 designed for *DmdA* orthologs (González et al., 2019), with a relaxed maximum e-value (e-50). A
139 total of 204 sequences from 184 genomes were used to infer the evolutionary history of *DmdA* gene
140 family (Supplementary Table 1).

141

142

143 **Phylogenetic tree reconstruction and topology tests**

144 The phylogenetic tree of the *DmdA* protein sequences included *DmdA* orthologs and *DmdA*
145 homologs (called non-*DmdA*). The sequences were aligned using MUSCLE (Edgar, 2004). Regions
146 poorly aligned or with gaps were removed using TrimAl (Capella-Gutiérrez et al., 2009) with
147 parameters set to a minimum overlap of 0.55 and a percent of good positions to 60. Best-fit
148 evolutionary model was selected based on the results of the package ProtTest 3 (Darriba et al.,
149 2011) to determine the best-fit model for maximum likelihood (ML) and Bayesian inference (BI).

150

151 For the maximum likelihood analysis, PhyML v3.0 (Guindon et al., 2010) or RaxML v7.2.6
152 (Stamatakis, 2006) were used to generate 100 ML bootstrap trees, using the Le Gascuel (LG) model
153 with a discrete gamma distribution (+G) with four rate categories, as this was the model with the
154 lowest Akaike information criterion and Bayesian information criterion score. For the Bayesian
155 analysis, trees were constructed using the PhyloBayes program (Lartillot & Philippe, 2004, 2006;
156 Lartillot et al., 2007) with the CAT model that integrates heterogeneity of amino acid composition
157 across sites of a protein alignment. In this case, two chains were run in parallel and checked for
158 convergence using the tracecomp and bpcomp scripts provided in PhyloBayes. As an alternative,
159 we computed a phylogenetic tree using a Bayesian inference implemented in BEAST2 program
160 which was run with relaxed clock model and Birth Death tree prior (Bouckaert et al., 2014). Finally,
161 we used R v3.6.1 (R Core Team, 2017) with phangorn v2.5.5 (Schliep, 2011) to perform consensus
162 unrooted tree.

163

164 We ran several topology tests to establish whether the trees generated using the ML and BI methods
165 provided an equivalent explanation for the two main groups, i.e., the non-*DmdA* and *DmdA* clades.
166 For this analysis, the topologies were compared with the TOPD/FMTS software v4.6 (Puigbo et al.,
167 2007). A random average split distance of 100 trees was also created to check if the differences
168 observed were more likely to have been generated by chance.

169

170

171 **Horizontal gene transfer (HGT) test and GC content analysis**

172 Two approaches were used to detect HGT. First, a phylogenetic incongruence analysis (Ravenhall,
173 Škunca, Lassalle, & Dessimoz, 2015) through three topology tests, the Kishino-Hasegawa (KH)
174 (Kishino & Hasegawa, 1989), the Shimodaira-Hasegawa (SH) (Shimodaira & Hasegawa, 1999) and
175 the approximately unbiased (AU) (Shimodaira, 2002), implemented in the IQ-TREE software
176 v1.5.5 (Nguyen et al., 2015). Two topologies were tested, the ML topology obtained for the species
177 tree of the genomes here analyzed, and the ML phylogeny of DmdA. To construct the species tree,
178 ribosomal protein 16 small subunit (RPS16) sequences were collected from the MarRef database
179 (Klemetsen et al., 2018), one for each genome (Supplementary Table 1).

180

181 The GC content variation was studied to identify genes that have a different percentage of GC
182 content at the third position of codons with respect to the neighboring genomic regions. The EPIC-
183 CoGe browser (Nelson et al., 2018) was used to visualize the genomes and sequences and look for
184 genes that use different codons with respect to the rest of the genomic dataset (data are available
185 under permission as “ULL-microevolution” on <https://genomeweb.org/>).

186

187

188 **Molecular dating**

189 We first tested for heterogeneities in the substitution rates of the genes using a likelihood ratio test
190 (LRT) (Felsenstein, 1981) with the ML-inferred tree. Likelihoods' values were estimated using
191 baseml in PAML v4.8 (Yang, 2007) under rate constant and rate variable models and used to
192 compute the likelihood ratio test (LRT) statistic according to the following equation:

$$193 \quad LRT = -2(\log L_1 - \log L_0)$$

194 where L_1 is the unconstrained (nonclock) likelihood value, and L_0 is the likelihood value obtained
195 under the rate constancy assumption. LRT is distributed approximately as a chi-square random
196 variable with $(m-2)$ degrees of freedom (df), m being the number of branches/parameters.

197

198 To conduct a molecular dating analysis with BEAST 2 (Bouckaert et al., 2014), two independent
199 MCMC tree searches were run for 50 million generations, with a sampling frequency of 1000
200 generations over codon alignment obtained, as we explain in the next section. The GTR substitution
201 model with a gamma shape parameter and a proportion of invariants (GTR + G + I), was selected
202 with PartitionFinder software v2.1.1 (Lanfear et al., 2016) based on the Bayesian Information

203 Criterion (Darriba et al., 2012), applied with a Birth Death tree prior (Gernhard, 2008) and an
204 uncorrelated relaxed clock log-normal. The molecular clock was calibrated using information from
205 the TimeTree database (Hedges et al., 2006, 2015; Kumar et al., 2017). We used the dates of the
206 most recent common ancestor of (1) the *Alpha*- and *Gammaproteobacteria* (2480 Mya), (2) the
207 *Halobacteriales* (455 Mya) (Supplementary Fig 1-3), and (3) the SAR11 (826 Mya) (Luo et al.,
208 2013). A log-normal prior distribution on the calibrated nodes centered at the values mentioned
209 above was specified with 20 standard deviations and constrained to be monophyletic. Convergence
210 of the stationary distribution was checked by visual inspection of plotted posterior estimates in
211 Tracer v1.6 (Rambaut, & Drummond, 2013) to ensure effective sample sizes (ESSs) of parameters
212 were $>> 200$, as recommended by the authors. After discarding the first 15% trees as burn-in, the
213 samples were summarized in the maximum clade credibility tree using TreeAnnotator v1.6.1
214 (Rambaut, & Drummond, 2002) with a PP limit of 0.5 and summarizing mean node heights. Means
215 and 95 % higher posterior densities (HPDs) of age estimates are obtained from the combined
216 outputs using Tracer v1.6. The results were visualized using FigTree v.1.4.3 (Rambaut, 2009).

217

218

219 **Maximum likelihood tests of positive selection**

220 To measure the strength and mode of natural selection during the evolution of DmdA gene family,
221 the ratio of non-synonymous (dN) to synonymous substitutions (dS) ($\omega=dN/dS$) was calculated in
222 CodeML implemented in the suite Phylogenetic Analysis by Maximum Likelihood (PAML package
223 v4.8) (Yang, 2007).

224

225 CodeML requires an alignment of coding sequences, and a phylogenetic tree. DNA alignment was
226 achieved by MUSCLE (Edgar, 2004) implemented in MEGA-CC v7.0.26 (Kumar et al., 2016) and
227 poorly aligned segments were eliminated with Gblocks under defaults parameters (Castresana,
228 2000). The phylogenetic tree was built using ML with PhyML v3.0 (Guindon et al., 2010) as
229 described above and a nucleotide substitution model selected by jModelTest (Darriba et al., 2012).
230 DAMBE (Xia, 2001) was also used to check for saturation of nucleotide substitutions using a plot
231 of the number of transitions and transversions for each pairwise comparison against the genetic
232 distance calculated with the F84 model of nucleotide substitution (Huelsenbeck & Rannala, 1997),
233 which allows different equilibrium nucleotide frequencies and a transition rate-transversion rate
234 bias. Multiple sequence alignments with similar characteristics (i.e., showing saturation of
235 nucleotide substitutions) were then analyzed with CodeML (Yang, 2007).

236

237 Three sets of models were used (site-specific, branch-specific and branch-site models) to detect
238 pervasive and episodic selection during the evolution of *dmdA* orthologs. Likelihood-ratio tests
239 (LRTs) were used to compare models, and significant results (p-value<0.05) were determined
240 contrasting with a chi-square distribution (chisq) (Anisimova et al., 2001).

241

242 In the site-specific analysis, we tested for variability of selection (type and magnitude) across the
243 codons of the gene using three pairs of nested models. The first pair includes M0 (just one dN/dS
244 ratio) and M3 (“K” discrete categories of dN/dS) and has four degrees of freedom (df). The second
245 pair of models considers M1a (just two classes of sites, purifying [dN/dS<1] and neutral selection
246 [dN/dS=1]) and M2a (the same as M1a adding a third class of sites dedicated to positive selection
247 [dN/dS>1]), this has two df. Finally, the third pair of models comprised M7 (a beta distribution that
248 allows dN/dS to vary among the interval [0,1]) and M8 (adds an extra discrete category to M7 with
249 dN/dS>1), with two df. Whereas M0 vs M3 test for evidence of dN/dS variation across sites, M1a
250 vs M2a and M7 vs M8 test for the presence of sites under positive selection (dN/dS > 1).

251

252 Using three branch models (Yang, 1998), we tested for variation of selection over evolutionary
253 time. The null model (M0) assumes that all branches evolve at the same rate, therefore, there is only
254 one value of dN/dS for all the branches of the tree. The two-ratio model allows two dN/dS values,
255 one value for all *Roseobacter* lineages (we called this group A) and another for the rest of branches
256 (named group B). The free-ratio model, allows one dN/dS value for each branch. Null and two-ratio
257 model are compared by LRT with one df but null and free-ratio model are compared with 36 df.

258

259 For the last set of models, we identified sites that have been under positive selection at a particular
260 point of evolution using branch-site models, in which dN/dS can vary among sites and among
261 branches (Zhang, 2005). We computed two models: a null model, in which the “foreground branch”
262 may have different proportions of sites under neutral selection to the “background branches”, and
263 an alternative model in which the “foreground branch” may have a proportion of sites under
264 positive selection. We compare these models for each terminal branch with a LRT of one df. For
265 each branch-site analysis, we applied the Bonferroni correction for multiple testing.

266

267 In site and branch-site tests, we identified sites under positive selection as those with Bayes
268 Empirical Bayes (BEB) posterior probability above the 0.95 (Yang, 2005). We also checked for
269 convergence of the parameter estimates in PAML by carrying out at least two runs for each tree and
270 starting the analysis with different ω (0.2, 1, 1.2 and 2). In addition, to test for convergent selection

271 in several lineages, we ran at Branch-site analysis selecting as “foreground branches” all those
272 under positive selection in a previous analysis.

273

274

275 **Analysis of functional divergence**

276 Divergent selection is indicated by different ω ’s values among paralogous clades. We tested
277 whether selective pressures diverged following duplication that led to *dmdA* and non-*dmdA* genes
278 (Bielawski & Yang, 2004). We compared the M3 model, which accounts for ω variation among
279 sites but not among branches or clades, with a model allowing a fraction of sites to have different ω
280 between two clades of a phylogeny (clade model D). We also tested M0 and M3 models and we
281 used a posterior BEB probability above the 0.95 to identify sites evolving under divergent selective
282 pressures. We checked for convergence of the parameter estimates in PAML by carrying out at least
283 two runs for the tree and starting the analysis with different ω (0.1, 0.25, 2, 3 and 4).

284

285 Finally, we applied two branch-site models (as described above) to test dN/dS differences on the
286 branches representing the ancestral lineages of the DmdA and non-DmdA clades (see results)
287 (Supplementary Fig 25). We considered the ancestral sequences from DmdA and non-DmdA clades
288 as foreground branches in two different models.

289

290

291 **Reconstruction of ancestral DmdA sequence**

292 To reconstruct the ancient conditions where *dmdA* gene prospered, we inferred the ancestral
293 sequences of the DmdA node using the FastML web server (Ashkenazy et al., 2012) and then
294 computed estimated physico-chemical properties on predecessor sequence using Compute
295 ProtParam tool from Expasy – SIB Bioinformatics Resource Portal (Gasteiger et al., 2005).
296 Moreover, we also reconstructed the ancestral sequence of the non-DmdA node, as well as the
297 ancestral sequence of both the DmdA, and the non-DmdA families. FastML was run considering the
298 alignment of proteins and the ML phylogenetic tree for those DmdA orthologs or homologs inferred
299 as we explained above. Posterior amino acid probabilities at each site were calculated using the Le
300 Gascuel (LG) matrix (Le & Gascuel, 2008) and Gamma distribution. Both marginal and joint
301 probability reconstructions were performed. Protein sequences resulting from marginal
302 reconstructions were used to predict tertiary structure (see below) as well as to identify family
303 domains using Pfam v32 (Finn et al., 2010).

304

305

306 **Protein tertiary structure analysis**

307 Predicted three-dimensional structures of protein sequences were examined by Iterative Threading
308 ASSEmbly Refinement (I-TASSER) (Roy et al., 2010; Yang et al., 2015). First, I-TASSER uses
309 local meta-threading-server (LOMETS) (Wu & Zhang, 2007) to identify templates for the query
310 sequence in a non-redundant Protein Data Bank (PDB) structure library. Then, the top-ranked
311 template hits obtained are selected for the 3D model simulations. To evaluate positively the global
312 accuracy of the predicted model, a C-score should return between -5 and 2. At the end, top 10
313 structural analogs of the predicted model close to the target in the PDB (Berman et al., 2000) are
314 generated using TM-align (Zhang, 2005). The TM-score value scales the structural similarity
315 between two proteins, and should return 1 if a perfect match between two structures is found. A
316 TM-score value higher than 0.5 suggests that the proteins belong to the same fold family.

317

318 We used PyMol v1.7.4 (DeLano, 2002) to visualize the 3D structure of the proteins and to map the
319 positively selected sites onto the 3D structure of DmdA (pdb: 3tfh).

320

321

322 **RESULTS**

323 **Phylogenetic tree for DmdA family**

324 We identify a total of 204 DmdA protein sequences out of 150 curated genomes, and reconstruct
325 their evolutionary relationships by Bayesian Inference (BI) (Fig 1) and Maximum Likelihood (ML)
326 (Supplementary Fig 4). Unrooted trees in TOPD-FMTS indicated that split distances did not exceed
327 0.19, indicating that the phylogenetic reconstruction is robust, with minor variations in alignment
328 filtering and methods for inferring topologies (Supplementary Table 2).

329

330 The BI tree (Fig 1) shows a main duplication between two lineages. The larger phylogenetic group
331 comprises genes from *Bacteroidetes*, while the smaller group includes genes from
332 *Alphaproteobacteria*. We focused on this smaller group as it includes the DmdA sequences (Fig 1;
333 green color) and the closest homologs to DmdA (Fig 1; yellow color).

334

335 Using phylogenetic analyses including DmdA orthologs and DmdA homologs close to those (the
336 limit to select closer homologs was set to a maximum e-value of e-80) we resolve the position of the
337 first DmdA sequences isolated from two marine bacterial species, *R. pomeroyi* (AAV95190.1) and
338 *Ca. P. ubique* (AAZ21068.1). In addition, the inclusion of DmdA homologs allowed to resolve a

339 robust phylogenetic relationship of DmdA gene family (Fig 2). We detected a clear separation
340 between DmdA and putative non-DmdA families. Indeed, the four DmdA family trees constructed
341 using different methods compared in TOPD-FMTS using split distances (Supplementary Table 3)
342 and unrooted trees (Supplementary Fig 5) agreed with this result. The average split distance was
343 0.60, indicating that the trees were neither identical (split difference=0) nor completely different
344 (1). A random split distance was calculated to analyze whether the split distances were significantly
345 different. Because the random split distance resulted in a value close to 1 (0.988), our observations
346 are unlikely to be given by chance.

347

348 To identify HGT and duplication events, we constructed a proxy for the species tree of the genomes
349 considered here by using a set of small subunit ribosomal protein (see Material and Methods).
350 Given this (proxy) species tree (Supplementary Fig 6), the positions of many sequences on the
351 DmdA tree are better explained as cases of HGT (Supplementary Fig 6; Fig 3) with high statistical
352 support. We then tested whether the topology for a common set of taxa within the DmdA family
353 (Supplementary Fig 7) were similar to that of the species tree (Supplementary Fig 8). We found
354 significant differences (at an alpha of 0.01) between the topology of DmdA group and that of the
355 proxy species tree (Table 1); this incongruence between phylogenies is true irrespective of the test
356 used (Kishino-Hasegawa, Shimodaira-Hasegawa and unbiased tests). From these results we
357 conclude that the phylogenetic relationships within each DmdA group are different to those of the
358 species tree, strongly supporting a HGT-based evolution of DmdA family (Supplementary Fig 9).

359

360 Moreover, we found many genes that use different codons than the neighboring genomic regions.
361 These genes are inferred as having been horizontally transferred given their (G+C) wobble content
362 (Supplementary Table 1), supporting an HGT-based evolution of DmdA family (Supplementary Fig
363 9).

364

365

366 **Structural modeling**

367 The structure for DmdA orthologs inferred on the protein sequences by Iterative Threading
368 ASSEmbly Refinement (I-TASSER) were threaded onto the known structure of DMSP-dependent
369 demethylase A protein (PDB accession: 3tfhA) with a C-score<= 2 (Table 2). However, the
370 predicted models for DmdA homologs were threaded onto two types of known structure; DmdA
371 orthologs, and the structure of the mature form of rat dimethylglycine dehydrogenase (DmgdH)

372 (PDB accession, 4ps9sA) with a C-score < 2 except for the sequence with accession number
373 AEM59334.1, which shows a C-score > 2 (Supplementary Fig 10a, Supplementary Data 1).

374

375 We clustered sequences with a putative DmgdH structure in a separate group using principal
376 component analysis (Supplementary Fig 11). There is a clear 3D-structure coincidence between
377 DmdA clade (red color in Supplementary Fig 10a) and the majority of lineages from non-DmdA
378 clade (orange color in Supplementary Fig 10a) as well as a conserved folate-binding domain
379 (Supplementary Fig 10b: 99S, 178E and 180Y). However, in the alignment we found a pattern of
380 conserved residues coherent with phylogeny results (Supplementary Fig 10a, Supplementary Fig
381 10b), where non-DmdA clade is formed by three subclades, one of them with DmgdH tertiary
382 structure. Indeed, key residue for DMSP specific interaction is shown in clades with DmdA tertiary
383 structure (Supplementary Fig 10b: W171) but not in a clade with DmgdH tertiary structure
384 (Supplementary Fig 10b: F171).

385

386

387 **Molecular dating**

388 The log likelihood test (LRT) detected heterogeneity in the substitution rates of *dmdA* orthologs and
389 *dmdA* homologs genes (Fig 2) ($\log L_0 = -29,827.108$; $\log L_1 = -29,546.053$; degrees of freedom = 46;
390 $\chi^2 = 562.11$; $P < 0.001$), thus rejecting the hypothesis of a strict molecular clock. This finding
391 validates the use of relaxed molecular clock approach to estimate the node ages throughout
392 Bayesian analysis (see Methods for details). We observed that the marginal densities for each run of
393 the divergence time estimate analysis were nearly identical, pointing that the runs converged on the
394 same stationary distributions. In all runs, the marginal densities for the standard deviation
395 hyperparameter of the uncorrelated log-normal relaxed clock model were quite different from the
396 prior, with no significant density at zero and with a coefficient of variation around 0.2. Analyses
397 using three different calibrated prior dates showed not discrepancies in the final divergence time
398 estimates (Table 3).

399

400 The time estimates for the MRCA of each gene family (Table 3 and Fig 4) indicate that the most
401 recent common ancestor of DmdA gene family occurred in the late Archean, around 2,400 Mya,
402 after a gene duplication event. Also, a duplication within the DmdA lineage generated a separated
403 SAR11 and *Roseobacter* DmdA lineage in the early Precambrian ca. 1,894 Mya (Fig 4: red arrow).
404 *Ca. P. ubique* HTCC1062 within the first cluster and *R. pomeroyi* DSS-3 within the second cluster,
405 resulted from a duplication around 300 Mya (Fig 4: blue arrow). However, a higher number of

406 duplication events took place in the second cluster. Thus the number of paralogous genes
407 comprising the *Roseobacter* DmdA family is larger than in SAR11 (Fig 4).
408
409 We detected two duplication events within the putative non-DmdA clade (Fig 4; orange color);
410 showing that the gene families were originated through old duplication events. One duplication
411 involving the DmgdH family (Fig 4 dark yellow color; Table 2) occurred 1,480 Mya and another
412 duplication 1,000 Mya (Fig 4: green arrow), with tertiary structure similar to the DmdA from *Ca. P.*
413 *ubique*. The other event of duplication took place during the Huronian glaciation, around 2100 Mya
414 (Fig 4: violet arrow).
415
416

417 **Reconstruction of ancestral DmdA sequence**

418 Our analysis was focused on the reconstruction of the ancestral sequences of the DmdA clade, the
419 non-DmdA clade as well as the ancestral sequence of both the DmdA and non-DmdA clades.
420 FastML inferred the 100 most likely ancestral sequences of the DmdA family. We observed that the
421 same sequences were always inferred. Indeed, the difference in log-likelihood between the most
422 likely ancestral sequence at this node (N1; Supplementary Fig 12) and the 100th most likely
423 sequence was only 0.105, indicating that both sequences are almost as likely to reflect the “true”
424 ancestral sequence. That ancestral protein contains both PF01571 (GCV_T) and PF08669
425 (GCV_T_C) domains, found in the DmdA orthologs and it is nearly identical to *Ca. P. ubique*
426 HTCC1062 DmdA sequence. Moreover, PSI-BLAST search confirmed that the ancestral sequence
427 in node 1 close to DmdA genes hosted in EMBL-EBI databases (Supplementary Fig 13) and the
428 structure for *Ca. P. ubique* apoenzyme DmdA was the closest analog to our predicted models (Table
429 2; Supplementary Data 1). Inferred physico-chemical properties are identical between *Ca. P. ubique*
430 and the DmdA ancestral sequence (Supplementary Table 4).
431

432 On the other hand, the ancestral sequence inferred for non-DmdA family (N1; Supplementary Fig
433 14) and the ancestral sequence previous to functional divergence (N1; Supplementary Fig 15)
434 contains only the PF01571 domain. That domain was located onto the known structure of T-protein
435 of the Glycine Cleavage System (PDB accession: 1wooA) with a C-score= 1.25 (Table 2;
436 Supplementary Data 1) in the case of the ancestral DmdA and non-DmdA sequence. However, the
437 ancestral sequence for non-DmdA was better threaded onto the known structure of mature form of
438 rat DmgdH (PDB accession: 4p9sA) with a C-score= 0.76 (Table 2; Supplementary Data 1).
439

440

441 **Detection of positive selection on *dmdA* sequences**

442 To infer how natural selection has influenced on the evolutionary history of DmdA gene family, we
443 used an alignment of the 20 sequences clustered as *dmdA* orthologs. The phylogenetic tree for these
444 sequences was constructed by ML using the symmetrical model (SYM) with a discrete gamma
445 distribution.

446

447 The average dN/dS value for the *dmdA* gene was 0.085, suggesting that this gene evolved under
448 strong negative (purifying) selection. Then, we analyzed dN/dS variation across the codons in the
449 gene, comparing M0 and M3 models through a LRT. The M3 model had better fit to the data than
450 the M0 model (chisq= 775.387, p-value< 0.01). All codons in the gene are under strong purifying
451 selection with dN/dS <1 (Fig 5), suggesting the importance of this sulfur pathway for the cells. In
452 accordance with this, the LTRs designed to detect codons under positive selection were not
453 significant (M1 vs M2, chisq= 0 and p-value = 1, and M7 vs M8, chisq = 1.459 and p-value =
454 0.482). Hence, we did not detect sites in *dmdA* subjected to positive selection (Supplementary Fig
455 17).

456

457 We tested the variation in the intensity of selection over evolutionary time. A two-ratio model
458 comparing the *Roseobacter* with the rest of lineages (Supplementary Fig 18) fits better the data, as
459 the LRT was 23.777 and p-value < 0.01 (Table 4). dN/dS value in *Roseobacter* (ω_1 : 0.0767) was
460 significantly lower than in the remaining branches (ω_2 : 0.1494), suggesting stronger purifying
461 selection on *dmdA* in *Roseobacter*. When we tested the intensity of selection over evolutionary time
462 using the free-ratio model (Table 4), we found changes in the selection pressure from the branches
463 which defines the separation of SAR11 and *Roseobacter* DmdA gene families (Supplementary Fig
464 19: branches from nodes 21 to 23). In particular, we observed a dN/dS value > 1 in the branch
465 connecting nodes 21-23. We also identified some more recent branches (connecting nodes 25-26
466 and 28-29) for which dN/dS >> 1 was estimated (Supplementary Fig 19).

467

468 Finally, we applied the two branch-site models to test for sites under selection on the individual
469 lineages associated with *dmdA* (Supplementary Fig 20). Four sequences (WP_047029467,
470 AHM05061.1, ABV94056.1, AFS48343.1) had a significant LRT after correcting for multiple
471 testing (Table 5), suggesting episodic positive selection on these lineages (Supplementary Fig 20).
472 It should be highlighted that three selected sites are shared by at least two lineages (Table 5; Fig 6).
473 One shared site is located next to the GcvT domain (152 K; Supplementary Fig 21), and two shared

474 sites are closed to conserved positions (17E; 87Y; Supplementary Fig 21). The residue 87Y is
475 adjacent to the conserved interaction site with THF (88Y; Supplementary Fig 21). Interestingly,
476 since the selected lineages are separated in the tree, the adaptive mutations seem to have occurred
477 through three parallel independent changes (Supplementary Fig 22).

478

479

480 **Functional divergence during the molecular evolution of DmdA sequences**

481 We tested whether DmdA and non-DmdA gene families were subjected to different functional
482 constraints after gene duplication (Supplementary Fig 5). We estimated the one-ratio model (M0)
483 that yielded a value $\omega = 0.053$ (Table 6), indicating that purifying selection dominated the evolution
484 of these proteins. The discrete model (M3) was applied to these sequences (Table 6) and the LRTs
485 comparing M0 and M3 indicated significant variation in selective pressure among sites (Table 6;
486 Supplementary Fig 23).

487

488 The M3 model was compared with Model D, which accommodates both heterogeneity among sites
489 and divergent selective pressures. The LRT was significant and supported the model D (Table 6),
490 implying statistical evidence of functional divergence between DmdA and non-DmdA. Parameter
491 estimates under Model D with $k=3$ site classes suggested that 23.6% of sites were evolving under
492 strong purifying selection ($\omega = 0.006$), while 26.7% of sites were evolving under much weaker
493 selective pressure ($\omega = 0.04$). Interestingly, a large set of sites (49.6%) were evolving under
494 divergent selective pressures, with weaker purifying selection in the DmdA-clade ($\omega = 0.169$) than
495 non-DmdA-clade ($\omega = 0.100$). We identified 77 sites evolving under divergent selective pressures
496 between DmdA and non-DmdA (Table 6). Nineteen sites were located within the alpha helix (red
497 tube in Supplementary Fig 24) of the secondary structure prediction and sixteen were located in the
498 beta sheet (green arrows in Supplementary Fig 24). According to the global dN/dS estimates, for all
499 divergent positions *dmdA* sequences seem to be more conserved than non-*dmdA* sequences.

500 Moreover, this data is only compatible with recombination breaking linkage disequilibrium within
501 the gene set that we observed with the HGT analysis.

502

503 Finally, we are interested in knowing if adaptive evolution has occurred in the lineages immediately
504 following the main duplication event (Supplementary Fig 25). We applied two branch-site models
505 to test for sites under selection on the ancestor associated with the DmdA and non-DmdA clades
506 (Table 5). The LRT was significant for both ancestral branches (LRT > 7 and p-value < 0.05).
507 Nonetheless, the foreground ω for class 2 sites tended to infinite ($\omega=999$) in both cases, indicating

508 lack of synonymous substitutions ($dS=0$) in these sites. We also performed two-ratio models to
509 estimate global ω on these branches, but both estimates tended to infinite (Supplementary Table 5),
510 suggesting lack of synonymous substitution in the divergence of DmdA and non-DmdA ancestors.
511 Therefore, although the fixation of only non-synonymous substitutions following gene duplication
512 might indicate strong positive selection driving functional divergence of DmdA and non-DmdA
513 families, we cannot confirm it with the applied tests.

514

515

516 **DISCUSSION**

517 In this study we evaluated three scenarios for the evolutionary history of the DmdA gene family in
518 marine bacteria. The results for each one are discussed separately.

519

520 **First scenario: a recent common ancestry between DmdA and GcvT**

521 In relation to the first scenario, we found that contrary to our initial expectations, DmdA and GcvT
522 have not a recent common ancestry, but they share an old common ancestor. However, the clear
523 separation between DmdA and putative non-DmdA gene families that originated in the Archean ca.
524 2,400 Mya after a gene duplication, supports a common recent ancestry for DmdA and non-DmdA
525 (Fig. 7; down and up). Our tertiary structure analyses indicate that they share a putative GcvT
526 protein (EC 2.1.2.10) as their ancestor sequence. Indeed, our results agree with other studies in the
527 case of DmdA (Reisch et al., 2008). Then, this clade seems to have originally been a GcvT (Fig. 7)
528 as Bullock et al. (2017) suggested.

529

530 The DmdA clade is a member of aminomethyltransferase (AMT/GCV_T) family with DMSP-
531 dependent demethylase tertiary structure while non-DmdA clade includes an ancestor with a tertiary
532 structure that better matches the dimethylglycine dehydrogenase oxidoreductase (DmgdH, EC
533 1.5.99.2) (Fig. 7) and members with DmdA tertiary structure. To establish structural convergence as
534 the reason of this DmdA structure coincidence between DmdA and non-DmdA members, we used a
535 phylogenetic approach based on reconstructing ancestral sequences of the two clades, and then to
536 model the ancestral proteins. We determined different structural features between ancestral
537 sequence reconstructed from DmdA and non-DmdA families. In the first case, the ancestral
538 sequence reconstructed coincides with a DmdA tertiary structure, as well as with a DmdA sequence
539 with physico-chemical properties inferred in this study and agree with previous ones (Reisch et al.,
540 2008). However, the non-DmdA ancestral sequence reconstructed is a DmgdH that seems to be kept
541 in the clade called DmgdH (Fig. 7: yellow color) as well as in some members of DmdA clades

542 (within non-DmdA clade) where the majority of sequence gained DmdA structure (Fig. 7).
543 Therefore, DmdA structural features seem to have emerged independently in both clades: DmdA
544 and non-DmdA. This finding is extremely interesting, since known cases of structural convergence
545 of proteins are rare (Zakon, 2002). Experimental assays expressing and screening the activity of the
546 ancestral proteins at different conditions will be required to corroborate the structural convergence.
547

548 Since GcvT does not share the most recent common ancestry with DmdA, we examined the
549 functional divergence between DmdA and non-DmdA clades to explain how natural selection could
550 have driven the divergence of the DmdA gene family. We found 77 codon sites evolving under
551 divergent selective pressures between DmdA and non-DmdA gene families. Structural divergence
552 seemed to be imposed on the protein during sequence divergence, since nineteen sites were located
553 within the alpha helix of 2D structure and sixteen in the beta sheet. Nonetheless, essential regions of
554 the enzymes as active sites seem to be under strong purifying selection, suggesting preservation of
555 the ancestral function. The observation that DmdA sequences have less conserved divergent sites
556 than non-DmdA sequences, suggests that non-DmdA conserves the ancestral function, whereas
557 DmdA evolved to acquire new functions in different environments, probably as a response to the
558 Huronia ice ball Earth (Zhang, 2003).

559
560

561 **Second scenario: coevolution between *Roseobacter* and DMSP-producing-phytoplankton**

562 In the second scenario, our data does not support the hypothesis of a co-evolution scenario
563 between *Roseobacter* and DMSP-producing-phytoplankton (Luo et al., 2013). On the contrary, we
564 found an ancestor sequence of DmdA cluster similar to DmdA from a strain of *Ca. P. ubique* that
565 diverged after a more recent duplication event, before the dinoflagellate radiation in the late
566 Permian. This finding indicates that the enzyme activity has not changed in the course of DmdA
567 evolution. Indeed, we found that most of the codons in DmdA clade are under purifying selection
568 probably due to the importance of this pathway for sulfur acquisition. Nonetheless, we also detected
569 episodic positive selection in four sequences affecting a few sites, suggesting that adaptive
570 evolution fine-tuned the function of DmdA in *Roseobacter*. Furthermore, positively selected
571 residues were located around the GcvT domain and close to the residue involved in conserved
572 interaction with THF, reinforcing the idea of adaptive evolution in response to the external
573 environment.

574

575 During the study of this scenario, we suspected that *dmdA* was acquired by HGT in *Roseobacter*
576 and SAR11. This agrees with Luo et al., (2013) and Tang et al. (2010) which found that the
577 expansion of *dmdA* was by HGT. Moreover, our study evidence that DmdA ancestral sequence in
578 our phylogeny comes from a marine heterotrophic bacteria adapted to presence of DMSP in the
579 Archean, after a HGT event from this bacteria to another lineage that acquired the *dmdA* ancestral
580 sequence. However, after the HGT events, some *dmdA* sequences have acquired similar residue
581 changes by independent (parallel) evolution, reinforcing the idea of functional/ecological
582 constrains. Therefore, *Rhodobacteraceae* can live in an environment where DMSP is the main
583 source of sulfur because they acquired the DmdA ancestor sequence by HGT, prior to have been
584 exposed to the environment in which this protein proved useful, as Luo & Moran (2014) suggested.
585 We did not find any signal of positive selection in *Roseobacter* group, but in contrast we found
586 episodic evolution between SAR11 sequences. Yet, as we already mentioned DMSP is part of an
587 ancient pathway in *Alphaproteobacteria* (Bullock et al., 2017) and it could explain the ancient
588 origin of DmdA.

589

590 On the other hand, *Roseobacter* paralogs analyzed in this study were functionally annotated as
591 DmdA function (González et al., 2019), as they perform the same function as the original gene
592 (DmdA ancestor). However, we found differences in predicted isoelectric point values (pI), which
593 were inferred in this study. Then, these paralogs could be considered as ecoparalogs as Sánchez-
594 Pérez et al (2008) proposed for their study. Isoelectric point of a protein provides an indication of its
595 acidic nature (Oren et al., 2005) and in this case, differences in pI suggest that the proteins differ in
596 halophilicity. We observed proteins with the highest pI values in the DmdA ancestor sequence, as
597 well as *Ca. P. ubique* sequence and this last one has a pI similar to the first (DmdA ancestor) (Fig.
598 7). Therefore, we deduced that DmdA ancestor was adapted to a higher concentration of salinity,
599 which could have modulated the selection of the DMSP enzymatic degradation routes as in bacteria
600 such as the model organism *R. pomeroyi* DSS-3 (Salgado et al., 2014). Interestingly, *R. pomeroyi*
601 degrades more DMSP by the demethylation pathway under high salinity conditions, and then
602 produces a high amount of MeSH (Howard et al., 2008; Magalhães et al., 2012; Salgado et al.,
603 2014).

604

605 Given our data, we propose that the ancestor of the pathway that evolved in the Archean, was
606 exposed to a higher concentration of DMSP in a sulfur rich atmosphere and in an anoxic ocean,
607 compared to recent ecoparalogs which should adapt to lower concentration of DMSP (Fig 7).
608 Indeed, the ancestral ecoparalog from which recent ecoparalogs derived (*Ca. Puniceispirillum*

609 marinum IMCC1322 or ADE38317.1 and the *Roseobacter* clade) could have undergone episodes of
610 adaptation (the branch showed positive selection in branch-models) which would explain the
611 change in protein stability (Pál et al., 2006). As consequence, the protein could have experimented
612 slight reductions or loss of function.

613

614

615 **Third scenario: pre-adapted enzymes to DMSP prior to Roseobacter origin**

616 In this evolutionary scenario, *Roseobacter* clade was pre-adapted to the conditions created by
617 eukaryotic phytoplankton at the late Permian, including dinoflagellates that released vast amounts
618 of DMSP (Bullock et al., 2017; Luo & Moran, 2014). Our analyses indicate that the *Roseobacter*
619 ancestor has already adapted to a high DMSP before *Roseobacter* clade arose (Luo et al., 2013).
620 Therefore, we support Reisch et al. (2011 a,b) hypothesis where DMSP demethylation pathway
621 enzymes are adapted versions of enzymes that were already in bacterial genomes, and evolved in
622 response to the availability of DMSP. Since the first step in DMSP demethylation is a reaction
623 catalyzed by DMSP demethylase encoded by *dmdA* gene (Dickschat et al., 2015), DMSP adaptation
624 could have been evolved in this gene that originated in the Archean, a time where several lineages
625 of bacteria produced DMSP as an osmolyte or antioxidant in the presence of the early
626 cyanobacteria, or as a cryoprotectant in the Huronian glaciation. In bacteria, a methyltransferase
627 gene, *dysB*, is up-regulated during increased salinity, nitrogen limitation, and at low temperatures
628 (Curson et al., 2017), conditions already predicted to stimulate DMSP production in phytoplankton
629 and algae (Bullock, et al., 2017; Ito, et al., 2011). Afterward, those roles may have helped to drive
630 the fine adaptation of existing enzymes for DMSP metabolism, and those adaptations came handy
631 in the late Precambrian glaciations that allowed the radiation of algae and animals.

632

633

634 **CONCLUSION**

635 In conclusion, we found that *Roseobacter* adaptation to DMSP occurred via functional
636 diversification after duplication events of the *DmdA* gene and adaptations to environmental
637 variations via ecoparalogs of intermediate divergence. Our findings suggest that salinity could have
638 been a trigger for the adaptation to DMSP metabolism.

639

640

641 **AUTHOR CONTRIBUTIONS**

642 LH conceived the study, performed the phylogenetic, molecular and protein structure analysis and
643 wrote the paper. LH and AV performed the selection analysis. LH, LE, VS and AV interpreted
644 findings. All authors contributed to the design of the study, manuscript revision, read and approval
645 of the submitted version.

646

647

648 ACKNOWLEDGMENTS

649 We would like to thank to Dr. Romain Studer from BenevolentAI for his critical role in the 3D
650 visualization of protein and mapping sites onto the 3D structure and Dr. Buckley Iglesias from
651 Universidad Autonoma de Madrid for his introduction to molecular dating analysis with BEAST 2.
652 This research was supported by grant CTM2016-80095-C2 from the Spanish Ministry of Economy
653 and Competitiveness.

654

655

656 **Conflict of Interest Statement:** The authors declare that the research was conducted in the absence
657 of any commercial or financial relationships that could be construed as a potential conflict of
658 interest.

659

660

661 REFERENCES

662 Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio
663 Test in Detecting Adaptive Molecular Evolution. *Molecular Biology and Evolution*, 18(8),
664 1585–1592. <https://doi.org/10.1093/oxfordjournals.molbev.a003945>

665 Ashkenazy, H., Penn, O., Doron-Faigenboim, A., Cohen, O., Cannarozzi, G., Zomer, O., & Pupko,
666 T. (2012). FastML: a web server for probabilistic reconstruction of ancestral sequences.
667 *Nucleic Acids Research*, 40(W1), W580–W584. <https://doi.org/10.1093/nar/gks498>

668 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. &
669 Bourne, P. E. (2000). The Protein Data Bank. *Nucleic Acids Research*, 28(1), 235–242.
670 <https://doi.org/10.1093/nar/28.1.235>

671 Bielawski, J. P., & Yang, Z. (2004). A Maximum Likelihood Method for Detecting Functional
672 Divergence at Individual Codon Sites, with Application to Gene Family Evolution. *Journal of
673 Molecular Evolution*, 59(1). <https://doi.org/10.1007/s00239-004-2597-8>

674 Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., ... Drummond, A. J.
675 (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. *PLoS*
676 *Computational Biology*, 10(4), e1003537. <https://doi.org/10.1371/journal.pcbi.1003537>

677 Bullock, H. A., Luo, H., & Whitman, W. B. (2017). Evolution of Dimethylsulfoniopropionate
678 Metabolism in Marine Phytoplankton and Bacteria. *Frontiers in Microbiology*, 8.
679 <https://doi.org/10.3389/fmicb.2017.00637>

680 Bürgmann, H., Howard, E. C., Ye, W., Sun, F., Sun, S., Napierala, S., & Moran, M. A. (2007).
681 Transcriptional response of *Silicibacter pomeroyi* DSS-3 to dimethylsulfoniopropionate
682 (DMSP). *Environmental Microbiology*, 9(11), 2742–2755. <https://doi.org/10.1111/j.1462->
683 2920.2007.01386.x

684 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldon, T. (2009). trimAl: a tool for automated
685 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*, 25(15), 1972–1973.
686 <https://doi.org/10.1093/bioinformatics/btp348>

687 Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in
688 Phylogenetic Analysis. *Molecular Biology and Evolution*, 17(4), 540–552.
689 <https://doi.org/10.1093/oxfordjournals.molbev.a026334>

690 Clamp, M., Cuff, J., Searle, S.M., Barton, G.J. (2004). The Jalview Java alignment editor.
691 *Bioinformatics*, 20(3), 426–427. <https://doi.org/10.1093/bioinformatics/btg430>

692 Curson, A. R. J., Todd, J. D., Sullivan, M. J., & Johnston, A. W. B. (2011). Catabolism of
693 dimethylsulphoniopropionate: microorganisms, enzymes and genes. *Nature Reviews*
694 *Microbiology*, 9, 849. <https://doi.org/10.1038/nrmicro2653>

695 Curson, A. R. J., Liu, J., Martínez, A. B., Green, R. T., Chan, Y., Carrión, O., ... & Todd, J. D.
696 (2017). Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the
697 key gene Dimethylsulphoniopropionate biosynthesis in marine bacteria and this process.
698 *Nature Microbiology*, 2(17009). <https://doi.org/10.1038/nmicrobiol2017.9>

699 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit
700 models of protein evolution. *Bioinformatics*, 27(8), 1164–1165.
701 <https://doi.org/10.1093/bioinformatics/btr088>

702 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new
703 heuristics and parallel computing. *Nature Methods*, 9(8), 772–772.
704 <https://doi.org/10.1038/nmeth.2109>

705 DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. *CCP4 Newsletter On*
706 *Protein Crystallography*, 40(1), 82–92

707 Dickschat, J. S., Rabe, P., & Citron, C. A. (2015). The chemical biology of
708 dimethylsulfoniopropionate. *Organic & Biomolecular Chemistry*, 13(7), 1954–1968.
709 <https://doi.org/10.1039/C4OB02407A>

710 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
711 throughput. *Nucleic Acids Research*, 32(5), 1792–1797. <https://doi.org/10.1093/nar/gkh340>

712 Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach.
713 *Journal of Molecular Evolution*, 17(6), 368–376. <https://doi.org/10.1007/BF01734359>

714 Finn, R. D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J. E., ... Bateman, A. (2010). The
715 Pfam protein families database. *Nucleic Acids Research*, 38(suppl_1), D211–D222.
716 <https://doi.org/10.1093/nar/gkp985>

717 Galinski, E. A. (1995). Osmoadaptation in Bacteria. In *Advances in Microbial Physiology* (Vol. 37,
718 pp. 273–328). [https://doi.org/10.1016/S0065-2911\(08\)60148-4](https://doi.org/10.1016/S0065-2911(08)60148-4)

719 Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A.
720 (2005). Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker
721 (Ed.), *The Proteomics Protocols Handbook* (pp. 571–607). <https://doi.org/10.1385/1-59259-890-0:571>

723 Gernhard, T. (2008). The conditioned reconstructed process. *Journal of Theoretical Biology*,
724 253(4), 769–778. <https://doi.org/10.1016/j.jtbi.2008.04.005>

725 González, J. M. G., Kiene, R. P., & Moran, M. A. (1999). Transformation of Sulfur Compounds by
726 an Abundant Lineage of Marine Bacteria in the Subclass of the Class Proteobacteria. *APPL.
727 Environ. Microbiol.*, 65, 10.

728 González, J. M. (2003). *Silicibacter pomeroyi* sp. nov. and *Roseovarius nubinhibens* sp. nov.,
729 dimethylsulfoniopropionate-demethylating bacteria from marine environments. *International
730 Journal of Systematic and Evolutionary Microbiology*, 53(5), 1261–1269.
731 <https://doi.org/10.1099/ijns.0.02491-0>

732 González, J. M., Hernández, L., Manzano, I., & Pedrós-Alió, C. (2019). Functional annotation of
733 orthologs in metagenomes: a case study of genes for the transformation of oceanic
734 dimethylsulfoniopropionate. *The ISME Journal*, 13(5), 1183–1197.
735 <https://doi.org/10.1038/s41396-019-0347-6>

736 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New
737 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
738 Performance of PhyML 3.0. *Systematic Biology*, 59(3), 307–321.
739 <https://doi.org/10.1093/sysbio/syq010>

740 Hedges, S. B., Dudley, J., & Kumar, S. (2006). TimeTree: a public knowledge-base of divergence
741 times among organisms. *Bioinformatics*, 22(23), 2971–2972.
742 <https://doi.org/10.1093/bioinformatics/btl505>

743 Hedges, S. Blair, Marin, J., Suleski, M., Paymer, M., & Kumar, S. (2015). Tree of Life Reveals
744 Clock-Like Speciation and Diversification. *Molecular Biology and Evolution*, 32(4), 835–
745 845. <https://doi.org/10.1093/molbev/msv037>

746 Howard, E. C., Henriksen, J. R., Buchan, A., Reisch, C. R., Burgmann, H., Welsh, R., ... Moran,
747 M. A. (2006). Bacterial Taxa That Limit Sulfur Flux from the Ocean. *Science*, 314(5799),
748 649–652. <https://doi.org/10.1126/science.1130657>

749 Howard, E. C., Sun, S., Biers, E. J., & Moran, M. A. (2008). Abundant and diverse bacteria
750 involved in DMSP degradation in marine surface waters. *Environmental Microbiology*, 10(9),
751 2397–2410. <https://doi.org/10.1111/j.1462-2920.2008.01665.x>

752 Huelsenbeck, J. P., & Rannala, B. (1997). Phylogenetic Methods Come of Age: Testing Hypotheses
753 in an Evolutionary Context. *Science*, 276(5310), 227.
754 <https://doi.org/10.1126/science.276.5310.227>

755 Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., ... Banfield,
756 J. F. (2016). A new view of the tree of life. *Nature Microbiology*, 1, 16048.
757 <https://doi.org/10.1038/nmicrobiol.2016.48>

758 Ito, T., Asano, Y., Tanaka, Y., Takabe, T. (2011). Regulation of biosynthesis of
759 dimethylsulfoniopropionate and its uptake in sterile mutant of *Ulva pertusa* (Chlorophyta).
760 *Journal of Phycology*, 47(3), 517-523. <https://doi.org/10.1111/j.1529-8817.2011.00977.x>

761 Kiene, R. P., Linn, L. J., González, J. G., Moran, M. A., & Bruton, J. A. (1999).
762 Dimethylsulfoniopropionate and Methanethiol Are Important Precursors of Methionine and
763 Protein-Sulfur in Marine Bacterioplankton. *Appl. Environ. Microbiol.*, 65(10), 4549-4558.

764 Kinoshita, K., & Nakamura, H. (2003). Protein informatics towards function identification. *Current
765 Opinion in Structural Biology*, 13, 296-400. [https://doi.org/10.1016/s0959-440x\(03\)00074-5](https://doi.org/10.1016/s0959-440x(03)00074-5)

766 Kishino, H., & Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the
767 evolutionary tree topologies from DNA sequence data, and the branching order in
768 hominoidea. *Journal of Molecular Evolution*, 29(2), 170–179.
769 <https://doi.org/10.1007/BF02100115>

770 Klemetsen, T., Raknes, I. A., Fu, J., Agafonov, A., Balasundaram, S. V., Tartari, G., ... Willassen,
771 N. P. (2018). The MAR databases: development and implementation of databases specific for
772 marine metagenomics. *Nucleic Acids Research*, 46(D1), D692–D699.
773 <https://doi.org/10.1093/nar/gkx1036>

774 Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis
775 Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution*, 33(7), 1870–1874.
776 <https://doi.org/10.1093/molbev/msw054>

777 Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A Resource for Timelines,
778 Timetrees, and Divergence Times. *Molecular Biology and Evolution*, 34(7), 1812–1819.
779 <https://doi.org/10.1093/molbev/msx116>

780 Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2:
781 New Methods for Selecting Partitioned Models of Evolution for Molecular and
782 Morphological Phylogenetic Analyses. *Molecular Biology and Evolution*, msw260.
783 <https://doi.org/10.1093/molbev/msw260>

784 Lartillot, N., & Philippe, H. (2004). A Bayesian Mixture Model for Across-Site Heterogeneities in
785 the Amino-Acid Replacement Process. *Molecular Biology and Evolution*, 21(6), 1095–1109.
786 <https://doi.org/10.1093/molbev/msh112>

787 Lartillot, N., & Philippe, H. (2006). Computing Bayes Factors Using Thermodynamic Integration.
788 *Systematic Biology*, 55(2), 195–207. <https://doi.org/10.1080/10635150500433722>

789 Lartillot, N., Brinkmann, H., & Philippe, H. (2007). Suppression of long-branch attraction artefacts
790 in the animal phylogeny using a site-heterogeneous model. *BMC Evolutionary Biology*,
791 7(Suppl 1), S4. <https://doi.org/10.1186/1471-2148-7-S1-S4>

792 Le, S. Q., & Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix.
793 *Molecular Biology and Evolution*, 25(7), 1307–1320. <https://doi.org/10.1093/molbev/msn067>

794 Lovelock, J. E. (1983). Gaia as Seen Through the Atmosphere. In P. Westbroek & E. W. de Jong
795 (Eds.), *Biomineralization and Biological Metal Accumulation* (pp. 15–25).
796 https://doi.org/10.1007/978-94-009-7944-4_2

797 Luo, H., Csűros, M., Hughes, A. L., & Moran, M. A. (2013). Evolution of Divergent Life History
798 Strategies in Marine Alphaproteobacteria. *MBio*, 4(4). <https://doi.org/10.1128/mBio.00373-13>

799 Luo, H., & Moran, M. A. (2014). Evolutionary Ecology of the Marine Roseobacter Clade.
800 *Microbiology and Molecular Biology Reviews*, 78(4), 573–587.
801 <https://doi.org/10.1128/MMBR.00020-14>

802 Magalhães, C., Salgado, P., Kiene, R. P., & Bordalo, A. A. (2012). Influence of salinity on dimethyl
803 sulfide and methanethiol formation in estuarine sediments and its side effect on nitrous oxide
804 emissions. *Biogeochemistry*, 110(1–3), 75–86. <https://doi.org/10.1007/s10533-011-9690-z>

805 Moran, M. A., Belas, R., Schell, M. A., González, J. M., Sun, F., Sun, S., ... & Buchan, A. (2007).
806 Ecological Genomics of Marine Roseobacters. *Applied and Environmental Microbiology*,
807 73(14), 4559–4569. <https://doi.org/10.1128/AEM.02580-06>

808 Nelson, A. D. L., Haug-Baltzell, A. K., Davey, S., Gregory, B. D., & Lyons, E. (2018). EPIC-
809 CoGe: managing and analyzing genomic data. *Bioinformatics*, 34(15), 2651–2653.
810 <https://doi.org/10.1093/bioinformatics/bty106>

811 Newton, R. J., Griffin, L. E., Bowles, K. M., Meile, C., Gifford, S., Givens, C. E., ... & Moran, M.
812 A. (2010). Genome characteristics of a generalist marine bacterial lineage. *The ISME Journal*,
813 4(6), 784–798. <https://doi.org/10.1038/ismej.2009.150>

814 Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and
815 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular
816 Biology and Evolution*, 32(1), 268–274. <https://doi.org/10.1093/molbev/msu300>

817 Oren, A., Larimer, F., Richardson, P., Lapidus, A., & Csonka, L. N. (2005). How to be moderately
818 halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens.
819 *Extremophiles*, 9(4), 275–279. <https://doi.org/10.1007/s00792-005-0442-7>

820 Pál, C., Papp, B., & Lercher, M. J. (2006). An integrated view of protein evolution. *Nature Reviews
821 Genetics*, 7(5), 337–348. <https://doi.org/10.1038/nrg1838>

822 Puigbo, P., García-Vallve, S., & McInerney, J. O. (2007). TOPD/FMTS: a new software to compare
823 phylogenetic trees. *Bioinformatics*, 23(12), 1556–1558.
824 <https://doi.org/10.1093/bioinformatics/btm135>

825 R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for
826 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>

827 Raina, J.-B., Dinsdale, E. A., Willis, B. L., & Bourne, D. G. (2010). Do the organic sulfur
828 compounds DMSP and DMS drive coral microbial associations? *Trends in Microbiology*,
829 18(3), 101–108. <https://doi.org/10.1016/j.tim.2009.12.002>

830 Rambaut, A., & Drummond, A.J. (2002, 2010). TreeAnnotator, v1.6.1. Available from
831 <http://beast.bio.ed.ac.uk/>.

832 Rambaut, A. (2009). FigTree, version 1.4.3. Available from <http://tree.bio.ed.ac.uk/software/figtree>.

833 Rambaut, A., & Drummond, A.J. (2013). Tracer v1.6. Available from: URL
834 <http://beast.bio.ed.ac.uk/Tracer>.

835 Ravenhall, M., Škunca, N., Lassalle, F., & Dessimoz, C. (2015). Inferring Horizontal Gene
836 Transfer. *PLOS Computational Biology*, 11(5), e1004095.
837 <https://doi.org/10.1371/journal.pcbi.1004095>

838 Reisch, C. R., Moran, M. A., & Whitman, W. B. (2008). Dimethylsulfoniopropionate-Dependent
839 Demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. *Journal of
840 Bacteriology*, 190(24), 8018–8024. <https://doi.org/10.1128/JB.00770-08>

841 Reisch, C. R., Moran, M. A., & Whitman, W. B. (2011a). Bacterial Catabolism of
842 Dimethylsulfoniopropionate (DMSP). *Frontiers in Microbiology*, 2.
843 <https://doi.org/10.3389/fmicb.2011.00172>

844 Reisch, C. R., Stoudemayer, M.J., Varaljay, V.A., Amster, I.J., Moran, M.A., & Whitman, W.B.
845 (2011b). Novel pathway for assimilation of dimethylsulphoniopropionate widespread in
846 marine bacteria. *Nature*, 473, 208-211. <https://doi.org/10.1038/nature10078>

847 Rost, B. (2002). Enzyme function less conserved than anticipated. *Journal of Molecular Biology*,
848 318(2), 595-608. [https://doi.org/10.1016/s0022-2836\(02\)0016-5](https://doi.org/10.1016/s0022-2836(02)0016-5)

849 Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein
850 structure and function prediction. *Nature Protocols*, 5(4), 725–738.
851 <https://doi.org/10.1038/nprot.2010.5>

852 Salgado, P., Kiene, R., Wiebe, W., & Magalhães, C. (2014). Salinity as a regulator of DMSP
853 degradation in Ruegeria pomeroyi DSS-3. *Journal of Microbiology*, 52(11), 948–954.
854 <https://doi.org/10.1007/s12275-014-4409-1>

855 Sánchez-Pérez, G., Mira, A., Nyirö, G., Pasić, L., & Rodríguez-Valera, F. (2008). Adapting to
856 environmental changes using specialized paralogs. *Trends in Genetics*, 24(4), 154-158.
857 <https://doi.org/10.1016/j.tig.2008.01.002>

858 Schliep, K.P. (2011). phangorn: phylogenetic analysis in R. *Bioinformatics*, 27(4), 592-593.
859 <https://doi.org/10.1093/bioinformatics/btg706>

860 Schuller, D. J., Reisch, C. R., Moran, M. A., Whitman, W. B., & Lanzilotta, W. N. (2012).
861 Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism
862 *Pelagabacter ubique*: Structures and Mechanism of DMDA from *Pelagabacter ubique*.
863 *Protein Science*, 21(2), 289–298. <https://doi.org/10.1002/pro.2015>

864 Shimodaira, H., & Hasegawa, M. (1999). Multiple Comparisons of Log-Likelihoods with
865 Applications to Phylogenetic Inference. *Molecular Biology and Evolution*, 16(8), 1114–1116.
866 <https://doi.org/10.1093/oxfordjournals.molbev.a026201>

867 Shimodaira, H., (2002). An Approximately Unbiased Test of Phylogenetic Tree Selection.
868 *Systematic Biology*, 51(3), 492–508. <https://doi.org/10.1080/10635150290069913>

869 Siltberg-Liberes, J., Grahnen, J.A., & Liberis, D.A. (2011). The evolution of protein structures
870 and structural ensembles under functional constraint. *Genes (Basel)*, 2(4), 748-762.
871 <https://doi.org/10.3390/genes2040748>

872 Stamatakis, A. (2006). Phylogenetic models of rate heterogeneity: a high performance computing
873 perspective. *Proceedings of the 20th IEE International Parallel and Distributed Processing
874 Symposium*, 253. <https://doi.org/10.1109/IPDPS.2006.1639535>.

875 Tang, K., Huang, H., Jiao, N. & Wu, C. H. (2010). Phylogenomic Analysis of Marine Roseobacters.
876 PLoS One, 5(7): e11604. <https://doi.org/10.1371/journal.pone.0011604>.

877 Tang, H., Thomas, P., & Xia, H. (n.d.). Reconstruction of the evolutionary history of gene gains and
878 losses since the last universal common ancestor. ArXiv:1802.06035.

879 Tripp, H. J., Kitner, J. B., Schwalbach, M. S., Dacey, J. W. H., Wilhelm, L. J., & Giovannoni, S. J.
880 (2008). SAR11 marine bacteria require exogenous reduced sulphur for growth. *Nature*, 452,
881 741. <https://doi.org/10.1038/nature06776>

882 Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure
883 prediction. *Nucleic Acids Research*, 35(10), 3375–3382. <https://doi.org/10.1093/nar/gkm251>

884 Xia, X. (2001). DAMBE: Software Package for Data Analysis in Molecular Biology and Evolution.
885 *Journal of Heredity*, 92(4), 371–373. <https://doi.org/10.1093/jhered/92.4.371>

886 Yang, Z. (1998). Likelihood ratio tests for detecting positive selection and application to primate
887 lysozyme evolution. *Molecular Biology and Evolution*, 15(5), 568–573.
888 <https://doi.org/10.1093/oxfordjournals.molbev.a025957>

889 Yang, Z. (2005). Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection.
890 *Molecular Biology and Evolution*, 22(4), 1107–1118. <https://doi.org/10.1093/molbev/msi097>

891 Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology and*
892 *Evolution*, 24(8), 1586–1591. <https://doi.org/10.1093/molbev/msm088>

893 Yang, Z., & dos Reis, M. (2011). Statistical Properties of the Branch-Site Test of Positive Selection.
894 *Molecular Biology and Evolution*, 28(3), 1217–1228. <https://doi.org/10.1093/molbev/msq303>

895 Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein
896 structure and function prediction. *Nature Methods*, 12(1), 7–8.
897 <https://doi.org/10.1038/nmeth.3213>

898 Yoch, D. C. (2002). Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and
899 Biological Degradation to Dimethylsulfide. *Applied and Environmental Microbiology*,
900 68(12), 5804–5815. <https://doi.org/10.1128/AEM.68.12.5804-5815.2002>

901 Zakon, H. H. (2002). Convergent Evolution on the Molecular Level. *Brain, Behavior and*
902 *Evolution*, 59(5–6), 250–261. <https://doi.org/10.1159/000063562>

903 Zhang, Jianzhi. (2003). Evolution by gene duplication: an update. *Trends in Ecology & Evolution*,
904 18(6), 292–298. [https://doi.org/10.1016/S0169-5347\(03\)00033-8](https://doi.org/10.1016/S0169-5347(03)00033-8)

905 Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive
906 Selection at the Molecular Level. *Molecular Biology and Evolution*, 22(12), 2472–2479.
907 <https://doi.org/10.1093/molbev/msi237>

908 Zhang, Y. (2005). TM-align: a protein structure alignment algorithm based on the TM-score.
909 *Nucleic Acids Research*, 33(7), 2302–2309. <https://doi.org/10.1093/nar/gki524>
910 Zubkov, M. V., Fuchs, B. M., Archer, S. D., Kiene, R. P., Amann, R., & Burkhill, P. H. (2001).
911 Linking the composition of bacterioplankton to rapid turnover of dissolved
912 dimethylsulphoniopropionate in an algal bloom in the North Sea. *Environmental*
913 *Microbiology*, 3(5), 304–311. <https://doi.org/10.1046/j.1462-2920.2001.00196.x>

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

942

943

944 **TABLES**

945

946 **Table 1.** Topology tests of DmdA phylogenetic tree with respect to species tree.

Group	pKH*	pSH*	pAU*
DmdA family	0.0010	0.0010	0.0001

947 *p-values under the Kishino-Hasegawa (KH) test, the Shimodaira-Hasegawa (SH) test and the approximately unbiased
948 (AU) test, respectively.

949

950 **Table 2.** Structural model predicted by I-TASSER for each sequence used in the evolutionary study
951 of DmdA gene family and the best identified structural analogs in PDB by TM-align.

Sequence information		Predicted model		Best structural analog from PDB			
Gene name	ID	C-score ¹	TM-score ² ± dev	Gene name	Organism	PDB ID ³	TM-score
<i>dmdA</i> ⁴	AAV95190.1	1.45	0.92 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.974
<i>dmdA</i>	AHD01041.1	1.69	0.95 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.990
<i>dmdA</i>	WP_047029467.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	WP_048536000.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	AHM05061.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.989
<i>dmdA</i>	ABF64177.1	1.62	0.94 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfiA	0.947
<i>dmdA</i>	WP_065273401.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	WP_076627280.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	AEI94210.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	ABG31871.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	ABD55296.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	WP_049834197.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	AGI72139.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	ABV94056.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.998

<i>dmdA</i>	AAZ21068.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	AFS46782.1	1.95	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	AFS48343.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.995
<i>dmdA</i>	AGI68776.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.997
<i>dmdA</i>	ASJ73090.1	1.77	0.96 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.956
<i>dmdA</i>	ADE38317.1	1.96	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.992
<i>gcvT</i> ⁵	AEM59334.1	2.53	0.42 ± 0.14	<i>dmgdh</i> ⁶	<i>Rattus norvegicus</i>	4p9sA	0.637
<i>gcvT</i>	WP_096389816.1	0.48	0.78 ± 0.10	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.885
<i>gcvT</i>	CAJ51984.2	0.23	0.68 ± 0.12	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.855
<i>gcvT</i>	CCC39909.1	-0.06	0.71 ± 0.12	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.865
<i>gcvT</i>	AFS48830.1	0.64	0.80 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.894
<i>gcvT</i>	AGM40509.1	0.55	0.79 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.887
<i>gcvT</i>	AHI32422.1	0.61	0.80 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.896
<i>gcvT</i>	WP_053112835.1	0.56	0.79 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.997
<i>gcvT</i>	CBV41552.1	0.68	0.81 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.906
<i>gcvT</i>	WP_071941841.1	1.11	0.87 ± 0.07	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.997
<i>gcvT</i>	AAV94935.1	1.96	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.994
<i>gcvT</i>	AII87408.1	1.64	0.94 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.985
<i>gcvT</i>	ADE40415.1	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.995
<i>gcvT</i>	AHM03102.1	1.69	0.95 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.981
<i>gcvT</i>	WP_071972920.1	1.99	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.988
<i>gcvT</i>	BAN00949.1	1.13	0.87 ± 0.07	<i>dmg</i>	<i>Arthrobacter</i> <i>globiformis</i>	1pj6A	0.948
<i>gcvT</i>	WP_053819980.1	1.71	0.95 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.988
<i>gcvT</i>	ABF63906.1	1.53	0.93 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.960
<i>gcvT</i>	AGI71303.1	1.65	0.95 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.960
<i>gcvT</i>	AII85872.1	1.52	0.93 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.960
<i>gcvT</i>	WP_067545452.1	1.59	0.94 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.961
<i>gcvT</i>	ADE39159.1	1.50	0.92 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i>	3tfhA	0.950

					HTCC1062		
<i>gcvT</i>	AGI71500.1	1.47	0.92 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.949
<i>gcvT</i>	AFS47213.1	1.66	0.95 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.966
<i>gcvT</i>	AFS48354.1	1.60	0.94 ± 0.05	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.963
<i>gcvT</i>	WP_053820730.1	0.34	0.67 ± 0.13	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.874
<i>gcvT</i>	WP_065353845.1	1.56	0.93 ± 0.06	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC1062	3tfhA	0.961
<i>gcvT</i>	Ancestral DmdA and non-DmdA sequence	1.25	0.89 ± 0.07	<i>gcvT</i>	<i>Thermotoga maritima</i>	1wooA	0.960
<i>dmdA</i>	Ancestral DmdA sequence	2	0.99 ± 0.04	<i>dmdA</i>	<i>Ca. P. ubique</i> HTCC10626	3tfhA	0.997
<i>gcvT</i>	Ancestral non-DmdA sequence	0.76	0.82 ± 0.09	<i>dmgdh</i>	<i>Rattus norvegicus</i>	4p9sA	0.940

952 ¹A confidence score for estimating the quality of predicted models

953 ²A standard for measuring structural similarity between two structures

954 ³The Protein Data Bank structure name

955 ⁴DmdA DMSP-dependent demethylase

956 ⁵Glycine cleavage system T protein

957 ⁶Dimethylglycine dehydrogenase complexed with tetrahydrofolate

958

959 **Table 3.** Divergence time estimates in million years ago (Mya), and node 95% highest posterior
960 density (HPD) interval for the clades of the most recent common ancestor (MRCA) of
961 *Halobacteriales*, SAR11 and *Alphaproteobacteria* from each set of calibration priors.

Taxonomic group of MRCA	Clade	Age	95% HPD
<i>Halobacteriales</i> (455)	Mrca1	438	311.1 – 572.3
SAR11 (826)	Mrca2	827.5	588.3 – 1089.8
<i>Alphaproteobacteria</i> (2480)	Mrca3	2118.6	1543 – 2717.1

962

963 **Table 4.** Parameters of branch-models.

Model	ω1	ω2	-lnL ¹	LRT ²	P-value
One ω (one-ratio)	0.08518	NA	-14580.019867	NA	NA
Two ω (two-ratio)	0.0767	0.1494	-14568.131038	23.777658	0.0
38 ω (free-ratio)	*	*	-14428.881747	302.27624	0

964 * ω values are shown in Supplementary Fig 19.

965 ¹Log-likelihood score under the model

966 ²Likelihood ratio test

967

968 **Table 5.** Parameters of PAML branch-site models.

Branch	Ho (-lnL) ¹	Ha (-lnL) ²	LRT ³	P-value ⁴	CorrectedP-value ⁵	Pos. Selected sites* (BEB>0.95)
ADE38317.1	-14465.244	-14463.099	4.290	0.038	0.767	NA
AAV95190.1	-14476.763	-14476.763	0	1	1	NA
AHD01041.1	-14476.763	-14476.763	0	1	1	NA
WP_047029467.1	-14476.763	-14437.565	78.397	0.00	0.00	7V; 17E ; 47H; 65D; 68Y; 87Y ; 89A; 152K ; 157M; 163N; 203V; 279G; 290P; 319T; 320H
WP_048536000.1	-14476.763	-14476.763	0	1	1	NA
AHM05061.1	-14466.948	-14460.844	12.206	0.000	0.000	17E ; 152K ; 178E; 285V
ABF64177.1	-14476.763	-14476.763	0	1	1	NA
WP_065273401.1	-14476.763	14476.763	0	1	1	NA
WP_076627280.1	-14476.763	14476.763	0	1	1	NA
AEI94210.1	-14476.763	-14476.763	0	1	1	NA
ABG31871.1	-14476.763	-14476.763	0	1	1	NA
ABD55296.1	-14476.764	-14476.764	0	1	1	NA
WP_049834197.1	-14476.763	-14476.763	0	1	1	NA
AGI72139.1	-14476.763	-14476.763	0	1	1	NA
AGI68776.1	-14476.763	-14476.763	0	1	1	NA
ABV94056.1	-14462.942	-14454.885	16.112	0.000	0.000	87Y ; 152K ; 243N; 247L; 257F
ASJ730990.1	-14463.474	-14461.176	4.595	0.032	0.641	NA
AAZ21068.1	-14465.122	-14462.171	5.902	0.015	0.302	NA
AFS46782.1	-14467.961	-14464.484	6.954	0.008	0.167	NA
AFS48343.1	-14460.566	-14425.923	31.802	0.000	0.000	4S; 5A; 9S; 35S; 38V; 70T; 83D; 84H; 85I; 91V; 94D; 95Q; 103L; 109P; 119T; 139T; 155E; 158K; 168N; 176N; 179F; 210L; 211R; 217G; 231S; 253A; 259P; 270Q; 274V; 277S; 292N; 298T; 305S; 311C; 321T
Ancestral branch to the DmdA clade	-28761.935	-28758.081	7.7084	0.005	0.010	39Q
Ancestral branch to the non-DmdA clade	-28770.533	-28766.874	7.3182	0.006	0.013	-

969 Branch identifiers follow the nomenclature of Supplementary Fig 19

970 Colors show same mutation in different lineages.

971 *Amino acids refer to the first sequence in the alignment: AFS48343.1

972 ¹Log-likelihood score under the model under Null model

973 ²Log-likelihood score under alternative model

974 ³Likelihood ratio test

975 ⁴Uncorrected p-value: raw- p-value without correction for multiple testing

976 ⁵p-value corrected for multiple testing by Bonferroni

977

978 **Table 6.** Parameter estimates of models evaluating functional divergence of DmdA and non-DmdA
979 after gene duplication.

Model	NP ¹	ω^2	Site class 0		Site class 1		Site class 2		K ³	-LnL ⁴	LTR ⁵	P-value	Divergent sites*
			ω_0	p_0	ω_1	p_1	ω_2	p_2					
M0	95	0.053							1.341	-28818.866	na	na	
M3 (k=3)	99	0.058	0.006	0.238	0.045	0.506	0.132	0.255	1.342	-28079.171	1479.391	0.00	
MD (k=3)	100		0.006	0.235	0.042	0.492	ω_{2a} :0.100 ω_{2b} :0.169	0.272	1.337	-28061.808	34.725	0.00	2V, 9Q, 12E, 14Y, 16Q, 17A, 28S, 32N, 36N, 37H, 52E, 57D, 58Y, 60T, 62L, 69S, 70Q, 71A, 72K, 73D, 77Y, 85Q, 98K, 101T, 118I, 127T, 132N, 142F, 146K, 147R, 150E, 156K, 157R, 158Y, 159A, 161N, 163H, 164E, 166L, 185D, 187V, 188Q, 192Q, 194L, 198K, 199D, 211S, 218M, 226A, 229S, 230P, 240K, 241K, 242S, 244S, 247I, 248M, 250D, 253T, 254L, 258C, 259Y, 264G, 265K, 272Q, 273L, 274D, 275Q, 276D, 277L, 278K, 280Q, 283K, 285T, 286N, 287L

980 *Sites with predicted functional divergence between DmdA and non-DmdA at significance (BEB > 0.95)

981 ¹NP: number of free parameters in the model

982 ²Average over all sites

983 ³Kappa

984 ⁴Log-likelihood score under the model

985 ⁵Likelihood ratio test

986

987

988 **FIGURES**

989

990 **Fig 1.** GcvT phylogenetic tree based on 20 DmdA orthologs protein sequences and 184 DmdA
991 homologs using Beast and the same parameters set for molecular dating but with 100 million
992 generations. DmdA sequences are indicated with green color and closer homologs for those with
993 yellow color. Tip labels include a maximum e-value < e-50.

994

995 **Fig 2.** Phylogenetic tree of DmdA based on 20 DmdA orthologs protein sequences and 28 DmdA
996 homologs (more information in Supplementary Table 1) using RaxML. A non-parametric bootstrap
997 is shown to establish the support for the clades. DmdA sequences are indicated with blue branch.
998 Tip labels show color for first dmdA gene identified or taxonomy classification. Tip labels include a
999 maximum e-value <e-80.

1000

1001 **Fig 3.** Phylogenetic tree of DmdA based on 20 DmdA orthologs protein sequences and 28 DmdA
1002 homologs using BEAST2. Bayesian posterior probabilities (PP) is shown to establish the support
1003 for the clades. Red color indicates DmdA clade.

1004

1005 **Fig 4.** (Upper) BEAST divergence time estimates from *dmdA* and non-*dmdA* genes under
1006 uncorrelated relaxed clock model and Birth-death tree model. Nodes are at mean divergence times
1007 and gray bars represent 95% HPD of node age. Nodes used as calibrated priors in BEAST analysis
1008 are marked as mrcal, mrcal2 and mrcal3 as well as colored. (Lower) Absolute time scale in Ma.
1009 Arrows indicate duplication events occurred 1894 Mya (red), 300 Mya (blue) and 1000 Mya
1010 (green).

1011

1012 **Fig 5.** Posterior probabilities for dN/dS categories under the M3 model. Grey, red and blue bars
1013 depict the three dN/dS categories (values for each category are provide in the key). Sites that are
1014 mostly grey denote codons under strong purifying selection, whereas those predominantly red show
1015 codons under weaker purifying selection. Red, blue and grey colors indicate codon sites with $\omega_2=$
1016 0.2483, $\omega_1=0.06923$ and $\omega_0=0.00485$, respectively.

1017

1018 **Fig 6.** Tertiary structure of DmdA (PBD: 3tfh) with sites under episodic positive selection mapped
1019 in yellow color through Pymol.

1020

1021 **Fig 7.** Hypothesis of DmdA evolution. BI phylogeny under uncorrelated relaxed clock model and
1022 Birth-death tree model. Node names represent the ancestral sequences reconstructed; GcvT prior to
1023 main duplication, DmdA for DmdA clade and DmgdH for non-DmdA clade. In DmdA clade, blue
1024 color represents ecoparalogs where pI is < 5.7 and they are adapted to less concentration of DMSP
1025 in comparison with DmdA paralogs (red color) which have pI => 6.5. In non-DmdA clade, yellow
1026 branches represents paralogs with DmgdH tertiary structure and black branches paralogs with
1027 DmdA tertiary structure.

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055 **SUPPORTING INFORMATION**

1056

1057 **FIGURES**

1058

1059 **Supplementary Fig 1.** Time tree of *Alphaproteobacteria* evolution with geologic timescale. Solid
1060 circles mark nodes that map directly to the NCBI Taxonomy and the open circles indicate nodes
1061 that were created during the polytomy resolution process which is described in Hedges et al. (2015).

1062

1063 **Supplementary Fig 2.** Time tree of *Gammaproteobacteria* evolution with geologic timescale.
1064 Solid circles mark nodes that map directly to the NCBI Taxonomy and the open circles indicate
1065 nodes that were created during the polytomy resolution process which is described in Hedges et al.
1066 (2015).

1067

1068 **Supplementary Fig 3.** Time tree of *Halobacteriales* evolution with geologic timescale. Solid
1069 circles mark nodes that map directly to the NCBI Taxonomy and the open circles indicate nodes
1070 that were created during the polytomy resolution process which is described in Hedges et al. (2015).

1071

1072 **Supplementary Fig 4.** GcvT phylogenetic tree based on 20 DmdA ortholog protein sequences and
1073 184 DmdA homologs using RaxML. DmdA sequences are indicated with red color and closer
1074 homologs for those with blue color. Tip labels include a maximum e-value < e-50.

1075

1076 **Supplementary Fig 5.** Phylogenetic trees of DmdA based on 20 DmdA ortholog protein sequences
1077 and 28 DmdA homologs using RaxML (A), Phylobayes (B), Phylip (C) and Beast (D). DmdA
1078 sequences are indicated with blue color and the first DmdA proteins identified with read color
1079 (AAV95190.1: *Ruegeria pomeroyi* DSS-3, AAZ21068.1: *Ca. P. ubique* HTCC1062). Tip labels
1080 include a maximum e-value < e-80.

1081

1082 **Supplementary Fig 6.** Proxy for the species tree constructed by BI and using RPS16 sequences
1083 from 35 genomes here analyzed for inferring evolutionary history of DmdA.

1084

1085 **Supplementary Fig 7.** DmdA tree using the common set of taxa used for the topology tests. Tree
1086 was constructed by ML for topology tests and BI for an easily visualization of phylogenetic
1087 relationships in unrooted trees.

1088

1089 **Supplementary Fig 8.** Proxy for the species tree using the common set of taxa used for the
1090 topology tests. Proxy was constructed by ML for topology tests and BI for an easily visualization of
1091 phylogenetic relationships in unrooted trees.
1092
1093 **Supplementary Fig 9.** Proxy for the species tree using the common set of taxa used for the
1094 topology tests. The blue branches denote HGT events and red arrows the direction.
1095
1096 **Supplementary Fig 10a.** Phylogenetic tree of DmdA based on 20 DmdA ortholog protein
1097 sequences and 28 DmdA homologs using BEAST2. Bayesian posterior probabilities (PP) is shown
1098 to establish the support for the clades. Red color denote DmdA clade, orange color indicate non-
1099 DmdA clade and yellow color DmgdH clade.
1100
1101 **Supplementary Fig 10b.** Multiple sequence alignment with blue color represents the highest level
1102 of conservation (100%) when the alignment is divided in the same four clades found in the
1103 Supplementary Fig 10a and Fig 4.
1104
1105 **Supplementary Fig 11.** Clustering sequences based on principal component analysis from Jalview
1106 v2.10. The sequences are projected along three vectors giving a 3-dimensional view of how the
1107 sequences cluster. Components are generated by an eigenvector decomposition of the matrix
1108 formed from the sum of substitution matrix scores at each aligned position between each pair of
1109 sequences – computed with blosum62 matrix. Grey color denotes sequences with putative dmgdH
1110 structure.
1111
1112 **Supplementary Fig 12.** DmdA phylogenetic tree with the ancestor labeling included. Internal
1113 nodes labels were inferred using FastML. N1 is the oldest ancestor and from N2 to N18 are children.
1114
1115 **Supplementary Fig 13.** Psi-blast results for sequences similar to the DmdA ancestral protein
1116 inferred with FastML.
1117
1118 **Supplementary Fig 14.** Non-DmdA phylogenetic tree with the ancestor labeling included. Internal
1119 nodes labels were inferred using FastML. N1 is the oldest ancestor and from N2 to N18 are
1120 children.
1121

1122 **Supplementary Fig 15.** Phylogenetic tree of DmdA based on 20 DmdA ortholog protein sequences
1123 and 28 DmdA homologs with the ancestor labeling included. Internal nodes labels were inferred
1124 using FastML. N1 is the oldest ancestor and from N2 to N18 are children.

1125

1126 **Supplementary Fig 16.** Phylogenetic trees of *dmdA* based on 20 *dmdA* ortholog gene sequences
1127 using PhyML. A non-parametric bootstrap is shown to establish the support for the clades. Tip
1128 labels show red color for the first *dmdA* gene identified (AAV95190.1: *R. pomeroyi* DSS-3,
1129 AAZ21068.1: *Ca. P. ubique* HTCC1062).

1130

1131 **Supplementary Fig 17.** Posterior probabilities for dN/dS categories under the M1a model. Blue
1132 bars depict the category with the dN/dS = 1 and grey bars the category with dN/dS << 1. Sites that
1133 are grey denote codons under strong purifying selection.

1134

1135 **Supplementary Fig 18.** Phylogeny for *dmdA* sequences. Blue color indicates the branches from
1136 group B which are compared with the rest of branches (group A) under two-ratio models.

1137

1138 **Supplementary Fig 19.** Phylogeny for *dmdA* sequences constructed by ML from DNA alignment
1139 in frame. Red branches have a dN/dS value > 1. Red numbers indicate the branches. “ω” represents
1140 a dN/dS value where non-synonymous mutations are higher than synonymous mutations. Four
1141 sequences (WP_047029467, AHM05061,1, ABV94056,1, AFS48343,1) presented a significant
1142 LRT after correcting for multiple testing (green color).

1143

1144 **Supplementary Fig 20.** Foreground-branches tested for branch-site selection models. Red color
1145 indicates the branches of interest (foreground branches). We performed 20 tests, where only one of
1146 the branches pointed by red color was considered at a time; all other branches are corresponding to
1147 background-branches.

1148

1149 **Supplementary Fig 21.** Multiple sequence alignment of DmdA orthologs. Blue colors represent
1150 sites with the highest level of conservation (100%). Red squares represents sites under positive
1151 selection. The posterior probability of each site was calculated by BEB. Green asterisk indicate
1152 residues that have a conserved interaction with THF (Schuller et al. 2012).

1153

1154 **Supplementary Fig 22.** Parallel mutational changes detected in specific genes from different
1155 lineages. Red color identifies parallel mutational changes on specific branches of the *dmdA*

1156 phylogeny. The shared sites are under positive selection. Branch identifiers follow the nomenclature
1157 of Supplementary Fig 21.

1158

1159 **Supplementary Fig 23.** Posterior probabilities for dN/dS categories under the M3 model. Red and
1160 blue bars depict the categories with the highest dN/dS (values for each category are provide in the
1161 key). Sites that are mostly grey denote codons under strong purifying selection, whereas those
1162 predominantly red show codons under light purifying selection.

1163

1164 **Supplementary Fig 24.** Multiple sequence alignment of DmdA orthologs and DmdA homologs
1165 showing conserved regions (blue color) and codon sites evolving under divergent selective
1166 pressures (red colored columns). The secondary structure prediction using Jpred4 via Jalview is also
1167 shows for the alignment.

1168

1169 **Supplementary Fig 25.** Phylogeny for *dmdA* ortholog and *dmdA* homolog sequences. Ancestral
1170 branches to the DmdA clade and to non-DmdA clades, with red and blue colors respectively, are
1171 considered as foreground-branches in different branch-site selection models.

1172

1173

1174 TABLES

1175

1176 **Supplementary Table 1.** Data collected from MarRef database include information about
1177 sequences and genomes used in this study, taxonomy and sampling environment.

1178

1179 **Supplementary Table 2.** Tree comparison by TOPD/FMTS. Two randomization methods estimate
1180 that the similarity between two trees produced by BI or ML is better than random. This random
1181 analysis is repeated 100 times and the result is the mean and SD of the different repetitions.

	Split Distance MM		Split Distance random	
	Mean	SD	Mean	SD
Beast vs beast	0	0	0.9988	0.002
Beast vs RaxML	0.1990	0	0.9988	0.002

1182

1183

1184 **Supplementary Table 3.** Tree comparison by TOPD/FMTS. Two randomization methods estimate
1185 that the similarity between two trees produced by BI or ML is better than random. This random
1186 analysis is repeated 100 times and the result is the mean and SD of the different repetitions.

	Split Distance MM		Split Distance random	
	Mean	SD	Mean	SD
Beast vs beast	0.6178	0.108	0.9876	0.014
Beast vs phyllobayes	0.6118	0.108	0.9870	0.016
Beast vs phylip	0.6077	0.099	0.9880	0.012
Beast vs RaxML	0.6123	0.103	0.9880	0.012
Phylip vs phyllobayes	0.5891	0.115	0.9874	0.014
Phylip vs RaxML	0.6018	0.113	0.9880	0.013
Phyllobayes vs RaxML	0.5923	0.112	0.9870	0.017

1187

1188

1189 **Supplementary Table 4.** Physico-chemical properties on predecessor and DmdA ortholog
1190 sequences inferred through Compute ProtParam tool from Expasy – SIB Bioinformatics Resource
1191 Portal.

Taxonomy	Identification	PI ¹	Mw ²	Instability index ³		Aliphatic index ⁴	Location (PSORTb v.3.0)
ASR ⁵	Root marginal sequences of DmdA family	6.5*	41334.4	39.5	stable	91.32	Cytoplasmic
<i>Ca. P. ubique</i> HTCC1062	AAZ21068.1	6.47*	41831.81	32.73	stable	86.1	Cytoplasmic
HIMB59	AFS48343.1	5.17	41499.43	39.62	stable	86.1	Cytoplasmic
HIMB5	AFS46782.1	6.99*	41692.14	39.23	stable	91.9	Cytoplasmic
<i>G. antarcticus</i> IMCC3135	ASJ73090.1	4.91	43371.33	33.58	stable	92.19	Cytoplasmic
<i>Ca. puniceispirillum</i> marinum IMCC1322	ADE38317.1	5.55	41421.73	43.47	unstable	92.21	Cytoplasmic
<i>L. methylohalidivorans</i> DSM14336	AHD01041.1	4.93	40057.61	39.14	stable	86.57	Cytoplasmic
<i>R. pomeroyi</i> DSS-3	AAV95190.1	5.27	39895.45	37.59	stable	84.4	Cytoplasmic
<i>Hoeflea</i> sp IMCC20628	WP_047029467.1	4.98	40736.4	35.67	stable	87.91	Cytoplasmic
<i>D. shibae</i> DFL12	ABV94056.1	4.81	41294.27	39.05	stable	90.03	Cytoplasmic
<i>O. temperatus</i> SB1	WP_049834197.1	5.03	40693.65	27.46	stable	85.68	-
<i>O. antarcticus</i> 307	AGI68776.1	5.32	40692.51	26.43	stable	86.75	Cytoplasmic
<i>O. arcticus</i> 238	AGI72139.1	5.5	40570.47	28.03	stable	87.32	Cytoplasmic
<i>R. elongatum</i> DSM19469	AHM05061.1	5.49	40459.36	40.05	unstable	88.15	Cytoplasmic

<i>M. algicola</i> DG898	WP_048536000.1	5.12	40770.54	35.43	stable	85.17	Cytoplasmic
<i>Jannaschia</i> sp CCS1	ABD55296.1	5.05	40852.7	42.04	unstable	86.57	Cytoplasmic
<i>P. gallaeciensis</i> JL2886	WP_065273401.1	5.58	41133.97	40.89	unstable	82.07	Cytoplasmic
<i>Ruegeria</i> sp TM1040	ABF64177.1	5.78	42951.08	38.16	stable	82.26	Cytoplasmic
<i>T. oomphalii</i> DOK1-4	WP_076627280.1	5.24	41152	41.96	unstable	84.71	Cytoplasmic
<i>R. denitrificans</i> Och114	ABG31871.1	5.15	40785.38	30.1	stable	86.62	Cytoplasmic
<i>R. litoralis</i> Och149	AEI94210.1	5.09	40648.28	27.93	stable	87.71	Cytoplasmic
ASR	Root marginal sequence of Dmda and non-DmdA families	4.43	31948.03	45.46	unstable	89.16	Cytoplasmic
ASR	Root marginal sequence of non-DmdA family	4.3	40334.85	43.72	unstable	84.44	Cytoplasmic
N10	Non-DmdA tree	4.69	39908.25	41.21	unstable	92.38	
N3	DmdA tree	4.85	41479.21	40.25	unstable	86.56	

¹Theoretical isoelectric point

²Theoretical molecular weight

³A protein whose instability index is smaller than 40 is predicted as stable, a value above 40 predicts that the protein may be unstable

⁴It is the relative volume occupied by aliphatic side chains (valine, isoleucine, alanine and leucine)

⁵Ancestral sequence by reconstruction

*Highest isoelectric point values

1199

1200 **Supplementary Table 5.** Parameters of branch-models.

Model	ω_1	ω_2	$-\ln L^4$	LRT ⁵	P-value
One ω (one-ratio)	0.05348	NA	-31199.102911	NA	NA
Two ω (two-ratio) ¹	0.05367	999	-31197.315923	3.573976	0.0587
Two ω (two-ratio) ²	0.05399	0.00	-31197.838823	2.528176	0.1118
Two ω (two-ratio) ³	0.05362	999	-31197.199937	0.000012	0.9972

1201 ¹Two ω , one for the ancestral DmdA gene and another for the rest of genes.

1202 ²Two ω , one for the ancestral non-DmdA gene and another for the rest of genes.

1203 ³Two ω , one for the two ancestral genes (DmdA and non-DmdA) and another for the rest of genes

1204 ⁴Log-likelihood score under the model

1205 ⁵Likelihood ratio test

1206

1207

1208

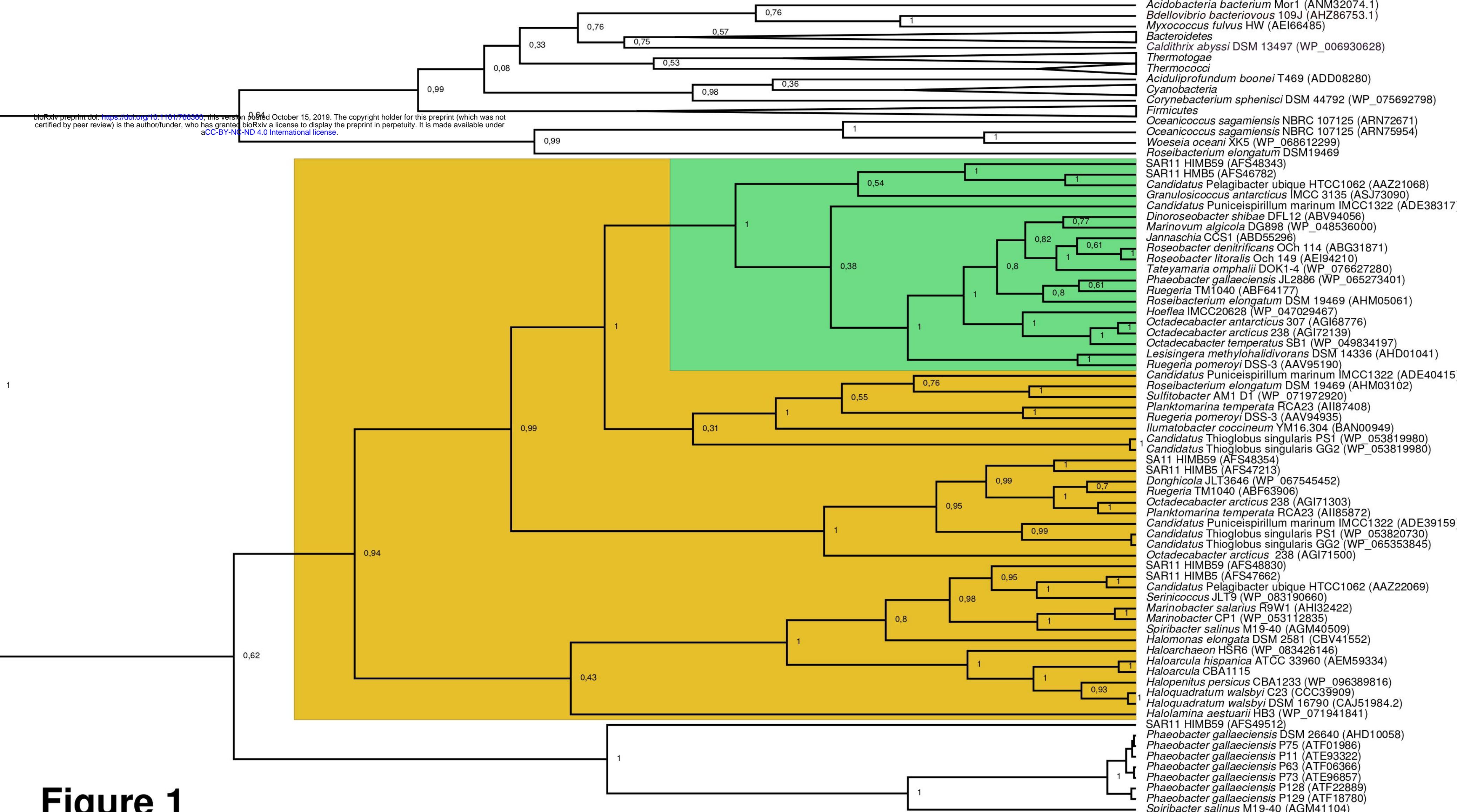
1209

1210

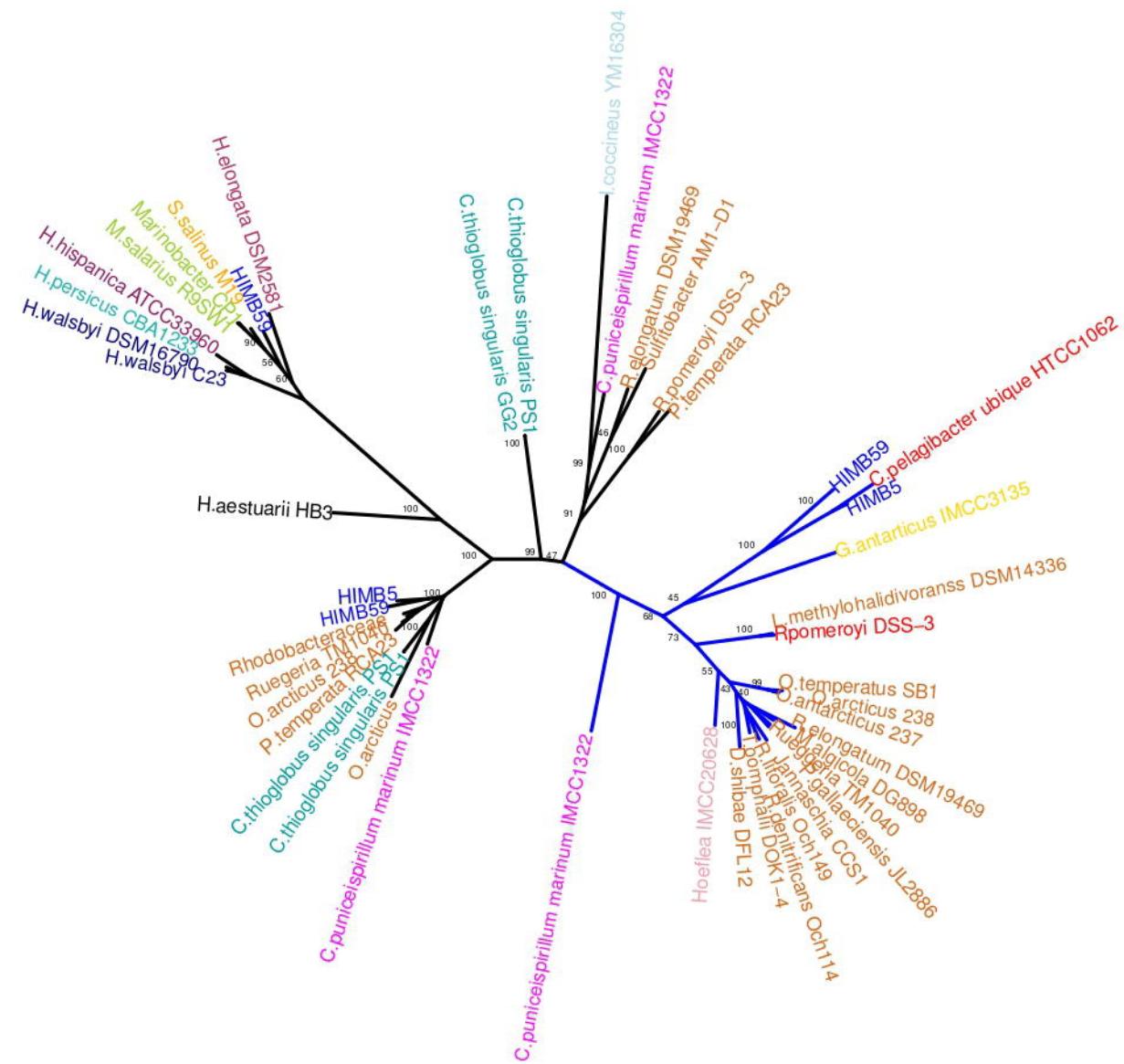
1211 **ADDITIONAL INFORMATION**

1212 **Supplementary Data 1.** Details of structural information collected by I-TASSER for each
1213 sequence used on the evolutionary study of DmdA gene family (Fig. 2).

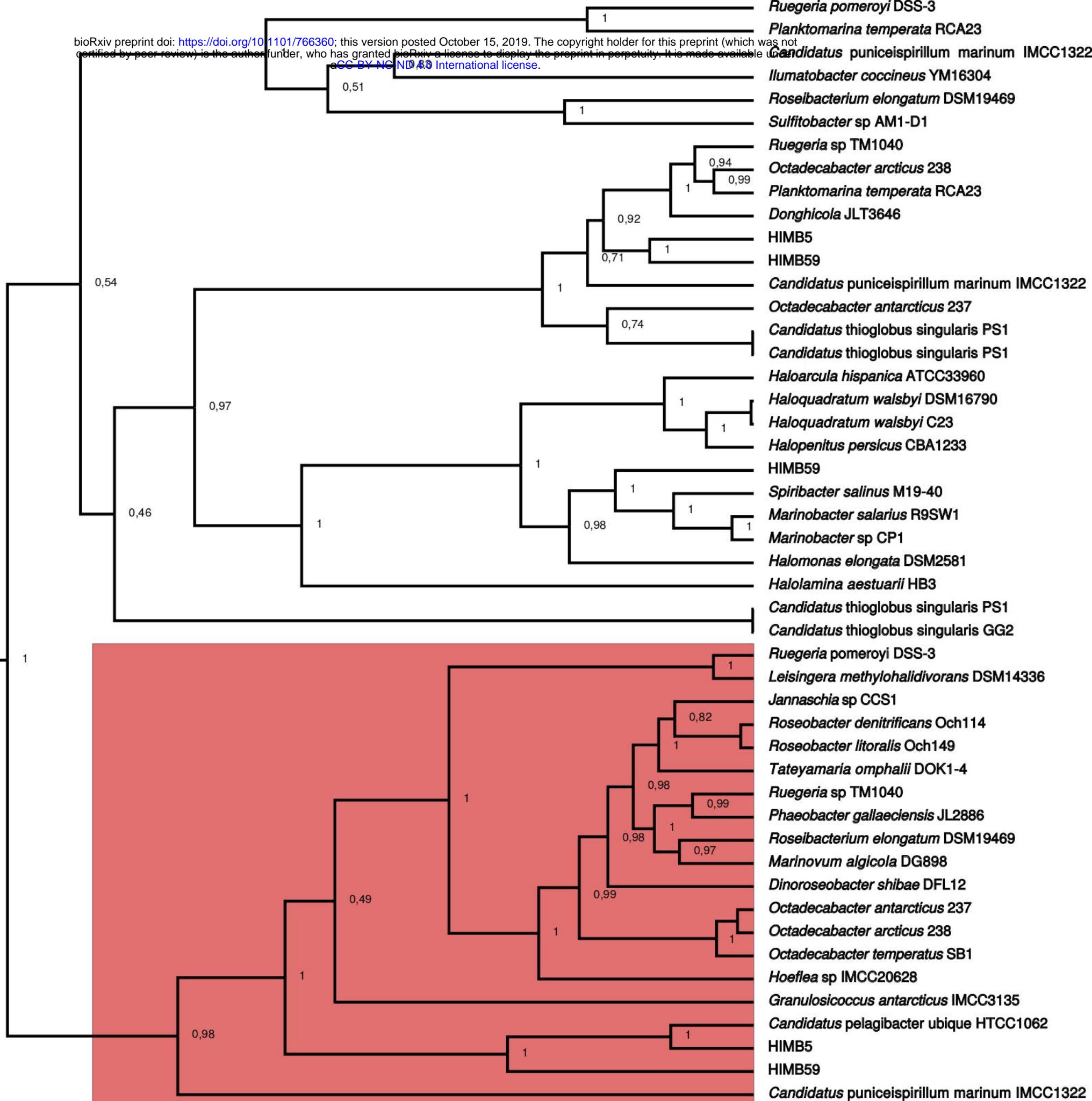
1214


1215

1216 **BIBLIOGRAPHY**


1217 Hedges, S. Blair, Marin, J., Suleski, M., Paymer, M., & Kumar, S. (2015). Tree of Life Reveals
1218 Clock-Like Speciation and Diversification. *Molecular Biology and Evolution*, 32(4), 835–
1219 845. <https://doi.org/10.1093/molbev/msv037>

1220 Schuller, D. J., Reisch, C. R., Moran, M. A., Whitman, W. B., & Lanzilotta, W. N. (2012).
1221 Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism
1222 *Pelagabacter ubique*: Structures and Mechanism of DMDA from *Pelagabacter ubique*.
1223 *Protein Science*, 21(2), 289–298. <https://doi.org/10.1002/pro.2015>


1224

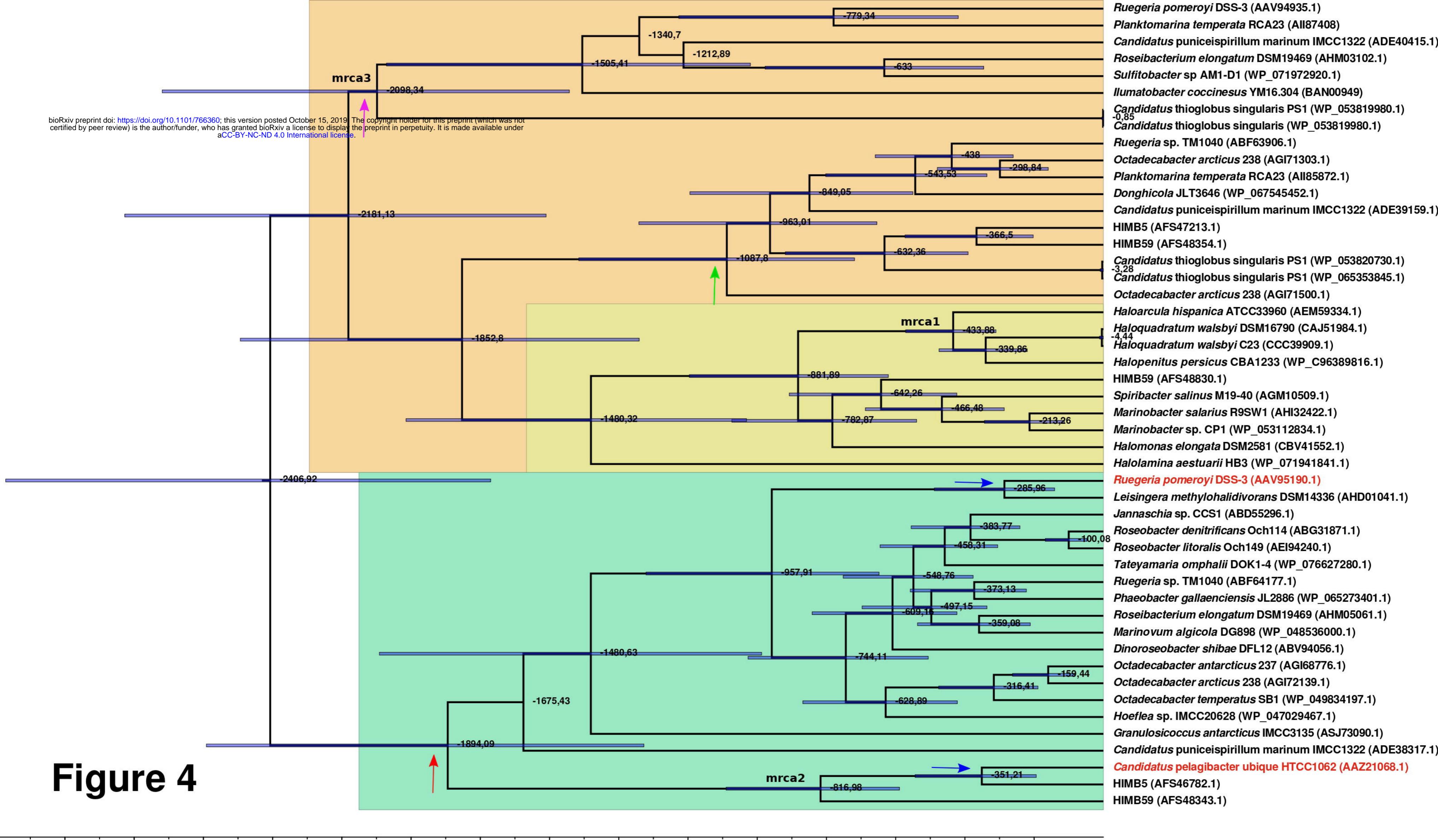

Figure 1

Figure 2

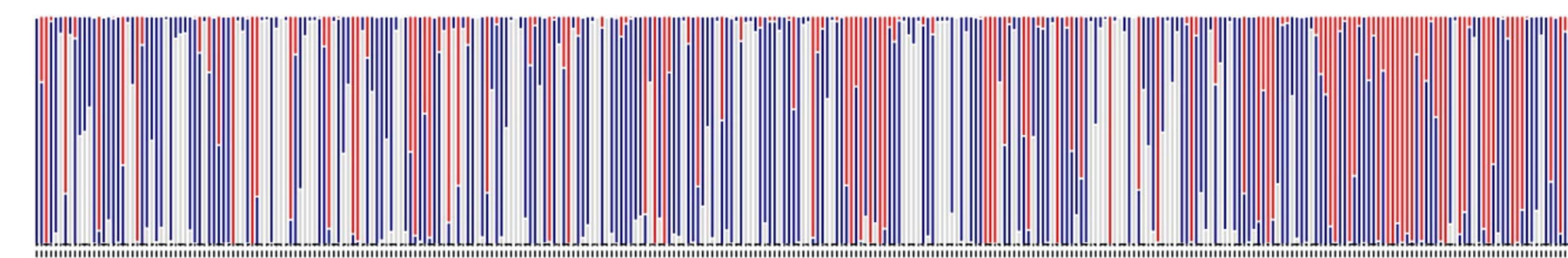
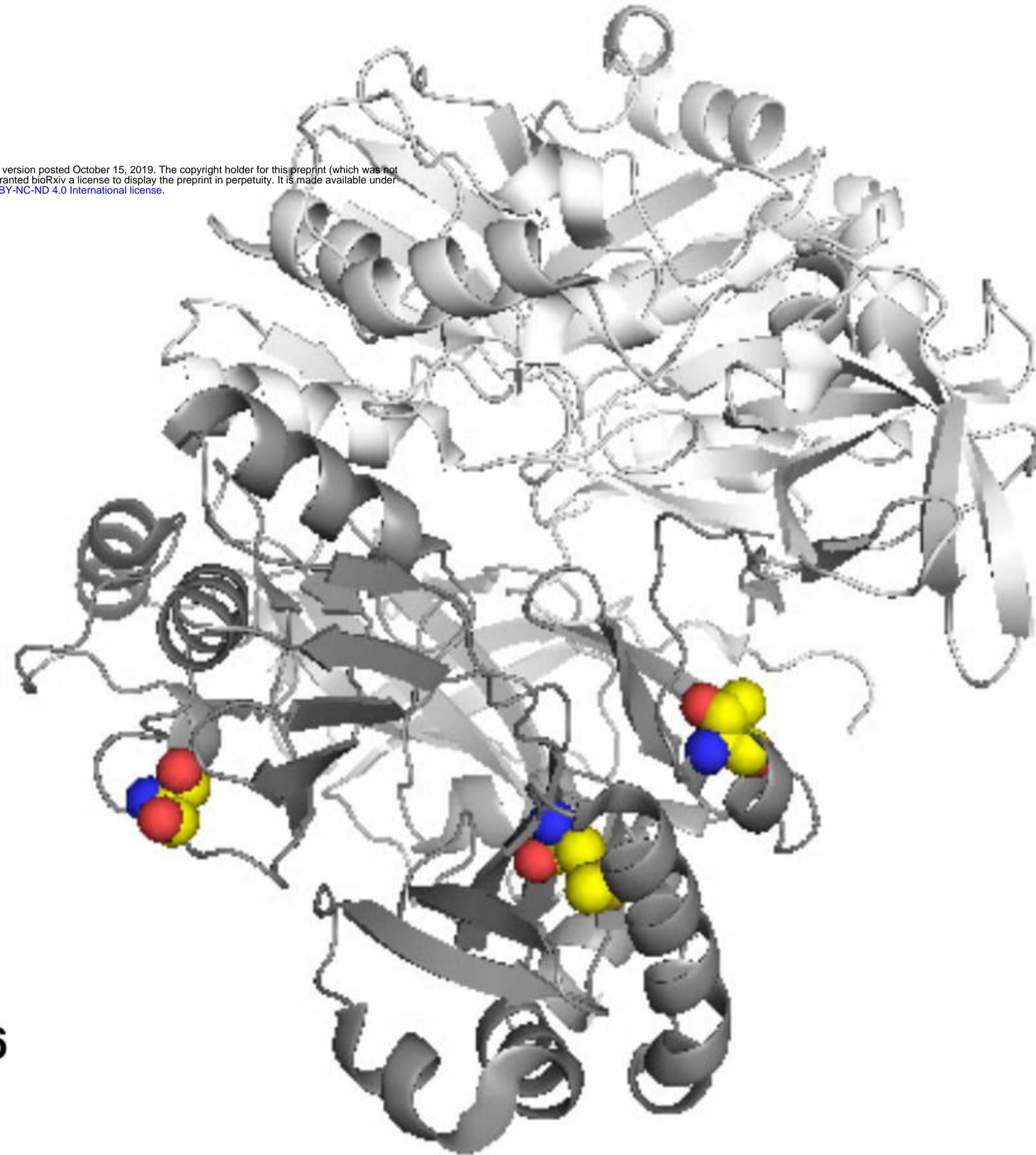


Figure 3



Posterior probability

1.0
0.8
0.6
0.4
0.2
0.0

Figure 5

Figure 6

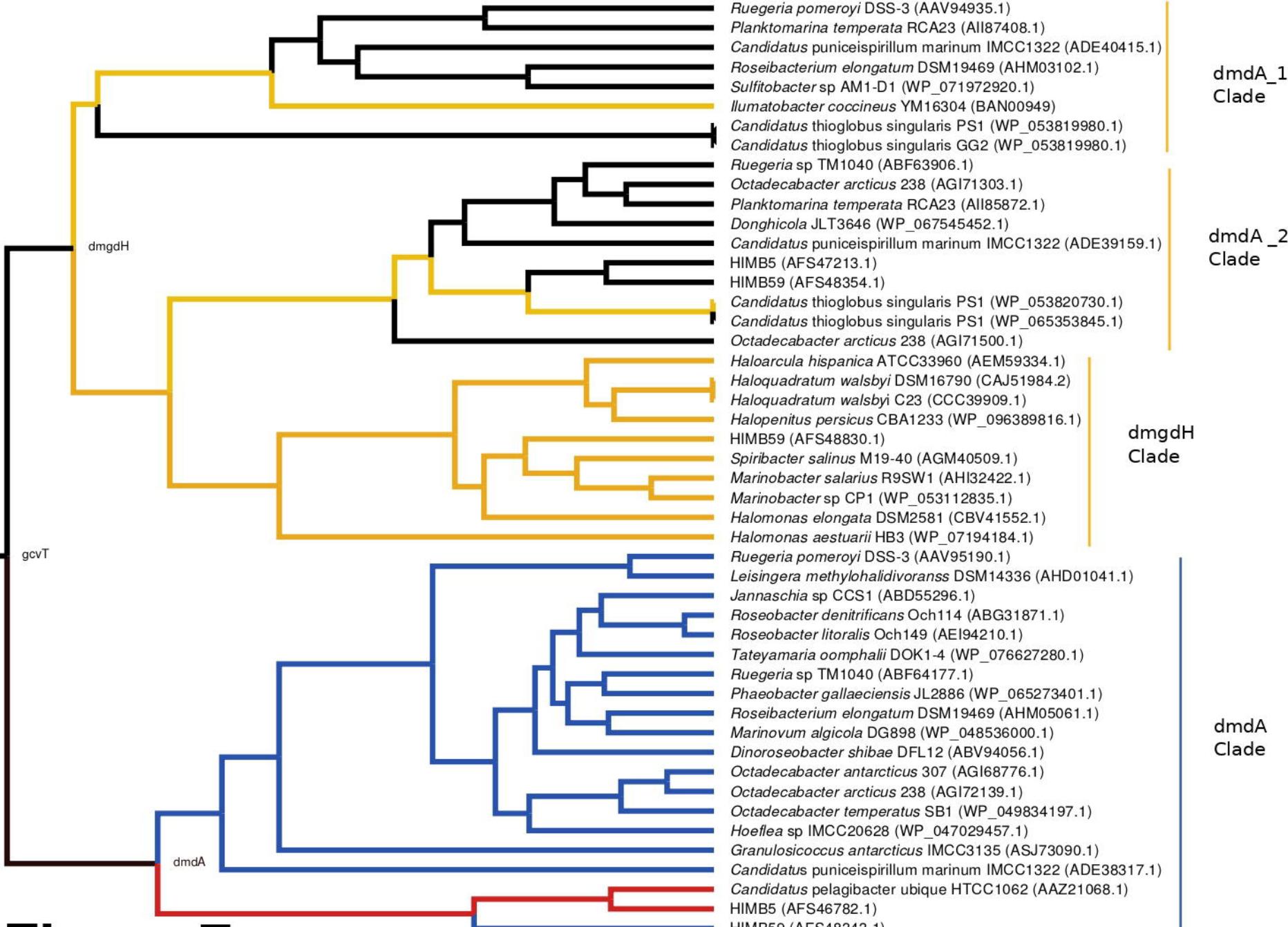


Figure 7