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Abstract

Mosquito-borne diseases have become a significant health issue in many regions around
the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya,
became epidemic in the last decades. Health surveillance reports during this period
were crucial in providing scientific-based information to guide decision making and
resources allocation to control outbreaks. In this work, we perform data analysis of last
Chikungunya epidemics in the city of Rio de Janeiro by applying a compartmental
mathematical model. We estimate the “basic reproduction number” for those outbreaks
and predict the potential epidemic outbreak of Mayaro virus. We also simulated several
scenarios with different public interventions to decrease the number of infected people.
Such scenarios should provide insights about possible strategies to control future

outbreaks.
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Introduction

In the last decades, Mosquito-borne diseases have become a significant health issue in
many regions around the world. Projections indicate that around 2050, half of the
population will be at risk of some arbovirus infection [1]. These arboviruses, which
include diseases such as Dengue, Zika, and Chikungunya, are epidemic in most of the
tropical countries. Besides temperature and humidity, human migrations and sanitation
also contribute to the epidemic conditions in these places [2,3]. For example, around
300.000 people were infected by Dengue, Zika, or Chikungunya by the end of the 11!
week of 2019 in Brazil. This number represents almost three times the reported cases in
2018 for the same period [4]. These surveillance reports over time are essential in
providing scientific-based information to guide decision making, resources allocation,
and interventions [5]. The usage of mathematical models has demonstrated to be a
powerful tool in contributing to these data analysis [6-8]. One of the most significant
parameters extracted from these analyses is the basic reproduction number R,. R, is
defined as the number of secondary infections derived from one single infectious subject
and is widely used as an epidemiologic metric employed to describe the transmissibility
of infectious agents [9].

Here we apply a compartmental mathematical model to investigate the dynamics of
Chikungunya outbreaks in the city of Rio de Janeiro in Brazil. The model consists of
ordinary differential equations that describe the transmission and the transition of the
diseases in humans and vectors [10,11]. The model’s parameters were extracted from
the literature or obtained from the best fit from the data of Rio de Janeiro surveillance
report for the years of 2016, 2018 and 2019 [12]. Based on these parameters, we estimate
the basic reproduction number R, for Chikungunya outbreaks in those years. We also
simulate a scenario predicting if the Mayaro virus could be a potential epidemic disease
in Rio de Janeiro. Modifications in the standard model equations were implemented to
introduce different possible interventions in order to decrease the number of infected
people [13]. Those simulated interventions include actions such as killing adult
mosquitoes by fogging, decreasing mosquitoes birth rate by removing places where the
vector lays eggs, e.g., removing standing water and, decreasing the contact between an

infected human with mosquitoes by stimulating repellent usage. A scenario containing

September 5, 2019

3/19

18

20

21

22

23

24

25

26

27

28

29

30

31


https://doi.org/10.1101/766105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/766105; this version posted September 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.
all interventions was also performed for different intensities of those actions.

Materials and methods

In this work, we perform mathematical modeling of Chikungunya outbreaks in Rio de
Janeiro for the years 2016, 2017 and 2019 [12]. The Chikungunya virus infects humans
through mosquitoes as the disease vector. The model adopted here is a compartmental
model known as SEIR (Susceptible, Exposed, Infected, and Recovered) [8,10,14]. The
approaches using this class of models have been successful in modeling epidemic related

to human vector dynamics [11,15]. Fig 1 presents a schematic description of this
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Fig 1. Model diagram representation of the disease dynamics. The blocks
blue and red are related to human and mosquitoes, respectively. The parameter and
variable descriptions are presented in Table 1 and 2. The dashed lines represent the
transmission of the disease between the two groups.

The human disease flow is presented by the blue blocks where S is the susceptible
proportion of humans, which become exposed to the virus, F, at a rate (3 after the

contact with infectious mosquitoes Z. After the latent period \j, the exposed humans
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become infectious: either symptomatically I or asymptomatically I,; the parameter ¢
determines the ratio between the infectious states. Finally, the infected humans recover
reaching the state R at rate a.

In the case of the vectors disease flow, shown by the red blocks in Fig 1, the
susceptible mosquitoes X become exposed Y at a rate (3, after acquiring the virus from
infectious humans. \, defines the latent period for the exposed mosquito to transition
to the infectious state Z. In this modeling, we assume that human mortality and birth
rates are the same, keeping the human population constant. For the vectors, we set the
parameter p and u, as the mortality and birth rate, respectively. The model is

represented by the following set of differential equations:

ds
dt
dE
dt

dI

dt
dl,
dt
dR
dt

= —BnSZ

= BrSZ — ME

— GME — al

=1 -9)\E —ala

=a(l+1,)

dX
dt
dy
dt
dz
dt

= fto = Bm X (I + 1) — pX
= BmX (I + Ia) —AY — /LY
=Xy — uZ

Table 1 shows the definition of each state in the model for both humans and
mosquitoes. Those states will dynamically vary during the model simulation in which
the parameter I related to the number of cases reported by the surveillance data will be

the variable used in the fitting of the model simulation.
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Table 1. Definition of the state variables used in the model for both humans and
mosquitoes.

Symbol | Definition

S Susceptible proportion of human population

Exposed proportion of human population

Symptomatically infectious proportion of human population
Asymptotically infectious proportion of human population
Recovered proportion of human population

Susceptible proportion of mosquito population

Exposed proportion of mosquito population

N <O B e~

Infectious proportion of human population

Table 2 describes the parameters and ranges used in the model. Some data
information comes from the literature, and for the parameter which we have no

description, they will be obtained from the model best fit.
Table 2. Description of the parameters and range used in the model simulation.

‘ Definition ‘ Range (days)

O Proportional rate at which humans get infected Unknown

Bm | Proportional rate at which mosquitoes get infected | Unknown

1/Ap | Human latent period of infection for human 2-6 [16,17]
1/X\, | Mosquito latent period of infection 2-6 [18,19]
« Rate of recovery 1-7
Lo Mosquito birth rate 0.05-0.03
I Mosquito mortality rate 0.05-0.03

1) Asymptomatically-Symptomatically infectious ratio | 0.72-0.97 [16,20]

In this work we estimate the basic reproduction number R, by applying the next
generation matrix method [21,22]. R, indicates the number of secondary infections

derived from one single infectious subject and can be described by:

R, = —p (II'7Y) (1)

Where p(K) is the spectral radius of the matrix K = III'"!. II is the transmission

matrix that contains the rates of humans to get infected by the vector and vice-versa:
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0 0 0 B
0 0 0 0
I = (2)
O ﬂm. 0 0
0 0 0 0

T is the transition matrix that takes into account the transitions from being exposed

to become infectious:

A 0 0 0
A a 0 0

I= (3)
0 0 —(u+A) 0
0 0 0 —u

The mathematical solution of (1) gives an expression [11]:

_ BhBmAv
o= Y W

The Eq 4 has parameters in which there is no information available such as 8 and
Bm- In order to estimate R,, these parameters will be obtained from the best fit of the

model simulations using data from the surveillance reports [12].

Results and Discussion

The usage of the SEIR model to investigate diseases epidemics provides a tool to
quantify different parameters in outbreaks. The basic reproduction number R, is the
most important quantity, and it is defined as the number of secondary infections caused
by an infected individual [3,23]. It estimates the potential of an outbreak to occur in
the case of R, > 1 [10,24]. The knowledge of R, also gives insights into the
understanding of the epidemiology of a particular disease and its spreading changes over
time and geography [25].

The number of secondary infections in humans from an infected human, defined as
Ry, the type reproduction number [26], can be obtained by R, squared

(Rr = R,?) [11]. The information of Ry can be used to estimate the number of people
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that need to be isolated or vaccinated (@) to contain the epidemic using the relation
Q =1—1/Ry. We present the application of the SEIR model in the data of
Chikungunya in Rio de Janeiro - Brazil in different years (2016,2018 and 2019). We also
provide an estimation of the potential outbreak of Mayaro virus in Rio de Janeiro.
Some additions on the model are also proposed in a way to simulated possible

interventions in the epidemic control [13,27].

Basic Reproduction Number - R,

The data which contains the weekly number of infected people of Chikungunya outbreak
in Rio de Janeiro was obtained from the surveillance report for the years 2016, 2018,
and 2019, which are publicly available. The ratio between the number of reported cases
and the total population is presented in red circles Fig 2. The total number of cases
reported in 2019 is 22896 until the 26'" week when the data was collected. This number
is almost two times higher in comparison with 2016 and 2018 in 52 weeks, 14203 and
10700, respectively. In 2017 the total number of cases was 1870, which will not be used
in this study. Then, the SEIR model was applied to fit the incidence data where the
upper and the lower bound of the model parameters were set to vary in a range
described in the literature. The transmissions coefficients A\, A\, o, 8, and 3, values
are obtained from the model best-fit since there are no values reports in literature about
these parameters for Rio de Janeiro [11]. The simulated number of cases from the
best-fit are presented as bars in Fig 2A, B, and C for the years 2016, 2018, and 2019,
respectively. The parameters obtained from the fitting and used to plot Fig 2 are
described in Table 3. Table 3 also shows in the last row, the estimation of R, using Eq
(4) for each investigated year.

All the estimated R, values for the three studied years are greater than one
describing how severe were the outbreaks in which 2019 has the highest value
R2019 = 1.95 compared with R2°1¢ = 1.82 and R2018 = 1.38. Considering other
epidemic diseases in Rio de Janeiro as Dengue and Zika, which are transmitted by the
same vector, the parameters estimated here are similar to other registered outbreaks
studies [25,28]. It is worthwhile to mention that these parameters give insights from a

city as a whole, which is invariant on how heterogeneous the sanitary conditions could
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Fig 2. The number of infected people distribution by Chikungunya in Rio
de Janeiro for 2016, 2018 and 2019, A, B, and C, respectively. The red dots
describe the informed data obtained from the surveillance report [12] per week. The
bars indicate the simulation best fit distribution compared to the reported data.

be at different neighborhoods [7,25,29, 30].

Table 3. Best fitted parameter values in different years for Chikungunya (CHKV) in
Rio de Janeiro. Estimated parameter are also presented in the last column for Mayaro
virus. The last row shows the values of the estimated R, for both Chikungunya and
Mayaro.

Parameter ‘ CHKYV - 2016 | CHKV - 2018 | CHKV - 2019 Mayaro
Bh 0.1 0.1 0.194 0.1 -0.194
Bo 0.732 0.562 0.298 0.298 — 0.732
An 0.17 0.5 0.17 -
Ay 0.17 0.181 0.17 0.17 — 0.33 [31,32]
o 0.343 0.464 0.235 0.2 - 0.33 [33]
R, 1.82 1.38 1.95 1.18 — 3.51

The last column in Table 3 presents the estimated parameters for Mayaro virus
using the data for the Chikungunya outbreak in 2018, which is the most recent complete
data available. The assumption is based on the similarities between these two
alphavirus in which they can also be transmitted by the same mosquito vector: Aedes
aegypti [6,31,34-36]. The estimated RMAYV for Mayaro presents values between 1.18
and 3.51 for the lower and upper limits. Even the lower bound RMAYV is greater than
1, suggesting that Mayaro has the potential to be an epidemic disease as recent reports

are signaling for different locations [37-39).

Interventions

In this section, we will discuss the outcome of different possible intervention strategies

to control the epidemic disease spreading [13,23]. The simulations were carried out
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using the Chikungunya epidemic outbreak data from Rio de Janeiro in 2018. The first
approach simulates the action of killing adult mosquitoes, which is related to the use of
insecticide as fogging. In the model, this strategy appears as an increase in the

mosquitoes mortality rate p presented in Eq 5:

H(Ct) = el w8 (C = ) (5)

where 6(...) is the unitary step function, p. is the natural rate of birth/death of the
mosquito, C' is the cumulative number of infected people and, w is the parameter
related to the intensity of the fogging action reflected in the mosquito death rate pu. The
fogging action is triggered when the cumulative number of infected people C', described
in Eq 6, reaches the value C), which is 30% of the total number of cases from the real
data. For all the interventions discussed in this study, the trigger event will be the same
as the one present here in the fogging action.

dcC

E = oME (6)

Figure 3 presents the distribution of the number of cases and the cumulative number
of cases as a function time for different fogging intensities, A and B, respectively. In Fig
3A, once the fogging action starts, the number of cases per week stop to grow and starts
to decrease over time. The strength of the parameter w dictates how fast these curves
decay. The cumulative number of cases also reflects the fogging action for different
intensities, as presented in Fig 3B. The total number of case drops to 70.0% when
w = 0.25 presented in dashed red line and drops to 54.0% when w = 0.5 shown in the
dotted yellow line when compared with the real data without fogging action w = 0.0.

The second simulated intervention is the action of reducing the birth rate of the
vector. This approach can be associated with population orientation or better social
sanitary conditions. These actions may produce a decrease in the number of places
where the mosquitoes lay the eggs such as standing water, for example. Here, this
intervention appears in the model by decreasing the mosquito birth rate u,, as shown in
Eq T7:

1o(C) = pe(l = wo 0 (C' = Cy)) (7)
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Fig 3. Simulated intervention results in increasing the mosquitoes
mortality rate by fogging action. A and B present the number of cases and the
cumulative number of infect people, respectively. The solid blue line is the simulation
without intervention w = 0.0. The dashed red line presents the data for w = 0.25, and
the dotted yellow shows the data for w = 0.5.

where 6(...) is the unitary step function, u. is the natural rate of birth/death of the
mosquito, C' is the cumulative number of infected people, C), represents the cumulative
amount of infected people needed to trigger the action and, w, is the parameter related
to how efficient are the population and government actions in preventing the vector
from laying the eggs, which led to decrease the mosquito birth rate p,.

Fig 4 shows the distribution of the number of cases and the cumulative number of
cases as a function time for different intensities of the mosquito birth rate reduction.
Similar behavior as the fogging intervention is observed here. In Fig 4A, the number of
cases reaches the peak of infected people sooner and then starts a decay in the number
of cases per week. The total number of case drops to 85.3% when w, = 0.25 presented
in dashed red line and drops to 70.7% for w, = 0.5 shown in the dotted yellow line when
compared with the data without the intervention w, = 0.0 presented in Fig 4B.
Although the behavior is similar to the fogging action, the response of decreasing the
mosquito birth rate to the total number of cases is less efficient during the outbreak. It
is worthwhile to mention that this kind of action, different from the fogging, can be
inherited and passed to the following years and avoid new outbreaks to occurs in the
future.

The third and the last studied intervention acts as the reduction of the rate in which
infected humans transmit the disease to the mosquitoes. This effect can be associated

as a quarantine action, isolating infected people or, more realistic, the usage of
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Fig 4. Simulated intervention results in decreasing the vector birth rate by
the action of removing the places where mosquitoes lay the eggs. A and B
present the number of cases and the cumulative number of infect people, respectively.
The solid blue line is the simulation without intervention w, = 0.0. The dashed red line
presents the data for w, = 0.25, and the dotted yellow shows the data for w, = 0.5.

repellents by the infected human. Both strategies go in the direction of decreasing the

contact between infected humans and the vector which is simulated using the Eq 8.

Bm(C) = Bc(1 - €0 (C = Cyp)) (8)

where 6(...) is the unitary step function, (. is the natural rate at which humans
infect mosquitoes, C' is the cumulative number of infected people, C}, represents the
cumulative amount of infected people needed to trigger the action and, € is the
parameter that modulates how intense is the decrease in the rate at which humans
infect mosquitoes S,,.

Fig 5 presents the results for this last intervention. The curves in Fig 5A and 5B
show a similar pattern, as observed in the other two previous actions. The number of
cases shows a decay after the intervention starts for different intensities of e. In Fig 5B
the total number of cases curves present results closer to the birth control intervention
than the fogging action. For € = 0.25, the total number of cases decreased to 82.7% of
the initial value, meanwhile, for ¢ = 0.5 this number drops to 64.1%.

A combined simulation applying all the three interventions was carried out, and the
results are presented in Fig 6. The combined intervention presents, as expected, the
most effective strategy to decrease the number of infected people. The distribution
curve of the number of cases per week shows more intense decay in Fig 6A. The total

number of cases drops to 54.3% from the initial value when w,w,, e = 0.25 and reduce
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Fig 5. Simulated intervention results in decreasing the rate in which
humans transmit the disease to susceptible vectors. A and B present the
number of cases and the cumulative number of infect people, respectively. The solid
blue line is the simulation without intervention € = 0.0. The dashed red line presents
the data for e = 0.25, and the dotted yellow shows the data for e = 0.5.

to 43.6% for the parameters w,w,, e = 0.5 in Fig 6B.
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Fig 6. Simulated intervention results by the combination of all the other
three actions discussed in this work. A and B present the number of cases and

the cumulative number of infect people, respectively. The solid blue line is the
simulation without intervention w,w,, € = 0.0. The dashed red line presents the data for

W, Wy, € = 0.25, and the dotted yellow shows the data for w,w,,e = 0.5.
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Conclusion

The last three Chikungunya outbreaks in Rio de Janeiro, Brazil, were modeled using the
SEIR model and estimates the Basic Reproduction Number R, for the years 2016, 2018,
and 2019. The simulations results register values greater than 1 for all of them, and
2019 is the most severe, even though the data was limited for the first six months. The
calculation of R, gives a global overview of the impact and scale of the outbreak. A
more detailed approach could take into account the number of infected people in each
neighborhood with different sanitary conditions, and such details are not explored in
this work. This study was expanded to include the Mayaro virus, which was reported as
an emerging disease in South America [37,39,40]. Based on the assumption that Mayaro
and Chikungunya viruses have a similar spreading mechanism [37], since both viruses
have the same vector [31,36,41,42], we used parameters fitted from the Chikungunya
outbreak from 2018 to estimate the RMAYV from Mayaro. The results indicate that
Mayaro has the potential to be an epidemic disease in Rio de Janeiro with RMAYV
values in a range of 1.18 and 3.51. Also, to possibly stop or at least decrease the
intensity of an outbreak, three interventions strategies were proposed by modifying the
basic equations of the SEIR model. These interventions are associated to the increase of
the vector mortality rate by fogging techniques, the decrease of mosquito birth rate by
decreasing the amount of places where the mosquito lay the eggs and, the decrease of
the rate in which humans transmit the disease to mosquitoes by isolation of infected
people or the usage of repellent. Although those simulations do not retract real data,

they can contribute to discussions about public and government policies directions.
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