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Abstract

Mosquito-borne diseases have become a significant health issue in many regions around

the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya,

became epidemic in the last decades. Health surveillance reports during this period

were crucial in providing scientific-based information to guide decision making and

resources allocation to control outbreaks. In this work, we perform data analysis of last

Chikungunya epidemics in the city of Rio de Janeiro by applying a compartmental

mathematical model. We estimate the “basic reproduction number” for those outbreaks

and predict the potential epidemic outbreak of Mayaro virus. We also simulated several

scenarios with different public interventions to decrease the number of infected people.

Such scenarios should provide insights about possible strategies to control future

outbreaks.
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Introduction 1

In the last decades, Mosquito-borne diseases have become a significant health issue in 2

many regions around the world. Projections indicate that around 2050, half of the 3

population will be at risk of some arbovirus infection [1]. These arboviruses, which 4

include diseases such as Dengue, Zika, and Chikungunya, are epidemic in most of the 5

tropical countries. Besides temperature and humidity, human migrations and sanitation 6

also contribute to the epidemic conditions in these places [2, 3]. For example, around 7

300.000 people were infected by Dengue, Zika, or Chikungunya by the end of the 11th 8

week of 2019 in Brazil. This number represents almost three times the reported cases in 9

2018 for the same period [4]. These surveillance reports over time are essential in 10

providing scientific-based information to guide decision making, resources allocation, 11

and interventions [5]. The usage of mathematical models has demonstrated to be a 12

powerful tool in contributing to these data analysis [6–8]. One of the most significant 13

parameters extracted from these analyses is the basic reproduction number Ro. Ro is 14

defined as the number of secondary infections derived from one single infectious subject 15

and is widely used as an epidemiologic metric employed to describe the transmissibility 16

of infectious agents [9]. 17

Here we apply a compartmental mathematical model to investigate the dynamics of 18

Chikungunya outbreaks in the city of Rio de Janeiro in Brazil. The model consists of 19

ordinary differential equations that describe the transmission and the transition of the 20

diseases in humans and vectors [10,11]. The model’s parameters were extracted from 21

the literature or obtained from the best fit from the data of Rio de Janeiro surveillance 22

report for the years of 2016, 2018 and 2019 [12]. Based on these parameters, we estimate 23

the basic reproduction number Ro for Chikungunya outbreaks in those years. We also 24

simulate a scenario predicting if the Mayaro virus could be a potential epidemic disease 25

in Rio de Janeiro. Modifications in the standard model equations were implemented to 26

introduce different possible interventions in order to decrease the number of infected 27

people [13]. Those simulated interventions include actions such as killing adult 28

mosquitoes by fogging, decreasing mosquitoes birth rate by removing places where the 29

vector lays eggs, e.g., removing standing water and, decreasing the contact between an 30

infected human with mosquitoes by stimulating repellent usage. A scenario containing 31
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all interventions was also performed for different intensities of those actions. 32

Materials and methods 33

In this work, we perform mathematical modeling of Chikungunya outbreaks in Rio de 34

Janeiro for the years 2016, 2017 and 2019 [12]. The Chikungunya virus infects humans 35

through mosquitoes as the disease vector. The model adopted here is a compartmental 36

model known as SEIR (Susceptible, Exposed, Infected, and Recovered) [8, 10,14]. The 37

approaches using this class of models have been successful in modeling epidemic related 38

to human vector dynamics [11,15]. Fig 1 presents a schematic description of this 39

modeling.

Fig 1. Model diagram representation of the disease dynamics. The blocks
blue and red are related to human and mosquitoes, respectively. The parameter and
variable descriptions are presented in Table 1 and 2. The dashed lines represent the
transmission of the disease between the two groups.

40

The human disease flow is presented by the blue blocks where S is the susceptible 41

proportion of humans, which become exposed to the virus, E, at a rate βh after the 42

contact with infectious mosquitoes Z. After the latent period λh, the exposed humans 43
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become infectious: either symptomatically I or asymptomatically Ia; the parameter φ 44

determines the ratio between the infectious states. Finally, the infected humans recover 45

reaching the state R at rate α. 46

In the case of the vectors disease flow, shown by the red blocks in Fig 1, the 47

susceptible mosquitoes X become exposed Y at a rate βm after acquiring the virus from 48

infectious humans. λv defines the latent period for the exposed mosquito to transition 49

to the infectious state Z. In this modeling, we assume that human mortality and birth 50

rates are the same, keeping the human population constant. For the vectors, we set the 51

parameter µ and µo as the mortality and birth rate, respectively. The model is 52

represented by the following set of differential equations: 53

dS

dt
= −βhSZ

dE

dt
= βhSZ − λhE

dI

dt
= φλhE − αI

dIa
dt

= (1 − φ)λhE − αIa

dR

dt
= α (I + Ia)

dX

dt
= µo − βmX (I + Ia) − µX

dY

dt
= βmX (I + Ia) − λvY − µY

dZ

dt
= λv − µZ

Table 1 shows the definition of each state in the model for both humans and 54

mosquitoes. Those states will dynamically vary during the model simulation in which 55

the parameter I related to the number of cases reported by the surveillance data will be 56

the variable used in the fitting of the model simulation. 57
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Table 1. Definition of the state variables used in the model for both humans and
mosquitoes.

Symbol Definition

S Susceptible proportion of human population

E Exposed proportion of human population

I Symptomatically infectious proportion of human population

Ia Asymptotically infectious proportion of human population

R Recovered proportion of human population

X Susceptible proportion of mosquito population

Y Exposed proportion of mosquito population

Z Infectious proportion of human population

Table 2 describes the parameters and ranges used in the model. Some data 58

information comes from the literature, and for the parameter which we have no 59

description, they will be obtained from the model best fit. 60

Table 2. Description of the parameters and range used in the model simulation.

Definition Range (days)

βh Proportional rate at which humans get infected Unknown

βm Proportional rate at which mosquitoes get infected Unknown

1/λh Human latent period of infection for human 2-6 [16,17]

1/λv Mosquito latent period of infection 2-6 [18,19]

α Rate of recovery 1-7

µo Mosquito birth rate 0.05-0.03

µ Mosquito mortality rate 0.05-0.03

φ Asymptomatically-Symptomatically infectious ratio 0.72-0.97 [16,20]

In this work we estimate the basic reproduction number Ro by applying the next 61

generation matrix method [21,22]. Ro indicates the number of secondary infections 62

derived from one single infectious subject and can be described by: 63

Ro = −ρ
(
ΠΓ−1

)
(1)

Where ρ(K) is the spectral radius of the matrix K = ΠΓ−1. Π is the transmission 64

matrix that contains the rates of humans to get infected by the vector and vice-versa: 65
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Π =



0 0 0 βh

0 0 0 0

0 βm 0 0

0 0 0 0


(2)

Γ is the transition matrix that takes into account the transitions from being exposed 66

to become infectious: 67

Γ =



−λh 0 0 0

λh α 0 0

0 0 − (µ+ λv) 0

0 0 0 −µ


(3)

The mathematical solution of (1) gives an expression [11]: 68

Ro =

√
βhβmλv

µα (µ+ λv)
(4)

The Eq 4 has parameters in which there is no information available such as βh and 69

βm. In order to estimate Ro, these parameters will be obtained from the best fit of the 70

model simulations using data from the surveillance reports [12]. 71

Results and Discussion 72

The usage of the SEIR model to investigate diseases epidemics provides a tool to 73

quantify different parameters in outbreaks. The basic reproduction number Ro is the 74

most important quantity, and it is defined as the number of secondary infections caused 75

by an infected individual [3, 23]. It estimates the potential of an outbreak to occur in 76

the case of Ro > 1 [10,24]. The knowledge of Ro also gives insights into the 77

understanding of the epidemiology of a particular disease and its spreading changes over 78

time and geography [25]. 79

The number of secondary infections in humans from an infected human, defined as 80

RT , the type reproduction number [26], can be obtained by Ro squared 81

(RT = Ro
2) [11]. The information of RT can be used to estimate the number of people 82
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that need to be isolated or vaccinated (Q) to contain the epidemic using the relation 83

Q = 1 − 1/RT . We present the application of the SEIR model in the data of 84

Chikungunya in Rio de Janeiro - Brazil in different years (2016,2018 and 2019). We also 85

provide an estimation of the potential outbreak of Mayaro virus in Rio de Janeiro. 86

Some additions on the model are also proposed in a way to simulated possible 87

interventions in the epidemic control [13,27]. 88

Basic Reproduction Number - Ro 89

The data which contains the weekly number of infected people of Chikungunya outbreak 90

in Rio de Janeiro was obtained from the surveillance report for the years 2016, 2018, 91

and 2019, which are publicly available. The ratio between the number of reported cases 92

and the total population is presented in red circles Fig 2. The total number of cases 93

reported in 2019 is 22896 until the 26th week when the data was collected. This number 94

is almost two times higher in comparison with 2016 and 2018 in 52 weeks, 14203 and 95

10700, respectively. In 2017 the total number of cases was 1870, which will not be used 96

in this study. Then, the SEIR model was applied to fit the incidence data where the 97

upper and the lower bound of the model parameters were set to vary in a range 98

described in the literature. The transmissions coefficients λh, λv, α, βh and βm values 99

are obtained from the model best-fit since there are no values reports in literature about 100

these parameters for Rio de Janeiro [11]. The simulated number of cases from the 101

best-fit are presented as bars in Fig 2A, B, and C for the years 2016, 2018, and 2019, 102

respectively. The parameters obtained from the fitting and used to plot Fig 2 are 103

described in Table 3. Table 3 also shows in the last row, the estimation of Ro using Eq 104

(4) for each investigated year. 105

All the estimated Ro values for the three studied years are greater than one 106

describing how severe were the outbreaks in which 2019 has the highest value 107

R2019
o = 1.95 compared with R2016

o = 1.82 and R2018
o = 1.38. Considering other 108

epidemic diseases in Rio de Janeiro as Dengue and Zika, which are transmitted by the 109

same vector, the parameters estimated here are similar to other registered outbreaks 110

studies [25,28]. It is worthwhile to mention that these parameters give insights from a 111

city as a whole, which is invariant on how heterogeneous the sanitary conditions could 112
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Fig 2. The number of infected people distribution by Chikungunya in Rio
de Janeiro for 2016, 2018 and 2019, A, B, and C, respectively. The red dots
describe the informed data obtained from the surveillance report [12] per week. The
bars indicate the simulation best fit distribution compared to the reported data.

be at different neighborhoods [7, 25,29,30].

Table 3. Best fitted parameter values in different years for Chikungunya (CHKV) in
Rio de Janeiro. Estimated parameter are also presented in the last column for Mayaro
virus. The last row shows the values of the estimated Ro for both Chikungunya and
Mayaro.

Parameter CHKV - 2016 CHKV - 2018 CHKV - 2019 Mayaro

βh 0.1 0.1 0.194 0.1 – 0.194

βv 0.732 0.562 0.298 0.298 – 0.732

λh 0.17 0.5 0.17 –

λv 0.17 0.181 0.17 0.17 – 0.33 [31,32]

α 0.343 0.464 0.235 0.2 – 0.33 [33]

Ro 1.82 1.38 1.95 1.18 – 3.51

113

The last column in Table 3 presents the estimated parameters for Mayaro virus 114

using the data for the Chikungunya outbreak in 2018, which is the most recent complete 115

data available. The assumption is based on the similarities between these two 116

alphavirus in which they can also be transmitted by the same mosquito vector: Aedes 117

aegypti [6, 31,34–36]. The estimated RMAY V
o for Mayaro presents values between 1.18 118

and 3.51 for the lower and upper limits. Even the lower bound RMAY V
o is greater than 119

1, suggesting that Mayaro has the potential to be an epidemic disease as recent reports 120

are signaling for different locations [37–39]. 121

Interventions 122

In this section, we will discuss the outcome of different possible intervention strategies 123

to control the epidemic disease spreading [13,23]. The simulations were carried out 124
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using the Chikungunya epidemic outbreak data from Rio de Janeiro in 2018. The first 125

approach simulates the action of killing adult mosquitoes, which is related to the use of 126

insecticide as fogging. In the model, this strategy appears as an increase in the 127

mosquitoes mortality rate µ presented in Eq 5: 128

µ(C, t) = µc(1 − ω θ (C − Cp)) (5)

where θ(...) is the unitary step function, µc is the natural rate of birth/death of the 129

mosquito, C is the cumulative number of infected people and, ω is the parameter 130

related to the intensity of the fogging action reflected in the mosquito death rate µ. The 131

fogging action is triggered when the cumulative number of infected people C, described 132

in Eq 6, reaches the value Cp which is 30% of the total number of cases from the real 133

data. For all the interventions discussed in this study, the trigger event will be the same 134

as the one present here in the fogging action. 135

dC

dt
= φλhE (6)

Figure 3 presents the distribution of the number of cases and the cumulative number 136

of cases as a function time for different fogging intensities, A and B, respectively. In Fig 137

3A, once the fogging action starts, the number of cases per week stop to grow and starts 138

to decrease over time. The strength of the parameter ω dictates how fast these curves 139

decay. The cumulative number of cases also reflects the fogging action for different 140

intensities, as presented in Fig 3B. The total number of case drops to 70.0% when 141

ω = 0.25 presented in dashed red line and drops to 54.0% when ω = 0.5 shown in the 142

dotted yellow line when compared with the real data without fogging action ω = 0.0. 143

The second simulated intervention is the action of reducing the birth rate of the 144

vector. This approach can be associated with population orientation or better social 145

sanitary conditions. These actions may produce a decrease in the number of places 146

where the mosquitoes lay the eggs such as standing water, for example. Here, this 147

intervention appears in the model by decreasing the mosquito birth rate µo, as shown in 148

Eq 7: 149

µo(C) = µc(1 − ωo θ (C − Cp)) (7)
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Fig 3. Simulated intervention results in increasing the mosquitoes
mortality rate by fogging action. A and B present the number of cases and the
cumulative number of infect people, respectively. The solid blue line is the simulation
without intervention ω = 0.0. The dashed red line presents the data for ω = 0.25, and
the dotted yellow shows the data for ω = 0.5.

where θ(...) is the unitary step function, µc is the natural rate of birth/death of the 150

mosquito, C is the cumulative number of infected people, Cp represents the cumulative 151

amount of infected people needed to trigger the action and, ωo is the parameter related 152

to how efficient are the population and government actions in preventing the vector 153

from laying the eggs, which led to decrease the mosquito birth rate µo. 154

Fig 4 shows the distribution of the number of cases and the cumulative number of 155

cases as a function time for different intensities of the mosquito birth rate reduction. 156

Similar behavior as the fogging intervention is observed here. In Fig 4A, the number of 157

cases reaches the peak of infected people sooner and then starts a decay in the number 158

of cases per week. The total number of case drops to 85.3% when ωo = 0.25 presented 159

in dashed red line and drops to 70.7% for ωo = 0.5 shown in the dotted yellow line when 160

compared with the data without the intervention ωo = 0.0 presented in Fig 4B. 161

Although the behavior is similar to the fogging action, the response of decreasing the 162

mosquito birth rate to the total number of cases is less efficient during the outbreak. It 163

is worthwhile to mention that this kind of action, different from the fogging, can be 164

inherited and passed to the following years and avoid new outbreaks to occurs in the 165

future. 166

The third and the last studied intervention acts as the reduction of the rate in which 167

infected humans transmit the disease to the mosquitoes. This effect can be associated 168

as a quarantine action, isolating infected people or, more realistic, the usage of 169
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Fig 4. Simulated intervention results in decreasing the vector birth rate by
the action of removing the places where mosquitoes lay the eggs. A and B
present the number of cases and the cumulative number of infect people, respectively.
The solid blue line is the simulation without intervention ωo = 0.0. The dashed red line
presents the data for ωo = 0.25, and the dotted yellow shows the data for ωo = 0.5.

repellents by the infected human. Both strategies go in the direction of decreasing the 170

contact between infected humans and the vector which is simulated using the Eq 8. 171

βm(C) = βc(1 − ε θ (C − Cp)) (8)

where θ(...) is the unitary step function, βc is the natural rate at which humans 172

infect mosquitoes, C is the cumulative number of infected people, Cp represents the 173

cumulative amount of infected people needed to trigger the action and, ε is the 174

parameter that modulates how intense is the decrease in the rate at which humans 175

infect mosquitoes βm. 176

Fig 5 presents the results for this last intervention. The curves in Fig 5A and 5B 177

show a similar pattern, as observed in the other two previous actions. The number of 178

cases shows a decay after the intervention starts for different intensities of ε. In Fig 5B 179

the total number of cases curves present results closer to the birth control intervention 180

than the fogging action. For ε = 0.25, the total number of cases decreased to 82.7% of 181

the initial value, meanwhile, for ε = 0.5 this number drops to 64.1%. 182

A combined simulation applying all the three interventions was carried out, and the 183

results are presented in Fig 6. The combined intervention presents, as expected, the 184

most effective strategy to decrease the number of infected people. The distribution 185

curve of the number of cases per week shows more intense decay in Fig 6A. The total 186

number of cases drops to 54.3% from the initial value when ω, ωo, ε = 0.25 and reduce 187

September 5, 2019 12/19

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/766105doi: bioRxiv preprint 

https://doi.org/10.1101/766105
http://creativecommons.org/licenses/by/4.0/


Fig 5. Simulated intervention results in decreasing the rate in which
humans transmit the disease to susceptible vectors. A and B present the
number of cases and the cumulative number of infect people, respectively. The solid
blue line is the simulation without intervention ε = 0.0. The dashed red line presents
the data for ε = 0.25, and the dotted yellow shows the data for ε = 0.5.

to 43.6% for the parameters ω, ωo, ε = 0.5 in Fig 6B. 188

Fig 6. Simulated intervention results by the combination of all the other
three actions discussed in this work. A and B present the number of cases and
the cumulative number of infect people, respectively. The solid blue line is the
simulation without intervention ω, ωo, ε = 0.0. The dashed red line presents the data for
ω, ωo, ε = 0.25, and the dotted yellow shows the data for ω, ωo, ε = 0.5.
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Conclusion 189

The last three Chikungunya outbreaks in Rio de Janeiro, Brazil, were modeled using the 190

SEIR model and estimates the Basic Reproduction Number Ro for the years 2016, 2018, 191

and 2019. The simulations results register values greater than 1 for all of them, and 192

2019 is the most severe, even though the data was limited for the first six months. The 193

calculation of Ro gives a global overview of the impact and scale of the outbreak. A 194

more detailed approach could take into account the number of infected people in each 195

neighborhood with different sanitary conditions, and such details are not explored in 196

this work. This study was expanded to include the Mayaro virus, which was reported as 197

an emerging disease in South America [37,39,40]. Based on the assumption that Mayaro 198

and Chikungunya viruses have a similar spreading mechanism [37], since both viruses 199

have the same vector [31,36,41,42], we used parameters fitted from the Chikungunya 200

outbreak from 2018 to estimate the RMAY V
o from Mayaro. The results indicate that 201

Mayaro has the potential to be an epidemic disease in Rio de Janeiro with RMAY V
o 202

values in a range of 1.18 and 3.51. Also, to possibly stop or at least decrease the 203

intensity of an outbreak, three interventions strategies were proposed by modifying the 204

basic equations of the SEIR model. These interventions are associated to the increase of 205

the vector mortality rate by fogging techniques, the decrease of mosquito birth rate by 206

decreasing the amount of places where the mosquito lay the eggs and, the decrease of 207

the rate in which humans transmit the disease to mosquitoes by isolation of infected 208

people or the usage of repellent. Although those simulations do not retract real data, 209

they can contribute to discussions about public and government policies directions. 210
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