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Abstract:

The developing Human Connectome Project (lHCP) aims to create a detailed 4-dimensional
connectome of early life spanning 20 to 45 weeks post-menstrual age. This is being achieved
through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects
combined with the development of optimised pre-processing pipelines. In this paper we
present an automated and robust pipeline to minimally pre-process highly confounded
neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance.
The pipeline has been designed to specifically address the challenges that neonatal data
presents including low and variable contrast and high levels of head motion. We provide a
detailed description and evaluation of the pipeline which includes integrated slice-to-volume
motion correction and dynamic susceptibility distortion correction, a robust multimodal
registration approach, bespoke ICA-based denoising, and an automated QC framework. We
assess these components on a large cohort of dHCP subjects and demonstrate that processing
refinements integrated into the pipeline provide substantial reduction in movement related
distortions, resulting in significant improvements in SNR, and detection of high quality RSNs
from neonates.
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1. Introduction

An increasing focus of neuroimaging science is building accurate models of the human
brain’s structural and functional architecture at the macro-scale (Kaiser, 2017) through large
scale neuroimaging enterprises (Van Essen et al., 2013). The mission of the developing
Human Connectome Project (dHCP, http://www.developingconnectome.org) is to facilitate
mapping the structural and functional development of brain systems across the perinatal
period (the period before and after birth). This is being achieved through the acquisition of
multi-modal MRI data from over 1000 in- and ex-utero subjects of 20—45 weeks post-
menstrual age (PMA), combined with the development of optimised pre-processing pipelines.
The ambitious scale of the project will enable developing detailed normative models of the
perinatal connectome. The raw and processed data from the project, along with genetic,
clinical and developmental information (Hughes et al., 2017), will be made publicly available
via a series of data releases.

As the human infant enters the world, core functional neural systems are rapidly developing
to provide essential functional capabilities. Characterisation of the perinatal brain using fMRI
can provide insights into the relative developmental trajectories of brain systems during this
crucial period of development (Cusack et al., 2017). FMRI has been used to characterise the
neural activity associated with the sensorimotor systems (Arichi et al., 2010), olfaction
(Arichi et al., 2013), and visual (Deen et al., 2017), auditory (Anderson et al., 2001), vocal
(Dehaene-Lambertz et al., 2002), and emotional perception (Blasi et al., 2011; Graham et al.,
2013). However, whilst task-based studies are informative, they are difficult to perform in
young, pre-verbal infants. Studies of spontaneous brain activity are ideally suited to the
perinatal period and can provide an overall view of the spatial and temporal organisation of
functional systems and their maturation. Using this approach, a number of studies have
explored the emergence of the resting-state functional networks (RSNs) in infants (Fransson
et al., 2007; Lin et al., 2008; Liu et al., 2008). These RSN are found to be emerging in the
preterm period and are largely present at the age of normal birth (40 weeks PMA), (Doria et
al., 2010; Fransson et al., 2007; Gao et al., 2015; Smyser et al., 2010), increasing in strength
over the first year of life (Damaraju et al., 2014).

Acquisition, pre-processing, and analysing MRI data from the fetal and neonatal population
presents unique challenges as the tissue composition, anatomy, and function undergo rapid
changes during the perinatal period and markedly differ from those in the adult brain (Ajayi-
Obe et al., 2000; Dubois et al., 2014; Gilmore et al., 2012; Inder et al., 1999; Kapellou et al.,
2006). These differences demand re-evaluation of established pipelines (Cusack et al., 2017;
Mongerson et al., 2017; Smyser et al., 2016). Changes in tissue composition, due to processes
such as myelination, and neural and vascular pruning (Dubois et al., 2014; Kozberg and
Hillman, 2016a) affect imaging contrast (Goksan et al., 2017; Rivkin et al., 2004). These
changes require bespoke developmental structural templates (Kuklisova-Murgasova et al.,
2011; Schuh et al., 2018; Shi et al., 2018) and optimised registration techniques (Deen et al.,
2017; Goksan et al., 2015). Care is required to ensure that the effects of changing relative
voxel resolution and SNR on analyses are ameliorated and monitored (Cusack et al., 2017;
Gao et al., 2015). Infant brain hemodynamics differ from adults, and can show substantial
changes over the perinatal period (Arichi et al., 2012; Cornelissen et al., 2013; Kozberg and
Hillman, 2016b). Importantly, levels of head motion over extended fMRI scans are typically
high and differ in nature from adults (Cusack et al., 2017; Deen et al., 2017; Satterthwaite et
al., 2012; Smyser et al., 2010). As motion and pulsatile artefacts can have profound effects on
measures of resting-state connectivity, great care with motion and distortion correction is
required in the neonate (Deen et al., 2017; Power et al., 2012).
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A major focus of the dHCP project is therefore the advancement of acquisition and analysis
protocols optimised for the infant brain (Bastiani et al., 2018; Bozek et al., 2018; Hughes et
al., 2017; Makropoulos et al., 2018). The present report provides a detailed description of the
dHCP resting-state functional MRI (rfMRI) pre-processing pipeline for neonates. The
pipeline is inspired by the Human Connectome Project (HCP) minimal pre-processing
pipelines (Glasser et al., 2013) and the FSL FEAT pipeline (Jenkinson et al., 2012) for adults;
however it is designed to specifically address the challenges that neonatal data present. Each
stage of the pipeline has been assessed and refined to ensure a high level of performance and
reliability. The pipeline includes integrated dynamic distortion and motion correction, a
robust multimodal registration approach, bespoke ICA-based denoising, and an automated
QC framework. We assess these components, showing results from an initial cohort of dHCP
subjects. The processed data from these pipelines are currently available for download. We
apply PROFUMO (Harrison et al., 2015), a Bayesian group component decomposition
algorithm (with a customised neonatal HRF prior), to demonstrate high quality RSNs from
these data. A companion paper (Baxter et al., 2019) assesses the pipeline, applying it to a
stimulus response dataset. In order to present the clearest description of the pipeline stages
throughout the paper, we do not separate out Methods and Results sections, but intermix
descriptions of methods, their assessment procedures and results.

2. Subjects and fMRI acquisition
2.1. Subjects

MR images were acquired as a part of the dHCP which was approved by the National
Research Ethics Committee and informed written consent given by the parents of all
participants.

Data from two cohorts of dHCP subjects are used in this paper, referred to as dHCP-538 and
dHCP-40. The dHCP-538 is a large cohort that comprises 538 scans and is used to evaluate
overall performance of the dHCP fMRI pipeline, as well as to assess most processing stages.
The dHCP-40 is a smaller subset that comprised 40 scans and is used to specifically contrast
and evaluate the more computationally demanding motion and distortion correction
algorithms (see Section 3.4).

The dHCP-538 cohort comprises 538 scans that passed upstream (pre-fMRI pipeline) QC,
and had been processed with the dHCP fMRI pipeline as of the time of writing. These 538
scans were obtained from 422 subjects scanned once and 58 subjects scanned twice (480
subjects in total). The first scan was pre-term, <37 weeks PMA, and second scan was term
equivalent age. The dHCP-538 contains 215 females and 265 males (480 subjects in total),
and has a mean PMA at scan of 39.81 weeks (6=3.36). This cohort is a superset of the 1
(2017) and 2" (2019) dHCP public data releases. The dHCP-40 scans are from 40 subjects
(all scanned once) that were released in the 1t dHCP data release, in 2017. The dHCP-40
contains 15 females and 25 males has a mean PMA at scan of 39.81 weeks (6=2.17). The
distribution of age at scan for both cohorts is presented in Figure 1
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Figure 1. Distribution of post-menstrual age at scan (weeks) for the dHCP-538 (left) and dHCP-40 (vight) cohorts.

2.2. Acquisition protocol summary

All data were acquired on a 3T Philips Achieva with a dedicated neonatal imaging system
including a neonatal 32-channel phased-array head coil, sited within the neonatal intensive
care unit at the Evelina London Children’s Hospital (Hughes et al., 2017). Anatomical
images (T1w and T2w), resting-state functional (rfMRI) and diffusion acquisitions were
acquired without sedation, with a total examination time of 63mins.

Anatomical acquisition and pre-processing: T2w (TR=12s; TE=156ms; SENSE factor:
axial=2.11, sagittal=2.58) and inversion recovery T1w (TR=4795ms; TI=1740ms;
TE=8.7ms; SENSE factor: axial=2.27, sagittal=2.66) multi-slice fast spin-echo images were
each acquired in sagittal and axial slice stacks with in-plane resolution 0.8x0.8mm? and
1.6mm slices overlapped by 0.8mm. Both T2w and T1w images were reconstructed using a
dedicated neonatal motion correction algorithm. Retrospective motion-corrected
reconstruction (Cordero-Grande et al., 2018) and integration of the information from both
acquired orientations (Kuklisova-Murgasova et al., 2012) were used to obtain 0.8 mm
isotropic T2w and T1w volumes with significantly reduced motion artefacts. Anatomical pre-
processing of the T2w and T1w images was performed using the dHCP structural processing
pipeline (Makropoulos et al., 2018). The fMRI pipeline described in this paper specifically
requires the bias corrected T2w image in native space, the bias corrected T1w image sampled
to T2w native space, and the tissue segmentation (9 labels). The structural pipeline outputs
used by this were pre-processed with dHCP structural pipeline version 1.1 (Makropoulos et
al., 2018).

rfMRI: High temporal resolution multiband EPI (TE=38ms; TR=392ms; MB factor=9x;
2.15mm isotropic) specifically developed for neonates (Price et al., 2015) was acquired for

15 minutes. No in-plane acceleration or partial Fourier was used. Single-band EPI reference
(sbref) scans were also acquired with bandwidth-matched readout, along with additional spin-
echo EPI acquisitions with 4xAP and 4xPA phase-encoding directions. Reconstructions
follow the extended SENSE framework (Zhu et al., 2016) with sensitivity maps computed
from the matched single-band data. Field maps were obtained from an interleaved (dual TE)
spoiled gradient-echo sequence (TR=10ms; TE1=4.6ms; TE2=6.9ms; flip angle=10°; 3mm
isotropic in-plane resolution, 6mm slice thickness). Phase wraps were resolved by solving a
Poisson’s equation (Ghiglia and Romero, 1994).
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3. Pre-processing pipeline
3.1. Pipeline overview

The dHCP fMRI pipeline is inspired by the HCP minimal pre-processing pipelines (Glasser
et al., 2013) and the FSL FEAT pipeline (Jenkinson et al., 2012) for adults; however it is
designed to specifically address the challenges that neonatal data presents. These challenges
and their solutions are detailed throughout the paper.

The goal of the pipeline is to generate high-quality minimally pre-processed rfMRI data for
open-release to the neuroimaging community. The motivation for “minimal” pre-processing
is to ensure that the scientific community will not be restricted in the subsequent analysis that
they can perform on the data. Therefore, in building the pipeline we have restricted ourselves
to the pre-processing steps that we consider absolutely crucial for the widest possible range
of subsequent analyses.

The inputs to the pipeline are the raw multi-band EPI functional (func), single-band EPI
reference (sbref), and spin-echo EPI with opposing phase-encode directions, as well as the
dHCP structural pipeline pre-processed outputs: bias corrected T2w structural image (struct),
bias corrected T1w image aligned with the T2w, and the T2w discrete segmentation (dseg).

The primary output is the minimally pre-processed 4D functional image which is motion
corrected, distortion corrected, high-pass filtered and denoised. The secondary outputs are
transforms to align the pre-processed functional images with the structural (T2w) and
template (atlas) spaces.

A schematic of the dHCP fMRI pipeline is presented in Figure 2. The main pre-processing
stages of the pipeline are:
1. Fieldmap pre-processing: estimate the susceptibility distortion field and align it with
the functional data
2. Registration: align all images with the native T2 space and the neonatal atlas space
3. Susceptibility and motion correction: Perform slice-to-volume motion correction and
dynamic susceptibility distortion correction, and estimate motion nuisance regressors
4. Denoising: Estimate artefact nuisance regressors and regress all nuisance regressors
from the functional data.
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Figure 2. Schematic of the dHCP fMRI neonatal pre-processing pipeline. The schematic is segregated into the 4 main
conceptual processing stages by coloured background; fieldmap pre-processing (red), susceptibility and motion correction
(orange), registration (green), and denoising (purple). Inputs to the pipeline are grouped in the top row, and the main
pipeline outputs are grouped in the lower right. Blue filled rectangles with rounded corners indicate processing steps, whilst
black rectangles (with no fill) represent data. (dc) = distortion corrected, (mcdc) = motion and distortion corrected.

3.2. Fieldmap pre-processing

The EPI sequence is sensitive to field inhomogeneities caused by differences in magnetic
susceptibility across the infant's head. This results in distortions in the image in the phase-
encode (PE) direction, particularly at tissue interfaces. However, if the susceptibility-induced
off-resonance field is known, these distortions are predictable and can be corrected.

The dHCP functional pipeline uses FSL TOPUP (Andersson et al., 2003) to estimate the
susceptibility-induced off-resonance field from the spin-echo EPI with opposing phase-
encoding directions, and converts that to a voxel displacement field to correct the EPI
distortions. The input to TOPUP is two volumes of the spin-echo EPI for each phase-
encoding direction. These volumes will have different distortions because of the differing PE
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directions, so TOPUP uses an iterative process to estimate an off-resonance field that
minimises the distortion corrected difference between the two images.

The dHCP spin-echo EPI has 8 volumes with 2 PE directions (4 x AP, 4 x PA). Any
movement of the subject during acquisition results in striping artefact in the PE direction (see
Figure 3). The two-best spin-echo EPI volumes (1 per PE direction) are selected as inputs to
TOPUP. Here, "best" is defined as the smoothest over the z-dimension, which avoids motion
artefact characterised by intensity differences between slices, a characteristic "stripy"
appearance. This z-smoothness metric is obtained per volume by calculating the voxel-wise
standard deviation of the slice-to-slice difference in the z-dimension and then selecting the
minimum standard deviation per volume.

5 10 15 20 25 30 35

Figure 3. (4) Eight volumes of the spin-echo EPI from a single subject with AP (left) and PA (vight) phase encode
directions. Z-smoothness scores are presented with each volume. The two volumes in the last row have stereotyped striping
artefact due to subject movement, resulting in higher z-smoothness scores. The two volumes in the first row were selected as
the two "best" images based on z-smoothness. (B) Motion and distortion corrected spin-echo EPI (upper) and estimated
susceptibility-induced off-resonance field (lower) derived from the spin-echo EPI in (A) using FSL TOPUP. (C) Distribution
of z-smoothness across all subjects (N=538).

The method described above worked well for selecting the best spin-echo EPI volume pair,
but it was difficult to find a threshold to determine if this pair was "good enough". It was
therefore combined with visual inspection, and 12.7% (75 of 590) were visually identified as
having significant movement contamination in all of the volumes for the given subject. In this
circumstance, the fall-back procedure was to use the dual-echo-time-derived fieldmap instead
of the spin-echo-EPI-derived fieldmap. Where possible, the spin-echo-EPI-derived fieldmap
was used in preference to the dual-echo-time-derived fieldmap due to higher anatomical
contrast in the magnitude image allowing more reliable registration to the structural T2w
image (see Figure 4). Furthermore, the lack of contrast in the dual-echo-time-derived
fieldmap magnitude meant that it was often impossible to adequately judge the quality of the
registration.
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To ensure that the dual-echo-time and spin-echo-EPI derived fieldmaps could be used
interchangeably, we evaluated the similarity between the two. For each subject the spin-echo-
EPI and dual-echo-time fieldmaps were resampled to the native functional space and then
converted to a voxel displacement/shift map using FSL FUGUE. The shift maps were then
masked by an eroded brain mask, to avoid edge effects as a consequence of registration
misalignment. Figure 4 presents an example dual-echo-time and spin-echo-EPI derived
fieldmap from a single subject, as well as the distribution of voxel displacements for all in-
brain voxels from 409 subjects that had good quality dual-echo-time and spin-echo-EPI
derived fieldmaps. The single-subject fieldmaps look qualitatively similar, although the dual-
echo-time-derived fieldmap appears smoother and the spin-echo-EPI-derived fieldmap
appears to have greater values. This is supported by the voxel displacement distribution
where the spin-echo-EPI-derived fieldmap has a slightly greater mean voxel displacement
and longer tails than the dual-echo-time-derived fieldmap. Two factors likely contribute to
this difference, 1) the dual-echo-time fieldmap was acquired at lower resolution than the
spin-echo-EPI (3x3x6mm and 2.15mm isotropic respectively), and 2) the dual-echo-time-
derived fieldmap was low-pass filtered as part of the reconstruction process. Furthermore, the
distribution of the voxel-wise difference between the dual-echo-time and spin-echo-EPI
displacement/shift maps shows that 95% of voxels differ by less than 1 voxel shift and 99%
by less than two voxels. We also inspected the distribution of spatial correlation between
dual-echo-time and spin-echo-EPI derived fieldmaps across subjects, and observed good
correspondence with 75% (i.e., 25" percentile) of subjects showing correlation > 0.6. Given
that the ground truth is unknown and that both the dual-echo-time and spin-echo-EPI derived
fieldmaps are qualitatively and quantitatively similar, we felt justified in using the dual-echo-
time-derived fieldmap as a back-up in cases where the spin-echo-EPI-derived was
excessively contaminated by movement.

10
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Figure 4. Upper: exemplar gradient-echo and spin-echo derived fieldmaps and magnitude from a single-subject. The spatial
correlation of the two fieldmaps is 0.71. Middle: distribution of voxel displacement/shift and the voxel-wise difference for in-
brain voxels from 409 subjects. Lower: distribution of spatial correlation between gradient-echo and spin-echo fieldmaps
from 409 subjects.

3.3. Registration to native structural and group template space

There are two main target volumetric alignment spaces within the dHCP fMRI pipeline (see
Table 1); 1) the within-subject structural space defined as the subject’s native T2w space, and
2) the between-subject group standard space defined as the 40-week template from the dHCP
volumetric atlas (Schuh et al., 2018). We refer to these spaces as structural and template
respectively.

The brain is undergoing rapid developmental changes during the perinatal period, that require
explicit consideration when registering to these spaces. Specifically,

1. The myelination of the white matter is still maturing, resulting in inversion of
T1w/T2w MRI contrast when compared to adult brain scans. The impact of this
inhomogeneous myelination can be mitigated by using the T2w image as the
structural target space, as opposed to the T1w which is more typical in adult cohorts.
Furthermore, where possible we use the BBR cost-function for intra-subject
registrations, which only samples the image intensity along the high-contrast
GM/WM boundary to create an intensity gradient, and is more resistant to the
inhomogeneous myelination than other registration cost functions that uniformly
sample the whole image.

2. The brain increases greatly in both size and gyrification during the perinatal period,
which makes it challenging to define an unbiased common template space for group

11
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analyses. Therefore, we use a bespoke developmental atlas developed using dHCP
data (Schuh et al., 2018)(see Figure 7). The dHCP volumetric atlas contains T1w/T2w
volumetric templates per week from 36-43 weeks PMA. We have augmented it with
week-to-week nonlinear transforms estimated using a diffeomorphic multi-modal
(T1w/T2w) registration (ANTs SyN) (Avants et al., 2008).

An additional registration challenge is that the dHCP uses a fast-multi-band EPI sequence
which is advantageous with regard to minimising the impact of motion (see section 3.4), but
which results in poorer tissue contrast. We mitigate this by using a single-band reference
image (sbref) as an intermediate registration target, as per the adult HCP pre-processing
pipelines (Glasser et al., 2013).

Another consideration when developing the registration protocol was to ensure reliability
across a large cohort so that we could minimise manual intervention. We found empirically
that BBR was more robust than other registration cost functions. We attribute this to the fact
that BBR only samples the image along the more reliable high-contrast WM/GM boundary
and is therefore less susceptible to image defects.

Table 1. Spaces and transforms used in the dHCP neonatal fMRI pipeline. Superscript (-1) refers to the inverse of the
transform.
Spaces
functional (func) Native multiband EPI space
sbref Native single-band EPI reference space
structural (struct) Native T2w space
fieldmap (fmap) Derived fieldmap space
template dHCP 40-week template space
Primary Registrations Degrees of freedom
(a) fieldmap-to-structural rigid
(b) sbref-to-structural rigid
(©) functional-to-sbref (distorted) rigid
(d) functional-to-sbref (undistorted) rigid
(e) template-to-structural nonlinear

Composite Registrations

(@) ® (b)'® (c)! fieldmap-to-functional rigid
(d) @ (b) functional-to-structural (undistorted) rigid
(d) @ (b) @ (e)! functional-to-template (undistorted) nonlinear

To achieve alignment to structural and template spaces we perform five primary registrations
(see Table 1): (1) fieldmap-to-structural, (2) sbref-to-structural, (3) functional-to-sbref
(distorted), (4) functional-to-sbref (distortion-corrected), and (5) template-to-structural. From
these five primary registrations, a variety of composite alignments can be calculated, most
importantly: (1) fieldmap-to-functional, (2) functional-to-structural (undistorted), and (3)
functional-to-template (undistorted). Further detail on these registration steps is presented in
Supplementary Section 9.1.
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Registration quality was assessed on the dHCP-538 dataset for each of the primary
registrations by evaluating the similarity of the source (moving) image (re-sampled to
reference space) and the reference (fixed) image. Normalised mutual information (NMI) was
used as a metric of similarity (see Table 2).

The distribution of the NMI for each of the primary registration steps is presented in Figure 5.
All the distributions appear unimodal and there are very few outliers on the lower tail (i.e.,
less similar). The pipeline flags these outliers for manual investigation. Furthermore, these
registrations were also manually visually checked.

R
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fmap-to-struct func-to-sbref (distorted) func-to-sbref (undistorted) sbref-to-struct template-to-struct

Figure 5. Distribution of the z-scored normalised mutual information between the source image and the reference image
(both in reference space) for each of the primary registration stages fieldmap-to-structural, functional-to-sbref (distorted),
functional-to-sbref (undistorted), sbref-to-structural, and template-to-structural. More positive NMI z-scores indicate more
similarity and more negative NMI z-scores indicate less similarity.

Figure 6 presents example representative alignments of the fieldmap-to-structural, the sbref-
to-structural and the standard-to-structural registrations, at differing levels of quality as
quantified by the NMI similarity metric. We selected the 5th, 50th and 95th percentile of
NMI distribution, with the 5th representing the lower-end of alignment quality (whilst
excluding outliers). The 5™ percentile fieldmap in this figure is a dual-echo-time-derived
fieldmap magnitude and the lack of tissue contrast is clear; this not only makes registration to
the structural space difficult, but also makes it hard to judge the quality of the registration. At
the 50™ and 95" percentiles, the fieldmap magnitude images are spin-echo-EPI-derived and
have good tissue contrast and alignment to the structural space. The GM/WM boundary of
the sbref-to-structural qualitatively appears to align well at all three percentiles; however, at
the 5 percentile there are clear anterior distortions which would impact the quantitative
assessment of registration quality. Given that the sbref has been distortion corrected, we
conclude that these distortions are irrecoverable signal loss. There are some observable
alignment errors in the template-to-structural, most noticeably at the 5 percentile. However,
this appears qualitatively comparable to aligning adult data to a common template.
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fmap

sbref

template

Figure 6. Examples of fieldmap, sbref, and template images resampled to the native structural reference space. The outline
of the native structural white-matter discrete segmentation is overlaid in green. Examples were selected at the 5th, 50th and
95th percentile of normalised mutual information between the source image and the reference image (both in reference
space). Note: that the 5" percentile fieldmap is dual-echo-time-derived and therefore lacking tissue contrast, whilst the 50™
and 95" percentile fieldmaps are spin-echo-EPI-derived

Figure 7 presents the dHCP 40-week T1w/T2w template, as well as group average and
standard deviation of the structural T2w and functional (temporal mean) in the template
space. The group mean structural (T2w) has good anatomical contrast, although it is not as
sharp as the template image, which likely reflects our decision to balance alignment with
regularisation as discussed in Supplementary Section 9.1. The group mean functional also
demonstrates anatomical contrast, but there are two distinct areas of lower intensity (observed
in the mean) and high variability (observed in the stdev). The first is in inferior temporal and
frontal areas which are most affected by susceptibility distortions and signal loss, and the
second is in inferior occipital and superior-anterior cerebellum. It appears that this latter
effect may be related to higher susceptibility induced variation (compared to adults) close to
the transverse sinus in neonates, which is large in diameter and “ballooned” in the neonatal
period as the venous system is still developing (Okudera et al., 1994). This observation is
under further investigation.
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Figure 7. Upper: 40-week T2w and T1w dHCP templates. Middle: group mean and standard deviation (N=512) of structural T2w in template space. Lower: group mean and standard deviation
(N=512) of functional (mean) in template space.
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3.4. Susceptibility and motion correction

It is well documented that rfMRI analyses are very sensitive to subject head motion (Power et
al., 2014). Head motion results in a number of imaging artefacts, many of which are not
typically corrected in traditional adult pipelines, specifically:

1.

Volume and slice misalignment. Volume misalignment is due to inter-volume
movement and is usually effectively corrected using rigid-body registration-based
motion correction. Intra-volume movement artefacts are a consequence of rapid
subject movement during the sequential acquisition of the slices, or multi-band
groups of slices, that constitute a volume. If, for example, the subject moves between
the acquisition of the first and the second group of slices, the slices will no longer
constitute a true volumetric representation of the object when stacked together, most
noticeably by jagged edges of the brain (see Figure 8: Raw).
Susceptibility-by-movement distortion. Placing a subject in the scanner disrupts the
static magnetic field because different tissues have different susceptibility to
magnetisation. This field inhomogeneity results in distortions in the acquired image.
The exact details of the disruption are defined by the configuration of tissue and air
(sinuses, ear canals etc). To correct these distortions, it is common to estimate the
field and use this to correct (unwarp) the acquired image. However, any subject
movement that involves a rotation of the head around an axis non-parallel to the
magnetic flux (z-axis) changes that field, which in turn changes the distortions in the
image. That means that volumes acquired with the subject in different orientations
will be subject to different distortions, and correction with a static estimate of the
field, even with a rigid-body (re-)alignment, will not be sufficient to correct the
changing distortions due to motion (see Figure 9: Raw).

Spin-history artefacts. Movement during scanning can cause subsequent excitations
to be misaligned with previous ones, resulting in differential excitation of
magnetization at the slice boundaries; this leads to a striping effect in the image
intensity (see Figure 11: Multi-band). The dHCP fMRI pipeline employs an ICA-
based denoising method to remove spin history effects (see Section 3.5).
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Raw MCDC Denoised

Left-Right

Front-Back

Figure 8. Exemplar single-volume of an EPI from a single-subject with intra-volume movement contamination from a left-
right head movement (upper) and a front-back head movement (lower), before (Raw) and after motion and susceptibility
distortion correction (MCDC), and after FIX denoising (Denoised).

Vol: 1150

Vol: 1152 Vol: 1154

Vol: 1156 Vol: 1158

MCDC Rigid

Denoised

Figure 9. Five exemplar volumes of an EPI from a single-subject with susceptibility-by-movement distortion due to head
motion. The rigid data in the top row have been rigid-body motion corrected, and anterior distortions can be observed in
volumes 1154 and 1156 where the front of the brain extends beyond the reference line (green-dashed line). The anterior

distortions are diminished after motion and susceptibility distortion correction (MCDC), and more so after denoising.
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A popular and effective method of dealing with head motion is using spike regression
(Satterthwaite et al., 2012) or scrubbing (Power et al., 2014, 2012). These techniques both
identify time-points (whole volumes) and then censor these volumes so that they do not affect
downstream analysis. The methods differ in how they identify the contaminated volumes and
how they censor the contaminated volumes (Parkes et al., 2018). Both methods use
framewise displacement (FD; see Table 2) with a fixed displacement threshold to identify
contaminated volumes. Scrubbing additionally uses DVARS (see Table 2), also with a fixed
threshold. Censoring in spike regression is achieved by creating a nuisance regressor per
contaminated volume, whereas scrubbing either excludes contaminated volumes and/or
replaces contaminated volumes with surrogate data depending upon what is appropriate for
downstream processing. Additionally, both techniques employ a heuristic that discards entire
subjects if there are insufficient uncontaminated time-points.

These censoring methods can be expensive in terms of the number of volumes censored,
particularly in high-motion cohorts such as neonates. This is particularly true for the dHCP
because the babies are scanned without sedation. Using framewise displacement as a
surrogate for head motion and a threshold of 0.25 mm, as advocated by Satterthwaite et al.
(2013), results in ~20% of TRs being flagged as motion corrupted. Furthermore, if we
exclude subjects with <4 minutes of continuous uncorrupted data, the minimum
recommended in spike regression and scrubbing (Parkes et al., 2018; Power et al., 2014;
Satterthwaite et al., 2013), then only 18 of 538 subjects are retained. Thus, given the nature of
the data, a more precise approach is desirable. Furthermore, we would ideally wish to avoid
introducing a hard-censoring step at an intermediate processing point, which may have
ramifications for downstream processing. Therefore, we have opted for a principled
approach of correcting for artefacts introduced by motion (described in this section)
combined with ICA-based denoising (see Section 3.5) which enables us to mitigate the
effects of motion without excluding any subjects or time-points. Censoring methods remain a
downstream option for researchers using the released data.

Motion and distortion correction (MCDC) are performed using the FSL EDDY tool. EDDY
was designed for diffusion data and its extension for functional data is novel. When applied
to fMRI, EDDY does not model eddy currents (as these are extremely low in fMRI), it
instead treats each fMRI volume as a diffusion B0, using the temporal mean as a predictive
model. The motivation for using EDDY on fMRI data is that it is capable of correcting for
intra-volume movement artefacts (Andersson et al., 2017) and for artefacts associated with
susceptibility-induced off-resonance field changes (susceptibility-by-movement artefacts)
(Andersson et al., 2001).

EDDY performs a slice-to-volume (S2V) reconstruction to correct for intra-volume
movement. This is achieved by using a continuous discrete cosine transform model of
movement over time with degrees of freedom less than or equal to the number of slices (or
multiband groups) (Andersson et al., 2017).

EDDY corrects for the susceptibility-by-movement distortion (MBS) by estimating rate-of-
change of off-resonance fields with respect to subject orientation (Andersson et al., 2018,
2001). These form parts of a Taylor-expansion of the susceptibility-induced field as a
continuous function of subject orientation and allows for the estimation of a unique
susceptibility field for each volume.
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The fieldmap in native functional space (fieldmap-to-functional, see Section 3.2) is input to
EDDY and is used as the zeroth term of the Taylor-expansion of the field. The full MCDC
proceeds by first estimating volume-to-volume movement, followed by estimation of slice-to-
volume (intra-volume) movement. Finally, the changing susceptibility field is estimated,
interspersed with updating of the slice-to-volume movement estimates. Once all the
parameters have been estimated a single resampling of the data is performed using a hybrid
2D+1D spline interpolation (Andersson et al., 2017).

MCDC was evaluated on the dHCP-40 fMRI. For comparison, a rigid-body (between-
volume) motion correction was also applied to the fMRI data using FSL MCFLIRT
(Jenkinson et al., 2002). Temporal signal-to-noise (tSNR) spatial maps were calculated for
each subject on the raw (RAW) fMRI time-series, after rigid-body motion correction
(RIGID), after slice-to-volume reconstruction (S2V), and after S2V and susceptibility-by-
movement distortion correction combined (S2V+MBS). The tSNR maps, for each MCDC
condition per subject, were resampled to standard space and voxel-wise group differences
between the MCDC conditions calculated. Statistical evaluation of each of the tSNR
difference maps was performed with a voxel-wise one-sample t-test using FSL
RANDOMISE with 5000 permutations (Winkler et al., 2014). Thresholded group activity
maps were corrected for multiple comparisons with false discovery rate (FDR) correction and
a threshold of 1.67% (calculated as 5% divided by the number of tests).

Rigid-body (RIGID) motion correction significantly improves tSNR compared to the RAW
data (see Figure 10) mostly at the cortex and edges of the brain. S2V correction significantly
improves tSNR compared to RIGID across the whole brain, and S2V+MBS further improves
tSNR in anterior and posterior areas where susceptibility distortions are expected. The
correction of intra-volume motion artefacts can be visually observed in an exemplar volume
from a single subject in Figure 8 (MCDC), and the correction of susceptibility-by-movement
distortions can be observed in an example subject in Figure 9 (MCDC). On the larger cohort
of the dHCP-512, the combined motion and distortion correction stage (comprising S2V and
MBS) significantly improves tSNR across the whole brain compared to the raw data (Figure
14).
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Figure 10. Left: mean tSNR (N=40) for raw EPI (RAW), rigid-body motion correction (RIGID), slice-to-volume motion
correction (S2V), and S2V + susceptibility-by-movement distortion correction (S2V+MBS). Centre and right: difference
maps and t-statistics for RIGID tSNR minus RAW tSNR (upper), S2V tSNR minus RIGID tSNR (middle) and S2V+MBS tSNR
minus S2V tSNR (lower). Only significant results shown. Multiple comparison correction was achieved by FDR correction
with a 1.67% threshold (5% divided by the number of tests). The slice coordinates for the difference maps and t-statistic
maps were selected by the maximum t-statistic.

3.5. Denoising

Even after motion and susceptibility distortion correction there are still residual motion-
related artefacts (for example, due to spin history effects) that need to be dealt with. There are
also a number of additional structured noise artefacts, unrelated to head motion, that need to
be addressed. Therefore, we perform a denoising procedure based on spatial independent
component analysis (sICA) to remove these structured noise artefacts. SICA has proven to be
a powerful tool for separating structured noise from neural signal and is widely used for
denoising fMRI in both adults and infants (Alfaro-Almagro et al., 2018; Griffanti et al., 2017;
Mongerson et al., 2017; Smith et al., 2013) and has proven to be of great value in connectome
projects including the (adult) Human Connectome Project and UK Biobank.

sICA

The (motion and distortion corrected) single-subject functional time-series was high-pass
filtered (150s high-pass cutoff) to remove slow drifts, but no spatial smoothing was
performed. SICA was performed using FSL MELODIC (Beckmann and Smith, 2004). The
sICA dimensionality was automatically set using MELODIC's Bayesian dimensionality
estimation, however it was capped at an upper limit of 600 components (26% of the number
of timepoints). Whilst we were conscious of not wanting to reduce the DOF too much, the
decision to implement the cap was a pragmatic attempt to reduce the computational cost of
the pipeline. We found in earlier iterations of the pipeline on smaller subsets of data that very
few subjects were constrained by the 600 cap, and those that were constrained mostly
contained a higher number of unclassified noise components (data not shown).

The main types of component observed in the dHCP sICA (see Figure 11 for examples) were:
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1. Signal. Characterised by low frequencies and spatial clustering. Unlike adult ICs we
often observe residual motion related jumps in the signal time-course, therefore we do
not use that as a basis for exclusion.

2. Multi-band artefact. Characterised by the “venetian blind” effect (stripes in the
sagittal and coronal planes) in the spatial maps and the time-course typically shows
jumps that correlate with motion spikes. This artefact likely comprises the spin-
history effects (described Section 3.4) as well as inter-slice leakage. Leakage results
from imperfect multi-band reconstruction, and therefore residual signal from any
given slice can “leak" to co-excited slices after separation, which results in
correlations between the slices over time.

3. Residual head-movement. Characterised by a ring (or partial ring) at the edge of the
brain in the spatial map, and time-course that strongly reflects the motion parameters
or framewise displacement.

4. Arteries. In adults this would be characterised by activity in the spatial maps in the
middle cerebral branches and a distinctive high-frequency spectrum. However, with
the neonates we do not have sufficient spatial resolution and so rely almost
exclusively on the power spectrum. This artefact is less commonly observed than the
other artefacts in the dHCP data.

5. Sagittal sinus. Similar to adults, the main characteristic used to identify the sagittal
sinus artefact is the superior inter-hemispheric ring in the sagittal plane of the spatial
map. The sagittal sinus was often difficult to identify, and potential candidates were
often labelled as “unknown” because the rater was not completely confident in the
classification.

6. Unclassified noise. Does not clearly belong to one of the other structured noise
categories and is characterised by a scattered spatial pattern, and often has jumps in
the time course consistent with motion spikes.

7. CSF pulsation. Although not shown in the figure, we occasionally observe CSF
pulsation characterised by a spatial overlap with the ventricles.
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Figure 11. Exemplar spatial maps (left), time-courses (center), and power spectra (right) for independent components (IC)
from a single subject. Each row is a different IC that was manually classified as stereotypical for signal, multi-band artefact,
head movement, arteries, sagittal sinus, and unclassified noise. Framewise displacement is plotted in the last row as a
reference for the amount and timing of movement for this subject.

FIX

Artefactual independent components (ICs) were identified automatically using FMRIB's
ICA-based Xnoiseifier (FIX) v1.066 (Salimi-Khorshidi et al., 2014) which uses an ensemble
machine learning classifier to label ICs as either artefact or not (ergo signal).

FIX was trained on a subset of manually labelled independent components (ICs) from 35
subjects. This subset was labelled using the scheme outlined in Griffanti et al. (2017) by a
single investigator as signal, artefact, or unknown. The age range of the 35 subjects was 27.2
—45.1 weeks PMA, the total number of manually labelled ICs was 4947.

As is the general theme of this paper, the nature of the neonatal data posed specific
challenges for the manual IC labelling. In particular, the low spatial resolution relative to the
size of the brain and the resulting partial-voluming made it more challenging to identify some
of the components that would typically rely heavily on spatial features in adults, such as
overlap with GM, WM and CSF. Therefore, we tended to rely more heavily on the time-
courses. However, even in the time-courses, Griffanti et al. (2017) would recommend that
signal should be “without sudden, abrupt changes” which we found to be too constraining in
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these data. Clearly stereotyped artefact components (head-movement, multi-band artefact,
sagittal sinus, arteries, CSF pulsation, and unclassified noise) were labelled as “noise”. Any
components that were unclear and/or difficult to judge were labelled as “signal”.

FIX was trained on the manually-labelled sICA data with a leave-one-out (LOO) training
scheme. The median LOO true positive rate (TPR) was 100% and the median true negative
rate (TNR) was 96%, indicating that the classifier erred on the side of inclusion (i.e. more
likely to include noise than discard signal). This is a desired characteristic and is the reason
that uncertain components were labelled as “signal”.

MELODIC/FIX was applied to the dHCP-538 dataset. The minimum number of ICs
decomposed for a subject (i.e., I[CA dimensionality) was 42, whilst the cap on the automatic
dimensionality estimation of MELODIC resulted in 40 (7.4%) decompositions being
constrained to the maximum dimensionality of 600. The proportion of ICs per
subject/decomposition classified as noise and flagged for removal ranged from 53.2% to
100%, with a mean of 92.1% (see Figure 12). This is consistent with adults where the mean
percentage of ICs classified as noise is typically ~70-90% (Griffanti et al., 2017). The
number of ICs per subject/decomposition classified as signal, and therefore flagged for
retention, ranged from 0 to 46.8% with a mean of 7.9%.

Noise o osmmemm—— [ H

0 20 40 60 80 100
Percent

Figure 12. Distribution across decompositions of percentage of components (per decomposition) classified as signal or
noise by FIX.

There were 19 subjects for whom all ICs were classified as noise. However, this does not
necessarily mean that these data contained no signal, rather it means that signal information
was not contained within the (constrained) reduced dimensionality on which the ICA was
performed (and hence such signal would not be removed by the ICA denoising). Therefore,
these data were still retained for further analysis.

Figure 13 shows that motion has a strong impact on the IC classification with the number of
signal ICs decreasing with head movement (Spearman r=-0.5) and the number of noise ICs
increasing (r=0.64). Age has a smaller impact with older babies tending to have more signal
ICs (r=0.44) and less noise ICs (=-0.28). This could be related to older babies tending to
move more (see Figure 19), or could be a consequence of relative spatial resolution with
younger babies having smaller brains relative to the resolution of the acquisition.
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Figure 13. Correlation of the number of ICs classified by FIX as signal (left) and noise (right) with head movement, where
mean framewise displacement is used as a surrogate for motion contamination. Age is the post-menstrual age-at-scan in
weeks.

Nuisance regression

The FIX noise ICs and the motion parameters (see Table 2) were simultaneously regressed
from the motion and distortion corrected functional time-series. The pipeline also supports
inclusion of other nuisance regressors, such as FD outliers and DVARS outliers (see Table
2), physiological noise regressors, and tissue regressors. The inclusion of FD/DVARS
outliers would effectively perform spike regression (Satterthwaite et al., 2013). However,
given our motivation to minimise pre-processing we have not included additional nuisance
regressors (beyond artefact ICs and motion parameters).

TSNR spatial maps were calculated for each subject on the raw (Raw) fMRI time-series, after
motion and distortion correction combined (MCDC), and after denoising (Denoised). The
tSNR maps were resampled to standard space and voxel-wise group differences between
conditions calculated. Statistical evaluation of each of the tSNR difference maps was
performed with a voxel-wise one-sample t-test using FSL RANDOMISE with 5000
permutations (Winkler et al., 2014). Thresholded group activity maps were corrected for
multiple comparisons with FDR and a 2.5% threshold (calculated as 5% divided by the
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number of tests). After FIX denoising, the tSNR is substantially and significantly improved
across the whole brain, with the greatest improvement seen in cortical areas (see Figure 14).

MCDC

°
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c
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Figure 14. Left: mean tSNR (N=512) for raw EPI (RAW), motion and distortion corrected EPI (MCDC), and denoised EPI.
Centre and right: difference maps and t-statistics for MCDC minus RAW tSNR (upper), and denoised minus MCDC tSNR
(lower). Only significant results shown. Multiple comparison correction was achieved by FDR correction with a 2.5%
threshold (5% divided by the number of tests)

Voxplots (aka. “carpetplots” and “grayplots”) comprise a heat-map of voxel x time fMRI
intensities (with mean and linear trend removed) along with plots of nuisance time-series
such as DVARS and framewise displacement (surrogates for motion). Voxplots were
developed by Power (2017) and are advocated as an informative way to visualise and asses
scan quality. We have adapted them by converting each heat-map to a z-score and using a
diverging colormap so that it accentuates divergence from the mean of zero. Voxplots for a
single example subject for raw, motion and distortion corrected (MCDC), and denoised fMRI
are presented in Figure 15.

Strong vertical stripes can be observed in the pre-denoised data (raw and MCDC) that are
contemporaneous with the worst spikes in the nuisance time-series (DVARS and framewise
displacement).

After motion and distortion correction, there is less variation in-between the vertical stripes
compared to the raw fMRI, which can also be observed in the DVARS plot as lower values
between the major spikes. The heat-map also shows that this reduced variation is largely
limited to the white and gray-matter. The intensity of the vertical stripes also drops after
motion and distortion correction, which is difficult to see in the heat-maps because each map
is independently normalised to the standard score; however, it can be observed as lower
amplitudes of the major spikes in the in the DVARS plot.

After denoising, there a several striking differences in the voxplot. Firstly, the strong vertical
stripes are replaced with closer-to-zero vertical stripes, indicating that the denoising has
removed much of the variation at these times and the remaining signal is closer to the mean.
This is represented by dips in the DVARS plot during these times. If spike regression were
used we would expect to see that these periods would be exactly the mean and would thus be
zero in both the heat-map and DVARS plot. Thus, ICA-based denoising seems to provide a
qualitatively similar result to spike regression in these periods of time when motion is the
worst. Secondly, the tSNR difference between the white-gray-matter and the sub-cortical
areas is further increased, consistent with the spatial group-maps presented in Figure 14.
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ICA-based denoising can subsume the role of spike regression when the motion is severe,
however, it is less aggressive and does not simply remove all information during these
periods. In practise, it will often remove much of the variance, but it can in principle leave
residual signal if it is not modelled as artefact. We consider that scrubbing and spike
regression are a “hard” form of temporal censoring, whereas ICA-based denoising is a less
aggressive “soft” spatio-temporal censoring. In either case, subsequent analyses must
appropriately account for the noise removal approach and the reduction or removal of BOLD
signal during high motion periods.
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Figure 15. “Carpet plots” for raw, motion and distortion corrected (MCDC), and denoised fMRI from a single exemplar
subject. Carpet plots are adapted from (Power, 2017) with the modification that each heat-map is converted to a z-score and
a diverging colormap is used.. Mean and trend were removed from each heat-map. GM=gray-matter, WM=white-matter,
SC=sub-cortical, CB=cerebellum, BS=brainstem.
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3.6. Quality control/assurance

The fMRI pipeline automatically calculates a number of QC metrics (see Table 2) and
generates an HTML QC report for each subject (Supplementary Figure 1). The report
presents the QC metrics for the individual within the context of group distributions for the
corresponding metrics.

Table 2. Quality control metrics used in the dHCP fMRI pipeline.

Metric Description

Motion parameters (MP) 6 rigid-body motion time-series (3 rotation, 3
translation) as estimated during motion correction

DVARS DVARS is the RMS intensity difference between
successive volumes (Power et al., 2012)

DVARS outliers Binarised DVARS with threshold = 75
percentile + (1.5 x inter-quartile range)

Framewise displacement (FD) FD is calculated as the average of the rotation and
translation motion parameter differences (Power
et al., 2012)

FD outliers Binarised FD with threshold = 0.25 mm

Temporal signal-to-noise ratio (tSNR)  Per-voxel temporal mean divided by the temporal
standard deviation

Contrast-to-noise ratio (CNR) Temporal standard deviation of the contrast
divided by the standard deviation of the noise,
where the contrast is the functional image minus
the noise, and the noise is the residual of dual
regressing the group spatial maps onto the
functional image.

Normalised mutual information (NMI) The normalised mutual information between a
source image and a reference image (both in
reference space).

A subset of the metrics are converted to z-scores (using the median absolute deviation which
is more robust to outliers than the standard deviation), and sign flipped as necessary so that
more positive values are better and negative values are worse (see Figure 16). Subjects that
score less than -2.5 on any of the subset of metrics are considered to have failed the QC and
are flagged for further manual inspection. The specific subset of measures used are mean
denoised DVARS, mean denoised tSNR, func-to-sbref NMI, sbref-to-structural NMI,
structural-to-template NMI, and fieldmap-to-structural NMI. Under this regime, out of the
total of 538 subjects, 5 subjects failed mean denoised DVARS, 4 failed denoised tSNR, 3
failed sbref-to-struct NMI, 18 failed template-to-struct NMI, and 4 failed fmap-to-struct.
However, there was overlap of subjects between these failures, with a total of 26 subjects
failing and thus 512 subjects passing. It is anticipated that a large proportion of the failed
subjects can be recovered with improvements to the template-to-struct registration that are
currently under investigation.
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Figure 16. Group z-distributions of QC metrics. More negative z-scores indicate poorer quality on the respective metric. Z-
scores less than -2.5 (indicated by red dashed line) are flagged as failing the pipeline and require further inspection.

3.7. Resting-state networks

Here we present group RSNs and their association with PMA as a validation that the dHCP
fMRI pipeline can identify plausible RSNs, and to demonstrate the granularity of what can be
extracted from this challenging cohort with suitable pre-processing.

For the derivation of resting-state networks, we use PROFUMO, an implementation of the
probabilistic functional modes (PFM) model as defined in Harrison et al. (2015). This
approach uses a hierarchical Bayesian model to decompose the data into a set of functional
modes (i.e., RSNs). Unlike most ICA-based approaches, group and subject-specific spatial
maps associated with these modes are estimated simultaneously. The PFM model includes a
number of different terms that regularise the decomposition, including, for example,
hierarchical priors that encourage consistency in both the spatial layout of RSNs across
subjects, and their patterns of functional connectivity (i.e., connectomes). The model also
takes haemodynamics into account, as these dominate the temporal characteristics of the
BOLD signal. As such, we base these priors on the work of Arichi et al. (2012), who quantify
haemodynamic responses for neonates. Specifically, we used the FSL FLOBS tool (Woolrich
et al., 2004) to construct a term and pre-term HRF model using the reported haemodynamic
response characteristics described in Arichi et al. (2012). Figure 17 depicts the term and pre-
term HRFs that we constructed, along with the default adult HRF used in PROFUMO. Only a
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single HRF model can be used within a PROFUMO analysis, therefore we used the term
HRF model as the majority of the dHCP neonatal cohort are term age. The term HRF is
characterised by a longer time to peak positive amplitude, a smaller positive peak amplitude
and a deeper negative undershoot period relative to the adult HRF (Arichi et al., 2012).

1.50 —— Pre-term
Term
1.25 —— Adult
1.00
0.75
0.50
0.25
0.00 e
-0.25
0 5 10 15 20 25 30 35 40
Time (s)

Figure 17. Term and pre-term HRF models constructed for this study, and the default adult HRF model within PROFUMO.
The term and pre-term haemodynamic response characteristics are adapted from Arichi et al. (2012). The amplitude of
each HRF is rescaled as part of the fitting process, however, for visualisation purposes the peak amplitudes here have been
scaled to be consistent with the measured amplitudes in Arichi et al. (2012).

Formally, the PFM model simultaneously decomposes each dataset, Dsy 7, into a set of M
modes. These consist of subject-specific spatial maps Psy,,, amplitudes Hs,,, time courses
Asy 7 and network matrices ). Sy« . These can be combined into a matrix factorisation
model at the subject level i.e. Ds = Ps X diag(Hs) X As. These subject-level
decompositions are linked via a set of hierarchical priors, which represent the group-level
description of the data (and include, amongst others, the group-mean spatial maps and
connectomes). This forms a complete probabilistic model for the data, and the group- and
subject-level information is inferred together via a variational Bayesian inversion scheme. In
other words, we not only infer subject-specific information in a sensitive manner, but we also
infer the group-level properties of the RSNs themselves.

PROFUMO was performed on the denoised volumetric data of 512 dHCP subjects that
passed the pipeline QC (see Section 3.6) to resolve resting-state networks (RSNs). Prior to
PROFUMO the data were spatially smoothed (FWHM=3mm) using FSL SUSAN, with an
intensity threshold of 75% of the contrast between the median brain intensity and the
background (Smith and Brady, 1997), and normalised to the grand median intensity as per
FSL FEAT (Jenkinson et al., 2012). 16 RSNs were identified (see Figure 18) that show good
correspondence to both adult (Smith et al., 2013) and infant RSNs (Doria et al., 2010;
Mongerson et al., 2017).
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Figure 18. PROFUMO modes qualitatively assessed as corresponding to adult resting-state networks. Hierarchical clustering based on spatial correlation between the modes.
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Before regressing the RSNs on age to look for developmental changes, we examined a
number of age-related confounds. Specifically, we correlated DVARS and FD (as surrogates
for motion), tSNR, and brain volume (estimated as the number of voxels in the subject’s
brain mask in func space). We observed a strong positive correlation of brain volume with
age (r=0.86), a small positive correlation of mean DVARS (r=0.05) and mean FD (r=0.16)
with age, and a small negative correlation of tSNR (r=-0.15) with age (see Figure 19).
Movement and tSNR are clear confounds that we wish to control for, however brain volume
is more challenging because it can be both a confound (due to differences in relative
resolution and signal) and a legitimate feature of development. Here we control for brain
volume and present RSN correlations with development.
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Figure 19. Age-related confounds. Age is the post-menstrual age-at-scan in weeks.

We used FSL dual-regression (DR)(Nickerson et al., 2017) to regress all the PFM-group-
maps onto the individual subject fMRI to yield subject-specific time-courses and spatial
maps. As recommended by Nickerson et al. (2017), when performing DR the subject-specific
time-courses were variance normalised before the second stage of DR which means that the
single-subject DR spatial maps capture both the spatial distribution of the network (i.e.
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“shape”) as well as the “amplitude” of the network activity. To allow us to delineate the
contribution of just amplitude alone, we additionally calculated the median absolute deviation
of the DR time-courses (not variance-normalised) as an estimate of amplitude. To investigate
changes with age, we regressed the spatial maps and amplitudes on age, controlling for
DVARS, FD, tSNR, and brain volume (see Figure 20) using FSL RANDOMISE (Winkler et
al., 2014) with 5000 permutations. Multiple comparison correction was achieved by FDR
correction with a threshold of 0.31% (calculated as 5% divided by the number of tests; one
test per RSN).

The DR spatial maps show a significant effect for age in all modes, in voxels that are
spatially consistent with the group PFM map. Furthermore, the DR amplitudes show a
significant increase in network amplitudes with age for all modes, which indicates that the
age effects are, at least partially, driven by this increased amplitude of network activity.
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Figure 20. PROFUMO group spatial maps (PFM Map), t-statistic of age regressed on the DR spatial maps (t-stat), and DR
amplitudes with age (Amplitude) for the 16 modes qualitative assessed as corresponding to adult resting-state networks. Age
is the post-menstrual age-at-scan in weeks. Brain volume, mean DVARS, mean tSNR, and mean FD confounds are
controlled. Only significant results are shown. Multiple comparison correction was achieved by FDR correction with a
0.31% threshold (calculated as 5% divided by the number of tests, one test per RSN)

4. Discussion

In this paper we present an automated and robust, open source pipeline to generate high-
quality minimally pre-processed neonatal fMRI data. The pipeline was developed to pre-
process the rfMRI data from the dHCP project for open-access release to the neuroimaging
community. Using this pipeline on the dHCP neonatal cohort, we have been able to resolve
16 resting-state networks with fine spatial resolution that are consistent with adult networks
from the Human Connectome Project. Furthermore, we have sufficient spatio-temporal
granularity to demonstrate significant changes in shape and amplitude of these networks with
development from 27-45 weeks post-menstrual age.
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A strong motivation during development of the pipeline was that it should perform “minimal”
pre-processing to ensure that the scientific community would not be restricted in the
subsequent analysis that they can perform on the data (although the fully raw data is also
being made available). To this end, we have sought to minimise pre-processing, particularly
resampling, whilst maximising output quality. The pre-processing steps we have included
were selected and evaluated to ensure they provided a robust and principled approach to
mitigating the specific challenges of neonatal data. The pipeline was run on 538 subjects
from the dHCP neonatal cohort and only 26 failed due to quality control restrictions. These
failures were mostly due to poor registration of the structural T1w/T2w to the template/atlas
space. This is discussed further below.

Automation was another key motivator in developing the pipeline. Given the number of
subjects to be scanned as part of the dHCP project it was important to minimize manual
intervention as much as possible. To this end, the pipeline is entirely automated including
quality control and reporting. Operator intervention is required at only two stages, 1) to
manually label a subset of independent components to train FIX, and 2) to visually inspect
cases flagged by QC as outliers. Furthermore, the FIX classifier trained on dHCP data will be
released along with the pipeline, which means that the first manual intervention step may be
avoided if one’s data are sufficiently similar to the dHCP acquisition data.

Subject head motion is the most challenging confound observed in the dHCP neonatal cohort.
This motion disrupts the BOLD signal and can result in slice misalignments, susceptibility-
by-movement distortions, and spin history artefacts. Such artefacts are not typically dealt
with in existing fMRI pre-processing pipelines. We present a novel application of the EDDY
tool, which was originally designed for diffusion data, to correct for the slice misalignments
and susceptibility-by-movement distortions. We further incorporate an ICA-based denoising
procedure to remove spin-history effects and any residual motion artefacts. This I[CA-based
denoising can also account for a variety of other artefacts including multi-band artefacts,
arteries, CSF pulsation, and sagittal sinus. As a consequence of these pre-processing
strategies, we see large and significant improvement in tSNR across the whole brain, but
particularly in cortical areas. This improvement is driven largely by a reduction in variation
from the aforementioned artefacts.

An important consideration that needs to be made when using the pipeline is that EDDY can
only be run using a GPU. The EDDY -based motion and distortion correction on a single
dHCP subject (2300 volumes) takes 6-12 hours on a NVIDIA K80 GPU. If limited resources
mean that EDDY is not viable, the pipeline can fallback to a (CPU-based) rigid-body
volume-to-volume registration-based motion correction and static fieldmap-based distortion
correction. An fMRI-specific version of EDDY is intended to be released in a future version
of FSL.

The dHCP neonatal fMRI pipeline includes a robust registration framework to align the
functional data with both the subject structural space (T2w) and the group standard space.
Registration is made challenging by the rapidly changing size and gyrification of the neonatal
brain, and the variable contrast caused by maturing myelination and the fast-multi-band EPI
sequence. The protocol uses a series of primary registrations which can then be combined
into composite transforms to move between the target spaces. Care was taken to achieve
high-quality primary registrations so that alignment errors would not accumulate when
creating the composite registrations. To this end, the BBR cost function was found to be
superior for intra-subject registrations and was used wherever possible. The weakest link in
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the registration protocol was the template-to-structural non-linear registration, which resulted
in 18 subjects being excluded by the automated QC due to insufficient alignment quality.
Ongoing work is examining improvements to this registration step, including using the GM
probability as another registration channel, as per Makropoulos et al. (2018), and optimising
the parameters of the registration tools.

The dHCP fMRI pipeline is not intended to be a single static release just for processing the
dHCP data. During development we have focussed on flexibility and generalisability of the
pipeline beyond the dHCP data. We have evaluated the pipeline on non-dHCP neonatal task
fMRI data (Baxter et al., 2019), and collaborators within our centre have been evaluating the
pipeline on non-neonatal data. To coincide with this paper, the first version of the pipeline
will be released publicly (https://git.fmrib.ox.ac.uk/seanf/dhcp-fmri-pipeline-release) and this
will mark the beginning of what we plan to be an ongoing, open, and hopefully collaborative,
development process. To this end there is a roadmap of future features that are either already
under development or planned:

1. We have developed bespoke methods (adapted from adult HCP pipelines) for
mapping the fMRI data to the surface and writing out to CIFTI format. These methods
are still under evaluation.

2. We are investigating alternative methods for dealing with contaminated fieldmaps,
including the utility of a group average fieldmap.

3. An fMRI-specific version of EDDY is under development that will be faster as well
as incorporating a model that is better suited to fMRI data.

4. Improvements to template-to-structural registration.

Partial BIDs derivatives support is implemented, but full support is planned.
6. Extensions for task fMRI have been developed and tested and will be merged into the
pipeline

N

5. Conclusion

We have presented an automated and robust pipeline to minimally pre-process highly
confounded neonatal data, robustly, with low failure rates and high quality-assurance.
Processing refinements integrated into the dHCP fMRI framework provide substantial
reduction in movement related distortions, resulting in significant improvements in SNR, and
detection of high quality RSNs from neonates that are consistent with previously reported
infant RSN (Doria et al., 2010; Mongerson et al., 2017). Ongoing analyses are probing the
fine structure of these networks, and their variability across subjects and age, with the aim of
defining a multi-modal time-varying map of the neonatal connectome. The scientific
community will be able to apply this pipeline to explore their own neonatal data, or to use
publicly released dHCP data (pre-processed with this pipeline) to explore neonatal
connectomics.
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9. Supplementary
9.1. Detailed registration methods

Primary registrations:

1. fieldmap-to-structural: rigidly align the derived fieldmap magnitude image (see
Section 3.2) to the native structural T2w space using FSL FLIRT (Jenkinson et al.,
2002; Jenkinson and Smith, 2001). A boundary-based registration (BBR) (Greve and
Fischl, 2009) cost function is used if the fieldmap was derived from the spin-echo
using TOPUP. However, the correlation ratio cost function is used if the fieldmap was
derived from the gradient-echo, because the magnitude image lacked sufficient
anatomical detail for BBR. The fieldmap-to-structural transform is then applied to re-
sample the fieldmap image into the native structural space.

2. sbref-to-structural: rigidly align the single-band EPI image (sbref) with the native
structural T2w space and correct for susceptibility distortions in the sbref using FSL
FLIRT, with the BBR cost function, and FSL FUGUE. This step requires the
fieldmap to be in the native structural space (calculated in the previous registration
stage) to correct for susceptibility distortions in the sbref.

3. functional-to-sbref (distorted): rigidly align the functional multiband EPI image with
the sbref using FSL FLIRT with the default correlation ratio cost function. This
registration step is performed prior to susceptibility distortion correction of the
functional multiband EPI as described in Section 3.4, therefore both the functional
multiband EPI image and the sbref will contain susceptibility distortions. The first
volume of the functional multiband EPI is used as the source (moving) image in this
registration because the subsequent motion correction and distortion correction stage
defines the functional space from the first volume (see Section 3.4).

4. functional-to-sbref (undistorted): after motion correction and distortion correction,
rigidly align the distortion-corrected functional multiband EPI image with the
distortion-corrected sbref using FSL FLIRT with the default correlation ratio cost
function. All volumes in the corrected functional multiband EPI image are aligned as
consequence of the motion correction, therefore the temporal mean is used as the
source (moving) image in this registration as it typically has superior SNR compared
to a single volume.

5. template-to-structural: align the structural image to the dHCP volumetric template
(Schuh et al., 2018). Template-to-structural registration is performed with a multi-
modal non-linear registration (ANTs SyN)(Avants et al., 2008) of the age-matched
T1w and T2w template to the subject’s T1w and T2w structural, which is then
combined with the appropriate atlas week-to-week transforms to yield a (40 week)
template-to-structural transform. We also evaluated FSL FNIRT (Jenkinson et al.,
2012) and MIRTK Register (Similarity+Affine+FFD transformation model) (Schuh et
al., 2018) and found that Register achieved excellent alignment but was not
sufficiently regularised, resulting in inversion inaccuracy, whilst FNIRT was well
regularised but did not produce alignments with sufficient accuracy (data not shown).
We expect that good results could be achieved with both tools if their parameters
were optimised, however ANTs SyN provided a good trade-off between alignment
and regularisation with minimal parameterisation. In the event that the age of the
subject is outside the range covered by the atlas, the closest template age within the
atlas is used. Furthermore, some subjects do not have a T1w image, so in this instance
only the T2w is used.

Composite registrations:
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1. fieldmap-to-functional: constructed by combining the fieldmap-to-structural transform
with the inverse sbref-to-structural and inverse functional-to-sbref (distorted)
transforms. This allows for the fieldmap to be resampled to the native functional
space, which is essential for the subsequent motion correction and distortion
correction (Section 3.4). We have found that aligning the fieldmap with the functional
via the structural is very robust and precise, largely because both sub-steps use BBR
cost functions.

2. functional-to-structural (undistorted): constructed by combining the functional-to-
sbref (undistorted) affine with the sbref-to-structural affine, which yields a linear
transform that aligns the motion and distortion corrected functional multiband EPI
with structural T2w.

3. functional-to-template (undistorted): constructed by combining the functional-to-
structural (undistorted) transform with the inverse template-to-structural transform to
yield the functional-to-template (undistorted) non-linear transform to align the motion
and distortion corrected functional multiband EPI with the 40-week dHCP template
space with a single resampling.
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11. Supplementary Figures
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Supplementary Figure 1. Screen shot of automated QC report for a single subject. The fMRI pipeline automatically
calculates a number of QC metrics (MP, DVARS, FD, tSNR, CNR, NMI; see Table 2) and generates this HTML QC report
for each subject. The report presents each QC metric for the individual within the context of the group distribution for the
corresponding metric. Additionally, the report also presents descriptive/qualitative summaries of the subject’s data quality
in the form of “carpet plots” and spatial maps for each metric as applicable. The report generation tool utilises a variety of
open source packages including Jinja2 (http.//jinja.pocoo.org/docs/2.10/), Bootstrap (https://getbootstrap.com/), Pandas
(https://pandas.pydata.org/), Numpy (https://www.numpy.org/), Seaborn (https://seaborn.pydata.org), Nilearn
(http://nilearn.github.io/), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), and PtitPrince (https://github.com/pog87/PtitPrince).
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