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Residing in the islets of Langerhans in the pancreas, beta cells contribute to glucose homeostasis
by managing the body’s insulin supply. A circulating hypothesis has been that healthy beta cells
heavily engage in cell-to-cell communication to perform their homeostatic function. We provide
strong evidence in favor of this hypothesis in the form of (i) a dynamical network model that
faithfully mimics fast calcium oscillations in response to above-threshold glucose stimulation and (ii)
empirical data analysis that reveals a qualitative shift in the cross-correlation structure of measured
signals below and above the threshold glucose concentration. Combined together, these results point
to a glucose-induced transition in beta-cell activity thanks to increasing coordination through gap-
junctional signaling and paracrine interactions. The model further suggests how the conservation
of entire cell-cell conductance, observed in coupled but not uncoupled beta cells, emerges as a
collective phenomenon. An overall implication is that improving the ability to monitor beta-cell
signaling should offer means to better understand the pathogenesis of diabetes mellitus.

On a fundamental level, living tissues comprise genet-
ically identical cells of the same differentiation fate that
work cooperatively to support homeostasis and other
physiological functions [I]. Cooperation, however, is sus-
ceptible to cheating unless there is a mechanism for mu-
tual recognition of cooperators referred to as positive as-
sortment [I]. Cell-to-cell communication is perhaps the
most obvious means of positive assortment, employed
even by cancer cells—quintessential cheaters from the
perspective of normal tissue functioning—in order to suc-
cessfully metastasize [2]. A key question in this con-
text is how, in large clusters of cells (e.g., tissues or
organs), cluster-wide functionalities emerge as collective
phenomena from local cellular interactions (e.g., commu-
nication and cooperation) encoded into individual cells.
Endocrine cells in pancreatic islets, in particular, form
well-defined cellulo-social clusters, each about 100 pm
in size. Intriguingly, islet size is persistent across multi-
ple vertebrate species [3], thus fueling conjunctures that
cross-species size persistence plays a vital role in the col-
lective functioning of a healthy islet [4].

Beta cells are a type of pancreatic cells that partici-
pate in glucose homeostasis by producing, storing, and
releasing the hormone insulin [5H7]. When the glucose
blood level is high, a state known as hyperglycemia, beta
cells respond with a release of insulin into the blood-

stream to promote nutrient transport into a variety of
cells in support of anabolic metabolism. When the glu-
cose blood level is low, a state known as hypoglycemia,
or glucose is otherwise in demand, e.g., due to physical
activity, beta cells switch off insulin secretion to allow
catabolic metabolism. Beta cells thus employ a negative
feedback mechanism to help maintain the blood glucose
within a safe range. In comparison, therapeutic adminis-
tration of insulin in diabetic patients lacks the precision
of the internal regulatory processes, yielding either too
high or too low plasma glucose levels [§]. Hypoglycemic
episodes arising in relation to insulin therapy are a com-
mon adverse effect of antidiabetic therapies [9]. Although
the basic outline of glucose homeostasis is conceptually
clear, complexity quickly escalates when looking for a mi-
croscopic understanding of the negative feedback mech-
anism employed by beta cells. We herein attempt to
better understand this complexity, focusing in particular
on cell-to-cell communication in the face of mounting ev-
idence that such communication is important for insulin
secretion and, by extension, glucose homeostasis [6H8].

Illustrating microscopic complexity, cellular nutrient-
sensing mechanisms [10} [II] have been shown to inter-
mix metabolic signals, electrical activity, and cytosolic
calcium signaling [12, [I3]. This complex intermix pre-
vents beta cells of a healthy pancreas to oversecrete in-
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Figure 1. Beta-cell Ca®" signaling is faithfully mimicked by a cell-to-cell communication model. A, Examples of
the detrended experimental traces of Ca®*t signaling, including the ensemble average (top trace). Vertical red lines denote the
time interval during which we perfused the tissue slice with 8 mM glucose solution. Otherwise, we kept the tissue slice in 6 mM
glucose solution, which is below the typical threshold for glucose-stimulated activity of beta cells. B, The ensemble average
of the measured fast Ca®" signaling. The transitions from a non-stimulatory glucose to a stimulatory glucose phase and vice
versa are clearly visible. C, A detail of the ensemble average of the measured fast Ca®" signaling in the stimulatory phase.
Spikes of exceptionally high activity are interspersed among somewhat quieter periods. D, The probability distribution of
non-spiking intervals. Open dots represent the empirical non-spiking distribution for the ensemble-averaged fast Ca?* signaling
component in a semi-log plot. The dashed line is a theoretical distribution function, p exp(—pt), with mean spiking rate p = 1s.
Among our primary goals was to reproduce the described empirical patterns using a cell-to-cell communication model (details
in the main text). Solid dots thus represent the non-spiking distribution for the simulated fast beta-cell activity. E, Our
cell-cell communication model with N = 100 cells successfully mimics fast Ca®T signaling (cf. panel B). At transitioning from
a non-stimulatory (6 mM) to a stimulatory (8 mM) glucose solution in the experiment, we set the model’s forcing parameter,
i.e., cell responsivity, to a higher value. F, A detail of the simulated fast beta-cell activity. Despite a somewhat higher baseline
noise compared to measurements in this particular example (cf. panel C), the two signals are statistically equivalent (see also
Supplementary Fig. [3)).

sulin despite huge intracellular insulin stores [14], which
exceed the lethal dose two to three orders of magnitude
if released at once. A possible answer to how beta cells
regulate their secretion may lie in a response of beta-
cell collectives to above-threshold glucose concentrations
(>7mM in mice [15, [16]) at which electrical and cal-
cium activities flip between non-stimulatory and stimu-
latory phases. Here, the term collective is used to de-
note the fact that beta cells, in addition to engaging in
paracrine interactions [I'7,[18], are coupled to neighboring
beta cells via gap junctions (comprising two connexons of
Cx36 protein) to form a communicating functional syn-
cytium [19]. This functional syncytium as a whole reacts
to nutrients (e.g., glucose) or pharmacological substances
(e.g., sulphonylureas) in a fundamentally different man-
ner from isolated cells [20] or partially "uncoupled’ cells,
i.e., those lacking the Cx36 protein [2I]. Specifically,
after closing ATP-sensitive KT channels in a coupled
configuration, the remaining entire cell-cell conductance
varies among individual cells, but stays constant and rela-
tively high islet-wide. This happens throughout the time-

frame of a typical experiment (>10 minutes) and despite
the concurrent dynamic interchange of non-stimulatory
and stimulatory collective phases [21].

A series of models describing fast Ca?* oscillations in
the electrical activity of beta cells have been constructed
since the first minimal model over three decades ago [22].
The primary purpose of these models, however, has been
to generate the saw-tooth time profile characteristic of
slow processes underlying the observed electrical burst-
ing [23] 24]. By contrast, there seem to have been much
less concern with the oscillatory response of beta cells to
the threshold glucose concentration, and the relationship
of this response to communication within the functional
syncytium or the conservation of entire cell-cell conduc-
tance.

We demonstrate that a cell-to-cell communication
model based on a dynamical network approach [25] 26]
captures the essential features of fast Ca?* signaling, and
that within such a model the simulated equivalent of the
entire cell-cell conductance remains conserved in a sta-
tistical sense after the network transitions from an in-
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active to an active state, thus suggesting that the same
mechanism may be at work in a living cell system as
well. To provide empirical support for these results, we
proceed with probing correlations in fast Ca?* signaling
as a measure of cell-to-cell communication, and present
evidence of a shift in the correlation structure between
non-stimulatory and stimulatory conditions. This is con-
sistent with the hypothesis that the living cell system,
just as the modeled dynamical network, attains sensitiv-
ity to threshold glucose stimulation via collective action.

DATA CHARACTERIZATION

We analyzed a dataset obtained by Ca?t imag-
ing of acute pancreatic tissue slice [27] comprising ro-
dent pancreatic oval-shaped islet (approx. dimensions:
370umx200um). We recorded Ca?* signals with a
functional multi-cellular imaging technique at 10 Hz and
256x256 pixel resolution in 8-bit grayscale color depth.
The dataset consisted of 65,536 traces of calcium signals,
each 23,873 time steps long. During the recording, we in-
creased glucose concentration in the chamber containing
the tissue sample from 6 mM to 8 mM and then decreased
back to initial concentration near the end of the experi-
ment. We chose these two physiological glucose concen-
trations to induce a transition from a non-stimulatory to
a stimulatory beta-cell phase. The typical threshold for
this transition in mice is around 7mM [I5] [16]. Further
methodological details, including an Ethics Statement,
are available in Supplementary Methods.

Individual Ca?t traces, as well as the ensemble-
averaged signal, exhibit (i) slow calcium oscillations with
a period of approximately 5min, but also superimposed
(i) fast calcium oscillations (Fig. [JA). We detrended all
traces as a part of signal preprocessing to exclude the
effect of systematic slow diminishing of the signal with
time (Supplementary Fig. . Calcium oscillations on
both timescales are known to be accompanied with in-
sulin release [28], but the saturation kinetics of the Ca?*-
dependent insulin release suggests that faster oscillations
dominate [29]. The relation between slow calcium oscil-
lations and pulsating insulin release was comprehensively
described in a recent review [24]. Here, by contrast, we
focus on fast calcium oscillations, which in acute pan-
creatic slice preparations, like in early micro-electrode
recordings [30], directly correspond to membrane electri-
cal bursting activity [16] and are thought to be function-
ally relevant for glucose homeostasis [31].

To isolate fast calcium oscillations, we proceeded by
removing slow oscillations from traces using a total varia-
tion based filter [32]E| (Supplementary Fig. . The struc-
ture of the remaining fast calcium signal (Fig. ) clearly
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Figure 2. Cell-to-cell communication model predicts
statistical properties of measured signals. Denoting
the original time series by X(t), shown are the estimated
probability density functions (pdfs) of fluctuations Z () =
X (t) — X (t — At), where At = 10 time steps is delay time.
Similarity between the pdfs estimated from empirical calcium
signals and network model activity is remarkable. Further-
more, the two pdfs are strongly non-Gaussian, which in com-
plex systems such as the studied functional beta-cell syn-
cytium signifies important non-linearities and couplings. The
solid curve is a Lévy alpha-stable distribution with parameter
«a = 1.3, whereas the dashed curve is a Gaussian distribution
with a zero mean and a unit variance.

separates the non-stimulatory phase with little calcium
activity from the stimulatory phase with large oscilla-
tion amplitudes. In both phases, the signal is stochas-
tic in nature, which can be analyzed using statistical
measures. We thus binarized the fast component of the
ensemble-averaged Ca?" trace (spiking or not; Fig. ),
and subsequently calculated the non-spiking intervals.
We found that the non-spiking intervals are governed
by a Poisson process, implying that the probability den-
sity function (pdf) of the non-spiking intervals can be
approximated with exponential distribution pexp(—pt),
where the mean spiking rate equals p = 1s (open dots
in Fig. ) Interestingly, a dynamical network model of
cell-to-cell communication produces a simulated fast sig-
nal with the same statistical characteristics (solid dots in
Fig. [[[D). We next describe this model and some of its
basic properties.

EMERGING PROPERTIES OF BETA
CELL-TO-CELL COMMUNICATION

Glucose homeostasis is a complex phenomenon involv-
ing multiple cell types and hormones. In our stylized
model, however, we focus on beta cells alone, and in
particular the role of cell-to-cell communication in shap-
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ing the response of these cells to the threshold glucose
concentration. To this end, we started from a general
dynamical network model [25] that explains how mutu-
ally interacting network elements conspire to cause highly
non-linear dynamics with spontaneous phase flipping.
We adapted the model in such a way that N network
nodes represent individual beta cells and network links
represent couplings with k& neighboring cells. Each node
can be in one of the two states, inactive or active, re-
flected in the amplitude of fast calcium signal. The state
of the network in a particular time step is characterized
by the fraction of active nodes.

The model’s key assumption is that nodes change their
state internally or externally, where the former is mod-
ulated by the presence or absence of stimulatory glucose
concentration, while the latter is due to cell-to-cell com-
munication. An internal transition of a node from active
to inactive state over time period dt occurs with proba-
bility pdt. In contrast, a transition prompted by mutual
communication occurs with probability rdt, but only if
the node has less than m < k active neighbors. Nodes
return to their original state after relaxation times 7; and
Te following an internal or an external transition, respec-
tively.

Once node relaxation is defined, the network’s state is
determined by two parameters, probability rate r and the
average fraction of internally inactive nodes, which fol-
lows from probability rate p via p* = 1 — exp(—pmn;) [25].
In two-parameter phase space, (r, p*), there is a critical
point that opens a bi-stability region separating low- and
high-activity model equilibria [25][26]. When network pa-
rameters approach the critical point, node activity sud-
denly picks up, whereas inside the bi-stability region even
spontaneous phase flipping becomes possible [25], [26].

To illustrate similarities between model outputs and
recorded Ca?* traces (cf. panels B, C and E, F in Fig. ,
we ran exhaustive numerical simulations (Supplementary
Remark 1). First, we created a random regular network
with N = 100 nodes, each with k£ = 10 neighbors, where
the threshold for external inactivation was set to m = 4.
We then chose r = 0.78, 3 = 10, and 7. = 1 as the
parameter values that faithfully reproduce the charac-
teristics of recorded Ca2™ traces (Supplementary Fig. [3)).
Finally, we began simulations with p* = 0.90 to place
the network into the inactive part of the phase space,
but subsequently decreased this value to p* = 0.28 to
position the network close enough to the critical point
for the activity to pick up substantially (Supplementary
Fig. 4} see also Supplementary Fig. 5| for some additional
model properties near the critical point). The decrease
of p* follows a decrease in probability rate p, which in
turn is a response to an increased glucose concentration.
As mentioned, the presence or absence of stimulatory
glucose concentration modulates the response of individ-
ual beta cells, while the response of the beta-cell collec-
tive remains muted until a certain critical threshold of
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Figure 3. Conserved entire cell-cell conductance of

coupled beta cells in stimulatory glucose phase is an
emergent collective property. The upper panel focuses
on simulated dynamical network activity in the stimulatory
phase using the same parameters as in Fig. [[E. In simula-
tions, beta cells are represented by nodes, and cell coupling
by links. Each link has a different coupling strength that
varies depending on the dynamical network’s activity. The
lower panel reveals how the conservation of coupling strength
emerges collectively. Coupling between any pair of linked
nodes can either decrease or increase in strength (gray solid
paths), but the ensemble average (black dashed path) remains
unchanged within the limits of statistical fluctuations.

individual cell activity is reached. This behavior mim-
ics the idea, first proposed by modeling studies [33] and
then empirically validated [2I], that the concentration
response of an average electrical activity in beta-cell col-
lectives is steep with respect to glucose sensing. Cell-cell
coupling thus narrows the glucose concentration range
that induces or stops insulin secretion, which is in sharp
contrast with Cx36-deficient mice whose inability to syn-
chronize beta-cell activation, activity, and deactivation
leads to increased basal insulin release |21 [34].

As with the recorded fast calcium oscillations, we cal-
culated the pdf of non-spiking intervals for the binarized
network activity and found the same Poisson process as
in the recorded data (cf. open and solid dots in Fig. [ID).
This calculation, in particular, shows that the similari-
ties between measurements and simulations are not just
superficial, but extend into the statistical domain as well.

To strengthen the case for similarity between measure-
ments and simulations in the statistical domain, we com-
pared additional statistics implied by the data and pre-
dicted by the model. To this end, we first differenced
both measurements and simulations to generate more
stationary time series of fluctuations. We then estimated
the pdf of such fluctuations, and looked for an underlying
theoretical distribution that fits the results well (Fig. .
We found a remarkable correspondence between the pdf
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estimated from the data and the one estimated from
the model predictions. The underlying theoretical dis-
tribution is strongly non-Gaussian, and consistent with
a Lévy alpha-stable distribution with parameter o = 1.3
(Fig. . The Lévy alpha-stable distribution is a signa-
ture of non-linearities and couplings in complex systems
that arise when a system’s components coordinate ac-
tion and function in unison [35]. We thus see that our
model is capable of predicting the statistical properties
of measured signals, and that these predictions underpin
the hypothesis that beta cells operate collectively.

The link between any node pair in the dynamical net-
work corresponds to the coupling between beta cells.
This coupling enables cell-to-cell communication and col-
lective sensing [4], during which a beta cell communicates
with its neighboring beta cells through gap junctions and,
within a limited range, using paracrine signals [4]. A
basic description of the need for communication among
heterogeneous beta cells in an islet has been around for
some time [36], but has only recently been revived in the
light of efficient high-throughput analyses. Such analy-
ses enabled the identification of a number of functional
and non-functional cell subpopulations with their char-
acteristic genetic and expression profiles, incidences, and
diabetes-related changes [37H39].

Here, we could naturally model the heterogeneity
of beta-cell communication channels with the strength
of links between neighboring cells.  Following the
ideas proposed for interneuronal dynamics and synap-
tic strength [26], in each time step, we strengthened
the link between two active nodes in the network by €
with probability ps, and weakened by ze with probability
1—ps. If either of the nodes is inactive, we weakened link
strength by ze. Surprisingly, this simple local rule leads
to the emergence of a statistical conservation law for the
strength of network links as a collective phenomenon [26].
We demonstrated this using the same set of parameters
as in Fig. [[E, and setting ¢ = 0.001 and z = 0.07. We
additionally set the initial values of link strengths by
drawing randomly from an exponential distribution with
unit mean and sufficient standard deviation to capture
the heterogeneity of entire cell-cell conductances between
pairs of beta cells [40]. When the network is highly active
(Fig. [3]A), link strengths increase or decrease depending
on the activity of individual nodes, creating a wide range
of possible outcomes (Fig. ) The ensemble average
link strength, however, is conserved, thus showing that
the collective exhibits a property, namely the statistical
conservation of link strength, that is not embedded into
any individual node. This modeled property corresponds
to the islet-wide conservation of entire cell-cell conduc-
tance seen in experiments [21].

5
A B
c Q
S e
8 1.0¢- ‘= 0.031 ’
o R [ . ,//
& Nee, c e
9 R ey S o e
% ‘..?‘\\ 5 0.02 7 o
2 > § e payd
kel \\ = )/’
0.1 . k"‘ 8 0.01] 5™
T ¢ Inactive | 2 Y i * Active
c Active z i o p Inactive
= b O
2 1 10 100 0 0.05 0.10

Cell-cell distance (px)

Cross-correlation mean

Figure 4. Cross-correlation of Ca’t traces reflects
a collective beta-cell response to the threshold glu-
cose concentration. A, Shown is ratio C(d)/C(0) in non-
stimulatory and stimulatory phases. For a large range of
distances, the empirical cross-correlation is interpretable as
a combination of power law and faster-than-exponential de-
cay, but with different scaling exponents and correlation dis-
tances, mirroring in part a muted collective behavior in the
non-stimulatory phase. B, Linear relationship between the
mean and the variance of empirical cross-correlations is a sig-
nature of the Poisson process, yet the process differs below
and above the threshold glucose concentration as revealed by
two distinct lines that fit the data. This linear relationship
starts to break down for smaller cross-correlation means, and
thus larger distances at which faster-than-exponential cutoff
kicks in (cf. panel A).

EMPIRICAL EVIDENCE OF BETA-CELL
COLLECTIVE BEHAVIOR

If the response of beta cells to glucose is indeed a col-
lective phenomenon, this should be visible in cell-to-cell
communication patterns below and above the threshold
glucose concentration. Taking into account that the in-
tensity of cell-to-cell communication is mirrored by the
cross-correlation structure of measured signals (Supple-
mentary Remark 2; see also Supplementary Fig. @, we
explored this structure by randomly selecting 4,000 Ca2*
traces and calculating cross-correlations

(si85) — (81)(s;)

Cij = 1

! — (1)

between two traces s; and s; at positions ¢ = (z;,y;)
and j = (zj,y;), where o; and o; are the standard

deviations of the traces. To cancel noise, we turned
individual cross-correlations into a function of distance
C(d) = (C;,;), where (-) indicates averaging over all dis-
tances d;; € [d — do, d + dp] with dy = 5 pixels. We calcu-
lated C(d) separately for the non-stimulatory and stim-
ulatory phases, focusing especially on the differences be-
tween them.

In the limit of short distances, which are typical dis-
tances between the pixels inside a single beta cell, the
cross-correlations in both phases are similar. Important
quantitative differences emerge at pixel distances above
10. Interpreting function C(d) as a power-law decay with
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a faster-than-exponential cutoff

Cd)md" exp l— (Ciﬂ, @)

we found that in the stimulatory phase, the correlation
scaling exponent is n = 0.42 and the characteristic cor-
relation distance in pixels is d. = 102 (Fig. ) In
the non-stimulatory phase, the scaling exponent is lower,
n = 0.33, and the correlation distance is shorter, d. = 90.
A shorter correlation distance in the non-stimulatory
phase reflects the fact that below the threshold glucose
concentration, the collective response of beta cells is still
muted.

Because the cross-correlation function is an expecta-
tion of pair cross-correlations, C(d) = (C;;) = E [Cy;], we
could also calculate the associated variances, Var[C;;].
We found that the relationship between Var[C;;] and
E [Cyj] is linear, where two distinct lines corresponding
to non-stimulatory and stimulatory phases have the same
slope, cg=0.25 (Fig. ) This result provides additional
insights into the nature of fast calcium oscillations. In-
tuitively, the cross-correlation gets stronger if simultane-
ous spiking is more frequent and/or larger in magnitude.
That Var [C;;] and E [C;;] are linearly related is a signa-
ture of a Poisson process, thus indicating that the num-
ber of simultaneous spikes in two signals recorded at a
given distance is a Poission-distributed random variable.
We further hypothesize that the number of simultane-
ous spikes is proportional to the number of gap junctions
between nearby cells, in which case slope ¢y is inter-
pretable as an elementary contribution of each cell-cell
interaction to the cross-correlation [41], while the esti-
mated value of cp=0.25 is in broad agreement with a
previous report on collective chemosensing in micropat-
terned fibroblast cell colonies [41]. The two distinct lines
below and above the threshold glucose concentration are
yet another sign that cell-to-cell communication within
beta-cell collectives qualitatively changes in response to
glucose. The distinction between the two phases fades
only at large distances where cross-correlations are very
weak (bottom-left corner in Fig. )

DISCUSSION

This work attempts to understand the activity of
insulin-secreting beta cells as dynamical networks in
which observed oscillatory phenomena emerge from cell-
to-cell interactions within the spatial constraints of a typ-
ical islet rather than from the properties of single cells
alone. In view of a rapid development of electrophysio-
logical probes capable of detecting electrical [42], 3] or
optical [44] activities in pancreatic beta cells, a further
upgrade of our approach may eventually help to better
understand physiology and pathophysiology of beta-cell

collectives and yield important cues for diagnosis, ther-
apy, and prevention of diabetes mellitus (Supplementary
Remark 3).

A way forward in the context of pathophysiology would
be to extract statistical properties of recorded signals,
compare them with similar properties of simulated sig-
nals, and finally infer the model’s parameter values for
which recorded and simulated signals statistically best
match each other. Inferred parameter values close to
the critical point would then suggest a healthy beta-cell
function. Deviations from the critical point, by contrast,
would serve as an early warning signal of a potentially
degenerative condition (Supplementary Fig. E[)

Particularly in relation to beta-cell transplantation, or
better regeneration paradigms in type 1 diabetes melli-
tus, it is critical to understand to what extent beta-cell
collectives have to be replaced or regenerated to reestab-
lish the healthy condition. Much more than just to trans-
plant or regenerate an adequate beta-cell mass, it is im-
portant to enable beta-cell collectives to express dynam-
ical cell-to-cell communication ability with a certain rel-
ative coupling strength. Our results could thus stimulate
the development of novel diagnostic protocols to assess
the improving function of beta-cell collectives until full
recovery. Although it is too early to decide on the merit
of these particular ideas, the future does seem to be in
the right intermix of affordable sensing technologies to ac-
quire data, computational-statistical methods to analyze
data, and—as much as complexity allows—mechanistic
modeling to interpret data.
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SUPPLEMENTARY METHODS

Ethics statement. We conducted tissue isolation for the experiment in strict accordance
with all national and European recommendations pertaining to the care and work with
experimental animals, including taking all efforts to minimize animal suffering. The protocol

was approved by the Veterinary Administration of the Republic of Slovenia (permit number:

U34401-12/2015/3).

Acute pancreas slice preparation. We prepared acute pancreas tissue slices from an 8-
week old NMRI male mouse following a previously reported procedure [S1}[S2]. Briefly, after
sacrificing the mouse, the abdominal cavity was accessed via laparotomy. Then, low-melting
point 1.9 % agarose (Lonza, USA) dissolved in extracellular solution (ECS, consisting of (in
mM) 125 NaCl, 26 NaHCOs3, 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5 KCI, 2 Na-pyruvate,
2 CaCly, 1.25 NaH5POy, 1 MgCly, and 0.5 ascorbic acid) at 38-40°C was injected into the
proximal common bile duct, which was clamped distally at the major duodenal papilla.
Immediately after the ductal system has been successfully filled, the infused pancreas was
cooled with ice-cold ECS and cut out. Tissue slices with a thickness of 140 ym were prepared
with a vibratome (VT 1000 S, Leica) and collected in HEPES-buffered saline at RT (HBS,
consisting of (in mM) 150 NaCl, 10 HEPES, 6 glucose, 5 KCI, 2 CaCly, 1 MgCly; titrated
to pH=7.4 using 1 M NaOH). To allow for staining, slices were incubated for 50 minutes at
RT in dye-loading solution (6 uM Oregon Green 488 BAPTA-1 AM (OGB-1, Invitrogen),
0.03% Pluronic F-127 (w/v), and 0.12% dimethylsulphoxide (v/v) dissolved in HBS). All
chemicals were obtained from Sigma-Aldrich (St. Louis, Missouri, USA) unless otherwise

specified.

Calcium imaging. Individual tissue slices were transferred to a perifusion system con-
taining carbogenated ECS at 37°C and exposed to single square-pulse-like glucose stimula-
tion with 8 mM (6 mM glucose has been regarded as substimulatory concentration). Imaging
was performed on Leica TCS SP5 AOBS Tandem II upright confocal system (20x HCX
APO L water immersion objective, NA 1.0). Acquisition frequency was initially set to 10
Hz (512x512 pixels). OGB-1 was excited by argon 488nm laser line and emitted fluores-
cence was detected by Leica HyD hybrid detector in the range of 500-700 nm (all from Leica

Microsystems, Germany) as described previously [S2].

2


https://doi.org/10.1101/765933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/765933; this version posted December 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Data preprocessing. The ensemble-averaged raw signal (Supplementary Fig. ) exhibits
fast spikes superimposed on slow oscillations, themselves superimposed on a diminishing
trend due to dye fading. With focus only on the fast part of the signal, we first used SciPy’s
detrend function [S3] to remove the gradual amplitude decline (Supplementary Fig. [1B). We
thereafter proceeded to separate fast spikes from slow oscillations, to which end we performed
signal filtering with proxTV toolbox [S4]. This toolbox is a modern implementation of the
total variation denoising technique, which attempts to approximate an original signal with
a signal that is “close” to this original (in the sense of a chosen metric), but at the same
time minimizes the total variation (and thus noise). Applying this technique returns slow
oscillations (Supplementary Fig. ), which can then be subtracted from the detrended
signal to finally isolate fast spikes (Supplementary Fig. ) It is these fast spikes and their

statistical properties that we analyzed and modeled in the main text.
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Supplementary Figure 1. Signal preprocessing I. A, Raw ensemble-averaged Cat signal show-
ing fast spikes superimposed on slow oscillations, themselves superimposed on a long-term negative
trend. B, With focus only on fast part of the signal, we first removed the negative trend using

SciPy’s detrend function.
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Supplementary Figure 2. Signal preprocessing II. A, Slow oscillations obtained by applying
total variation denoising to the detrended signal. B, Subtracting slow oscillations from the de-
trended signal reveals residual fast spikes. The saturation kinetics of the Ca; -dependent insulin
release suggests that this release is dominated by fast spikes over slow oscillations. It is largely for

this reason that we focus on statistical properties and mathematical modeling of the former.
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SUPPLEMENTARY REMARK 1

Here, we present comparisons between the dynamical network model and the empirical
data, as well as some additional calculations that characterize the model. The model has five
key parameters. These are the node degree, k, the threshold number of inactive neighbors,
m, the inactivation probability rate when m or more neighbors are inactive, r, the relaxation
time after an internal inactivation, 7, and the fraction of internally inactive nodes, p* [S5l[S6].
For a given network size of N = 100 nodes, with node degree k£ = 10 and threshold number
m = 4, we looked for the values of the remaining three parameters that best correspond to
fast Ca®" traces in a statistical sense. Specifically, taking one typical trace (Supplementary
Figure ) and standardizing it, we find that the skewness is 2.9, while the kurtosis is 12.7.
It turns out that by setting » = 0.78, 7 = 10, and p* = 0.28, the dynamical network model
produces time series with remarkably similar skewness and kurtosis. These moments for the

example in Supplementary Figure are 2.8 and 12.9, respectively.

The dynamical network model is capable of emulating the response of beta cells to glucose
stimulation due to node connectivity and mutual, local interactions between node pairs,
thus presumably emulating the main characteristics of the beta-cell functional syncytium.
More specifically, glucose stimulation of beta cells in experiments corresponds to a decrease
in internal node inactivation, p*. For a given external inactivation probability rate, r,
this implies less suppression from the neighboring nodes. At first the effect is gradual,
but near the critical point suppression almost collapses altogether, and network activity
picks up instead (Supplementary Fig. ) This is in line with empirical evidence that in
a coupled configuration, beta cells mute each other’s response to glucose up to a threshold
concentration (7 mM in mice), producing a much steeper response curve than in an uncoupled

configuration [S7, [S§].

From a system dynamics perspective, far from the critical point, the dynamical network
model settles in a low-activity equilibrium. As the critical point is approached, however,
the high-activity equilibrium becomes more and more influential, which manifests in an
increased network activity (Supplementary Fig. [dB). To test the validity of this intuitive
explanation, we examined the standard deviation of modeled time series across a range of p*
values. Due to a phenomenon known as critical slowing down [S9, [S10], we expected to see

the evidence of more variation near the system’s critical point. In line with our expectation,
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the standard deviation indeed spikes close to the critical point, thus confirming that the
dynamical network model behaves as we described herein (Supplementary Fig. )

The last property of the dynamical network model examined here is the model’s cross-
correlation structure. We find that the cross-correlation decreases with distance in the net-
work, and generally gets stronger as the model’s critical point is approached from above
in terms of the forcing variable, p* (Supplementary Fig. [fB). This is analogous to the
measured cross-correlation in beta-cell islets (cf. Fig. 3A in the main text). Namely, the
cross-correlation in islets also falls quickly with distance, and generally gets stronger as the
threshold glucose concentration of 7mM in mice is exceeded. As mentioned before, the
larger values of glucose concentration correspond to the lower values of the model’s forcing

variable p*, thus completing the analogy.
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Supplementary Figure 3. Empirical and model-generated time series have similar statis-
tical properties. A, Shown is a typical time series of fast Ca?* signaling after standardization
(i.e., the mean is zero and the standard deviation is one). This time series has the skewness of
2.9 and the kurtosis of 12.7. The obtained values are consistent with a standardized time series in
which relatively large positive values are frequent. B, Here, shown is another standardized time
series, but now model-generated with parameters set to r = 0.78, 7 = 10, and p* = 0.28. This
time series has skewness and kurtosis very similar to its empirical counterpart above. Specifically,

the skewness is 2.8 and the kurtosis is 12.9.
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Supplementary Figure 4. Dynamical network activity increases near the critical point. A,
Dynamical network model emulates glucose stimulation of beta cells by having the external model
forcing, i.e., parameter p*, approach the critical point. Far from the critical point, the dynamical
system is under influence of only one, low-activity equilibrium, but near the critical point network
activity picks up because of an increasing influence of the second, high-activity equilibrium (see,
e.g., [S9, [S10]). Shown is the average network activity over many realizations for each value of
parameter p* and two fixed values of . When r = 0.95, corresponding to very strong cell coupling,
a hysteresis loop appears as even spontaneous phase flipping becomes possible. Beta-cell coupling,
however, is not that strong because we obtain the best results with values around r» = 0.78. B,
Phase diagram of the dynamical network model with three dynamical domains: high activity, low
activity, and bi-stable. The curves separating these domains are called spinodals. An increasing
glucose concentration in reality corresponds to approaching the (upper) spinodal from above in
the model. Near the critical point, in particular, the high-activity equilibrium becomes influential
in a sudden, non-linear fashion, generating a more active network in simulations. This effect is

a consequence of node connectivity and local mutual interactions between node pairs that mimic

beta cells and the beta-cell functional syncytium.


https://doi.org/10.1101/765933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/765933; this version posted December 1, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

A B
3008_ ’S? r=o 8 008_ 1sté%:ACt|Ve r=0.6
> o, - ﬁ,

[ i1 G
0.061 o -~
° i 3
S i %\’ B Inactive
o 2! ©
© 0.04- q"-' I\ @
> "I" u |-
3 %4:3 1 S
T 0.021 g % o
3 o
C O
©
)
n

0.0 0.2 0.4 0.6 .
Internally inactive fraction (p*)

Supplementary Figure 5. Variation and cross-correlation of network activity change near
the critical point. A, Shown is the variation of network activity as measured by the standard
deviation. The variation spikes near the critical point. This is due to stochasticity that causes
the dynamical network model to occasionally flip between the basins of attraction of low- and
high-activity equilibria. The black trace corresponds to an increasing glucose concentration (i.e.,
forcing variable p* decreases), whereas the red trace corresponds to the concentration moving in the
opposite direction. B, Cross-correlation structure of the dynamical network model is qualitatively
similar to the measured cross-correlation in pancreatic islets. Here, shown is the cross-correlation
between first, second, and third neighbors in the network. We kept the glucose concentration in
the experiments within a relatively narrow range of 6-8 mM, which is just around the threshold
concentration for beta cells in mice. In the dynamical network model, however, the upper con-
centration value of 8 mM should correspond to a value of forcing variable p* close to the model’s
critical point, while the lower concentration value of 6 mM should not be too far either (marked
by two dashed red vertical lines). The model’s cross-correlation decreases with distance and is
generally weaker as the forcing variable increases (i.e., the glucose concentration decreases), which

qualitatively corresponds to the measured cross-correlation (cf. Fig. 3A in the main text).
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SUPPLEMENTARY REMARK 2

To determine the extent to which the cross-correlation structure of measured signals mir-
rors the intensity of cell-to-cell communication we turned to modeling membrane potentials
of two coupled beta cells. Pancreatic beta cells are excitable, neuroendocrine cells that un-
dergo periods of quickly oscillating (i.e., spiking) membrane potential followed by periods of
silent and slowly changing potential. This dynamics is a subject of intensive studies [S11]
that started with Chay-Keizer biophysical model [S12] and a subsequent mathematical anal-
ysis by Rinzel [S13) [S14].

We reproduced a beta-cell model from Refs. [S15-S17] in Python [S3] following an online
example [S1§]. At the core of all beta-cell models aiming to generate realistic cell-membrane
currents, including the one we implemented here, is the Hodgkin-Huxley model [S19]. The
cell membrane is thus described as a capacitor with constant capacitance C,, and ionic
currents flowing through ion channels in the membrane.

Coupling between cells 7 and j is due to gap junctions with conductance g.. Assuming

charge neutrality, the equation for the cell membrane potential is

v
O = (Vi) — Vi~ V3. (s1)

The model incorporates three different ionic currents. Two currents, I, and Ik, represent
the spiking transport of calcium and potassium, respectively. Current I is a slow, inhibitory

potassium current that controls bursting behavior. Accordingly
Lion(Vin,s) = Ico(V) + Ix(V,n) + IV, s). (S2)
Each ionic current can be written in the form
I =g.(V -V, (S3)

where g, is one of the ion-channel conductances and V, is the corresponding Nernst potential.

More concretely, we have

[Ca = moogCa(V - VC&)7 (S4)
Ix = (ngk + grate)(V — Vk), (S5)
[s = SQS(V - VK)7 (86)
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which includes three gating variables, m, n, and s, to make the ion-channel conductances
dynamic. The dynamics of gating variable m is, in fact, assumed to be so fast that this
variable is always in a voltage-dependent equilibrium, m.,. The two remaining variables

change in time according to

dn  \,
ds 1

The equilibria of gating variables are given by

1
T T T exp (Vi = V)/S)’ (59)
Moy = ! (S10)
14 exp((V, = V)/S,)’
oo = ! (511)

1+exp((Vs—V)/Ss)

Note that these equilibria attain values between zero and one depending on how cell-
membrane potential V relates to potentials V, and S, whose values are defined below. The
set of equations can be extended with an equation for intracellular calcium-ion concentration
) (512)

in which case equilibrium value s, and relaxation timescale 7, become functions of ¢ [S20].
To perform computations, we needed to set the parameter values. Starting with beta-
cell membrane capacitance, we used C,, = 5000fF and g. = gxarp/5, where ggxatp =
120 pS. Parameters for the fast calcium channel were gc, = 1000pS, Ve, = 25.0mV,
Vi, = —20.0mV, and S,, = 12.0mV. Parameters for the fast potassium channel were
gk = 2700pS, Vg = =75.0mV, A\, = 0.95, 7, = 20.0ms, V,, = —16.0mV, and S,, = 5.6 mV.
Parameters for the slow, inhibitory potassium channel were g, = 200.0 pS, 7, = 20000 ms,
Ve = —=52.0mV, and S, = 5.0mV. The slowness of this channel is reflected in large relax-
ation timescale 7, which is three orders larger than the corresponding relaxation timescale 7,
for the fast channel. Finally, parameters for the intracellular calcium-ion concentration were
a=45x10" uMfA~tms™, k. = 0.2ms™!, and f = 0.01. To add high-frequency noise to
the cell membrane potential, we perturbed the signal in each timestep with Gaussian noise

term ¢ whose mean was zero and standard deviation 0.002.
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The described model generates typical bursting oscillations in the form of a steady alter-
ation between spiking and silent states (Supplementary Fig. [6A). For the present study, it
is crucial that the cross-correlation coefficient between the two shown membrane potential
traces depends on the gap junctional conductance. Specifically, after setting up the model’s
parameters such that weakly coupled cells exhibited bursting (Supplementary Fig. ), we
started increasing the relative coupling strength (i.e., the ratio of gap junctional to Karp-
channel conductances), and recording said cross-correlation coefficient. For weakly coupled
cells, we found that the cross-correlation increases linearly with coupling strength until the
coupling turns strong, and cells become fully synchronized (Supplementary Fig. @C) The
obtained linear relationship indicates that more strongly coupled cells (i.e., those having a
better means of cell-to-cell communication) also produce more strongly correlated signals.
An immediate implication is that the estimated cross-correlation is a reflection of cell-to-cell

communication.
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Supplementary Figure 6. Cross-correlation between electric potentials of coupled beta
cells is dependent on the gap junctional conductance. We obtained this result using a
well-known mathematical model of beta-cell electrical activity described in the text. A, Shown
are the membrane potential and the level of the slow gating variable as the functions of time.
Model successfully generates typical bursting oscillations in the form of a steady alteration between
spiking and silent states. B, Zooming into the plotted signals reveals that the model accounts for
the electrical activity of two coupled beta cells. A sure tell sign of weak coupling is the phase
shift that develops between the potentials during the burst. C, Cross-correlation of the membrane
potentials of two weakly coupled beta cells, computed with and without Gaussian noise current.
The cross-correlation coefficient is indeed proportional to the gap junctional conductance (relative

to Karp-channel conductance) until saturation at large coupling strengths.
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SUPPLEMENTARY REMARK 3

Dynamical networks offer means to study damage accumulation and the consequences
of such damage on network operation [S2I]. In the context of the present study, damage
accumulation by which individual nodes become unable to enter, e.g., the active state, would
correspond to the progression of a disease similar in nature to type 1 diabetes mellitus. To
demonstrate the effects of damage accumulation on network operation, particularly on the
collective mode that is presumably vital for glucose homeostasis, we computed the average
network activity after a period of transient dynamics during which nodes that turn inactive
may stay locked in that state. Specifically, when a node is in the inactive state, the relaxation
time of this node may change with probability ¢ from the default value of 7 = 10 to 7 > 10.
The node thus stays permanently inactive throughout a finite lifetime simulation.

The results of permanent node inactivation are striking. At first, the dynamical network
responds to damage accumulation with a linear decrease of activity in time (Supplementary
Fig. ) When the critical amount of damage accumulates, however, the non-linear loss of
activity is sudden and large, i.e., the network’s collective mode of operation becomes com-
promised (Supplementary Fig. ) Furthermore, the average network activity may severely
diminish through the course of a finite lifetime, provided that the value of parameter ¢ is
large enough (Supplementary Fig. ) Translating these results into a better understand-
ing of the collective beta-cell operation, we see that a lowered average network activity may
correspond to the onset of a disease such as type 1 diabetes. This disease is indeed known to
arise from beta-cell dysfunction such that postprandial increases in blood glucose concentra-
tion can no longer be counteracted. Armed with these concepts, we conclude that devising
cheap, effective, and unobtrusive diagnostic techniques is a matter of complementing rea-
sonable technological advances with well-established statistical methods. The technology in
question is high-fidelity data loggers to monitor and record beta-cell activity. Signals thus
recorded could then be subjected to statistical analyses to detect the early signs of trouble,

recognizable as deviations from normal beta-cell functioning in the collective mode.
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Supplementary Figure 7. Damage accumulation leads to a failure of the collective network
mode. Shown is a stylized situation in which the dynamical network is highly active (p* =
0.01, » = 0.90, and 7 = 10), but whenever a node turns inactive, there is a good probability,
denoted ¢, that the inactivation is permanent. Such inactivation would correspond to beta-cell
dysfunction reminiscent of the progression of type 1 diabetes. A, Damage accumulation is slow
at first, leading to a linear decrease of the dynamical network’s activity over time. This changes
as the critical amount of damage is accumulated, in which case the network suddenly loses the
ability to activate a large proportion of nodes, i.e., the network’s collective mode of operation
is compromised. Technically, the damage keeps accumulating thereafter as well, but at a very
slow pace. B, Here, we show the average network activity after a period of transient dynamics,
i.e., calculated using timesteps 5000-6000, as a function of the permanent inactivation probability,
g. When this probability is small, the dynamical network remains largely operational over long
periods of time. Increasing ¢ values correspond to faster damage accumulation, which is why, for

large enough ¢, the failure of the collective mode becomes inevitable within the given time window.

This is evidenced by a steep drop in the average network activity around ¢ = 0.12.
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