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Abstract

Animals vary considerably in size, shape, and physiological features across individuals, but yet
achieve behavioral performances that are virtually indistinguishable between conspecifics. We
examined how animals compensate for morphophysiological variation by measuring the system
dynamics of individual knifefish (Eigenmannia virescens) in a refuge tracking task. Kinematic
measurements of Eigenmannia were used to generate individualized estimates of each fish's
locomotor plant and controller revealing substantial variability between fish. To test the impact of
this variability on behavioral performance, these models were used to perform simulated ‘brain
transplants'—computationally swapping controllers and plants between individuals. We found that
simulated closed-loop performance was robust to mismatch between plant and controller. This
suggests that animals rely on feedback rather than precisely tuned neural controllers to
compensate for morphophysiological variability.

Introduction
Animals routinely exhibit dramatic variations in morphophysiology between individuals but can
nevertheless achieve similar performance in sensorimotor tasks (Sponberg et al., 2015; Bullimore
and Burn, 2006). Further, individual animals can experience rapid changes in their own morpho-
physiological features, such as extreme weight changes that occur during and between bouts of
feeding. For example, mosquitos can consume more than their body weight (Van Handel, 1965) and
hummingbirds can consume up to 20 % of their body weight (Hou et al., 2075) in a single feeding.
How neural control systems accommodate these changes is not known.

The behavioral performance of an individual animal is determined via an interplay between
its ‘controller’ and ‘plant’ (Kiemel et al., 2011; Van Der Kooij and Peterka, 2011; Cowan et al., 2014;
Dickinson et al., 2000; Hedrick et al., 2009). The plant typically includes musculoskeletal compo-
nents that interact with the environment to generate movement (Hedrick and Robinson, 2010;
Sefati et al., 2013; Maladen et al., 2009). The controller typically includes sensory systems and neu-
ral circuits used to process information to generate motor commands (Cowan and Fortune, 2007;
Kiemel et al., 2011; Lockhart and Ting, 2007; Roth et al., 2014). From the perspective of control
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Figure 1. Experimental and computational approach. (A) Eigenmannia virescens maintains its position, y(r),
in a moving refuge. r(¢) is the position of the moving refuge. (B) A feedback control system model for refuge
tracking. The feedback controller C(s) maps the error signal, e(r), to a control signal u(r). The plant P(s), in turn,
generates fore-aft movements y(r). We used measurements of the nodal point as u(r) to estimate P(s) in each
fish, which was subsequently used to back-calculate C(s). (C) We computationally swapped the individually
tailored controllers between fish. (D) Feedback control topology illustrating computational brain swaps. The
controller from the light gray fish, C,(s), is used to control the plant of the dark gray fish, P, (s), and vice versa.

Figure 1-video 1. A real-time video recorded at 30 fps from below of an Eigenmannia virescens tracking a
moving refuge at 0.55 Hz. The movement of the refuge and fish are plotted below the video.

theory, one might expect the dynamics of the controller to be precisely tuned to the dynamics of the
plant, resulting in an optimal control law that reduces variability in task performance (Todorov, 2004;
Franklin and Wolpert, 2011; Bays and Wolpert, 2007). Were this the case, variations across individ-
uals in morphophysiological features of their plants should manifest in commensurate differences
in each animal's controller. Alternatively, the central nervous system (CNS) may be implementing
robust feedback control that attenuates morphophysiological variability at the behavioral level
without the need for precise tuning.

Investigating this phenomena requires separate estimates for plants and controllers. However,
the classical input-output system identification of behavioral tasks—using only the sensory input
and the behavioral output—is limited to generating closed-loop control models of behavioral re-
sponses. Data-driven system identification of the underlying neural controllers or locomotor plants
requires additional observations such as a measurement of the control output. Electromyograms
(EMGs) are the most commonly used proxy for the output of the neural controller. EMGs allow
separate data-driven estimates of the controller and plant (Kiemel et al., 2011; Van Der Kooij and
Peterka, 2011) but require understanding the coordination strategy across multiple groups of
muscles that interact in fundamentally nonlinear ways (Ting and Macpherson, 2005).

We studied refuge tracking in a species of weakly electric fish Eigenmannia virescens (Figure 1),
a system that permits identification of input-output dynamics as well as the locomotor plant via
behavioral observations alone. Like an “aquatic hummingbird”, Eigenmannia precisely hovers in
place, making rapid and nuanced adjustments to its position in response to the movement of
the refuge in which it is hiding (Rose and Canfield, 1993; Roth et al., 2011; Uyanik et al., 2019b)
(Figure 1-video 1). During refuge tracking, individual Eigenmannia generate fore-aft thrust forces
using undulatory motions of their ventral ribbon fin. Undulations are initiated at the rostral and
caudal ends of the fin resulting in counter propagating waves that travel towards each other (Sefati
et al., 2013; Ruiz-Torres et al., 2013). The two traveling waves meet at a position along the ribbon
fin known as the nodal point (Figure 2A, Figure 2-Figure Supplement 1, Figure 2-video 1). In a task
in which the fish maintains position in a stationary refuge, it has been shown that they shift the
rostrocaudal position of the nodal point as a function of steady-state swimming speed (Sefati et al.,
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2013). Indeed, transient movements of the nodal point during dynamic refuge-tracking behavior can
be used as a linear proxy of the output of the neural controller, u(¢). This feature permits separate
identification of the controller and plant for a freely moving animal via behavioral observations
alone. Using this behavioral model system, we examined the variability of plants and controllers
across individuals.

Results

We measured the movement of the nodal point of the ribbon fin of Eigenmannia in a refuge tracking
task. We fit the parameters of a physics-based model (Sefati et al., 2013) of ribbon-fin locomotor
dynamics to these swimming and nodal point data. Next, we inferred the complementary neural
controllers for each individual by using a feedback control model of the input-output behavioral
performance (Cowan and Fortune, 2007). Finally, we performed computational analysis to assess
the role of plant and controller dynamics and feedback in achieving robust behavioral performances.

Estimating a Data-Driven Plant Model

We measured the positions of the nodal point u(z), refuge r(z), and fish y(r) during refuge tracking.
We found that there is an approximately linear relationship between the movement of the nodal
point and the velocity of the fish (Figure 2, Figure 2-Figure Supplement 2). Hence, we used the
nodal point movements as a linear correlate of the output of the neural controller, u(z), that drives
the locomotor plant.

We estimated the frequency response functions (FRFs) of the locomotor dynamics of each fish
using the position of the fish y(r) and its nodal point u(z). Nyquist plots of the estimated FRFs
reveal substantial differences between locomotor plants of individual fish (Figure 3A). Despite these
differences, the estimated FRFs shared a common structure: the locomotor dynamics of each fish
acted as a low-pass filter on the movements of the nodal point. This common structure enables
the application of parametric models, which reduce the complexity of analysis while facilitating
computational manipulations of the model system. We adopted the physics-based parametric
model of locomotor dynamics of Eigenmannia described by Sefati et al. (2013):

(M

Here, m, k, and b represent mass, gain, and damping, respectively, and s is complex frequency (see,
e.g. Roth et al. (20714)). We estimated the parameters in the parametric plant model for each fish
based on their FRFs (Figure 3A, black lines) via numerical optimization (see Materials and Methods)
(Figure 3-Figure Supplement 1). Finally, we estimated the plant for a ‘merged fish, in which the data
from the three fish were concatenated. The differences in the FRFs between individuals resulted in
substantial differences (about twofold) in estimated model parameters (Table 7). Moreover, the
merged fish has plant dynamics that differ from each of the individual fish (Figure 3A, bottom),
highlighting the need to use individualized plants for the analysis of the control system of each fish.
Despite the differences in plant dynamics, fish produced remarkably similar tracking performance,
consistent with previously published reports (Cowan and Fortune, 2007; Roth et al., 2017).

Table 1. Estimated parameters of the plant model for each fish as well as the merged fish.

fish 1 fish2 | fish3 merged
k(N/m) | 0.3228 | 0.2200 | 0.1622 | 0.2385
b(Ns/m) | 0.0417 | 0.0186 | 0.0218 | 0.0269
m(kg) 0.0025 | 0.0025 | 0.0025 | 0.0025
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Figure 2. Movement of the nodal point during refuge tracking. (A) Eigenmannia virescens partitions its
ribbon fin into two counter-propagating waves that generate opposing forces (Sefati et al., 2013; Ruiz-Torres
et al., 2013). The rostral-to-caudal and caudal-to-rostral waves collide at the nodal point (green line).
Movements of the nodal point serve as a proxy for the control signal, u(s). Gray lines indicate the positions of the
peaks and troughs of the traveling waves over time. In this trial, the refuge was following a sinusoidal trajectory
at 2.05 Hz. (B) Movement of the nodal point u(r), position of the fish y(r), and position of the refuge r(z) of 13 trials
at 0.95 Hz. Semi-transparent lines represent data from individual trials, green and blue lines are the means.

Figure 2-Figure supplement 1. Steady-state position of the nodal point. Three examples of steady-state,
constant-speed swimming that illustrate how the peaks and troughs of the ribbon fin wave propagate toward
the nodal point. The purple lines indicate the positions of the peaks and troughs of the traveling waves initiated
at the rostral end of the ribbon fin. Orange lines indicate the traveling waves initiated at the caudal end of the
ribbon fin. These waves meet at the nodal point (green). (left) Peaks, troughs, and nodal point reference location

during station keeping, dy/dt = 0. (center) The nodal point shifts caudally relative to the reference position
during steady-state forward swimming, dy/dt > 0 and (right) shifts rostrally for backward swimming, dy/dt < 0.
Figure 2-Figure supplement 2. Movement of the refuge, fish and nodal point. Averaged movements (across
all trials for one fish) of the nodal point u(r) (green) and the fish y(¢) (blue) with respect to refuge movements r(z)

(red) at A) 0.55Hz, B) 0.95Hz, and C) 2.05 Hz.

Figure 2-video 1. A high-speed video recorded at 100 fps from below an Eigenmannia virescens while tracking
a moving refuge at 2.05 Hz. The video is stabilized with respect to fish position to illustrate the movements of
the head and tail waves that form the nodal point. The inset shows the rectangular area around the ribbon fin
of the fish. The video is played in real-time (10 repetitions), at 0.3x speed (3 repetitions) and at 0.1x speed (1
repetition).

Examining the Effects of Feedback on Behavioral Variability

Behavioral robustness could be achieved via precise tuning between the controller and plant
dynamics of each fish. Alternatively, the central nervous system (CNS) may be implementing robust
feedback control without the need for precise tuning. To test these hypotheses, we built feedback
control models that permit computational manipulation of the relationships between controller
and plant. We used the second order model proposed by Cowan and Fortune (2007) to represent
the input-output behavioral response of the fish:

Aw?

G(s)= ———— 2
©) 52+ 2w, s + w? 2)

We estimated the parameters for each fish using their movement response y(¢) to refuge movements
(). In other words, we generated individualized parametric transfer functions that capture the
input-output behavioral performance of each fish. Parameters varied by about 15-20% (Table 2).

We investigated how the variability in plant dynamics (twofold) is mitigated at the level of
behavior (15-20%). Specifically, we back-calculated a controller for each fish using models of
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their respective plant dynamics and input-output behavioral responses. Given the plant P(s) and
behavioral performance G(s) of each individual fish, back-calculation yields a feedback controller
for each fish in the following form (Cowan and Fortune, 2007):
G(s)
W= T=66nPo) ®
Estimates of controllers and plants for individual fish allowed us to implement computational
manipulations in the system models. To evaluate the fitness of a given computational model for

explaining the biological data, we defined a metric termed ‘trial-to-trial variability’, which provides

Table 2. Estimated parameters of the second order input-output model for each fish as well as the merged fish.

fish 1| fish2 | fish3 | merged
A 0.53 | 0.60 | 0.52 | 0.57
& 0.58 | 0.55 | 0.52 | 0.55
w,(rad/s) | 855 | 9.51 | 7.88 | 8.50
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Figure 3. Effects of feedback on behavioral variability. At the top of each column is a control diagram that corresponds to all figures in that
column. (A) Nyquist plots of the estimated plant models for each individual fish and the merged fish. Black lines represent the response of the
estimated model with diamonds indicating their values at the test frequencies. Blue, green and cyan point clouds correspond to bootstrapped data
estimates for the low (0.55 Hz), medium (0.95 Hz) and high (2.05 Hz) frequencies, respectively. (B) Bode gain and phase plots of the estimated
input-output models for the matched (orange), swapped (gray), and merged (green) fish in a feedback control topology. (C) Variability of the
matched (orange) and swapped (gray) models. Dashed line is the trial-to-trial variability observed in the tracking data across fish. (D) Same as in (B)
but for the loop gain, P(s)C(s). (E) Same as in (C) but for the loop gain, P(s)C(s).

Figure 3-Figure supplement 1. Reconciliation of physics-based and data-driven models. The solid lines represent the natural feedback control
system used by the fish for refuge tracking. The dashed lines represent copies of signals used for parametric system identification. P(s) represents
the parametric transfer function for the plant dynamics of the fish with “unknown” system parameters. The parametric system identification
estimates these parameters via minimizing the difference (modeling error) between the actual output of the fish y(r) and the prediction of the
model.
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a conservative estimate of the behavioral variability observed across trials in the real fish. See
Materials and Methods (Trial-to-trial Variability) for details. Trial-to-trial variability across frequencies
can be seen in Figure 3C,E (black dashed lines).

Having defined the ‘trial-to-trial variability’, we first computed the tracking performance of each
fish using its own controller and plant (‘matched’, Figure 3B). Unsurprisingly, the variability of the
matched models was lower than the trial-to-trial variability (Figure 3C, orange region versus dashed
line). See Materials and Methods (Model Variabilty) for details.

To test the hypothesis that the animals rely on precise tuning between their plants and con-
trollers, we substituted the controller of each fish with the plant dynamics of other fish (Figure 3B),
i.e. a simulated brain transplant (‘swapped’). If the controllers and plants need to be co-tuned, then
we would expect a significant increase in variability in the swapped models. Surprisingly, however,
the variability remained below the trial-to-trial variability (Figure 3C, gray region versus dashed line).
These results highlight the fact that sensory feedback can attenuate the output variability despite
mismatch between the controller and plant pairs. In other words, feedback models do not require
precise tuning between the controller and plant to achieve the low variability we observed in the
behavioral performance of the animals.

Having established that output variability is robust to the relations between the plant and
controller in a feedback system, we examined the role of feedback. This was achieved by examining
the loop gain, i.e. the dynamic amplification of signals that occurs in feedback systems (Figure 3D).
For our model, this was calculated as the product of the plant and controller in both matched
and swapped cases. This removal of feedback revealed dramatic variability in the loop gain at
frequencies below about 1 Hz (Figure 3E). This variability was well above the trial-to-trial variability
observed in fish. In contrast, at frequencies above 1 Hz, the variability was slightly reduced. These
results suggest that sensory feedback attenuates behavioral variability in the biologically relevant
range of tracking frequencies at a cost of slightly increased variability at high frequencies.

Parametrizing the Range of Neural Controllers
As predicted by Cowan and Fortune (2007), each of the feedback controllers obtained above for
the averaged fish responses had high-pass filtering characteristics despite the differences in their
dynamics (Figure 4A). What is the range of neural controllers that, when used in this feedback
control topology, leads to behavior that is indistinguishable from the real fish? In other words,
how well tuned to the plant does the neural controller need to be to achieve these behavioral
performances?

We used the Youla-Kucera parametrization to obtain a range of controllers that generate similar
behavioral responses (Kucera, 2011). Specifically, this parametrization provided a parametric
transfer function describing all stabilizing controllers for the merged plant:

G, O(s)
O T Rm00 @
Here, P,(s) is the transfer function of the merged plant and Q(s) is any stable and proper function.

Equation 4 parametrizes all stabilizing controllers for the merged plant P, (s). However, we were
interested in finding the subset of controllers that yields indistinguishable behavioral performances
from the real fish. To achieve this, we computed the range for the input-output system dynamics,
G(s), of real fish response. Specifically, we calculated the bounds for the gain and phase responses
of the 1000 input-output transfer function models estimated while computing the trial-to-trial
variability (see Materials and Methods). The gray shaded areas in Figure 4B serve as the range of
FRFs that are consistent with trial-to-trial variability.

For each of these 1000 transfer functions G(s) that are consistent with the trial-to-trial vari-
ability of the fish, we selected Q(s) = G(s)/ P, (s) to generate 1000 corresponding controllers using
Equation 4. The bounds for gain and phase responses of these 1000 controllers (the gray shaded
regions) show the breadth of controllers that, when implemented within the feedback control topol-
ogy, produce behavioral outputs consistent with the performance of the real fish (see Figure 4A).
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Figure 4. Feedback controllers satisyfing the trial-to-trial variability. (A) Bode plots for the estimated
controllers for the matched (orange) and merged (green) fish under feedback control. Each controller exhibits
high-pass filter behavior across the frequency range of interest. Gray shaded regions represent the range of
controllers that produce behavioral responses consistent with trial-to-trial variability. (B) The range of
behavioral input-output transfer functions consistent with trial-to-trial variability.

Note that the controllers calculated in Equation 3 also satisfy the structure of Equation 4 when
0O(s) = G(s)/ P(s) for the associated plant dynamics P(s) of each fish.

These results suggest that the neural controllers need not be precisely tuned to their associated
plant dynamics. We found a wide range of controllers that the fish could implement to generate
consistent behavioral performance, although we note that each of these controllers had high-pass
filtering characteristics. A similar robustness analysis can also be performed to obtain a range for
locomotor dynamics (such as defining bounds for a parametric uncertanity), which are consistent
with the trial-to-trial behavioral variability for a given controller.

Discussion

Feedback-based task control allows animals to cope with dramatic but nevertheless common varia-
tions of their plant dynamics between individuals. Further, individuals can experience variations in
plant dynamics over time such as instantaneous increases in weight during feeding (Van Handel,
1965; Hou et al., 2015), muscle fatigue during repetitive behaviors (Enoka and Stuart, 1992), or
carrying heavy objects (Zollikofer, 1994). These changes likely result in variable mismatch between
the neural controller and the locomotor plant of individual animals. This mismatch is similar to that
induced by swapping plants and controllers across individuals, suggesting that moment-to-moment
variability can also be eliminated through sensory feedback.

Deciphering the interplay between the task plant, behavioral performance, and neurophysio-
logical activity requires understanding the impacts of the closed-loop control topology. Given the
range of morphophysiological features observed across individuals within a species, our results
suggest that there is also a range of controller dynamics—ultimately manifest as neurophysiologi-
cal activity—that each individual could use to achieve consistent biologically relevant behavioral
performances. As a consequence, we expect to see more variation at the neurophysiological level
than is revealed by task performance for behaviors that rely on closed-loop control.

Reconciling Data-Driven and Physics-Based Models of Locomotor Dynamics

A key contribution of this work is the identification of a data-driven plant model for the locomotor
dynamics of a freely behaving animal based on behavioral observations only. To achieve this,
we adopted a grey-box system identification approach that seeks to reconcile a physics-based
parametric transfer function model with a non-parametric data-driven model (i.e., the frequency-
response function).
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Developing a model from first principles, e.g. Newton's laws, is sometimes an effective modeling
approach for describing the dynamics of a physical system. For instance, a widely used model in
legged locomotion is the spring-loaded inverted pendulum (SLIP) model for describing running
dynamics in the sagittal plane (Blickhan and Full, 1993; Full and Koditschek, 1999). While physics-
based models have proven to be successful in modeling the dynamics of biological and mechanical
movements, there are limitations. Physics-based approaches for modeling behaviors at lower levels
(e.g., the spiking activity of all motor neurons) may lead to a very complex model that does not
accurately capture high-level behavior.

Data-driven system identification approaches are used to directly identify a dynamical model
based on empirical data (Ljung, 1998; Kiemel et al., 2011; Uyanik et al., 2019a). In general, data-
driven system identification may take a black-box approach in which only a general model structure
is assumed (say, an ODE or frequency response function). However, data-driven techniques typically
generate numerical transfer function estimates to represent animal behavior.

Alternatively, the so-called grey-box approach that we adopt in this paper, integrates the struc-
ture of a specific physics-based model—but leaves its parameters free—with data-driven system
identification—to fit those parameters. In this case, prior knowledge about the underlying dynami-
cal model informs and constrains data-driven system identification. Grey-box identification can
provide a bridge between top-down, data-driven modeling and bottom-up, physics-based modeling.
We utilized the parametric dynamical model of Sefati et al. (2013) for the plant but estimated the
model parameters using data-driven system identification techniques. Our results show that the
data-driven estimates for the plant dynamics match the structure of this model (Figure 3A).

Effects of Variability in Plant Dynamics
Our results reveal two complementary perspectives on variability in plant dynamics. On the one
hand, estimates of the closed-loop controllers were highly sensitive to the dynamics of the plant of
individual fish. This was an inevitable consequence of our strategy for estimating the controllers—
back-calculating the controllers from the plant and closed-loop dynamics—rather than, in and of
itself, refuting the precise tuning hypothesis. On the other hand, our closed-loop control models
were robust to variability of either the plant or controller, indicating that precise tuning is not
needed for this behavior. A control-theoretic sensitivity analysis demonstrates that these results
are not unique to this example but rather are a general property of feedback control systems (see
Csete and Doyle (2002) for a review).

Specifically, consider the frequency dependent sensitivity function of the feedback controller
C(s) with respect to plant P(s), in the closed-loop topology:
aC [ G(jo) 1

0P~ [G(jw) - 1| P2(jow) ©

Siceplio) =

The sensitivity of the controller to the plant dynamics is a frequency dependent function. It depends
on the gain and phase of both the measured closed-loop transfer function G(jw) as well as the
plant model P(jw). At low frequencies, fish track extremely well and thus G(jw) — 1 =~ 0. At high
frequencies, the low-pass plant P(jw) is small. Combining these factors, we expect the sensitivity
|S(jw)| to be large across frequencies. In other words, there is an inescapable sensitivity to plant
dynamics when the controllers are estimated using this computational strategy.

We conducted a complementary analysis to compute the sensitivity of the closed-loop tracking
response G to perturbations in the combined controller and plant dynamics PC. We treated the
controller-plant pair PC as a single variable and obtained the frequency-dependent sensitivity

function as
0G 1

OPC ~ (14 PC(jw))*’
At low frequencies, G(jw) has nearly unity gain and thus PC(jw) goes to 0. As a result, sensitivity
S.cpc) approaches zero. At high frequencies, PC(jw) goes to zero and thus sensitivity is bounded
around one. Thus, the closed-loop transfer function (in the presence of sensory feedback) is robust

(6)

S(G<—PC)(J'CO) =
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against variability of controller-plant pairs despite the fact that the controller estimates are sensitive
to plant variations.

Feedback and Variability in Neural Systems

These findings suggest that a fish could implement a range of controllers in its nervous system for
refuge tracking. These controllers must have high-pass filtering characteristics, but their details
may be inconsequential. This has two implications for neurophysiological analysis of neural
control systems. First, neurophysiological activity within control circuits in open-loop experiments
(e.g. playback and anesthetized/immobilized animals) need not appear to be well tuned for the
control of a behavioral performance. This poor tuning, which may manifest in variability that
appears across levels of functional organization—from variability in neural activity within neurons,
variability in tuning across neurons, and variability across individuals—is refined via feedback during
behaviors in which the feedback loops are intact. Second, there must be mechanisms by which the
controllers are slowly (at time constants greater than that necessary for the moment-to-moment
control of the behavior) tuned to the dynamics of the animal's locomotor plant. For instance,
adaptation of cerebellar activity in relation to mismatch between intended versus actual motor
performances contribute to the retuning of neural controllers (Morton and Bastian, 2006; Bell
et al., 1997; Pisotta and Molinari, 2014).

Feedback is mediated both through the effects of behavior on sensory receptors and via de-
scending pathways in the brain. Behavior generally results in concomitant activation of receptor
types across the animal, which can include, for example, simultaneous stimulation of stretch
receptors embedded in muscles and visual receptors in eyes. Correlations in feedback-related
activity across sensory modalities likely contribute to robust control (Roth et al., 2016). Internal
feedback pathways, interestingly, have been recently shown to synthesize sensory filtering proper-
ties of behaviorally-relevant stimuli. Descending neural feedback is used to dynamically synthesize
responses to movement (Metzen et al., 2018; Huang et al., 2018; Clarke and Maler, 2017). The
dynamic synthesis of filters based on current sensory information maybe a mechanism that shapes
neural controllers on two time scales: for the moment-to-moment task dynamics and over the
longer term for the maintenance of behavioral performances.

Materials and Methods
All experimental procedures with fish were reviewed and approved by the Johns Hopkins University
and Rutgers University Animal Care and Use Committees and followed guidelines for the ethical use
of animals in research established by the National Research Council and the Society for Neuroscience.
Adult Eigenmannia virescens, a species of weakly electric Gymnotiform fish, were obtained
through commercial vendors and housed in laboratory tanks. Tanks were maintained at a tempera-
ture of approximately 27° C and a conductivity between 50 — 200 xS . We transferred individual fish
to the experimental tank about 1 day before experiments for acclimation. Three fish were used in
this study.

Experimental Apparatus

The experimental apparatus is similar to that used in previous studies (Stamper et al., 2012; Biswas
et al., 2018; Uyanik et al., 2019h). A refuge machined from a PVC pipe with a length of 15¢cm and
5.08 cm diameter was placed in the experimental tank with the fish. The bottom face of the refuge
was removed to allow video recording from below. Six windows, 0.625cm in width and spaced
within 2.5 cm intervals, were machined onto each side to provide visual and electrosensory cues.
During experiments, we actuated the refuge using a linear stepper motor with 0.94 um resolution
(IntelLiDrives, Inc. Philadelphia, PA, USA) driven via a Stepper motor controller (Copley Controls,
Canton, MA, USA). MATLAB (MathWorks, Natick, MA, USA) scripts were used to control the movement
of the refuge and to capture video. Video data were captured using a pco.1200s high speed camera
(Cooke Corp., Romulus, Ml, USA) with a Micro-Nikkor 60 mm f/2.8D lens (Nikon Inc., Melville, NY,
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USA). All videos used for data analysis were shot at 30 frames per second with 1280 x 1024 pixel
resolution. Some videos of ribbon fin motion were shot at 100 frames per second.

Experimental Procedure

Refuge movement consisted of single sine waves of amplitude 0.1 cm and of frequencies 0.55,
0.95, and 2.05 Hz. The amplitude of refuge movements was chosen because fish rely on counter
propagating waves for tracking in this regime (Roth et al., 20117). At higher amplitudes, fish often
will use a uni-directional wave in the ribbon fin for locomotion. The frequencies were selected to be
within the normal tracking regime as determined in previous studies (Stamper et al., 2012; Biswas
et al., 2018; Uyanik et al., 2019b). Trials were randomized with respect to frequency. Each trial
lasted 60 seconds. The stimulus amplitude was linearly ramped up over the first ten seconds to
prevent startle responses from the fish. During the experimental phase, the stimulus frequency
and amplitude were maintained for 40 seconds. Finally, the stimulus amplitude was ramped down
during the final ten seconds. Trials were separated by a minimum break of 2 minutes.

Reconciling Data-Driven and Physics-Based Approaches to Estimate the Locomotor
Dynamics

The position of the refuge and fish were tracked for each video using custom software implemented
in MATLAB. The videos were analyzed to extract 3 to 10 seconds segments, where the fish used
counter propagating waves for refuge tracking. Then, the nodal point was hand clicked in these
video segments: 18000 nodal point measurements were made over a total of 106 segments of data.

The physics-based plant model in Sefati et al. (20713) was previously validated with quasi-static
open-loop experiments. Here we reconciled the physics-based plant model from Sefati et al. (2013)
(Equation T) with the data that were collected in tracking experiments.

For each frequency of refuge movement, M segments of nodal point data were extracted. Each
segment of data consists of the following measurements: nodal point shift {x", 4, ..., u"} and fish
position {yy,yy,...,y"} as a function of time {#]', ¢}, ..., ¢}, where n is the number of samples and

={1,2,....,M}.

We estimated the magnitude and phase of the plant model for each frequency of refuge
movement. The average value of nodal point shift and fish position were computed from M data
segments per fish for each frequency of refuge movement. We aligned each data segment based
on the phase of refuge signals. The segments are not completely overlapping: we selected the
largest time window with at least 50 percent overlap of data segments. A sine wave function of the
following form was fitted to the average nodal point data, u,,, (1), and average fish position data,
@), as

avg

Y, avg

A, sinQrfit+¢,)+ B,, (7)
A, sinQrfit+ )+ B,, 8

Uy (1)

Vavg(®)

where input-output pairs (4,, 4,), (¢,,$,) and (B,, B,) correspond to magnitudes, phases and DC
offsets in polar coordinates, respectively. Note that this fitting was done separately for each refuge
frequency, f; = {0.55,0.95,2.05} Hz.

After computing the magnitude and phase for both the average nodal shift and fish position, we
estimated the magnitude and phase for the plant transfer function at w, = 2z f; as

. A,
1PGo)l = =, 9)
2P(jw) = ¢,-¢,. (10)

We obtained a non-parametric estimate of the plant transfer function for each frequency w,,
i.e. P(jw,) by estimating magnitude and phases. We used P(jw,) to estimate the parameters
of the transfer function model given in Equation 1. In this model, there are three unknown
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parameters, namely m, k, and b. However, for the fitting purposes we reduced the number of
unknown parameters to two by normalizing the “gain” (k) and “damping” (b) by dividing by “mass”
(m). The normalized plant transfer function in Fourier domain takes the form

k/m _ k/m
(joP + (b/m(jo)  —w?+ (bjo/m)’

P(jw) = (11
For an ideal deterministic system, for each frequency P(jw,) = P(jw,), where P(jw,) corresponds
to the non-parametrically computed frequency response function. For this reason, estimates of
transfer function parameters were made by minimizing a cost function using gradient descent
method:

3
J(k/m,b/m) =Y |P(jo) = P(jw)|*. (12)
i=1

Trial-to-trial Variability

We examined variability on a trial-to-trial basis for the three individual fish at the three test fre-
qguncies. Specifically, across all three fish, we made 37 observations of the frequency response at
f; =0.55Hz, 35 observations at f; = 0.95Hz, and 34 at f; = 2.05Hz, namely:

{G,(j270.55), G, (j270.55), ... , G;,(j270.55)}
{G,(j270.95), G, (j270.95), ... , G45(j270.95)} (13)
(G,(j272.05), G,(j272.05), ..., G4, (j272.05)}

To estimate the trial-to-trial variability at frequencies that were not explicitly tested, we used a
parametric approach. Specifically, we constructed 1000 triplets by randomly selecting one FRF from
each of the test frequencies in Equation 13. For each of the 1000 triplets, we estimated a transfer
function of the form in Equation 2 by using Matlab’s transfer function estimation method ‘tfest'.
The variability of the behavioral responses were computed from 0.2 Hz to 2.05 Hz by evaluating the
fitted parametric transfer function at each frequency and computing the largest singular value of
the central covariance matrix as described in Variability Metric. In addition, the range of the gain
and phase of these 1000 transfer function models was plotted in Figure 4B.

Model Variabilty

The variability across “matched” and “swapped” models was calculated using the frequency re-
sponses for both closed-loop transfer function, G(s), (Figure 3B) and loop gain, P(s)C(s)), (Figure 3D).
For the “matched” case, we calculated the variability across the three “matched” models. Similarly,
for the “swapped” case, we calculatd the variability across the six “swapped” models. Specifically,
variability of these models were computed from 0.2 Hz to 2.05 Hz by evaluating the frequency re-
sponse functions of the associated matched and swapped models (described below). Figure 3C,E
illustrate the variability of the “matched” and “swapped” models both for closed-loop control and
loop gain.

Variability Metric

The variability metric was used to compute trial-to-trial and model variability. The largest singular
value of the central covariance matrix of a set of frequencies responses at a given frequency was
used as a metric for variability. Specifically, let G,(jw,) be a distinct (complex-valued) frequency
response function of the fish's refuge tracking response at w, for a trial i, Vi € {1,2, ..., N'}. Variability
across these N trials at w, was calculated as follows. Let x; and y, be real and imaginary parts of the
complex-valued frequency response function, namely G,(jw,) = x; + jy;. The covariance matrix for
the estimated frequency response function in the complex domain was calculated as

0.”70 0]

wy __ xx xy
Cov = |7 %0 (14)

yx DA
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where
1 N
o) = - )

CE = DICEE (15)

1 N
6;3? = N =1 ;(yl_ﬂy) s (16)

1 N
oy =00 = w3 Z( i~ M= Hy) - (17)

Here, u, and u, are meanvalues of x; and y,, Vi € {1,2, ..., N}, respectively. Variability was calculated
as the largest singular value of the central covariance matrix, Cov®
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Figure 2-Figure supplement 1. Steady-state position of the nodal point. Three examples of
steady-state, constant-speed swimming that illustrate how the peaks and troughs of the ribbon fin
wave propagate toward the nodal point. The purple lines indicate the positions of the peaks and
troughs of the traveling waves initiated at the rostral end of the ribbon fin. Orange lines indicate the
traveling waves initiated at the caudal end of the ribbon fin. These waves meet at the nodal point
(green). (left) Peaks, troughs, and nodal point reference location during station keeping, dy/dt =
(center) The nodal point shifts caudally relative to the reference position during steady-state forward
swimming, dy/dt > 0 and (right) shifts rostrally for backward swimming, dy/dt < 0.
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Figure 2-Figure supplement 2. Movement of the refuge, fish and nodal point. Averaged move-
ments (across all trials for one fish) of the nodal point u(r) (green) and the fish y(r) (blue) with respect
to refuge movements r(¢) (red) at A) 0.55 Hz, B) 0.95 Hz, and C) 2.05 Hz.
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Figure 3-Figure supplement 1. Reconciliation of physics-based and data-driven models. The solid
lines represent the natural feedback control system used by the fish for refuge tracking. The dashed
lines represent copies of signals used for parametric system identification. P(s) represents the
parametric transfer function for the plant dynamics of the fish with “unknown” system parameters.
The parametric system identification estimates these parameters via minimizing the difference
(modeling error) between the actual output of the fish y(r) and the prediction of the model.
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