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Abstract 

 

Purpose ​: Several recent studies have utilized a 3-tissue constrained spherical deconvolution           

pipeline to obtain quantitative metrics of brain tissue microstructure from diffusion-weighted           

MRI data. The three tissue compartments, comprising white matter-, grey matter-, and CSF-like             

(free water) signals, are potentially useful in the evaluation of brain microstructure in a range of                

pathologies. However, the reliability and long-term stability of these metrics has not yet been              

evaluated.  

Methods​: This study examined estimates of whole brain microstructure for the three tissue             

compartments, in three separate test-retest cohorts. Each cohort has different lengths of time             

between baseline and retest, ranging from within the same scanning session in the shortest              

interval to three months in the longest interval. Each cohort was also collected with different               

acquisition parameters. 

Results​: The CSF-like compartment displayed the greatest reliability across all cohorts, with            

intraclass correlation coefficient (ICC) values being above 0.95 in each cohort. White matter-like             

and grey matter-like compartments both demonstrated very high reliability in the immediate            

cohort (both ICC>0.90), however this declined in the 3 month interval cohort to both              

compartments having ICC>0.80. Regional CSF-like signal fraction was examined in bilateral           

hippocampus and had an ICC>0.80 in each cohort. 

Conclusion​: The 3-tissue CSD techniques provide reliable and stable estimates of tissue            

microstructure composition, up to 3 months longitudinally in a control population. This forms an              

important basis for further investigations utilizing 3-tissue CSD techniques to track changes in             

microstructure across a variety of brain pathologies.  
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Introduction 

 

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a widely used, noninvasive,          

method for measuring the diffusion of water molecules in the brain. Within the             

microarchitectural environment of the brain, diffusion of water molecules is hindered by various             

cellular components, particularly the lipid bilayers that make up cell membranes. This principle             

has been applied to study white matter fiber bundles (“tracts”), as the myelin sheaths              

surrounding neuronal axons result in anisotropic diffusion (Basser et al., 1994; Pierpaoli & Basser,              

1996; Boullerne, 2016). dMRI has seen widespread use in studies of brain connectivity as well as                

in clinical populations and neurosurgery (Le Bihan et al., 2001; Nimsky et al., 2005; Alexander et                

al., 2007; Johansen-Berg & Behrens, 2013). 

Initially, anisotropic diffusion was typically modelled using a tensor, which sought to            

quantify both the average orientation, anisotropy, and magnitude of diffusion within each voxel             

of the brain; this approach is known as Diffusion Tensor Imaging (DTI, Basser et al., 1994). More                 

recently, the dMRI modelling domain has seen a proliferation in novel, more advanced,             

mathematical methods for analyzing the diffusion-weighted signal. These methods aim to           

overcome several shortcomings of applying the relatively simplistic DTI model to the complex             

diffusion-weighted signals observed in the brain. This complexity primarily arises from two            

physiological qualities of the brain itself: the first being crossing fibers, where white matter (WM)               

tracts occupying the same voxel are oriented differently in space (Wiegell et al., 2000; Tuch et al.,                 

2003); and the second being the presence of other fluids and tissues, including cerebrospinal              

fluid (CSF) and grey matter (GM) and other cell bodies which “contaminate” the directional signal               

(Chenevert et al., 1990; Jones & Cercignani, 2010; ​Rydhög et al, 2017). These are major issues as                 

it has been estimated that up to 90% of WM tissue voxels contain more than one WM fiber tract                   

orientation (Jeurissen et al., 2013), and partial voluming effects alone ensure that a substantial              

number of voxels contain proportions of multiple tissue and/or fluid compartments (Alexander et             

al., 2001). 

To address these issues, and with the advent of high angular resolution diffusion imaging              

(HARDI) acquisition protocols, more advanced methods for describing the observed dMRI data            

have been proposed by a number of researchers (Tournier et al., 2011; for reviews see Assaf &                 

Pasternak, 2008; and Dell’Acqua & Tournier 2018). One such method, Constrained Spherical            

Deconvolution (CSD), allows for the presence of multiple fibers along different orientations            

(Tournier et al., 2007). CSD resolves these orientations by deconvolving the signal profile             

corresponding to a prototypical single fiber-like voxel (termed a response function) from the             

observed signal in each and every other voxel, resulting in the orientation of fibers as a                

continuous angular function termed the Fiber Orientation Distribution (FOD). Quantitative          

information can also be obtained from the FOD, as a measure of “Apparent Fiber Density” (AFD)                

for each fiber population (Raffelt et al., 2012). 
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The original (“single-tissue”) CSD has been expanded into Multi-Shell Multi-Tissue CSD           

(MSMT-CSD) by performing a similar deconvolution with 3 separate WM, GM, and CSF-like tissue              

response functions. The approach was initially aimed at separating signal originating from GM             

and CSF-like tissue compartments, in order to improve the accuracy of the WM FOD itself, which                

otherwise appears very noisy (with many false positive “peaks” or lobes) when using single-tissue              

CSD in areas of partial voluming with other tissues and fluids (Jeurissen et al., 2014). This                

subsequently benefits several other analysis and processing steps, such as streamline           

tractography, which heavily rely on a “clean” and accurate WM FOD. MSMT-CSD thus attempted              

to address the main shortcomings of the DTI model as well as additional remaining shortcomings               

of single-tissue CSD.  

As its name hints at, MSMT-CSD requires a ​multi-shell ​diffusion acquisition scheme in             

order to successfully tease apart contributions from the 3 WM-, GM- and CSF-like compartments              

at once. However, to obtain the same benefits offered by MSMT-CSD, yet using only ​single-shell               

data, Dhollander & Connelly, (2016) have proposed a novel approach named Single-Shell 3-Tissue             

CSD (SS3T-CSD) that can resolve the WM-, GM- and CSF-like compartments as well. By relying               

only on ​single-shell data, it allows for shorter acquisition times and is compatible with a wider                

range of data, both historical as well as clinical.  

Resolving these different compartments using either 3-tissue CSD method (i.e.,          

MSMT-CSD or SS3T-CSD) holds value beyond improving WM tractography: it can also serve as a               

proxy for the evaluation of brain microstructure and tissue composition (Dhollander et al., 2017;              

Mito et al., 2018; Mito et al. 2019). By interrogating brain voxels for diffusion signal patterns that                 

look ‘like’ compositions of the diffusion signals represented by the WM/GM/CSF response            

functions, it might be possible to gain quantifiable information about microstructure (Figure 1).             

Using these basic compartments as a diffusion signal model focuses more on coarse properties of               

brain tissue microstructure rather than separating similar cell types (e.g. different populations of             

glial cells), or separating different types of pathology (e.g. edema, CSF-infiltration in            

neurodegeneration, and damage from ischemic stroke). Although, provided with a known           

context, reasonable inferences of such pathology might be possible to make nonetheless. Even             

for WM tractography in cases of infiltration by pathological tissues, the 3-tissue CSD approach              

can provide direct benefits in terms of recovering healthy WM structures, e.g. in infiltrating              

tumors (Aerts et al. 2019). 
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Figure 1: ​Axial slices showing a T1-weighted MPRAGE and the GM-, CSF-, and WM-like tissue 

compartments derived from the dMRI data using 3-tissue CSD.  

 

3-tissue CSD derived compartments are a promising, non-invasive method for exploring           

tissue composition in the brain. The utilization of this approach toward analyzing tissue             

composition might hold advantages over tensor-based models such as Free Water Elimination            

(FWE, Pasternak et al., 2009). The free water estimate from the FWE technique was shown to                

have limited reproducibility: errors ranged from 5.2-18.2% across ROIs in a test-retest cohort             

(Albi et al., 2017). The CSF-like compartment from 3-tissue CSD techniques might provide an              

alternative way to recover free water contribution to the signal, using a WM model that does                

take into account crossing fibres (as opposed to a tensor method). With the advances provided in                

SS3T-CSD, it is also able to provide signal contribution from the full 3 tissue compartments using                

single-shell data (i.e. equivalent to acquisition requirements for the FWE technique), allowing for             

a broader range of input data compared to other 3-tissue compartment models such as NODDI               

(Zhang et al., 2012). In a recent review of microstructural diffusion imaging applied to psychiatric               

disorders, Pasternak et al., (2018) illustrated the acquisition sequence complexity compared to            

the number of microstructure compartments evaluated for several common dMRI analysis           

techniques. Addition of MSMT-CSD and SS3T-CSD illustrate the range of data required for input              

to a range of models and the capabilities of resolving compartments compared to other              

techniques (Figure 2). 
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Figure 2: ​Chart adapted from Pasternak et al., (2018); comparison of common DTI and other 

model metrics to CSD derived tissue signal fractions by requirements of acquisition (rows) and 

number of output compartments (columns). Methods derived from CSD have been added in red.  

 

 

To date, there has not been a quantitative test-retest study examining the reliability and              

long-term stability of 3-tissue CSD techniques. The purpose of this study is to provide evidence               

that 3-tissue CSD techniques are a reliable and stable approach for assessing brain             

microarchitecture, via analysis of the 3 resulting tissue signal fractions. 

 

Methods 

 

Cohorts​: Three test-retest cohorts were retrospectively evaluated in this study: two local            

datasets collected at the University of Virginia from ongoing research projects, and one publicly              

available dataset obtained from the Nathanial Kline Institute for Psychiatric Research: enhanced            

test-retest (eNKI-TRT) as part of the 1000 Functional Connectomes Project (Biswal et al., 2010;              

Nooner et al., 2012). Both studies collected at the University of Virginia received ethical approval               

from the University of Virginia Institutional Review Board for Health Sciences Research. Each             

cohort has different time intervals between baseline and retest scans, and was collected with              

different acquisition parameters. This approach allows reliability to be measured under           

conditions that represent a variety of different diffusion imaging parameters. Examining stability            
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across different time periods allows for insight into the potential for longitudinal studies tracking              

changes in 3-tissue signal fractions in individuals or between groups over time.  

The first cohort (”​immediate rescan​” cohort) examined immediate test-retest reliability by           

performing identical dMRI acquisitions sequentially without table repositioning. This cohort          

consisted of individuals participating in a separate study at the University of Virginia that              

included multiple scanning sessions. The cohort consisted of 20 healthy control participants (all             

male, age at baseline: 22.8±3.0 SD). Each participant was scanned twice at each of 3 visits (with                 

the exception of one participant who only attended 2 scans) for a total of 59 baseline-rescan                

pairs collected for analysis.  

The second cohort (”​short timescale​” cohort) is representative of the quality of diffusion             

imaging found in large-scale, open science cohorts. Subjects were selected from the original NKI              

Rockland community study, a group intentionally recruited for similarity to the demographics of             

the broader United States as a whole (Nooner et al., 2012). 20 subjects (5 female, age at                 

baseline: 34.4±12.9 SD) had diffusion MRI data available at both baseline and rescan. All              

participants were rescanned within a range of 7-60 days after baseline. Subjects were ​not              

excluded for any history of illness, and 2 participants had a diagnosed history of prior alcohol                

abuse while 2 other participants had a diagnosed history of a major depressive disorder. Both of                

these diagnoses are known to affect brain function and structure (Oscar-Berman & Marinkovic,             

2007; Jiang et al., 2017) but the nature of the within-subjects design did not necessitate               

removing any individuals from the study.  

The third cohort (”​long timescale​” cohort) was collected as a healthy control group for a               

previously published study conducted at the University of Virginia examining college athletes            

(Reynolds et al., 2017). 52 participants (all male, age at baseline: 21.9±3.3 SD) were re-scanned               

3-4 months after baseline (mean days between scans: 107.9±7.1 SD) and were screened for a               

history of neurologic disease or concussion.  

 

Image Acquisition ​: As discussed previously, data from the three cohorts were acquired using             

different protocols. 

The ​immediate rescan cohort was scanned using a Siemens Prisma 3T scanner with an              

isotropic voxel size of 1.7⨉1.7⨉1.7mm​3​, TE=70ms and TR=2900ms. Using a multi-shell protocol,            

10 b=0 images and 64 gradient directions at both b=1500s/mm​2 and b=3000s/mm​2 were             

acquired. This protocol was applied twice with one immediately following the other without             

actively repositioning the participant in the scanner.  

The ​short timescale cohort was acquired externally and obtained through the           

Neuroimaging Tools and Resources Collaboratory at ​www.nitrc.org ​. Imaging data was collected           

using a Siemens Trio Tim with an isotropic voxel size of 2⨉2⨉2mm​3​, TE=85ms and TR=2400ms.               

Using a single-shell protocol, 9 b=0 images and 127 gradient directions at b=1500s/mm​2 were              

acquired.  
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The ​long timescale cohort was scanned using the same Siemens Prisma 3T scanner as the               

first (immediate rescan) cohort using a different protocol with an isotropic voxel size of              

2.7⨉2.7⨉2.7mm​3​, TE=100ms. Using a multi-shell protocol, 1 b=0 image and 30 gradient            

directions at both b=1000s/mm ​2​ and b=2000s/mm​2​ were acquired.  

 

Analysis​: Data preprocessing was largely identical across all images in all cohorts in the study. 

Images were first denoised (Veraart et al., 2016). Gibbs ringing was then corrected (Kellner et al., 

2016). This was followed by utilizing the FSL package (​“topup”​ and ​“eddy” ​) to correct for 

susceptibility induced (EPI) distortions, eddy currents, and subject motion (Smith et al., 2004; 

Andersson et al., 2003; Andersson & Sotiropoulos, 2016; Andersson et al., 2016). Finally, we 

upsampled the preprocessed data to 1.3⨉1.3⨉1.3mm​3​ isotropic voxels (Greenspan, 2008; 

Kuklisova-Murgasova et al., 2012; Bastiani et al., 2019). These preprocessing steps are largely 

similar to those used in other recently published works (Bastiani et al., 2019; Pietsch et al., 2019; 

Mito et al., 2019; Aerts et al., 2019). Brain masks were obtained for all subjects by performing a 

recursive application of the Brain Extraction Tool (Avants et al., 2014).  

For 3-tissue CSD processing, the 3-tissue response functions were obtained from the data 

themselves using an unsupervised method (Dhollander et al., 2016), resulting in the single-fiber 

WM response function as well as isotropic GM and CSF response functions for each subject. For 

each tissue type (WM, GM, CSF), the response function was averaged across all individuals in 

each cohort to obtain a single unique set of 3-tissue response functions per cohort. For the 

multi-shell​ data in the immediate rescan and long timescale cohorts, MSMT-CSD was performed 

(Jeurissen et al., 2014). For the ​single-shell ​ data in the short timescale cohort, SS3T-CSD was 

performed (Dhollander & Connelly, 2016). For all subjects in all cohorts, this resulted in their 

WM-like compartment (represented by a complete WM FOD) as well as GM-like and CSF-like 

compartments. The CSF-like compartment can in this context also be interpreted as a free-water 

(FW) compartment (Dhollander et al., 2017). Finally, each subject’s three tissue compartments 

were then normalised to sum to 1 on a voxel-wise basis, resulting in the final 3-tissue signal 

fraction ​ maps (Mito et al., 2019); the metrics for which we performed the test-retest analyses in 

this work. 

To measure the CSF-like (free water) signal fraction in the hippocampus of each subject in               

the immediate rescan cohort, a template was first produced from a combination of all 118               

individual scans. This was achieved using an affine, followed by non-linear registration on the              

WM FODs themselves in an unbiased manner (Raffelt et al., 2011). A whole brain WM image                

from the LONI atlas (Shattuck et al., 2008) was registered along with each hippocampus map to                

the template using the ANTs image registration toolbox (Avants et al., 2009) and then              

subsequently warped to each individual scan using the reverse transform from template            

creation. In native space, an average was computed of the CSF-like (free water) signal fractions in                

the ROI, using only voxels with a CSF-like signal fraction smaller than 0.5, to mimic free water                 
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analysis (i.e., to avoid accidentally including voxels outside of the brain parenchyma, which might              

be entirely CSF-filled spaces).  

All processing was performed using a combination of different software packages:           

MRtrix3 (Tournier et al., 2019), MRtrix3Tissue ( ​https://3Tissue.github.io​, a fork of MRtrix3), FSL            

(Jenkinson et al., 2012), ANTs (Avants et al., 2009). 

 

Dataset Tissue Subjects ICC Pearson's Rho p-value 

Immediate rescan CSF-like 59 0.9731 0.9636 <0.001 

  WM-like 59 0.9868 0.9748 <0.001 

  GM-like 59 0.9929 0.9868 <0.001 

  LH CSF-like 59 0.9578 0.9181 <0.001 

  RH CSF-like 59 0.9376 0.8915 <0.001 

Short timescale (7-60 days) CSF-like 20 0.9546 0.9281 <0.001 

  WM-like 20 0.9692 0.9423 <0.001 

  GM-like 20 0.9852 0.9700 <0.001 

  LH CSF-like 20 0.9332 0.9169 <0.001 

  RH CSF-like 20 0.9094 0.8469 <0.001 

Long timescale (3-4 months) CSF-like 52 0.9564 0.9364 <0.001 

  WM-like 52 0.8157 0.7200 <0.001 

  GM-like 52 0.8746 0.8024 <0.001 

  LH CSF-like 52 0.8516 0.7421 <0.001 

  RH CSF-like 52 0.8217 0.7118 <0.001 

 

Table 1: ​Statistical analysis of the 3 test-retest cohorts in the experiment; p-values are calculated 

based on the Pearson’s correlation. For each cohort the left hippocampus (LH) and right 

hippocampus (RH) were selected as ROIs and the CSF-like (free water) signal fraction was 

measured to examine the reliability of 3-tissue CSD derived free water estimates in subcortical 

structures specifically as well.  
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Results 

 

The CSF-like (free water) tissue signal fraction map was restricted to voxels where the              

corresponding WM and GM signal maps summed to greater than 50%. This allowed for analysis               

of the CSF-like signal fraction in tissue without including the ventricles or subarachnoid space, the               

bulk size of which would otherwise bias a proper whole-brain free water measurement.             

Additionally, the CSF-like infiltration into brain tissue is a potentially more interesting            

measurement in the context of healthy functioning or pathology; and is indeed designed to be               

comparable to measurements of free water encountered in the literature (Pasternak et al.,             

2009). For all cohorts, results from the 3-tissue signal fractions were averaged across the brain               

parenchyma. Averages for baseline and retest values were compared by calculating the intraclass             

correlation coefficient (ICC) and Pearson’s correlations. The results for both of these measures             

are summarized in Table 1. 

Specific test-retest correlations for each of the three tissue types derived from the             

3-tissue CSD techniques are presented in Figures 3-5. All correlations between baseline and             

retest were significant in all cohorts; the highest whole brain ICC values were obtained from the                

immediate rescan cohort (Figure 3). In the ​short timescale cohort, similar to the immediate              

rescan cohort, all compartments had an ICC value above 0.95 and Pearson’s Rho above 0.90               

(Figure 4). The ​long timescale cohort had slightly declined performance, yet with the ICC value for                

all compartments still being larger than 0.80 (Figure 5). 

 

 

 

Figure 3 ​: ​Immediate rescan ​ baseline and re-scan values for CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort scanned with a duplicate sequence immediately 

following baseline. Includes ICC and Pearson’s correlation values.  

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2019. ; https://doi.org/10.1101/764506doi: bioRxiv preprint 

https://doi.org/10.1101/764506
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4 ​: ​Short timescale ​ baseline and re-scan values from CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort with 7-60 days between baseline and re-scan. 

Subjects were taken from the eNKI group and their single-shell dMRI data analyzed with 

SS3T-CSD. Includes ICC and Pearson’s correlation values. 

 

 

 

Figure 5 ​: ​Long timescale ​ baseline and re-scan values from CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort with 3 months between baseline and re-scan. 

Includes ICC and Pearson’s correlation values.  

 

In each cohort, the hippocampi were also analyzed separately in order to demonstrate the utility               

of a 3-tissue CSD approach in a specific region of interest. Bilateral hippocampus was selected for                

this demonstration as a commonly studied brain ROI with representation from each of the three               

tissue compartments examined. Comparison of average CSF-like (free water) signal fraction in            

this ROI between baseline and retest in the ​immediate rescan ​cohort resulted in an ICC value                

above 0.90 in both left and right hippocampus, as well as a significant Pearson’s correlation               

(Figure 6). In the ​short timescale ​cohort both left and right hippocampus similarly had an ICC                

value above 0.90 and a significant Pearson’s correlation (Figure 7). In the ​long timescale ​cohort               
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the reliability was reduced with an ICC value above 0.80 but a still significant Pearson’s               

correlation (Figure 8). 

 

 

 

 

Figure 6 ​: CSF-like signal fraction for the left and right hippocampus in the 59 pairs of 

baseline-retest scans in the ​immediate rescan ​ cohort. Values for the right hippocampus of each 

individual are shown in red and values for the left hippocampus are shown in blue.  
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Figure 7 ​: CSF-like signal fraction for the left and right hippocampus in the 20 pairs of 

baseline-retest scans in the ​short timescale​ cohort. Values for the right hippocampus of each 

individual are shown in red and values for the left hippocampus are shown in blue.  
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Figure 8 ​: CSF-like signal fraction for the left and right hippocampus in the 52 pairs of 

baseline-retest scans in the ​long timescale ​ cohort. Values for the right hippocampus of each 

individual are shown in red and values for the left hippocampus are shown in blue.  

 

There was a consistent asymmetrical effect observed between the CSF-like signal fraction 

in right and left hippocampus across all cohorts. The CSF-like signal fraction in each subject’s right 

and left hippocampus were averaged between baseline and rescan and a paired t-test performed 

for each cohort. This showed that there was a significantly greater CSF-like signal fraction in the 

right versus the left hippocampus (T​58​ = -10.022, p<0.001; T​19​ = -6.002, p<0.001; and T​51​ = -23.486, 

p<0.001; for the ​immediate rescan, short timescale, ​and ​long timescale ​ cohorts, respectively).  
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Discussion 

 

Each of the 3-tissue signal fractions demonstrated good reliability across all of the             

measured timescales we assessed in this work. ICC values were above 0.95 for each of the tissue                 

compartments included in the ​immediate rescan and ​short timescale cohorts. This occurred            

despite the ​short timescale cohort being ​single-shell data with a b-value of 1500s/mm​2​, and a               

lower voxel size compared to the other two cohorts (both of which were ​multi-shell and had                

highest b-values of b=3000s/mm​2 and b=2000s/mm​2 for the ​immediate timescale and ​long            

timescale cohorts, respectively). This result suggests that 3-tissue CSD techniques can reliably            

obtain quantitative measurements across a range of diffusion imaging protocols, including from            

openly available datasets. This performance, however, declined slightly in the ​long timescale            

cohort: the CSF-like (free water) signal fraction within tissue still had an ICC value above 0.95                

while the WM-like and GM-like signal fractions had a slightly lower ICC value, yet still above 0.80                 

nonetheless. Regardless, all Pearson’s correlations were highly significant, indicating that 3-tissue           

CSD techniques are still able to obtain reliable measurements of brain tissue microstructure,             

stable up to 3 months from baseline.  

Additionally, the free water signal fraction demonstrated good reliability in both           

hippocampi at each of the examined timescales. ICC values were above 0.80 and a significant               

effect of laterality was observed consistently across each cohort, with the right hippocampus             

having significantly higher free water signal fraction than the left hippocampus. Though this study              

does not suggest any hypothesis for why this laterality was observed, it is consistent with               

volumetric MRI findings that demonstrate hippocampal asymmetry (for a meta-analysis see           

Pedraza et al., 2004), as well as a recent study that reported asymmetry in hippocampal free                

water content (Ofori et al., 2019). This suggests that free water signal fraction is both a reliable                 

quantitative measurement for subcortical ROIs, and that it may be able to detect meaningful              

microstructural properties of such regions.  

Standard neuroimaging techniques do not provide quantifiable data on brain          

microstructural architecture, however this study has demonstrated a reproducible and reliable           

method for obtaining whole brain maps with quantifiable estimates of brain microstructure. This             

measure is stable enough to be used in longitudinal studies lasting at least up to three months;                 

and provides information on a voxel- or region-wise basis for analysis of subcortical structures,              

lesions, or developing brains (Dhollander et al., 2017; Mito et al., 2018; Mito et al., 2019; Bastiani                 

et al., 2019). Related microstructural analysis of free water signal fractions has been performed in               

the context of Parkinson’s disease (Ofori et al., 2015; Burciu et al., 2016), Schizophrenia              

(Pasternak et al., 2012; Mandl et al., 2015), and concussion (Pasternak et al., 2014). 3-tissue CSD                

techniques may thus have the potential to be applied to a variety of these and other neurological                 

conditions.  
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3-tissue CSD derived tissue fractions provide a flexible framework for analyzing diffusion            

images in ways not addressed in this paper. While we examined the reliability of              

WM/GM/CSF-like tissue signal fractions here, other researchers have used response functions           

representing different tissue compartments when contextually appropriate. Pietsch et al., (2019)           

applied two different WM response functions representing mature and immature WM in a             

developing adolescent cohort to observe WM maturation. Mito et al., (2019) proposed to apply              

a statistical framework of compositional data analysis to analyze the full 3-tissue composition of              

WM-, GM- and CSF-like signal fractions directly to study microstructure in white matter lesions,              

following the initial suggestion of moving towards such WM/GM/CSF-like diffusion signal fraction            

interpretation by Dhollander et al. (2017). In Aerts et al., (2019), this idea was furthermore used                

for the purpose of disentangling WM FODs representing infiltrated WM tracts in the presence of               

gliomas, so as to enable more reliable within-tumor tractography. Similar work has also recently              

been done by Chamberland et al., (2019), who illustrated the use of 3-tissue signal fractions in                

the presence of cerebral metastases, both to assess their microstructure as well as to enable               

tractography through nearby edematous regions. 

The relatively recent use of CSD to describe the diffusion signal (Tournier et al., 2007) has                

led to some measure of controversy when compared to other established analysis techniques             

such as those based in multi-tensor models. One particular area of concern has been noted as                

the generation of ‘false-fibers’ on tracking algorithms due to spurious fODF peaks (Parker et al.,               

2013; Ning et al., 2015). Some studies using recent methodological improvements have            

suggested that the prevalence of false-fibers in CSD is oversold compared to other methods              

(Wilkins et al., 2015; Schilling et al., 2018). In this study 3-tissue CSD demonstrated good               

reliability across all compartments, suggesting that if false-positive fibers are present, they are             

not large enough component of the overall signal in each voxel to introduce significant amounts               

of variance in the corresponding signal fractions.  

An additional benefit provided by 3-tissue CSD methods is in the potential for tissue type               

specific masking. The CSF-like compartment presented in this paper is calculated as CSF-like             

diffusion in tissue by relying on the other compartments to identify which voxels were ‘tissue’.               

Unlike a binary tissue segmentation based on T1 intensity, calculations of WM- and GM-like              

signal fraction compartments together were used to define voxels where ‘tissue’ composed a             

majority of signal from each voxel. This process relied exclusively on the single, native space               

diffusion image instead of reslicing and warping a separate structural image or atlas. Future              

studies might be able to take advantage of this approach by examining tissue compartment              

magnitudes inside voxels defined by the behavior of other tissue compartments. For example,             

tracking CSF-like (free water) tissue infiltration into voxels defined by the high proportion of              

WM-like tissue during aging or in certain pathological contexts.  
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Conclusion 

 

In this study, we performed a test-retest reliability and longer term stability analysis of              

the 3-tissue signal fractions as obtained from 3-tissue CSD techniques. We found that 3-tissue              

CSD techniques provide reliable and stable estimates of tissue microstructure composition, up to             

3 months longitudinally in a control population. This forms an important basis for further              

investigations utilizing 3-tissue CSD techniques to track changes in microstructure across a variety             

of conditions.  
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