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Abstract

As single-cell experiments generate increasingly more cells at reduced sequencing
depths, the value of a higher read depth may be overlooked. Using data from two
contrasting single-cell RNA-seq protocols that lend themselves to having either higher
read depth (Smart-seq) or many cells (MARS-seq) we evaluate the trade-offs in the
context of pseudo-spatial reconstruction of the liver lobule. Overall, we find gene
expression profiles after spatial-reconstruction analysis are highly reproducible between
datasets. Smart-seq’s higher sensitivity and read-depth allows analysis of lower
expressed genes and isoforms. Our analysis emphasizes the importance of selecting a
protocol based on the biological questions and features of interest. Additionally, we
evaluate trade-offs for each protocol by performing subsampling analyses, and find that
optimizing the balance between sequencing depth and number of cells within a protocol

is important for efficient use of resources.

Introduction

Single-cell RNA sequencing (scRNA-seq)'-® is a powerful tool for studying
transcriptional differences between individual cells. The innovation of droplet-based
techniques®’ and unique molecular identifiers (UMI)® has lowered the cost per cell and
pushed the field towards obtaining data from tens of thousands of cells per experiment
albeit at a reduced sequencing depth. Recent publications have compared the
sensitivity, accuracy, and precision between several scRNA-seq techniques and report
the major trade-off between protocols is sensitivity, which is dependent on read
depth®10. With the push for sequencing an ever-increasing number of cells at the
expense of read depth per cell, the value of a higher read depth might be overlooked.
Here we investigate the trade-off of more cells versus higher read depth in the context
of pseudo-spatial reconstruction by comparing two independently produced scRNA-seq

datasets on mouse liver lobule, one using Smart-seq?--a full-length protocol and one
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using MARS-seq''--a UMI based protocol. Although the cell number and read depth
differ greatly, we find high reproducibility between protocols of gene expression profiles
after spatial-reconstruction analysis. We find that the increased read depth of the Smart-
seq protocol enables studies of lower expressed genes and isoforms of genes. Our
results demonstrate the importance of carefully evaluating the biological question and
features of interest when selecting the appropriate sequencing protocol. In applications
focused on lower expressed genes or on genes with high sequence similarity, increased
read depth is preferable, whereas a focus on identifying cell types based on more highly
expressed genes will benefit from collecting more cells. In an ideal situation a single cell
assay would result in thousands of cells that are all sequenced at a high read depth, but
technical and financial restrictions make this rarely possible.

Studies comparing protocols have mainly done so with respect to performance
on spike-ins or on technical variability alone®'°. Recently, Guo et al.'> showed
agreement of cell types and signature genes between two protocols used for single-cell
RNA-seq for Fluidigm C1 and Drop-seq. However, few studies have examined
comparative agreement among protocols for biological inferences beyond clustering
and identifying differential gene expression, and a key question of interest with single-
cell data is its ability to reflect temporal or spatial heterogeneity. For cells collected at a
given time, the underlying dynamic biological process is reflected in genome-wide
differences in gene expression. Computational algorithms that attempt to order cells in
pseudo-time or pseudo-space based on variability in gene expression have been

developed*'>' and more than 45 existing algorithms were recently compared™®. Yet,
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91 as far as we know, no comparison of single-cell protocols exists for the question of cell
92  ordering.
93 Here, we chose to compare protocols on their ability to reflect the spatial
94  patterning of the liver lobule. The main functional cells of the liver, hepatocytes, are
95  organized spatially in a polygonal shape around a central vein (Figure 1A). From the
96 central vein, a gradient of metabolic functions is performed extending to a portal vein at
97  each vertex'®2°. The gradient of differences in gene expression patterns is referred to
98 as the zonation axis (from periportal (PP) to pericentral (PC))?'. This coordinated spatial
99  organization provides a particularly interesting application of single-cell techniques. For
100 this study we obtained scRNA-seq data from 66 hepatocytes using the Fluidigm C1
101  system with the Smart-seq full-length protocol, and compare this dataset at the gene
102  level to a dataset collected by Halpern et al. 2017 containing 1415 hepatocytes using
103  the MARS-seq protocol with UMI's?? (Figure 1A). We compare the ability of these two

104  single-cell datasets to spatially resolve the zonation axis of the liver.

105
106 Results
107 By using the Fluidigm C1 coupled with the Smart-seq protocol, we were able

108 identify on average around 38% (about 7100 genes) (Figure 1B) of all genes in the

109 genome expressed per cell, whereas the MARS-seq dataset finds on average 12%

110  (about 2100 genes) (Figure 1B) of all genes in the genome expressed per cell. This is in
111  accordance with what was found by Ziegenhain et al. 2017 when they examined the

112 methods, and underscores the increased sensitivity of the Fluidigm C1/SMART-seq

113 protocol over MARS-seq®. This increased sensitivity is further illustrated in Figure 1C,
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which on a per gene level shows the difference in detection fraction compared to the log
fold change in mean expression between the two protocols. A difference in detection
fraction of zero means that the gene is detected in the same fraction of cells in both
datasets and a positive value is the result of a gene detected in a larger fraction of cells
in the Smart-seq protocol compared to the MARS-seq protocol, and a negative value
corresponds to the opposite case where the MARS-seq protocol detects the gene in a
higher fraction of cells. The difference across protocols in log2 fold-change has a linear
relationship with the difference in detection fractions, which indicates a fairly constant
increase in log2 expression expected as cells are sequenced with greater sensitivity. At
the intercept, a difference in detection equal to zero, the log2 fold change is 3.4,
indicating an experiment wide increase in sensitivity in the Smart-seq protocol of
approximately 10-fold. In fact, the vast majority of genes are detected in a larger fraction
of cells (positive value on the x-axis) and have a higher expression level (positive value
in the y-axis) sequenced using Smart-seq protocol. Although, it is worth pointing out that
around 6% of genes have higher detection using the MARS-seq protocol (negative
values on x-axis) and a few of these genes also have higher expression levels (negative
values on y-axis) than in the Smart-seq protocol. The subset of genes better detected in
the MARS-seq dataset have higher GC content and are slightly longer (Supplementary

Figure 1), which is consistent with previous reports of protocol comparisons?324.
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134 Figure 1. lllustration of the liver anatomy, and general comparison of the datasets.

135 A) Top. lllustration of the liver lobule identifying the portal triad along the outer edges
136  and the central vein in the middle. The color gradient represents metabolic zonation. A)
137  Bottom. Highlights the main differences between the datasets compared. B)

138  Comparison of gene detection fraction between the datasets. The detection fraction per
139  cell (y-axis) is shown for the two datasets (x-axis). C) The log2 fold-change of genes
140  detected above an average expression level of zero in the Smart-seq dataset compared
141 to the MARS-seq dataset (y-axis), versus the difference in gene-level detection fractions
142  across datasets (x-axis). A linear regression line is overlaid and a histogram of the x-
143  and y-axis are shown opposite of each axis.

144
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145 Next, to represent the spatial patterns across the liver lobule, the cells in the two
146  datasets were computationally ordered according to their expression profiles. The

147 MARS-seq dataset was spatially ordered by Halpern et al. 2017 by first performing

148 smFISH for six marker genes at various locations across the zonation axis, then single-
149  cell RNA-seq data obtained by MARS-seq were assigned into one of nine zonation

150 locations based on each cell's expression profile of the six marker genes??. For the

151  Smart-seq protocol we used a computational algorithm called Wave-Crest to spatially
152  order the 66 cells along the zonation axis (Figure 2A)°. The ordering is based on fifteen
153  marker genes known in the literature to be differentially expressed along the zonation
154  axis. Cells were ordered using the nearest insertion algorithm implemented in the

155 Wave-Crest package. The algorithm searches among the space of all possible

156  orderings via a 2-opt algorithm by considering insertion events and choosing orders
157  which minimize the mean square error of a polynomial regression on the marker genes
158  expression. Of the 15 genes used, we selected eight periportal expressed genes and
159  seven pericentral expressed genes?'. Both orderings assume the zonation profile and

160  spatial organization can be represented in a single dimension.
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162  Figure 2. Pseudo-space reordering of hepatocytes, and prediction and validation of

163  dynamically expressed genes. A) Top. lllustration of the pseudo-spatial reordering of the
164  Smart-seq experiment. Bottom. Heatmap showing the pseudo-spatial reordering (x-axis)
165 and the expression levels of the marker genes (y-axis) for the Smart-seq dataset.

166  Pericentral cells are found on the left-hand side and Periportal cells are found on the
167 right-hand side. B) Scaled expression profile (y-axis) of 8 dynamic genes based on the
168  predicted pseudo-space reordering (x-axis) of the Smart-seq dataset (orange), and the
169 MARS-seq dataset (blue). C) Immunohistochemistry staining of the genes highlighted in
170  B). Above the staining is the predicted log2 expression levels (y-axis) across the

171  pseudo-spatial order (x-axis). The left picture shows the staining and the right picture is
172 an enlarged section (black square). PP = Periportal, PC = Pericentral.

173


https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/764191; this version posted October 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

174 Using the recreated order of the hepatocytes we explored dynamic gene

175  expression across the periportal to pericentral axis. Figure 2B shows a subset of genes
176  that are predicted to be highly regulated across the axis, four of which were not in our
177  list of marker genes. We first compared their expression across the zonation axis in the
178  Smart-seq dataset to that from the MARS-seq dataset. Since the MARS-seq dataset
179  placed cells into nine discrete zones along the axis, we divided cells from the Smart-seq
180 dataset into nine equally sized groups. The zonation profiles in Figure 2B have high

181 agreement, with a median Spearman correlation of 0.93. Before proceeding, we also
182  performed an additional experiment to validate that our cell ordering and expression

183  profiles reflect those of the liver lobule in vivo. Immunohistochemistry was performed on
184  sections of paraffin embedded livers with antibodies against select genes from either
185  category (Figure 2C). A complete list of dynamic genes across the zonation axis from
186  the Smart-seq dataset is provided in Additional File 2, and scatter plots are in Additional
187  File 3.

188 An exciting prospect of single cell analysis is the identification of genes that have
189  non-monotonic or dynamic expression along the liver lobule. Several genes in the bile
190  acid synthesis pathway was shown by Halpern et al. to be non-monotonically expressed
191 in a pattern where the highest expression levels along the lobule corresponds to the

192  functional placement of the genes in the bile acid synthesis pathway (Cyp7a1, Hsd3b7,
193  Cyp8b1, Cyp27a1 and Baat). We find that the expression profiles for these genes,

194  besides Cyp8b1, found in the Smart-seq dataset match the patterns found in the MARS-
195 seq dataset (Supplementary Figure 3A). In the Smart-seq dataset, Cyp8b1 is found to

196  have largely flat expression levels along most of the lobule and lower expression toward


https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/764191; this version posted October 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

aCC-BY-NC-ND 4.0 International license.

the periportal zone. Other genes shown to be non-monotonically expressed such as
Hamp, Igfbp2 and Mup3 in Halpern et al. were also identified to be non-monotonically
expressed in the Smart-seq dataset (Supplementary Figure 3B). The ability to identify
gene expression profiles that are either high at the PP end, high at the PC end or high
in the middle of the liver lobule confirms that the sampling depth is sufficient to spatially
reconstruct the liver lobule. We also investigated the expression pattern of Glul in more
detail as it is known to be expressed highly in a one hepatocyte wide band around the
central vein?®. Accordingly, the predicted expression pattern found using the Smart-seq
dataset demonstrated sufficient sampling of this region (Supplementary Figure 3C).

We further compared the zonation profiles between datasets and found a high
correlation of gene expression and spatial location of transcripts across the periportal to
pericentral axis. For genes significantly zonated in both datasets (having adjusted p-
value < .1) the median Spearman correlation is 0.73. In Figure 3A we looked at zonated
genes within the metabolic pathways in KEGG, and found the median correlation
between datasets (highlighted in dark pink) is 0.82. Among all genes in that pathway
(light pink) the correlation is moderate with a median of 0.18, and no correlation is found
when all genes are considered (grey).

Traditionally the liver lobule is divided into three zones, a periportal zone 1, a
pericentral zone 3 and transitioning zone 22627 The transitional nature of the liver axis is
reflected in the heatmap of metabolic genes that were significantly zonated in both
datasets (Figure 3B). Using k-means clustering, we found the Smart-seq data tended to
cluster into two distinct gene groups representing either the periportal or pericentral

zone. Examination of the two clusters by enrichment analysis of KEGG metabolic

10
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220 pathways (Figure 3C) revealed that the predicted location along our reconstructed axis
221  of metabolic processes with known periportal or pericentral bias such as amino acid
222 metabolism (periportal), lipogenesis (pericentral) and CYP450 metabolism (pericentral)
223  corresponds to their known in vivo locations?’. Despite using different reordering

224 algorithms and protocols, the two datasets show high agreement of expression along
225  the recovered pericentral to periportal axis among genes that are detectable in both
226  datasets, and both reliably mirror the in vivo patterning of the liver lobule (additional
227  KEGG categories are shown in Supplementary Figure 2).
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229  Figure 3. Correlation and Gene Ontology analysis of genes between datasets.
230 A) Correlation analysis of genes annotated to the metabolic pathways in KEGG

231  between the datasets. The dark pink density is the correlation of genes from the

11
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metabolic pathways with significant zonation profiles in both datasets. The light pink
density displays the correlation of all genes in the metabolic pathway and the grey
density displays the correlation of all genes. B) Heatmap of the expression level of
genes that are significantly differentially zonated in both datasets and enriched in the
metabolic KEGG pathway. C) Breakdown of KEGG enrichment analysis of the two k-
mean clusters based on the genes shown in B. Dot size represents the fraction of
enriched genes in each ontology, and the color represents the adjusted p-value for the

enrichment.

When we look at genes with moderate and low expression levels, we find that the
two datasets differ to a greater degree. We identified twenty genes that were classified
as significantly zonated along the periportal to pericentral axis in the Smart-seq dataset
that were not detected at all in the MARS-seq dataset, whereas only three such genes
were exclusive to the MARS-seq dataset. Figure 4A shows six most highly expressed
genes that we were able to exclusively identify in the Smart-seq dataset having
significant zonation (adjusted p-value < 0.10). This is not a surprising result due to the
well-known sensitivity advantage the C1/Smart-seq technique holds over the MARS-seq

technique.

12


https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/764191; this version posted October 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

250
251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

c Tptl c Serpina7 co Psg28
OS54 o °
2% 2 2
® 1<he o
S go© S
> X X' o
W w w
o [\Y] [\
D oN o™
So <1 <1
— o o -
6 10 20 30 40 50 60 0 10 20 30 40 50 60 6 10 20 30 40 50 60
Cells Cells Cells
Akr1b3 Esco2 Ccdc152
c o S c
o i<l Qow
o 3o @<
<4 < o
S e go
[} [} W o
o N [SVESY (2]
D {2 o
<1 <1 <1
o o —to
6 10 20 30 40 50 60 0 10 20 30 40 50 60 6 10 20 30 40 50 60
Cells Cells Cells
B Romo1 Acox1 Eif4a2
o ® e - Variant 1
S s R Variant 2
@ © a 2
o g ge
2 2o 53
[Nl fin} w e
[ o< [
8w i g i 8o
S Var!anH S Var!anH S
Variant 3 Variant 2
o o
——T—T— T T — T — T
18 23 37 52 18 23 37 52 66 18 23 37 52
Cells Cells Cells

66

N

Smart-seq

Ugttal

Scaled Expressed
0 04 08

MARS-seq

Scaled Expressed
0 04 08

Ugtia10

123 45 6 7 8
Zonation Group

9

1

2 3 456 7 89
Zonation Group

0 04 08

Scaled Expressed
0 04 08

B Ugtla2 3 Ugt1a5

? o 2]

& £2

il a+]

- ° - °

° 9o 1

So r T T T 1 (ﬁo—v T T T

@ 1238242567888 123825673839
Zonation Group Zonation Group

B Ugtia6a 3 Ugt1a6b

@ 3 -

£3 £

il &« ]

5 ° - °

2 2 1

T o . S o T

6 1258345867883 1234587859
Zonation Group Zonation Group

Ugtta7c Ugt1a9

123 45 6 7 8
Zonation Group

Scaled Expressed

9

1

2 3 456 7 89
Zonation Group

Figure 4. Genes and isoforms found in the full-length dataset and not in the UMI

dataset. A) Six genes found to be zonally expressed in the Smart-seq dataset that were

not detected in the MARS-seq dataset. The log2 of expression values are represented

on the y-axis and the pseudo-space ordered cells are found on the x-axis. B) Examples

of genes with two transcript variants expressed differently across reordered cells from

the Smart-seq dataset. C) Eight Ugt1a genes that were concatenated in the MARS-seq

dataset (blue on all graphs), but can be resolved in the Smart-seq dataset (orange line).

Further, an exciting field of study that benefits from an enhanced resolution of

scRNA-seq is isoform analysis?®-3°. Many genes in the genome have two or more

isoforms that are distinctly expressed and can change properties such as structure,

function and localization of the resulting protein3'. Due to the increased sensitivity of the

C1/Smart-seq protocol compared to MARS-seq we were able to examine genes with

known isoforms, and identify cases where the transcript variants for each isoform has

distinct expression from each other across the periportal to pericentral axis, which is not
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possible with less sensitive protocols. In Figure 4B the transcript variants of Romo1 are
seen to display opposite trends in expression across the zonation axis, where the
Romo1 variant 3 is increasing in expression from the pericentral end towards the
periportal end and the Romo1 variant 1 is decreasing in expression along the same
axis. We also highlight genes Acox1 and Eif4a2 whose variants both show constant
expression across the zonation axis but at different levels. Both of these genes are
known to have isoform specific expression in the liver lobule3?33. (For Ensembl and
ENTEREZ IDs for transcript variants see Supplementary Table 1).

We also note that due to the nature of the MARS-seq protocol there is also an
inability to resolve not just isoforms but many genes that are closely related. There were
242 concatenated genes in the MARS-seq set corresponding to 539 unique genes. An
example of this is seen in Figure 4C where we highlight a concatenate of Ugt1a
enzymes as another example of this. Eight genes are concatenated and when
combined the average expression level is shown to be high at the pericentral end of the
lobule and low at the periportal end. Again, it is clear that not all the members of this
concatenated group follow this trend and Ugt1a6a can be seen to have consistent
expression levels across the pericentral to periportal axis.

To further study the trade-offs between higher depth versus more cells, we
performed a subsampling experiment. For each dataset, we held either the number of
cells or the sequencing depth constant while varying the other. For the Smart-seq
dataset, we evaluated the effect on the cell ordering as well as the gene-specific
zonation profiles. For the MARS-seq dataset, the assignment of each cell to a zonation

group depended on external data and was independent of the other cells profiled, thus
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289  we only evaluated the effect on zonation profiles. In Supplementary Figure 4A&B, the
290 MARS-seq dataset displayed an approximately linear tradeoff in zonation profile error
291  for fewer cells at the original read depth. While, at reduced read depth using the original
292 1,415 cells, a linear increase in error only existed up to 70% of the total depth, and at
293  lower levels the error increased exponentially. The average mean squared error we

294  observed in zonation profiles through subsampling in the MARS-seq dataset indicates
295  that resequencing at the same depth results in error that is equivalent to reducing the
296 total cells by about 400. Thus, in scenarios with such low sequencing depth (average of
297  11.7k total UMIs per cell), sequencing deeper would be more beneficial than adding
298 more cells. For the Smart-seq dataset, we found the spatial ordering to be quite robust
299  to reduced sequencing depth, even as low as 50% fewer reads and only marginal

300 increases in gene-specific zonation error as shown in Supplementary Figure 4C&D. The
301 average sequencing depth for the Smart-seq cells was 3.5 million counts per cell, well
302 beyond the commonly suggested sequencing saturation for single-cell data that occurs
303 close to one million total reads®*. We do see more significant increases in error related
304 to zonation profiles when profiling fewer cells in Supplementary Figure 4E. Here the

305 tradeoff of sequencing to even half of the current depth and increasing the number of
306 cells would be beneficial.

307

308 Discussion

309 In summary, we compared two scRNA-seq datasets of mouse hepatocytes

310 where one, MARS-seq, is wide but shallow (1500 cells and about 3000 genes per cell)

311 and the other, C1/Smart-seq is narrow but deep (66 cells and 8000 genes per cell). We

15


https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/764191; this version posted October 3, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

aCC-BY-NC-ND 4.0 International license.

find that the two different protocols present highly reproducible liver zonation profiles in
single cells, and for the vast majority of genes that are highly expressed we observe
highly comparable results. We do however find that when we look at medium to low
expressed genes the increased sensitivity of the C1/Smart-seq protocol is able to
identify several genes exclusive to this dataset. This increased sensitivity also allowed
us to identify several genes with isoforms that behaved differently across the periportal
to pericentral axis. We are aware of the limitation of short reads in regard to isoform
analysis and if more accuracy is needed, the newly developed technique SclSOr-seq®®
might be better suited. We do however believe that this data allows for preliminary
isoform analysis. We were able to resolve and identify individual genes with differing
spatial patterns that lower sensitivity techniques are unable to distinguish. The main
weakness of using fewer cells is that it is less likely that rare cell types will be sampled.
In cases where such rare cells are of high interest, protocols that produce a large
number of cells are preferable. In an ideal case, one would sample many cells and
sequence all of them deeply, unfortunately, this is not always possible in practice and
the decision of whether to sample many cells shallowly or fewer cells deeply comes
down to whether rare cell types are of interest or if higher resolution of the individual
cells is preferred. Given the distinct advantages, we emphasize that the biological
question should be the driving factor when deciding on protocol. Within a chosen
protocol, achieving balance between the sequencing depth and the number of cells is
still an important consideration for optimal use of resources. Based on our simulations
of two datasets at opposite ends of the sequencing depth versus number of cells trade-

off, there is eventually a detriment to sacrificing reads for additional cells or sequencing
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335 beyond the attainable sensitivity level on too few cells. We expect that the extent of the
336  cells versus depth trade-off will vary for other cell types or tissues and it will largely
337 depend on the heterogeneity of the biological system under study.

338
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Materials and Methods

Animals and handling.

All animals were kept under standard husbandry conditions. A wildtype 8-week-old male

C57BL/6 (Jackson laboratories) was used in this experiment. Using isoflurane, the

mouse was anesthetized before euthanizing by cervical dislocation. Animal experiments

and procedures were approved by the University of Wisconsin Medical School's Animal
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Care and Use Committee and conducted in accordance with the Animal Welfare Act

and Health Research Extension Act.

Cell isolation.

The euthanized mouse was pinned to a Styrofoam plate using 20 ga needles to aid in
dissection. The abdominal cavity was opened, and the portal vein exposed. A piece of
4-0 suture thread (Ethicon vicryl coated) was threaded under the portal vein and used to
secure a 26 ga catheter inserted into the portal vein (Butler Schein animal health 26 G
IV Catheter, Fisher Scientific). Hepatocytes were isolated using a 2-step perfusion
protocol. First, Liver Perfusion Medium (Gibco) warmed to 37°C was pumped through
the catheter for 10 minutes using a peristaltic pump at 7 ml/min flowrate. Then, Liver
Digest Medium (Gibco) warmed to 37°C was pumped through the liver at the same
settings for 10 minutes. After perfusion, the liver was excised and transferred to a 10 cm
dish containing 20 ml liver digest medium. The liver was dissected allowing the cells to
spill into the media. The cells were then filtered through a 40 um cell strainer into a 50
ml tube and 30 ml media (Williams E media + 2 yg/ml human insulin + 1x glutamax +
10% FBS) were added and placed on ice. The hepatocytes were purified by
centrifugation at 50 x G, 4 times for 3 minutes each, each time discarding the

supernatant and adding media.

Single cell RNA sequencing.

Single-cell RNA sequencing was performed as previously described*® with the following

modifications. In this study, we used small (5-10 pm), medium (10-17 ym), and large
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(17-25 pm) plate sizes. ERCC RNA Spike-In (ThermoFisher Cat. No. 4456740) was
diluted in the lysis mix following the manufacturer’s user guide and previous studies®.
Single end reads of 51 bp were sequenced on an lllumina HiSeq 2500 system.
Sequencer outputs were processed using lllumina’s CASAVA-1.8.2. The demultiplexed
reads were trimmed and filtered to eliminate adapter sequence and low-quality
basecalls. The reads were mapped to an mm10 mRNA transcript reference (extended
with ERCC transcripts) using bowtie-0.12.9%; expression estimates were generated
using RSEM v.1.2.3%,

Using the Fluidigm C1 system to capture and synthesize cDNA from single cells in the
liver, we generated transcriptomes for 149 cells. To exclude low quality transcriptomes,
we removed cells in which the fraction of ERCC spike-in made op 20% or more of the
total assigned reads. This left 66 high quality cells, that were used in the downstream

analysis. Finally, the data was normalized using SCnorm (R package v 1.5.7)%.

Data availability.
scRNA-sequencing data that support the findings of this study have been deposited in
NCBI's Gene Expression Omnibus with the GEO Series accession code “GSE116140”

https://www.ncbi.nlm.nih.qgov/geo/query/acc.cqi?acc=GSE116140. The normalized and

ordered expression data is provided as Additional File 4.

All code used in the analysis and figures is available on Github at

https://qithub.com/rhondabacher/LiverSpatial Compare.

Pseudo-spatial reordering.
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For the full-length data, the cells were computationally ordered using the Wave-Crest
method as described by Chu et al. 2016°. Prior to reordering, gene expression values
were rescaled to mean 0 and variance 1 to ensure the values across different genes are
comparable. The Wave-Crest algorithm implements an extended nearest insertion
algorithm that iteratively adds cells to the order and selects the insertion location as the
location producing the smallest mean squared error in a linear regression of the
proposed order versus gene expression. A 2-opt algorithm is then used to find an
optimal cell order by considering adjacent cell exchanges. The cell ordering step uses
the expression profiles of pre-selected known marker genes of liver zonation. Thus, the
resulting linear profile of ordered cells represents the periportal to pericentral axis. The
known marker genes used to construct the periportal to pericentral axis in Wave-Crest
include the following pericentral markers: cytochrome P450 7a1 (Cyp7a1), cytochrome
P450 2e1 (Cyp2e1), ornithine aminotransferase (Oat), cytochrome P450 1a2 (Cyp1a2),
rh family, B glycoprotein (Rhbg), leucine-rich repeat-containing G-protein coupled
receptor 5 (Lgr5), glutamate-ammonia ligase (Glul); and the following periportal
markers: phosphoenolpyruvate carboxykinase 1 (Pck1), catenin beta interacting protein
1 (Ctnnbip1), aldehyde dehydrogenase 1 family member B1 (Aldh1b1), sulfotransferase
family 5A, member 1 (Sult5a1), cytochrome P450 2f2 (Cyp2f2), cathepsin C (Ctsc),
serine dehydratase (Sds), and E-cadherin (Cdh1). All markers were selected based on

their expression ratio as reported by Braeuning et al. 20062".

A detection step was done to identify additional genes that follow the one-dimensional

periportal to pericentral axis by fitting a linear regression to the relationship between
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each gene's expression and the Wave-Crest cell order. To determine if a gene is
significantly dynamic (zonated) along the recovered axis, we tested whether the
regression slope is different from zero. We reported the Benjamini-Hochberg adjusted
p-values to control the false discovery rate. For genes having an adjusted p-value < .01,
the direction of the expression profile was assigned based on the sign of the regression
slope (periportal: positive slope, pericentral: negative slope). We also calculated the
linear fitting mean squared error (MSE) for each significant gene. Genes with a
smoother trend over the recovered cell order are expected to have a smaller MSE. We
reported the full list of significant genes, sorted by their MSE, in Additional File 2; scatter

plots are shown in Additional File 3.

Comparative Analysis

Smoothed densities (bean plots) with overlaid raw data, the mean, and a box
representing the interquartile range of the cellular detection fractions were created using
the pirateplot function in the yarrr R package (v0.1.5). The cellular detection fraction
was calculated per cell as the proportion of genes having expression greater than zero.
The fold-change for each gene between the two datasets was calculated as the log2
fold-change of the full-length gene mean over the UMI gene mean, where each gene
mean was calculated as the average expression among non-zero counts across all cells
in the datasets. The heatmap in Figure 2 of marker gene expression on the normalized
Smart-seq data was generated by setting values above the 95th percentile or below the

5nd percentile to the 95th percentile or 5nd percentile value, respectively
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When comparing the two datasets having different dynamic ranges, we used scaled
expression plots, where the ordered cells in the full-length dataset were divided into
nine equally sized groups to correspond to the nine layers in the UMI dataset. For the
full-length dataset, for a given gene, the median expression in each group was
calculated, then the nine means were scaled between zero and one. Smoothed fits
were overlaid using the smooth.spline function in R with the degrees of freedom
parameter df=4. Expression correlations along the zonation axis between datasets were
calculated using Spearman correlation. Enrichment of genes in KEGG pathways or GO
was done using the R package clusterProfiler (v. 3.10.1)%°. For the enrichment analysis,
since different statistical methods were used to assess zonation profiles, genes were
considered significantly zonated if they had an adjusted p-value < .1 in both datasets
and more than 10 non-zero expression values. The heatmap in Figure 3 is a smoothed
heatmap, where a smoothing spline was first fit to the log expression (pseudo-count of
one added) of each gene using the smooth.spline function in R with the smoothing
parameter df=4 which provided profiles that were not over- or underfit in either dataset.
Then the smoothed expression was scaled and outliers above the 98" percentile or
below the 2" percentile were set to the 98™ percentile or 2" percentile value,
respectively. Additional KEGG categories from this analysis can be interactively viewed

on Github https://github.com/rhondabacher/LiverSpatialCompare.

Subsampling Analysis

In all subsamplings described below, each scenario was repeated a total of 25 times

and the zonation group means were scaled to be between zero and one.
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565

566  For the MARS-seq dataset, zonation group means were recalculated on a subsampled
567  set of cells using the posterior probability matrix and original UMI counts from Halpern
568 etal. 2017. In each sampling, the mean squared error (MSE) was calculated based on a
569  random sample of 500 genes as Y320 Y7, (Z;; — Z;;)* /500, where Z; ; represents the
570  mean expression of gene i in zonation group j in the original dataset and ZAiJ- is the

571  corresponding value for the subsampled dataset. For subsampling at lower read depths,
572  we fixed the number of cells at the original total of 1415 cells and simulated each cell's
573  gene counts individually using a multinomial distribution. For each cell, the subsampled
574  total counts were set to X% of the original total read counts for that cell (for X =

575  (10,20,30,40,50,60,70,80,90,100)) and each gene’s cell-specific probability was

576  calculated as its original count divided by the original total counts for that cell. The MSE
577  was calculated for each subsampled set as described above.

578

579  For the Smart-seq dataset, we reran Wave-Crest when subsampling the total number of
580 cells using the original parameter settings and marker genes. Then, as before, the

581 ordered cells were assigned zonation groups by dividing cells into nine equally sized
582  groups. The zonation profile error was estimated using MSE and calculated as

583  described above with the exception that since Wave-Crest orders can be flipped, we
584  calculated the MSE on the returned order and its reverse, and kept the minimum MSE
585  of the two. We also computed the MSE similarly on random permuted orders of the full
586 66 cells to assess the maximal MSE distribution. For evaluating lower read depths, we

587  first determined the effect of lower read depth on the ordering accuracy by re-running
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Wave-Crest on lower read-depth subsampled datasets and calculating the correlation of
the original order to the cell order obtained on the subsampled data. To evaluate the
zonation profile error with lower read depths, we used a similar approach as described
above for the MARS-seq dataset, fixing the number of cells to be the same as the
original total of 66 and, since the order correlation was shown to be consistently high,
we used the original Wave-Crest order for every scenario when evaluating zonation
profile error.

Immunohistochemistry.

An 8-week-old male C57BL/6 mouse was anesthetized using isoflurane before
euthanizing by cervical dislocation. The liver was excised, sliced as thinly as possible
with a razor blade, and fixed in formaldehyde overnight. The liver slices were paraffin
embedded and sectioned. Sections were stained following the protocol published by

Abcam (http://www.abcam.com/ps/pdf/protocols/ihc p.pdf). In short, the slices are

deparaffinized by dipping into sequential solutions of 100% xylene, 50-50% xylene-
ethanol, 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, and tap water. The
antigens were then retrieved by placing the slides in Tris-EDTA buffer (10 mM Tris
Base, 1 mM EDTA Solution, 0.05% Tween 20, pH 9.0) and incubating them in a
decloaking chamber (Biocare Medical Decloaking Chamber #DC2008US) with the
following settings: delayed start 30 sec.; preheat 80°C, 2 min.; heat 101°C, 3 min. 30
sec.; and fan on. The slides were washed 2 x 5 min in TBS + 0.025% Triton X-100
before they were blocked for two hours at room temperature in 10% normal serum in
1% BSA. The appropriate primary antibody was then diluted in the same 10% normal

serum in 1% BSA, added to the slides, and incubated at 4°C overnight in an incubation
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611 chamber. The next day the slides were washed 2 x 5 min in TBS + 0.025% Triton X-100
612  followed by 15 min incubation in 0.3% H202 at room temperature. Next, the appropriate
613  secondary antibody was diluted into 10% normal serum in 1% BSA before it was added
614  to the slides and incubated for 1 hour at room temperature. The slides were then

615 washed 3 x 5 min in TBS before DAB (#ab103723) staining mixed according to

616  manufacturer instruction was applied and incubated under a microscope to stop the
617  reaction after sufficient staining. The slides were rinsed in tap water for 5 min before
618  being counterstained with Mayer’s hematoxylin (#MHS1-100ML) for 30 sec. The stain
619  was developed in running tap water for 5 min. The slides were then dehydrated by

620  sequentially dipping in 50% ethanol, 70% ethanol, 95% ethanol, 100% ethanol, 50-50%
621  xylene-ethanol, and 100% xylene before Poly-Mount (#08381-120) was added and a
622  coverslip placed on top. The following primary antibodies were added: Aldh3a4 1:250
623  (AB184171), Cyp2e1 1:50 (AB28146), Cyp1a2 1:50 (R31007), Rgn 1:100 (NBP1-

624  80849), Oat 1:50 (AB137679), Cyp2f2 1:100 (SC-67283), Hal 1:50 (AV45694), and

625 Tbx3 1:50 (SC-31657). The following secondary antibodies were used: goat-anti-rabbit
626  HRP conjugated (ab97051) and donkey-anti-goat HRP conjugated (ab97110) at a

627  concentration of 1:500.

628

629  Additional Files

630  Additional File 1 — Supplementary Figures and Tables.

631  Additional File 2 — Summary of genes with dynamic expression across the zonation axis
632 identified using Wave-Crest.

633  Additional File 3 — Scatter plots of dynamic genes listed in Additional File 2.
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634  Additional File 4 — Normalized Smart-Seq single-cell data with cells in the Wave-Crest

635 order.
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