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 2 

Abstract 42 

As single-cell experiments generate increasingly more cells at reduced sequencing 43 

depths, the value of a higher read depth may be overlooked. Using data from two 44 

contrasting single-cell RNA-seq protocols that lend themselves to having either higher 45 

read depth (Smart-seq) or many cells (MARS-seq) we evaluate the trade-offs in the 46 

context of pseudo-spatial reconstruction of the liver lobule. Overall, we find gene 47 

expression profiles after spatial-reconstruction analysis are highly reproducible between 48 

datasets. Smart-seq’s higher sensitivity and read-depth allows analysis of lower 49 

expressed genes and isoforms. Our analysis emphasizes the importance of selecting a 50 

protocol based on the biological questions and features of interest. Additionally, we 51 

evaluate trade-offs for each protocol by performing subsampling analyses, and find that 52 

optimizing the balance between sequencing depth and number of cells within a protocol 53 

is important for efficient use of resources.  54 

 55 

Introduction 56 

Single-cell RNA sequencing (scRNA-seq)1–5 is a powerful tool for studying 57 

transcriptional differences between individual cells. The innovation of droplet-based 58 

techniques6,7 and unique molecular identifiers (UMI)8 has lowered the cost per cell and 59 

pushed the field towards obtaining data from tens of thousands of cells per experiment 60 

albeit at a reduced sequencing depth. Recent publications have compared the 61 

sensitivity, accuracy, and precision between several scRNA-seq techniques and report 62 

the major trade-off between protocols is sensitivity, which is dependent on read 63 

depth9,10. With the push for sequencing an ever-increasing number of cells at the 64 

expense of read depth per cell, the value of a higher read depth might be overlooked. 65 

Here we investigate the trade-off of more cells versus higher read depth in the context 66 

of pseudo-spatial reconstruction by comparing two independently produced scRNA-seq 67 

datasets on mouse liver lobule, one using Smart-seq2--a full-length protocol and one 68 
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 3 

using MARS-seq11--a UMI based protocol. Although the cell number and read depth 69 

differ greatly, we find high reproducibility between protocols of gene expression profiles 70 

after spatial-reconstruction analysis. We find that the increased read depth of the Smart-71 

seq protocol enables studies of lower expressed genes and isoforms of genes. Our 72 

results demonstrate the importance of carefully evaluating the biological question and 73 

features of interest when selecting the appropriate sequencing protocol. In applications 74 

focused on lower expressed genes or on genes with high sequence similarity, increased 75 

read depth is preferable, whereas a focus on identifying cell types based on more highly 76 

expressed genes will benefit from collecting more cells. In an ideal situation a single cell 77 

assay would result in thousands of cells that are all sequenced at a high read depth, but 78 

technical and financial restrictions make this rarely possible.  79 

Studies comparing protocols have mainly done so with respect to performance 80 

on spike-ins or on technical variability alone9,10. Recently, Guo et al.12 showed 81 

agreement of cell types and signature genes between two protocols used for single-cell 82 

RNA-seq for Fluidigm C1 and Drop-seq. However, few studies have examined 83 

comparative agreement among protocols for biological inferences beyond clustering 84 

and identifying differential gene expression, and a key question of interest with single-85 

cell data is its ability to reflect temporal or spatial heterogeneity. For cells collected at a 86 

given time, the underlying dynamic biological process is reflected in genome-wide 87 

differences in gene expression. Computational algorithms that attempt to order cells in 88 

pseudo-time or pseudo-space based on variability in gene expression have been 89 

developed4,13,14, and more than 45 existing algorithms were recently compared15. Yet, 90 
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as far as we know, no comparison of single-cell protocols exists for the question of cell 91 

ordering.  92 

Here, we chose to compare protocols on their ability to reflect the spatial 93 

patterning of the liver lobule. The main functional cells of the liver, hepatocytes, are 94 

organized spatially in a polygonal shape around a central vein (Figure 1A). From the 95 

central vein, a gradient of metabolic functions is performed extending to a portal vein at 96 

each vertex16–20. The gradient of differences in gene expression patterns is referred to 97 

as the zonation axis (from periportal (PP) to pericentral (PC))21. This coordinated spatial 98 

organization provides a particularly interesting application of single-cell techniques. For 99 

this study we obtained scRNA-seq data from 66 hepatocytes using the Fluidigm C1 100 

system with the Smart-seq full-length protocol, and compare this dataset at the gene 101 

level to a dataset collected by Halpern et al. 2017 containing 1415 hepatocytes using 102 

the MARS-seq protocol with UMI’s22 (Figure 1A). We compare the ability of these two 103 

single-cell datasets to spatially resolve the zonation axis of the liver. 104 

 105 

Results 106 

 By using the Fluidigm C1 coupled with the Smart-seq protocol, we were able 107 

identify on average around 38% (about 7100 genes) (Figure 1B) of all genes in the 108 

genome expressed per cell, whereas the MARS-seq dataset finds on average 12% 109 

(about 2100 genes) (Figure 1B) of all genes in the genome expressed per cell. This is in 110 

accordance with what was found by Ziegenhain et al. 2017 when they examined the 111 

methods, and underscores the increased sensitivity of the Fluidigm C1/SMART-seq 112 

protocol over MARS-seq9. This increased sensitivity is further illustrated in Figure 1C, 113 
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which on a per gene level shows the difference in detection fraction compared to the log 114 

fold change in mean expression between the two protocols. A difference in detection 115 

fraction of zero means that the gene is detected in the same fraction of cells in both 116 

datasets and a positive value is the result of a gene detected in a larger fraction of cells 117 

in the Smart-seq protocol compared to the MARS-seq protocol, and a negative value 118 

corresponds to the opposite case where the MARS-seq protocol detects the gene in a 119 

higher fraction of cells. The difference across protocols in log2 fold-change has a linear 120 

relationship with the difference in detection fractions, which indicates a fairly constant 121 

increase in log2 expression expected as cells are sequenced with greater sensitivity. At 122 

the intercept, a difference in detection equal to zero, the log2 fold change is 3.4, 123 

indicating an experiment wide increase in sensitivity in the Smart-seq protocol of 124 

approximately 10-fold. In fact, the vast majority of genes are detected in a larger fraction 125 

of cells (positive value on the x-axis) and have a higher expression level (positive value 126 

in the y-axis) sequenced using Smart-seq protocol. Although, it is worth pointing out that 127 

around 6% of genes have higher detection using the MARS-seq protocol (negative 128 

values on x-axis) and a few of these genes also have higher expression levels (negative 129 

values on y-axis) than in the Smart-seq protocol. The subset of genes better detected in 130 

the MARS-seq dataset have higher GC content and are slightly longer (Supplementary  131 

Figure 1), which is consistent with previous reports of protocol comparisons23,24. 132 
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 133 

Figure 1. Illustration of the liver anatomy, and general comparison of the datasets. 134 

A) Top. Illustration of the liver lobule identifying the portal triad along the outer edges 135 

and the central vein in the middle. The color gradient represents metabolic zonation. A) 136 

Bottom. Highlights the main differences between the datasets compared. B) 137 

Comparison of gene detection fraction between the datasets. The detection fraction per 138 

cell (y-axis) is shown for the two datasets (x-axis). C)  The log2 fold-change of genes 139 

detected above an average expression level of zero in the Smart-seq dataset compared 140 

to the MARS-seq dataset (y-axis), versus the difference in gene-level detection fractions 141 

across datasets (x-axis). A linear regression line is overlaid and a histogram of the x- 142 

and y-axis are shown opposite of each axis. 143 

 144 
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Next, to represent the spatial patterns across the liver lobule, the cells in the two 145 

datasets were computationally ordered according to their expression profiles. The 146 

MARS-seq dataset was spatially ordered by Halpern et al. 2017 by first performing 147 

smFISH for six marker genes at various locations across the zonation axis, then single-148 

cell RNA-seq data obtained by MARS-seq were assigned into one of nine zonation 149 

locations based on each cell’s expression profile of the six marker genes22. For the 150 

Smart-seq protocol we used a computational algorithm called Wave-Crest to spatially 151 

order the 66 cells along the zonation axis (Figure 2A)5. The ordering is based on fifteen 152 

marker genes known in the literature to be differentially expressed along the zonation 153 

axis. Cells were ordered using the nearest insertion algorithm implemented in the 154 

Wave-Crest package. The algorithm searches among the space of all possible 155 

orderings via a 2-opt algorithm by considering insertion events and choosing orders 156 

which minimize the mean square error of a polynomial regression on the marker genes 157 

expression. Of the 15 genes used, we selected eight periportal expressed genes and 158 

seven pericentral expressed genes21. Both orderings assume the zonation profile and 159 

spatial organization can be represented in a single dimension. 160 
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 161 

Figure 2. Pseudo-space reordering of hepatocytes, and prediction and validation of 162 

dynamically expressed genes. A) Top. Illustration of the pseudo-spatial reordering of the 163 

Smart-seq experiment. Bottom. Heatmap showing the pseudo-spatial reordering (x-axis) 164 

and the expression levels of the marker genes (y-axis) for the Smart-seq dataset. 165 

Pericentral cells are found on the left-hand side and Periportal cells are found on the 166 

right-hand side. B) Scaled expression profile (y-axis) of 8 dynamic genes based on the 167 

predicted pseudo-space reordering (x-axis) of the Smart-seq dataset (orange), and the 168 

MARS-seq dataset (blue). C) Immunohistochemistry staining of the genes highlighted in 169 

B). Above the staining is the predicted log2 expression levels (y-axis) across the 170 

pseudo-spatial order (x-axis). The left picture shows the staining and the right picture is 171 

an enlarged section (black square). PP = Periportal, PC = Pericentral. 172 
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Using the recreated order of the hepatocytes we explored dynamic gene 174 

expression across the periportal to pericentral axis. Figure 2B shows a subset of genes 175 

that are predicted to be highly regulated across the axis, four of which were not in our 176 

list of marker genes. We first compared their expression across the zonation axis in the 177 

Smart-seq dataset to that from the MARS-seq dataset. Since the MARS-seq dataset 178 

placed cells into nine discrete zones along the axis, we divided cells from the Smart-seq 179 

dataset into nine equally sized groups. The zonation profiles in Figure 2B have high 180 

agreement, with a median Spearman correlation of 0.93. Before proceeding, we also 181 

performed an additional experiment to validate that our cell ordering and expression 182 

profiles reflect those of the liver lobule in vivo. Immunohistochemistry was performed on 183 

sections of paraffin embedded livers with antibodies against select genes from either 184 

category (Figure 2C). A complete list of dynamic genes across the zonation axis from 185 

the Smart-seq dataset is provided in Additional File 2, and scatter plots are in Additional 186 

File 3.  187 

An exciting prospect of single cell analysis is the identification of genes that have 188 

non-monotonic or dynamic expression along the liver lobule. Several genes in the bile 189 

acid synthesis pathway was shown by Halpern et al. to be non-monotonically expressed 190 

in a pattern where the highest expression levels along the lobule corresponds to the 191 

functional placement of the genes in the bile acid synthesis pathway (Cyp7a1, Hsd3b7, 192 

Cyp8b1, Cyp27a1 and Baat). We find that the expression profiles for these genes, 193 

besides Cyp8b1, found in the Smart-seq dataset match the patterns found in the MARS-194 

seq dataset (Supplementary Figure 3A). In the Smart-seq dataset, Cyp8b1 is found to 195 

have largely flat expression levels along most of the lobule and lower expression toward 196 
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the periportal zone. Other genes shown to be non-monotonically expressed such as 197 

Hamp, Igfbp2 and Mup3 in Halpern et al. were also identified to be non-monotonically 198 

expressed in the Smart-seq dataset (Supplementary Figure 3B). The ability to identify 199 

gene expression profiles that are either high at the PP end, high at the PC end or high 200 

in the middle of the liver lobule confirms that the sampling depth is sufficient to spatially 201 

reconstruct the liver lobule. We also investigated the expression pattern of Glul in more 202 

detail as it is known to be expressed highly in a one hepatocyte wide band around the 203 

central vein25. Accordingly, the predicted expression pattern found using the Smart-seq 204 

dataset demonstrated sufficient sampling of this region (Supplementary Figure 3C). 205 

We further compared the zonation profiles between datasets and found a high 206 

correlation of gene expression and spatial location of transcripts across the periportal to 207 

pericentral axis. For genes significantly zonated in both datasets (having adjusted p-208 

value < .1) the median Spearman correlation is 0.73. In Figure 3A we looked at zonated 209 

genes within the metabolic pathways in KEGG, and found the median correlation 210 

between datasets (highlighted in dark pink) is 0.82. Among all genes in that pathway 211 

(light pink) the correlation is moderate with a median of 0.18, and no correlation is found 212 

when all genes are considered (grey).  213 

Traditionally the liver lobule is divided into three zones, a periportal zone 1, a 214 

pericentral zone 3 and transitioning zone 226,27. The transitional nature of the liver axis is 215 

reflected in the heatmap of metabolic genes that were significantly zonated in both 216 

datasets (Figure 3B). Using k-means clustering, we found the Smart-seq data tended to 217 

cluster into two distinct gene groups representing either the periportal or pericentral 218 

zone. Examination of the two clusters by enrichment analysis of KEGG metabolic 219 
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pathways (Figure 3C) revealed that the predicted location along our reconstructed axis 220 

of metabolic processes with known periportal or pericentral bias such as amino acid 221 

metabolism (periportal), lipogenesis (pericentral) and CYP450 metabolism (pericentral) 222 

corresponds to their known in vivo locations27. Despite using different reordering 223 

algorithms and protocols, the two datasets show high agreement of expression along 224 

the recovered pericentral to periportal axis among genes that are detectable in both 225 

datasets, and both reliably mirror the in vivo patterning of the liver lobule (additional 226 

KEGG categories are shown in Supplementary Figure 2).  227 

 228 

Figure 3.  Correlation and Gene Ontology analysis of genes between datasets. 229 

A) Correlation analysis of genes annotated to the metabolic pathways in KEGG 230 

between the datasets. The dark pink density is the correlation of genes from the 231 
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metabolic pathways with significant zonation profiles in both datasets. The light pink 232 

density displays the correlation of all genes in the metabolic pathway and the grey 233 

density displays the correlation of all genes. B) Heatmap of the expression level of 234 

genes that are significantly differentially zonated in both datasets and enriched in the 235 

metabolic KEGG pathway. C) Breakdown of KEGG enrichment analysis of the two k-236 

mean clusters based on the genes shown in B. Dot size represents the fraction of 237 

enriched genes in each ontology, and the color represents the adjusted p-value for the 238 

enrichment. 239 

 240 

When we look at genes with moderate and low expression levels, we find that the 241 

two datasets differ to a greater degree. We identified twenty genes that were classified 242 

as significantly zonated along the periportal to pericentral axis in the Smart-seq dataset 243 

that were not detected at all in the MARS-seq dataset, whereas only three such genes 244 

were exclusive to the MARS-seq dataset. Figure 4A shows six most highly expressed 245 

genes that we were able to exclusively identify in the Smart-seq dataset having 246 

significant zonation (adjusted p-value < 0.10). This is not a surprising result due to the 247 

well-known sensitivity advantage the C1/Smart-seq technique holds over the MARS-seq 248 

technique.  249 
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 250 

Figure 4. Genes and isoforms found in the full-length dataset and not in the UMI 251 

dataset. A) Six genes found to be zonally expressed in the Smart-seq dataset that were 252 

not detected in the MARS-seq dataset. The log2 of expression values are represented 253 

on the y-axis and the pseudo-space ordered cells are found on the x-axis. B) Examples 254 

of genes with two transcript variants expressed differently across reordered cells from 255 

the Smart-seq dataset. C) Eight Ugt1a genes that were concatenated in the MARS-seq 256 

dataset (blue on all graphs), but can be resolved in the Smart-seq dataset (orange line). 257 

 258 

Further, an exciting field of study that benefits from an enhanced resolution of 259 

scRNA-seq is isoform analysis28–30. Many genes in the genome have two or more 260 

isoforms that are distinctly expressed and can change properties such as structure, 261 

function and localization of the resulting protein31. Due to the increased sensitivity of the 262 

C1/Smart-seq protocol compared to MARS-seq we were able to examine genes with 263 

known isoforms, and identify cases where the transcript variants for each isoform has 264 

distinct expression from each other across the periportal to pericentral axis, which is not 265 
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possible with less sensitive protocols. In Figure 4B the transcript variants of Romo1 are 266 

seen to display opposite trends in expression across the zonation axis, where the 267 

Romo1 variant 3 is increasing in expression from the pericentral end towards the 268 

periportal end and the Romo1 variant 1 is decreasing in expression along the same 269 

axis. We also highlight genes Acox1 and Eif4a2 whose variants both show constant 270 

expression across the zonation axis but at different levels. Both of these genes are 271 

known to have isoform specific expression in the liver lobule32,33. (For Ensembl and 272 

ENTEREZ IDs for transcript variants see Supplementary Table 1).  273 

We also note that due to the nature of the MARS-seq protocol there is also an 274 

inability to resolve not just isoforms but many genes that are closely related. There were 275 

242 concatenated genes in the MARS-seq set corresponding to 539 unique genes. An 276 

example of this is seen in Figure 4C where we highlight a concatenate of Ugt1a 277 

enzymes as another example of this. Eight genes are concatenated and when 278 

combined the average expression level is shown to be high at the pericentral end of the 279 

lobule and low at the periportal end. Again, it is clear that not all the members of this 280 

concatenated group follow this trend and Ugt1a6a can be seen to have consistent 281 

expression levels across the pericentral to periportal axis.  282 

To further study the trade-offs between higher depth versus more cells, we 283 

performed a subsampling experiment. For each dataset, we held either the number of 284 

cells or the sequencing depth constant while varying the other. For the Smart-seq 285 

dataset, we evaluated the effect on the cell ordering as well as the gene-specific 286 

zonation profiles. For the MARS-seq dataset, the assignment of each cell to a zonation 287 

group depended on external data and was independent of the other cells profiled, thus 288 
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we only evaluated the effect on zonation profiles. In Supplementary Figure 4A&B, the 289 

MARS-seq dataset displayed an approximately linear tradeoff in zonation profile error 290 

for fewer cells at the original read depth. While, at reduced read depth using the original 291 

1,415 cells, a linear increase in error only existed up to 70% of the total depth, and at 292 

lower levels the error increased exponentially. The average mean squared error we 293 

observed in zonation profiles through subsampling in the MARS-seq dataset indicates 294 

that resequencing at the same depth results in error that is equivalent to reducing the 295 

total cells by about 400. Thus, in scenarios with such low sequencing depth (average of 296 

11.7k total UMIs per cell), sequencing deeper would be more beneficial than adding 297 

more cells. For the Smart-seq dataset, we found the spatial ordering to be quite robust 298 

to reduced sequencing depth, even as low as 50% fewer reads and only marginal 299 

increases in gene-specific zonation error as shown in Supplementary Figure 4C&D. The 300 

average sequencing depth for the Smart-seq cells was 3.5 million counts per cell, well 301 

beyond the commonly suggested sequencing saturation for single-cell data that occurs 302 

close to one million total reads34. We do see more significant increases in error related 303 

to zonation profiles when profiling fewer cells in Supplementary Figure 4E. Here the 304 

tradeoff of sequencing to even half of the current depth and increasing the number of 305 

cells would be beneficial.  306 

 307 

Discussion 308 

In summary, we compared two scRNA-seq datasets of mouse hepatocytes 309 

where one, MARS-seq, is wide but shallow (1500 cells and about 3000 genes per cell) 310 

and the other, C1/Smart-seq is narrow but deep (66 cells and 8000 genes per cell). We 311 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/764191doi: bioRxiv preprint 

https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

find that the two different protocols present highly reproducible liver zonation profiles in 312 

single cells, and for the vast majority of genes that are highly expressed we observe 313 

highly comparable results. We do however find that when we look at medium to low 314 

expressed genes the increased sensitivity of the C1/Smart-seq protocol is able to 315 

identify several genes exclusive to this dataset. This increased sensitivity also allowed 316 

us to identify several genes with isoforms that behaved differently across the periportal 317 

to pericentral axis. We are aware of the limitation of short reads in regard to isoform 318 

analysis and if more accuracy is needed, the newly developed technique ScISOr-seq35 319 

might be better suited. We do however believe that this data allows for preliminary 320 

isoform analysis. We were able to resolve and identify individual genes with differing 321 

spatial patterns that lower sensitivity techniques are unable to distinguish. The main 322 

weakness of using fewer cells is that it is less likely that rare cell types will be sampled. 323 

In cases where such rare cells are of high interest, protocols that produce a large 324 

number of cells are preferable. In an ideal case, one would sample many cells and 325 

sequence all of them deeply, unfortunately, this is not always possible in practice and 326 

the decision of whether to sample many cells shallowly or fewer cells deeply comes 327 

down to whether rare cell types are of interest or if higher resolution of the individual 328 

cells is preferred. Given the distinct advantages, we emphasize that the biological 329 

question should be the driving factor when deciding on protocol. Within a chosen 330 

protocol, achieving balance between the sequencing depth and the number of cells is 331 

still an important consideration for optimal use of resources. Based on our simulations 332 

of two datasets at opposite ends of the sequencing depth versus number of cells trade-333 

off, there is eventually a detriment to sacrificing reads for additional cells or sequencing 334 
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beyond the attainable sensitivity level on too few cells. We expect that the extent of the 335 

cells versus depth trade-off will vary for other cell types or tissues and it will largely 336 

depend on the heterogeneity of the biological system under study. 337 
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C57BL/6 (Jackson laboratories) was used in this experiment. Using isoflurane, the 447 

mouse was anesthetized before euthanizing by cervical dislocation. Animal experiments 448 

and procedures were approved by the University of Wisconsin Medical School's Animal 449 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/764191doi: bioRxiv preprint 

https://doi.org/10.1101/764191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Care and Use Committee and conducted in accordance with the Animal Welfare Act 450 

and Health Research Extension Act. 451 

 452 

Cell isolation. 453 

The euthanized mouse was pinned to a Styrofoam plate using 20 ga needles to aid in 454 

dissection. The abdominal cavity was opened, and the portal vein exposed. A piece of 455 

4-0 suture thread (Ethicon vicryl coated) was threaded under the portal vein and used to 456 

secure a 26 ga catheter inserted into the portal vein (Butler Schein animal health 26 G 457 

IV Catheter, Fisher Scientific). Hepatocytes were isolated using a 2-step perfusion 458 

protocol. First, Liver Perfusion Medium (Gibco) warmed to 37°C was pumped through 459 

the catheter for 10 minutes using a peristaltic pump at 7 ml/min flowrate. Then, Liver 460 

Digest Medium (Gibco) warmed to 37°C was pumped through the liver at the same 461 

settings for 10 minutes. After perfusion, the liver was excised and transferred to a 10 cm 462 

dish containing 20 ml liver digest medium. The liver was dissected allowing the cells to 463 

spill into the media. The cells were then filtered through a 40 μm cell strainer into a 50 464 

ml tube and 30 ml media (Williams E media + 2 μg/ml human insulin + 1x glutamax + 465 

10% FBS) were added and placed on ice. The hepatocytes were purified by 466 

centrifugation at 50 x G, 4 times for 3 minutes each, each time discarding the 467 

supernatant and adding media. 468 

 469 

Single cell RNA sequencing. 470 

Single-cell RNA sequencing was performed as previously described4,5 with the following 471 

modifications. In this study, we used small (5-10 μm), medium (10-17 μm), and large 472 
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(17-25 μm) plate sizes. ERCC RNA Spike-In (ThermoFisher Cat. No. 4456740) was 473 

diluted in the lysis mix following the manufacturer’s user guide and previous studies36. 474 

Single end reads of 51 bp were sequenced on an Illumina HiSeq 2500 system. 475 

Sequencer outputs were processed using Illumina’s CASAVA-1.8.2. The demultiplexed 476 

reads were trimmed and filtered to eliminate adapter sequence and low-quality 477 

basecalls. The reads were mapped to an mm10 mRNA transcript reference (extended 478 

with ERCC transcripts) using bowtie-0.12.937; expression estimates were generated 479 

using RSEM v.1.2.338.  480 

Using the Fluidigm C1 system to capture and synthesize cDNA from single cells in the 481 

liver, we generated transcriptomes for 149 cells. To exclude low quality transcriptomes, 482 

we removed cells in which the fraction of ERCC spike-in made op 20% or more of the 483 

total assigned reads. This left 66 high quality cells, that were used in the downstream 484 

analysis. Finally, the data was normalized using SCnorm (R package v 1.5.7)39.  485 

 486 

Data availability. 487 

scRNA-sequencing data that support the findings of this study have been deposited in 488 

NCBI’s Gene Expression Omnibus with the GEO Series accession code “GSE116140” 489 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116140. The normalized and 490 

ordered expression data is provided as Additional File 4.  491 

All code used in the analysis and figures is available on Github at 492 

https://github.com/rhondabacher/LiverSpatialCompare. 493 

 494 

Pseudo-spatial reordering. 495 
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For the full-length data, the cells were computationally ordered using the Wave-Crest 496 

method as described by Chu et al. 20165. Prior to reordering, gene expression values 497 

were rescaled to mean 0 and variance 1 to ensure the values across different genes are 498 

comparable. The Wave-Crest algorithm implements an extended nearest insertion 499 

algorithm that iteratively adds cells to the order and selects the insertion location as the 500 

location producing the smallest mean squared error in a linear regression of the 501 

proposed order versus gene expression. A 2-opt algorithm is then used to find an 502 

optimal cell order by considering adjacent cell exchanges. The cell ordering step uses 503 

the expression profiles of pre-selected known marker genes of liver zonation. Thus, the 504 

resulting linear profile of ordered cells represents the periportal to pericentral axis. The 505 

known marker genes used to construct the periportal to pericentral axis in Wave-Crest 506 

include the following pericentral markers: cytochrome P450 7a1 (Cyp7a1), cytochrome 507 

P450 2e1 (Cyp2e1), ornithine aminotransferase (Oat), cytochrome P450 1a2 (Cyp1a2), 508 

rh family, B glycoprotein (Rhbg), leucine-rich repeat-containing G-protein coupled 509 

receptor 5 (Lgr5), glutamate-ammonia ligase (Glul); and the following periportal 510 

markers: phosphoenolpyruvate carboxykinase 1 (Pck1), catenin beta interacting protein 511 

1 (Ctnnbip1), aldehyde dehydrogenase 1 family member B1 (Aldh1b1), sulfotransferase 512 

family 5A, member 1 (Sult5a1), cytochrome P450 2f2 (Cyp2f2), cathepsin C (Ctsc), 513 

serine dehydratase (Sds), and E-cadherin (Cdh1). All markers were selected based on 514 

their expression ratio as reported by Braeuning et al. 200621. 515 

 516 

A detection step was done to identify additional genes that follow the one-dimensional 517 

periportal to pericentral axis by fitting a linear regression to the relationship between 518 
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each gene's expression and the Wave-Crest cell order. To determine if a gene is 519 

significantly dynamic (zonated) along the recovered axis, we tested whether the 520 

regression slope is different from zero. We reported the Benjamini-Hochberg adjusted 521 

p-values to control the false discovery rate. For genes having an adjusted p-value < .01, 522 

the direction of the expression profile was assigned based on the sign of the regression 523 

slope (periportal: positive slope, pericentral: negative slope). We also calculated the 524 

linear fitting mean squared error (MSE) for each significant gene. Genes with a 525 

smoother trend over the recovered cell order are expected to have a smaller MSE. We 526 

reported the full list of significant genes, sorted by their MSE, in Additional File 2; scatter 527 

plots are shown in Additional File 3. 528 

 529 

Comparative Analysis 530 

Smoothed densities (bean plots) with overlaid raw data, the mean, and a box 531 

representing the interquartile range of the cellular detection fractions were created using 532 

the pirateplot function in the yarrr R package (v0.1.5). The cellular detection fraction 533 

was calculated per cell as the proportion of genes having expression greater than zero. 534 

The fold-change for each gene between the two datasets was calculated as the log2 535 

fold-change of the full-length gene mean over the UMI gene mean, where each gene 536 

mean was calculated as the average expression among non-zero counts across all cells 537 

in the datasets. The heatmap in Figure 2 of marker gene expression on the normalized 538 

Smart-seq data was generated by setting values above the 95th percentile or below the 539 

5nd percentile to the 95th percentile or 5nd percentile value, respectively 540 

 541 
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When comparing the two datasets having different dynamic ranges, we used scaled 542 

expression plots, where the ordered cells in the full-length dataset were divided into 543 

nine equally sized groups to correspond to the nine layers in the UMI dataset. For the 544 

full-length dataset, for a given gene, the median expression in each group was 545 

calculated, then the nine means were scaled between zero and one. Smoothed fits 546 

were overlaid using the smooth.spline function in R with the degrees of freedom 547 

parameter df=4. Expression correlations along the zonation axis between datasets were 548 

calculated using Spearman correlation. Enrichment of genes in KEGG pathways or GO 549 

was done using the R package clusterProfiler (v. 3.10.1)40. For the enrichment analysis, 550 

since different statistical methods were used to assess zonation profiles, genes were 551 

considered significantly zonated if they had an adjusted p-value < .1 in both datasets 552 

and more than 10 non-zero expression values. The heatmap in Figure 3 is a smoothed 553 

heatmap, where a smoothing spline was first fit to the log expression (pseudo-count of 554 

one added) of each gene using the smooth.spline function in R with the smoothing 555 

parameter df=4 which provided profiles that were not over- or underfit in either dataset. 556 

Then the smoothed expression was scaled and outliers above the 98th percentile or 557 

below the 2nd percentile were set to the 98th percentile or 2nd percentile value, 558 

respectively. Additional KEGG categories from this analysis can be interactively viewed 559 

on Github https://github.com/rhondabacher/LiverSpatialCompare. 560 

 561 

Subsampling Analysis 562 

In all subsamplings described below, each scenario was repeated a total of 25 times 563 

and the zonation group means were scaled to be between zero and one. 564 
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 565 

For the MARS-seq dataset, zonation group means were recalculated on a subsampled 566 

set of cells using the posterior probability matrix and original UMI counts from Halpern 567 

et al. 2017. In each sampling, the mean squared error (MSE) was calculated based on a 568 

random sample of 500 genes as ∑ ∑ (𝑍%,' − 	𝑍*%,'),-
'./ 	011

%./ 500⁄ , where 𝑍%,' represents the 569 

mean expression of gene 𝑖 in zonation group 𝑗 in the original dataset and 𝑍*%,' is the 570 

corresponding value for the subsampled dataset. For subsampling at lower read depths, 571 

we fixed the number of cells at the original total of 1415 cells and simulated each cell’s 572 

gene counts individually using a multinomial distribution. For each cell, the subsampled 573 

total counts were set to X% of the original total read counts for that cell (for X = 574 

(10,20,30,40,50,60,70,80,90,100)) and each gene’s cell-specific probability was 575 

calculated as its original count divided by the original total counts for that cell. The MSE 576 

was calculated for each subsampled set as described above. 577 

 578 

For the Smart-seq dataset, we reran Wave-Crest when subsampling the total number of 579 

cells using the original parameter settings and marker genes. Then, as before, the 580 

ordered cells were assigned zonation groups by dividing cells into nine equally sized 581 

groups. The zonation profile error was estimated using MSE and calculated as 582 

described above with the exception that since Wave-Crest orders can be flipped, we 583 

calculated the MSE on the returned order and its reverse, and kept the minimum MSE 584 

of the two. We also computed the MSE similarly on random permuted orders of the full 585 

66 cells to assess the maximal MSE distribution. For evaluating lower read depths, we 586 

first determined the effect of lower read depth on the ordering accuracy by re-running 587 
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Wave-Crest on lower read-depth subsampled datasets and calculating the correlation of 588 

the original order to the cell order obtained on the subsampled data. To evaluate the 589 

zonation profile error with lower read depths, we used a similar approach as described 590 

above for the MARS-seq dataset, fixing the number of cells to be the same as the 591 

original total of 66 and, since the order correlation was shown to be consistently high, 592 

we used the original Wave-Crest order for every scenario when evaluating zonation 593 

profile error.  594 

Immunohistochemistry.  595 

An 8-week-old male C57BL/6 mouse was anesthetized using isoflurane before 596 

euthanizing by cervical dislocation. The liver was excised, sliced as thinly as possible 597 

with a razor blade, and fixed in formaldehyde overnight. The liver slices were paraffin 598 

embedded and sectioned. Sections were stained following the protocol published by 599 

Abcam (http://www.abcam.com/ps/pdf/protocols/ihc_p.pdf). In short, the slices are 600 

deparaffinized by dipping into sequential solutions of 100% xylene, 50-50% xylene-601 

ethanol, 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, and tap water. The 602 

antigens were then retrieved by placing the slides in Tris-EDTA buffer (10 mM Tris 603 

Base, 1 mM EDTA Solution, 0.05% Tween 20, pH 9.0) and incubating them in a 604 

decloaking chamber (Biocare Medical Decloaking Chamber #DC2008US) with the 605 

following settings: delayed start 30 sec.; preheat 80°C, 2 min.; heat 101°C, 3 min. 30 606 

sec.; and fan on. The slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 607 

before they were blocked for two hours at room temperature in 10% normal serum in 608 

1% BSA. The appropriate primary antibody was then diluted in the same 10% normal 609 

serum in 1% BSA, added to the slides, and incubated at 4ºC overnight in an incubation 610 
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chamber. The next day the slides were washed 2 x 5 min in TBS + 0.025% Triton X-100 611 

followed by 15 min incubation in 0.3% H2O2 at room temperature. Next, the appropriate 612 

secondary antibody was diluted into 10% normal serum in 1% BSA before it was added 613 

to the slides and incubated for 1 hour at room temperature. The slides were then 614 

washed 3 x 5 min in TBS before DAB (#ab103723) staining mixed according to 615 

manufacturer instruction was applied and incubated under a microscope to stop the 616 

reaction after sufficient staining. The slides were rinsed in tap water for 5 min before 617 

being counterstained with Mayer’s hematoxylin (#MHS1-100ML) for 30 sec. The stain 618 

was developed in running tap water for 5 min. The slides were then dehydrated by 619 

sequentially dipping in 50% ethanol, 70% ethanol, 95% ethanol, 100% ethanol, 50-50% 620 

xylene-ethanol, and 100% xylene before Poly-Mount (#08381-120) was added and a 621 

coverslip placed on top. The following primary antibodies were added: Aldh3a4 1:250 622 

(AB184171), Cyp2e1 1:50 (AB28146), Cyp1a2 1:50 (R31007), Rgn 1:100 (NBP1-623 

80849), Oat 1:50 (AB137679), Cyp2f2 1:100 (SC-67283), Hal 1:50 (AV45694), and 624 

Tbx3 1:50 (SC-31657). The following secondary antibodies were used: goat-anti-rabbit 625 

HRP conjugated (ab97051) and donkey-anti-goat HRP conjugated (ab97110) at a 626 

concentration of 1:500. 627 

 628 

Additional Files 629 

Additional File 1 – Supplementary Figures and Tables. 630 

Additional File 2 – Summary of genes with dynamic expression across the zonation axis 631 

identified using Wave-Crest. 632 

Additional File 3 – Scatter plots of dynamic genes listed in Additional File 2. 633 
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Additional File 4 – Normalized Smart-Seq single-cell data with cells in the Wave-Crest 634 

order. 635 
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