

1 **Capacitation-associated alkalization in human sperm is differentially
2 controlled at the subcellular level**

3 **Running title:** Modulation of intracellular pH at the subcellular level during human
4 sperm capacitation and its role in hyperactivated motility

5 Matamoros-Volante A. and Treviño C.L.*

6 Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de
7 Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos,
8 México.

9 *Corresponding author: ctrevino@ibt.unam.mx.

10 **Key words:** sperm capacitation, intracellular pH, bicarbonate transport, Hv1 proton
11 channel, hyperactivation.

12 **Summary statement:** Human sperm display differential pH_i regulation at the
13 subcellular level upon capacitation, involving the participation of PKA kinase
14 signaling pathway and several membrane transport proteins, culminating in
15 hyperactivation.

16 **ABSTRACT**

17 Capacitation in mammalian sperm involves the accurate balance of intracellular pH
18 (pH_i), but the underlying control mechanisms are not fully understood, particularly
19 regarding the spatiotemporal regulation of the proteins involved in such pH_i
20 modulation. Here we employed an image-based flow cytometry technique combined
21 with pharmacological approaches to study pH_i dynamics at the subcellular level
22 during sperm capacitation. We found that, upon capacitation induction, sperm cells
23 undergo intracellular alkalization in the head and principal piece regions, but not in
24 the midpiece. The observed localized pH_i increases require the initial uptake of

25 HCO_3^- , and it is mediated by several proteins acting in a manner consistent with their
26 subcellular localization. Hv1 proton channel and cAMP-activated Protein Kinase
27 (PKA) antagonists impair alkalization mainly in the principal piece. $\text{Na}^+/\text{HCO}_3^-$
28 cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR)
29 antagonists impair alkalization only mildly, predominantly in the head. Motility
30 measurements indicate that inhibition of alkalization in the principal piece prevents
31 the development of hyperactivated motility. Altogether, our findings shed light into
32 the complex control mechanisms of pH_i and underscore their importance during
33 human sperm capacitation.

34 **INTRODUCTION**

35 The concentration of H^+ is a ubiquitous regulatory element for most biochemical
36 reactions and it has relevance in many physiological processes, including sperm
37 function (Nishigaki et al., 2014). It has been widely recognized that mammalian
38 sperm must undergo a series of maturation steps in order to develop full fertilizing
39 capabilities; such processes are collectively known as capacitation, and *in vivo* they
40 only take place once sperm are inside the female reproductive tract (Austin and
41 Sakkas, 1951; Chang, 1951). Intracellular pH (pH_i) plays a pivotal role in
42 capacitation, controlling various key proteins involved in it. For example, an increase
43 in pH_i promotes the activation of K_{Sper} currents (Navarro et al., 2007), which are
44 mediated by the SLO3 K^+ channel (Zeng et al., 2011; Zeng et al., 2013). SLO3
45 expression is restricted to sperm cells, and *Slo3* knockout male mice are infertile.
46 Although the mechanisms behind this infertility are not completely understood,

47 failure to fertilize is related to a reduction in progressive motility and an impairment
48 of the acrosomal exocytosis process in sperm (Santi et al., 2010).
49 Additionally, pH_i mediates the development of hyperactivated motility, a special kind
50 of sperm movement characterized by asymmetrical flagellar beating, and which is
51 necessary for successful fertilization (Mishra et al., 2018; Suarez, 2008). Such
52 hyperactivation is mediated by CATSPER, a sperm-specific Ca²⁺ channel that is
53 activated by alkaline pH_i through interaction with EFCAB9, a pH-tuned Ca²⁺ sensor
54 that controls CATSPER gating (Hwang et al., 2019). Notably, loss-of-function
55 mutations on any of the CATSPER channel subunits cause infertility in male mice
56 (Qi et al., 2007; Ren et al., 2001) and humans (Avenarius et al., 2009), mainly due
57 to the inability of sperm to hyperactivate. It is widely recognized that pH_i regulation
58 in mice sperm involves the participation of another sperm-specific protein, the Na⁺/H⁺
59 exchanger (sNHE), which drives H⁺ extrusion employing the cell's [Na⁺] gradient.
60 Similar to CATSPER and SLO3, the lack of sNHE results in male infertility (Wang et
61 al., 2003). While humans express an orthologous sNHE gene, its involvement in
62 human sperm physiology remains elusive. In this regard, the proton channel (Hv1)
63 has been proposed as the main pH_i regulator during human sperm capacitation and
64 hyperactivation (Lishko et al., 2010), and its activity has been linked to the activation
65 of CATSPER, leading to Ca²⁺ influx and the concomitant changes in motility patterns
66 (Lishko and Kirichok, 2010; Miller et al., 2015) (Lishko and Kirichok, 2010; Miller et
67 al., 2018). Interestingly, the subcellular localization of all aforementioned proteins is
68 restricted to the flagellum, particularly the principal piece region, which is consistent
69 with their role in motility. On the other hand, our group and others have described
70 the expression and participation of an additional set of proteins during mammalian

71 sperm capacitation, which are related to HCO_3^- transport and thus could potentially
72 participate in pH_i balance as well. These proteins include members of the SLC26
73 (Chávez et al., 2012; El Khouri et al., 2018) and SLC4 (Demarco et al., 2003; Parkkila
74 et al., 1993; Puga Molina et al., 2018; Zeng et al., 1996) HCO_3^- transporter families.
75 One member of the SLC4 family, namely the electrogenic $\text{Na}^+/\text{HCO}_3^-$ cotransporter
76 (NBC), appears to mediate HCO_3^- influx, which is required for downstream activation
77 of signaling networks essential for capacitation, such as the cAMP-activated Protein
78 Kinase (PKA) pathway (Demarco et al., 2003; Puga Molina et al., 2018). This
79 particular pathway also seems to mediate plasma membrane hyperpolarization, a
80 hallmark of capacitation, via stimulation of the Cystic Fibrosis Transmembrane
81 Regulator (CFTR) $\text{Cl}^-/\text{HCO}_3^-$ channel (Chávez et al., 2012; Hernández-González et
82 al., 2007; Puga Molina et al., 2017). Interestingly, pharmacological blocking of CFTR
83 impairs capacitation in mice (Li et al., 2010; Xu et al., 2007) and human (Puga Molina
84 et al., 2017) sperm. Also, its genetic ablation produces subfertility in mice (Xu et al.,
85 2007). Notably, the subcellular localization of these HCO_3^- transporters differs from
86 that of the H^+ extruders (i.e. Hv1 and sNHE), with some of the former being mainly
87 localized in the head, and to some extent in the midpiece, but not in the principal
88 piece (Liu et al., 2012; Nishigaki et al., 2014). This suggests that pH_i might be
89 differentially regulated throughout the cell, presumably through the participation of
90 different proteins.

91 A few studies have provided evidence of the net pH_i increase that occurs during
92 capacitation, by measuring initial and end point pH_i (Cross and Razy-Faulkner, 1997;
93 Lopez-Gonzalez et al., 2014). But despite the importance of pH_i in sperm physiology,
94 there have been no examinations of pH_i kinetics throughout the entire capacitation

95 process, nor have they been tracked in distinct sperm cell regions. Conducting such
96 studies in sperm cells poses unique experimental challenges given their complex
97 morphology, motility and asymmetrical anatomy, which results in highly
98 compartmentalized physiological cell signals (Buffone et al., 2012).

99 We recently developed a completely novel strategy to analyze intracellular events in
100 a statistically relevant number of cells, using image-based flow cytometry along with
101 a segmentation process that provides spatial resolution within individual sperm cells
102 (Matamoros-Volante et al., 2018). In the present work, we employed this technique
103 to investigate pH_i kinetics at the subcellular level during human sperm capacitation.
104 We found that, upon the cells' contact with capacitation medium, pH_i remained
105 constant in the midpiece, while it increased in the head and in the principal piece,
106 displaying different kinetics. Using pharmacology, we found that multiple proteins
107 mediate the observed pH_i changes, with their involvement being distinct in the head
108 and in the principal piece. Lastly, motility measurements indicated that these proteins
109 are required for hyperactivation, but not to maintain total motility. Altogether, our
110 results suggest that pH_i modulation in human sperm involves the participation of an
111 entire set of proteins, with the pH_i changes being orchestrated in a localized, and
112 possibly time-dependent fashion.

113 RESULTS

114 ***During capacitation, pH_i increases in the head and in the principal piece, but***
115 ***not in the midpiece.*** While a pH_i increase has been widely recognized as a hallmark
116 of sperm capacitation (Nishigaki et al., 2014), the dynamics and subcellular
117 localization of this alkalinization, to our knowledge, had not been previously explored.
118 We employed the pH-sensitive fluorescent probe BCECF to track subcellular pH_i

119 changes in human sperm cells using an image-based flow cytometer (Fig. S3A-B).
120 To demonstrate that our previously reported segmentation process (Matamoros-
121 Volante et al., 2018) was suitable for measuring pH_i changes in distinct sperm cell
122 regions (Fig. S3C-D), we exposed BCECF-loaded sperm cells to an alkalinizing agent
123 (20 mM trimethylammonium, TMA) known to produce a sustained pH_i increase of
124 around 0.4 units (Alasmari et al., 2013). As described in Materials and Methods, cell
125 regions were arbitrarily considered to have a high pH_i if their fluorescence value was
126 higher than those of the third quartile in the NC condition. Then, in order to determine
127 whether any given treatment had an alkalinizing effect on pH_i, the change in the
128 percentage of subcellular regions with high pH_i (Δ%) was calculated with respect to
129 that of the corresponding NC condition, after having eliminated outliers (i.e. those in
130 the top 5%). When cells were exposed to 20 mM TMA, we observed a reproducible
131 increase in the percentage of cells exhibiting high pH_i (Δ%) in each of the three
132 distinct subcellular regions analyzed, i.e. head, midpiece and principal piece (Fig.
133 S3E). The pooled fluorescence values for all subcellular regions analyzed for all
134 sperm donors are also shown as boxplots (Fig. S3F). With both approaches used
135 for data analysis, the observed localized pH_i increases caused by TMA exposure
136 were statistically significant for all three cell regions, confirming the reliability of our
137 technique
138 We then studied the pH_i dynamics in each subcellular region during capacitation,
139 triggered by exposure to capacitation medium (Fig. 1). Representative images of
140 cells at different capacitation time points are shown in Fig. 1A. As seen in Fig. 1B,
141 there was a significant increase in the percentage of cells with high head pH_i (hd-
142 pH_i) after the initial exposure to capacitation medium (t=0 min), (Δ%=17, p<0.0001).

143 $\Delta\%$ reached a maximum after 15 minutes ($\Delta\% = 21$, $p < 0.0001$), and although it
144 gradually dropped and leveled off at $\Delta\% \sim 16$, the increase in the percentage of cells
145 with high $hd\text{-pH}_i$ was statistically significant up to 240 minutes of capacitation
146 ($p < 0.0001$). Similar dynamics were observed when the pH_i was measured in the
147 principal piece (pp- pH_i), though the changes in $\Delta\%$ were not as pronounced (Fig.
148 1B). The increase in the percentage of cells with high pp- pH_i became statistically
149 significant only after 15 minutes of capacitation ($\Delta\% = 10$, $p = 0.0023$), reaching a
150 maximum at 30 minutes ($\Delta\% = 15$, $p = 0.003$). $\Delta\%$ value then dropped to ~ 9 after 45
151 minutes and remained essentially constant up to 240 minutes of capacitation, though
152 the increase in $\Delta\%$ was no longer statistically significant throughout this time period.
153 In contrast, the change in the percentage of cells with high midpiece pH_i (mp- pH_i)
154 consisted overall of a slight and gradual decrease throughout the entire capacitation
155 period analyzed, though the observed differences were never statistically significant
156 (Fig. 1B). These results display similar statistics when the pooled fluorescence
157 values for all the subcellular regions measured from all donors are analyzed as
158 boxplots (Fig. 1C). The fact that, unlike the other two subcellular regions, the mp- pH_i
159 remained unchanged was rather surprising to us, and even though we were able to
160 detect a statistically significant pH_i increase in the midpiece using TMA (Fig. S3E),
161 we wanted to verify that this was not simply due to a limitation in our experimental
162 methodology, which could potentially be preventing the reliable detection of
163 fluorescence changes in the midpiece. To this end, we incubated sperm cells with
164 250 nM MitoTracker Green FM, a mitochondrial-specific fluorescent dye that has
165 been employed as a marker for membrane mitochondrial potential (Sousa et al.,
166 2011). We then triggered a change in fluorescence by challenging these cells with 1

167 μ M CCCP (carbonyl cyanide m-chlorophenyl hydrazine), a mitochondrial electron
168 transport system disrupter. A clear reduction of MitoTracker fluorescence was
169 detected in the midpiece (data not shown), thus indicating that our mp-pH_i
170 measurements are reliable. Given that no significant changes in mp-pH_i were
171 detected during capacitation, we decided to analyze only the head and principal
172 piece regions in all further pH_i dynamics studies.

173 Before proceeding any further, however, we wanted to verify that our experimental
174 conditions were not causing cell damage due to BCECF phototoxicity, even though
175 this was not expected to occur since cells were illuminated for a very short time
176 (milliseconds) during data acquisition. However, BCECF was present in the cell
177 samples up to 6 hours of capacitation, with aliquots being taken for measurements
178 at different time points. To explore whether this exposure was deleterious to the
179 cells, we used PI as a marker for viability. We did not find change in the percentage
180 of viable cells after either 1 or 6 hours of incubation with BCECF, compared to the
181 NC unstained cells (Fig. S4A). Additionally, we wanted to exclude the possibility that
182 any measured pH_i increases were simply caused by the time that cells spent in
183 incubation. To this end, we incubated cell samples during 1 and 6 hours in a NC
184 medium. As seen in Fig. S4B-C, no significant changes in pH_i were observed at
185 either of these two time points in any of the three subcellular regions. Altogether,
186 these data indicate that the observed pH_i increases are a result of incubation in the
187 presence of capacitation medium.

188 ***Absence of HCO₃⁻ or blockage of HCO₃⁻ influx prevent pH_i increases during
189 capacitation in both the head and the principal piece.*** When sperm are
190 ejaculated they are exposed to a higher extracellular concentration of HCO₃⁻ (Owen

191 and Katz, 2005), which is mimicked *in vitro* through exposure to capacitation medium
192 (25 mM HCO₃⁻, similar to the concentration found in the seminal fluid and the female
193 reproductive tract). To explore the role of HCO₃⁻ in the observed pH_i changes, we
194 incubated sperm in either an incomplete capacitation medium lacking HCO₃⁻ (no
195 HCO₃⁻), or in complete capacitation medium containing 100 μM DIDS, a general
196 inhibitor of anionic transporters, to block HCO₃⁻ entry through channels and
197 transporters at three capacitation times (0, 60 and 240 min). Under both conditions,
198 the pH_i increase was completely abolished in the head and in the principal piece
199 (Fig. 2A-C, Fig. S2A). Statistical analysis of both the average Δ%A values and the
200 pooled fluorescence values for all subcellular regions analyzed from all donors
201 yielded comparable statistically significant differences. These results suggest that
202 HCO₃⁻ uptake via anionic transporters is necessary to induce the rise in pH_i in both
203 sperm regions.

204 **NBC and CFTR have a minor role in cytoplasmic alkalinization during**
205 **capacitation in the head, but not in the principal piece.** Previous results from our
206 group have demonstrated that upon HCO₃⁻ exposure, sperm cells become
207 hyperpolarized due to HCO₃⁻ uptake mediated by an electrogenic NBC (Demarco et
208 al., 2003; Puga Molina et al., 2018). We thus explored whether pharmacological
209 inhibition of NBC proteins could also prevent pH_i increases during capacitation.
210 Interestingly, the mere pre-incubation (10 min) of sperm under NC conditions with a
211 specific antagonist of NBC proteins (S0859, 5 μM) (Ch'en et al., 2008), provoked
212 acidification in the head (Δ% = -11, *p* = 0.0096) compared to NC conditions (Fig.
213 S2B). During capacitation, NBC blockage did not prevent the pH_i increases in the
214 head nor in the principal piece (Fig. 3A-B).

215 Previously, we reported that pharmacological blocking of CFTR produces
216 cytoplasmic acidification after 5 hours of capacitation (Puga Molina et al., 2017).
217 Since this channel can also transport HCO_3^- into the cell, we used Inh-172, a specific
218 CFTR antagonist, to explore the role of CFTR in the observed alkalinization of
219 subcellular regions. During capacitation, there is a decrease in the percentage of
220 cells with high hd-pH_i , though it is statistically significant only at 240 min (Fig. 3A-B).
221 Inhibition of CFTR did not affect the pH_i increase in the principal piece (Fig. 3A-B,
222 Fig.S2B). Although pre-incubation with Inh-172 also caused a reduction in $\Delta\%$ under
223 NC conditions both in the head and principal piece, it was not statistically significant
224 in these cases (Fig. S2B)

225 ***PKA signaling pathway participates in the regulation of capacitation-
226 associated alkalinization in the principal piece, but not in the head.*** The above
227 observations suggest that HCO_3^- influx is indispensable for the initial and sustained
228 pH_i increases, which are stable during at least during 4 hours of capacitation. HCO_3^-
229 is a key component of capacitation medium, and is known to activate a PKA pathway
230 leading to important changes during capacitation (Buffone et al., 2014). It is well
231 accepted that a HCO_3^- influx stimulates cAMP production via a HCO_3^- -sensitive
232 adenylyl cyclase (ADCY10) with the subsequent PKA activation (Okamura et al.,
233 1985). Additionally, Puga-Molina, et al. (2017), showed that pharmacological
234 blocking of PKA with H89 induces cytoplasmic acidification in human sperm,
235 measured after 5 h of capacitation. We wondered whether the HCO_3^- requirement
236 for alkalinization that we observed is linked to PKA pathway activation. We tested this
237 possibility by incubating sperm with either H89 (30 μM), a PKA inhibitor, or KH7 (50
238 μM) an ADCY10 antagonist. While neither inhibitor affected $\Delta\%A$ in the head during

239 capacitation (Fig. 4A-B), both diminished it in the principal piece, though the
240 decrease was statistically significant only at 240 min ($p=0.032$ and 0.0285
241 respectively) (Fig. 4A). However, when fluorescence data are compared through
242 boxplots (Fig. 4B), the reduction in the BCECF fluorescence in the principal piece
243 was statistically significant at all capacitation time points ($p<0.0306$) for H89, and
244 only at 240 min for KH7 ($p=0.0182$). Additionally, preincubation under NC conditions
245 with H89 reduced $\Delta\%$ of cells with high pp-pH_i (Fig. S2C).

246 ***Inhibition of Hv1 prevented alkalization in the principal piece but not in the***
247 ***head.*** Previous reports have demonstrated that, upon capacitation, Hv1 activity
248 increases in human but not in mice sperm (Lishko et al., 2010). We thus tested
249 whether Hv1 were involved in the observed increases in hd-pH_i and pp-pH_i by
250 incubating cells with 200 μ M CI-GBI, a specific Hv1 antagonist (Hong et al., 2014).
251 CI-GBI had no significant effect on $\Delta\%$ A in the head (Fig. 5A-B, Fig. S2D). CI-GBI,
252 induced a strong reduction in $\Delta\%$ A in the principal piece at all incubation times
253 ($p<0.0387$) (Fig. 5A-B) as well as an acidification when preincubated under NC
254 conditions ($p=0.0482$) (Fig. S2D).

255 To further confirm Hv1 participation in the pH_i increase, we used Zn²⁺, a well-known
256 inhibitor of Hv1. The presence of 200 μ M of ZnCl (Zn²⁺) reduced significantly $\Delta\%$ A
257 in the head at 240 min ($p=0.0286$) of capacitation (Fig. 5A) which was also observed
258 when pooled fluorescence values were analyzed ($p=0.0245$) (Fig. 5B). The pH_i
259 increase was strongly inhibited by Zn²⁺ in the principal piece at all capacitation times
260 ($p<0.0339$), the reduction was significant regardless of the analysis (Fig. 5A-B).
261 These data confirm the participation of Hv1 in human sperm pH_i regulation, but also

262 corroborate that at least in the head other proteins must be participating in the control
263 of pH_i in that cell region.

264 ***Proteins that regulate pH_i are required for hyperactivation.*** The downstream role
265 of HCO₃⁻ uptake in the control of sperm hyperactivation has been widely recognized
266 (Okamura et al., 1985), primarily via a PKA signaling pathway and CATSPER
267 activation (Orta et al., 2018; Qi et al., 2007; Wennemuth et al., 2003). In this work
268 we showed that Hv1, HCO₃⁻ influx, and to a lesser extent CFTR, are required for the
269 pH_i increases during capacitation. Employing a CASA system, we explored whether
270 inhibition of these proteins and the lack of HCO₃⁻ affected sperm hyperactivation.
271 Interestingly, none of these conditions produced a change in total motility compared
272 to control conditions during the explored time window (Fig. 6A). In contrast, all these
273 treatments caused, to varying degrees, reduction in the percentage of cells that
274 displayed hyperactivated motility, compared to control conditions. For instance, both
275 Hv1 inhibition and the absence of HCO₃⁻ in the medium completely prevented
276 hyperactivation ($p<0.0310$) (Fig. 6B). CFTR blocking significantly reduced
277 hyperactivation at 0 min, 60 and 240 min ($p=0.0193$) (Fig. 6B) and inhibition of NBC
278 reduced the number of hyperactivated cells ($p< 0.0001$) upon capacitation induction
279 (0 min), but not after 60 and 240 min.

280 Lastly, we plotted the percentage of cells exhibiting hyperactivated motility as a
281 function of the percentage of cells with high pp-pH_i. We found that hyperactivation
282 increases exponentially as a function of alkalization in the principal piece ($R^2=0.80$,
283 $y = 7.686e^{(0.007X)}$, $T = 12.85$). (Fig. 6C).

284 **DISCUSSION**

285 Through comparisons of initial and final pH_i, *in vitro* studies have shown that human
286 sperm cells exhibit alkalization after 24 (Cross and Razy-Faulkner, 1997) and 13
287 (Lopez-Gonzalez et al., 2014) hours of capacitation. More recently, while we were
288 preparing the present manuscript for publication, Brukman and colleagues reported
289 that pH_i in a human sperm subpopulation increased slightly after 10 min of
290 capacitation, had a further increase after 1 hour, and then remained constant after
291 2, 4 and 6 hours (Brukman et al., 2019). These observations were made employing
292 conventional flow cytometry on BCECF-stained cells. For the present study, we
293 applied our recently developed sperm segmentation process using image-based
294 flow cytometry (Matamoros-Volante et al., 2018) to follow human sperm pH_i changes
295 in three distinct subcellular regions (head, midpiece and principal piece) at various
296 time points of capacitation (up to 4 hours). We started out by demonstrating that this
297 method can be reliably used to detect pH_i changes in all three regions.

298 As expected, histograms constructed on BCECF fluorescence values measured for
299 each sperm population sample vary in distribution and amplitude across donors and
300 experimental replicates, even under equal treatment conditions. The fluorescence
301 data sets from all donors/replicates were first pooled and displayed as boxplots for
302 every given condition, enabling comparisons and statistical analyses. For each of
303 them, in addition, the percentage of subcellular regions having fluorescence values
304 above those of the third quartile of the NC control was calculated. These values were
305 then plotted as a percentage difference with respect to control conditions in order to
306 display and compare the pH_i kinetics during capacitation.

307

308 We observed that under conditions that do not support capacitation, pH_i in all three
309 subcellular regions remained constant over the 4-h time window. But when sperm
310 were incubated under conditions that promote capacitation, a pH_i increase occurred
311 in the head and principal piece, remaining stable during the entire time window
312 studied. Given that no change in midpiece pH_i was observed, further analyses of the
313 proteins involved in regulating pH_i were conducted solely in the head and principal
314 piece.

315 Previous evidence obtained by our group suggests that an electrogenic NBC is
316 responsible for HCO_3^- influx during capacitation (Demarco et al., 2003; Puga Molina
317 et al., 2018). In the present work, we observed that pharmacological inhibition of
318 NBC caused a decrease in basal pH_i under NC conditions both in the head and
319 principal piece. However, upon addition of capacitation medium, $\Delta\%A$ was very
320 similar to $\Delta\%$ in both subcellular regions. These results indicate that NBC
321 participates in pH_i homeostasis prior to capacitation, rather than having a role in the
322 pH_i increase observed during capacitation, and they also suggest that other proteins
323 are responsible for such increase.

324 Recently, our group also proposed that HCO_3^- influx might either take place directly
325 through CFTR, or through other transporters coupled to CFTR (Puga Molina et al.,
326 2017; Puga Molina et al., 2018). In the earlier manuscript, based on conventional
327 flow cytometry measurements, we reported that CFTR inhibition causes a decrease
328 in pH_i after 5 hours of capacitation. While our present results indicate that CFTR
329 inhibition caused only a slight pH_i decrease in the head and principal piece, it was
330 statistically significant in the head at 4 hours of capacitation, in agreement with our
331 previous measurements performed after 5 hours of capacitation. We had previously

332 proposed that the increase in pH_i during capacitation could be due to the concerted
333 action of NBC and CFTR (Puga Molina et al., 2017; Puga Molina et al., 2018). Our
334 present results indicate that, at least for the initial pH_i increase, NBC and CFTR are
335 not required.

336 On the other hand, both the absence of HCO₃⁻ and the general blocking of HCO₃⁻
337 transporters completely prevented the pH_i increase in both subcellular regions.
338 These results suggest the participation of additional proteins with HCO₃⁻ transport
339 activity. In this regard, HCO₃⁻ transporters from the NBC family, such as the
340 electroneutral Na⁺-driven Cl⁻/HCO₃⁻ exchangers, NDCBE (SLC4A8) and NBCn2
341 (SLC4A10) have been detected in human testis, albeit only at the transcriptional
342 level (Damkier et al., 2007; Pushkin et al., 2000). Additionally, other proteins related
343 to HCO₃⁻ transport have been found in mammalian sperm, such as the SLC26 family
344 members A3 and A6 (Chávez et al., 2012; El Khouri et al., 2018), as well as A8
345 (Touré et al., 2007), and carbonic anhydrase activity has also been detected in
346 human sperm (José et al., 2015; Wandernoth et al., 2010). Further research is
347 needed to investigate whether these other transporters/enzymes are involved in pH_i
348 regulation.

349 The evidence provided here suggests that different proteins are involved in pH_i
350 regulation in different sperm subcellular regions. We propose that HCO₃⁻
351 transporters in the head (yet to be identified) are responsible for the initial and
352 sustained HCO₃⁻ uptake. It is then possible that diffusion of HCO₃⁻ (or a second
353 messenger) occurs from the head to the flagellum, which would explain the delay in
354 pH_i increase observed in the principal piece between, compared to the head.

355 The initial HCO_3^- influx, known to activate a PKA pathway, could presumably also
356 participate in the initial pH_i increase. According to previous studies conducted by our
357 group, PKA blockage with H89 causes strong cytoplasmic acidification in
358 capacitated human sperm (Puga Molina et al., 2017). Using this same inhibitor and
359 KH7, our present results corroborate participation of the PKA pathway on pH_i
360 regulation, with a major contribution in the principal piece and, to a lesser extent, in
361 the head. PKA localization in human sperm is not restricted to a specific site
362 (Neuhaus et al., 2006), but the main subcellular localization of PKA substrates are
363 in the principal piece (Battistone et al., 2013).

364 Previous work has established that in human sperm, Hv1 mediates outward H^+
365 currents, which are enhanced once sperm are capacitated (Lishko et al., 2010). We
366 found that pharmacological inhibition of Hv1 with both Cl-GBI and Zn^{2+} does prevent
367 alkalization, in the principal piece, but leaves alkalization in the head unaltered.
368 These results are consistent with the reported localization of this channel exclusively
369 in the principal piece (Lishko et al., 2010; Miller et al., 2018). The fact that Hv1
370 blockage does not prevent the pH_i increase in the head, suggests that Hv1 is not the
371 sole pH_i regulator in human sperm, and other mechanisms are likely at work in order
372 to generate such alkalization in the head. Unexpectedly, the presence of Zn^{2+}
373 caused a reduction of pH_i in the head after 4 hours of capacitation. This effect is
374 presumably due to a Zn^{2+} target other than Hv1, since it was not observed with the
375 specific Hv1 inhibitor Cl-GBI. Although Zn^{2+} is important for sperm physiology, little
376 is known about the Zn^{2+} transporters that operate in human sperm. Nonetheless, the
377 presence of at least some members from the Zip and ZnT families has been
378 described (Forest et al., 2014). Transport of Zn^{2+} in and out the cell is generally

379 coupled to the transport of another ion. The Zip protein family consists of symporters
380 that couple Zn^{2+} entry together with HCO_3^- . Given that the medium used to induce
381 capacitation *in vitro* contains a high concentration of HCO_3^- , it is conceivable that the
382 addition of Zn^{2+} enables such cotransport activity to take place. If this is the case,
383 once Zn^{2+} accumulates in the cell, it could potentially be extruded via ZnT
384 transporters. These function as antiporters with H^+ , thereby explaining the observed
385 acidification in the head at 4 hours of capacitation. Interestingly, we observed that
386 inhibition of Hv1 causes a decrease of pH_i in the principal piece, even under
387 conditions that do not promote capacitation, suggesting that this channel is also
388 active and participates in pH_i regulation prior to capacitation.

389 Inhibition of Hv1 abolishes alkalization in the principal piece throughout the entire
390 capacitation time window explored, rather than just initially. The existence of a
391 mechanism maintaining Hv1 activity is therefore expected. It has been reported that
392 Hv1 function is upregulated by phosphorylation of some of its serine and threonine
393 residues, presumably by PKC (Hondares et al., 2014; Morgan et al., 2007; Musset
394 et al., 2010). Thus, PKC could potentially be the key player necessary to sustain Hv1
395 activity during capacitation. PKC is present in human sperm flagella (Kalina et al.,
396 1995), and its activity has been related to sperm motility (Rotem et al., 1990).
397 Additionally, different lines of evidence along with recent work by Brukman and
398 colleagues (Brukman et al., 2019) suggest a possible link between PKA and Hv1
399 activation during capacitation. Such activation likely involves the participation of
400 other kinases, since direct Hv1 phosphorylation by PKA has not been demonstrated.
401 During capacitation, there is an increase in tyrosine phosphorylation (PY) of different
402 proteins, which occurs downstream of PKA activation, mainly in the sperm tail

403 (Battistone et al., 2013). This process involves the action of at least two different
404 tyrosine kinases (TKs), PYK2 and FER(T) (Alvau et al., 2016; Battistone et al., 2014;
405 Matamoros-Volante et al., 2018). Brukman et al., 2019 showed that the
406 pharmacological inhibition of these TKs blocks the capacitation-associated
407 alkalization in human sperm cells, and they proposed a possible a connection
408 between TKs and PKC, which in turn upregulates Hv1 (Brukman et al., 2019).
409 Evidence from other cell types suggests that H^+ conductance driven by Hv1 is also
410 affected by PY, for example in granulocytes (Bianchini et al., 1994) and in neutrophils
411 (Nanda and Grinstein, 1995), although the identity of the implicated TKs remains
412 unknown. Altogether, these findings suggest that Hv1 might be regulated by a
413 signaling network involving PKA, PKC and TKs. Additional experiments are needed
414 to support this proposal.

415 One of the most important downstream effects of HCO_3^- uptake is the induction of a
416 change in sperm motility patterns (Hereng et al., 2014; Wennemuth, 2003). In fact,
417 sperm from infertile patients present low HCO_3^- levels in seminal plasma, which
418 correlates with poor sperm motility (Okamura et al., 1986). HCO_3^- effects on motility
419 are controlled in a Ca^{2+} -dependent manner (Ho et al., 2002; Marquez and Suarez,
420 2007). The sperm-specific alkalization-dependent calcium channel, CATSPER, is
421 the main molecular entity responsible for intracellular $[Ca^{2+}]$ changes upon
422 capacitation (Kirichok et al., 2006). Genetic ablation of *CatSper* produces infertility
423 because sperm fail to hyperactivate (Qi et al., 2007). In some models, the
424 intracellular alkalization mediated by Hv1 has been proposed to act as a signal that
425 opens CATSPER, in turn triggering and maintaining hyperactivated motility (Lishko
426 and Kirichok, 2010). Besides, proteins of the glycolytic machinery related to ATP

427 production are required to sustain hyperactivation and the dynein-ATPase
428 necessary to axonemal functionality is also pH_i dependent (Mannowetz et al., 2012;
429 Ui, 1966). Altogether, the available evidence suggests a tight relationship between
430 pH_i and sperm hyperactivation. In the present work, we demonstrate for the first time
431 that pharmacological inhibition of Hv1 reduces hyperactivation, while leaving total
432 motility unchanged. In fact, with the exception of NBC inhibition, the effect on
433 hyperactivation brought about by our experimental treatments always mirrors their
434 effect on pH_i in the principal piece. In other words, conditions that completely prevent
435 alkalization in the principal piece (i.e. either Cl-GBI or medium lacking HCO₃⁻) also
436 reduce hyperactivated motility. Conversely, CFTR inhibition, which elicits a minor
437 decrease on pH_i, reduces hyperactivation only slightly. Such a correlation is not
438 apparent upon NBC inhibition, as hyperactivation does not occur, even though the
439 pH_i increase in the principal piece is similar in magnitude as the one observed under
440 control conditions. In this case, however, mere preincubation with the inhibitor
441 causes an initial reduction in pH_i prior to capacitation, and it is thus conceivable that
442 despite alkalization occurring during capacitation, pH_i does not reach the necessary
443 threshold to promote hyperactivation. Thus, while we found the relationship between
444 hyperactivation (%) and pH_i increase in the principal piece to be exponential,
445 alkalization might need to be high enough to reach a certain threshold in order for
446 hyperactivation to occur.

447 In summary, we have shown that cytoplasmic [H⁺] in human sperm is differentially
448 controlled in the head and principal regions; this process involves the participation
449 of various proteins, acting under distinct spatiotemporal control mechanisms.
450 Additionally, our results further support the notion that intracellular alkalization plays

451 a key role in the control of sperm motility. The findings reported here highlight the
452 complexity and relevance of pH_i dynamics during human sperm capacitation.

453 MATERIALS AND METHODS

454 Materials

455 Potassium dihydrogen phosphate (KH₂PO₄) and anhydrous glucose were obtained
456 from J.T. Baker (USA). Bovine Serum Albumin (BSA) was purchased from US
457 Biological (USA). 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein,
458 acetoxyethyl ester (BCECF-AM), MitoTracker Green FM, and propidium iodide (PI)
459 were obtained from Invitrogen (USA). CFTR-Inh-172 was purchased from
460 Calbiochem Inc. (USA). 2-Chloro-N-[[2'-(cyanoamino) sulfonyl] [1,1'-biphenyl]-4-yl]
461 methyl]-N-[(4-methylphenyl) methyl]-benzamide, known as S0859, was obtained
462 from Cayman Chemical (USA). 2-guanidinebenzimidazole (2-GBI), 5-chloro-2-
463 guanidinebenzimidazole (Cl-GBI), 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid
464 disodium salt hydrate (DIDS), N-[2-(p-Bromocinnamylamino)ethyl]-5-
465 isoquinolinesulfonamide dihydrochloride (H89), zinc chloride (Zn²⁺) and (E)-2-(1H-
466 benzo[d]imidazol-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide
467 (KH7) were obtained from Sigma-Aldrich (USA), along with all other chemicals.

468 Ethical Approval

469 Protocols for human sperm use were approved by the Bioethics Committee of the
470 Instituto de Biotecnología (UNAM, México). Informed consent forms were signed by
471 all donors.

472 Culture media

473 The non-capacitating (NC) medium used in this study was HEPES-buffered Human
474 Tubal Fluid (HTF) Solution containing (in mM): NaCl 90.69, KCl 4.67, CaCl₂ 1.6,
475 MgSO₄ 1.2, KH₂PO₄ 0.314, Glucose 2.78, Na-Pyruvate 3.38, Na- lactate 60, Hepes
476 23.8. Capacitation-inducing conditions consisted of HTF medium supplemented with
477 25 mM NaHCO₃ and 5% BSA (w/v). All media were adjusted to pH 7.4 with HCl, and
478 the osmolarity was maintained at around 290 mOs kg⁻¹.

479 **Sperm**

480 Sperm samples were obtained from healthy donors, collected by masturbation after
481 3-5 days of sexual abstinence. Only those samples with normal seminal parameters
482 (according to the 2010 WHO criteria) were used in the study. Semen samples were
483 liquefied for 30 min at 37°C under an atmosphere of 5% CO₂ in air. Motile sperm
484 were obtained by the swim-up technique, employing NC medium for 1 h at 37°C
485 under an atmosphere of 5% CO₂ in air. A Makler® Counting Chamber (Sefi Medical
486 Instruments, Israel) was used to adjust the sperm concentration at 10x10⁶ cells/mL.
487 Sperm samples in NC medium were loaded with 250 nm BCECF-AM (see below)
488 and then incubated during 15 min at 37°C, protected from light. Excess dye was
489 removed by centrifugation at 300 g for 5 min, and the cell pellet was resuspended in
490 NC medium to obtain a sperm concentration of 2-8 x 10⁶ cells/mL. For pharmacology
491 evaluations, these BCECF-AM-loaded cells were pre-incubated for 10 min with the
492 various blockers tested (5 µM of either Inh-172 or S0859, 100 µM DIDS, 50 µM of
493 KH7, 30 µM H89, 200 µM of Cl-GBI and 200 µM Zn²⁺) or with the vehicle (DMSO or
494 culture media) alone (control). After pre-incubation, an aliquot of cells was combined
495 with an equal volume of 2X capacitation medium (supplemented with the same

496 concentrations of the different blockers), and sperm cells were incubated at 37°C
497 under a 5% CO₂ atmosphere. At different time periods, up to a maximum capacitation
498 time of four hours, an aliquot of cells was taken for analysis.

499 **Intracellular pH estimation by image-based flow cytometry**

500 Intracellular pH (pH_i) was monitored through fluorescence measurements using the
501 pH-sensitive cell-permeable probe BCECF-AM. Once this dye enters the cell,
502 cytosolic esterases cleave the acetoxyethyl ester (AM) group and free BCECF
503 accumulates in the cell's cytosol. The intensity of this dye's fluorescence emission
504 ($\lambda=535$ nm) increases with increasing pH, enabling the tracking of pH_i conditions.
505 BCECF-loaded cells, in either NC or capacitation medium were concentrated from 2
506 $\times 10^6$ to 8×10^6 cells/mL (in a final volume of 50 μ L) by centrifugation at 300 g for 5
507 min. At least 30 seconds before measurements, 250 nM PI (final concentration) was
508 added to the cell suspension to evaluate sperm viability. BCECF and PI fluorescence
509 were measured using the image-based flow cytometer ImageStream Mark II (Amnis,
510 USA). The acquisition settings of INSPIRE® software (Amnis, USA) were as follows:
511 objective: 60X magnification, excitation laser: 488nm, laser intensity range: 20-100
512 mW (in order to avoid over excitation and pixel saturation), BCECF emission: 535nm,
513 collected in channel 2 (range 480-560 nm), PI emission: 620 nm, collected in channel
514 4 (range 595-660 nm), brightfield images: channel 1. During acquisition, different
515 parameters were set for preliminary discrimination of saturated, cell aggregates,
516 non-sperm (e.g. round cells), and non-focused cells according to previous work
517 (Matamoros-Volante et al., 2018). After pre-processing, 12,500 cells were recorded
518 for each condition.

519 To estimate the kinetics of pH_i changes during capacitation, we employed the
520 aforementioned conditions to assess BCECF fluorescence under NC conditions (*i.e.*
521 after swim-up and dye loading). For measurements under capacitation conditions,
522 recordings were done immediately after the addition of 2X capacitation medium
523 (considered capacitation time = 0 min). Thereafter, we tracked pH_i under
524 capacitation conditions at 15-min intervals, up to 180 min of incubation, unless
525 otherwise specified. A final measurement was made at 240 min of capacitation.

526 **Computer assisted sperm analysis (CASA)**

527 The effect of the various blockers in sperm motility was evaluated using a CASA
528 system. A 7- μ L aliquot of each sperm sample was placed in a pre-warmed
529 microscopy slide, covered with a coverslip (18 x 18 mm), and sperm motility was
530 monitored using a negative phase contrast 10X objective (Nikon, Japan). Data was
531 acquired using Sperm Class Analyzer software (SCA, Microptics, Barcelona, Spain).
532 500 cells were measured for each experimental condition, by collecting 25 images
533 with a frequency of 50 Hz. Sperm hyperactivation was assessed according to the
534 criteria established by Mortimer, 2000, as follows: curvilinear velocity (VCL): > 150
535 μ m/s; linearity (LIN): < 50%; half lateral head displacement (ALH_{1/2}): > 3.5 μ m.

536 **Image based-flow cytometry data analysis**

537 Image-based flow cytometry-derived images were analyzed with IDEAS® software
538 version 6.2 (Amnis, USA) using a previously reported analysis strategy designed to:
539 a) discriminate non-sperm events (doublets, debris, etc.), unfocused images, and
540 dead cells (positive to PI); and b) perform segmentation of sperm images in order to

541 selectively analyze three distinct sperm cell regions, namely the head, the midpiece,
542 and the principal piece (Matamoros-Volante et al., 2018). After completing the
543 formerly described selection and segmentation processes, anywhere between 1,000
544 and 2,000 cell regions per treatment remained for analysis from each of the semen
545 samples (n=3 to 9). For each treatment, fluorescence histogram data (e.g. Fig.S1A)
546 from the various semen samples were pooled into boxplots (e.g. Fig. S1B) for each
547 of the three analyzed cell regions. In order to identify pH_i increases across sperm
548 populations subjected to various treatments and/or capacitation time points, only cell
549 regions exhibiting a fluorescence value higher than those of the third quartile in the
550 NC condition (i.e. falling to the right of the dashed line in Fig. S1A-B) were arbitrarily
551 considered as having a high pH_i. The percentage of such high pH_i cell regions (Fig.
552 S1B) was then calculated for the NC condition (%NC) and for each treatment/time
553 point (%T), after eliminating outliers (i.e. those with fluorescence values in the top
554 5%). To assess the effect of each capacitation time point (%T) or treatment (%T_A),
555 the difference between those percentages ($\Delta\%$) was calculated as follows: $\Delta\% = \%T -$
556 %NC (e.g. Fig. S1C). In many cases, the %NC value under altered conditions
557 (%NC_A) (i.e. absence of HCO₃⁻ or presence of a blocker) was significantly lower than
558 that of %NC (e.g. Fig. S1B-C), resulting in negative $\Delta\%$ values (e.g. Fig. S1C). To
559 enable side-by-side comparisons of pH_i kinetics, we adjusted $\Delta\%$ values for altered
560 conditions to start at zero (i.e. equal to the NC condition) through an alternative
561 calculation: $\Delta\%A = \%T_A - \%NC_A$ (e.g. Fig. S1D). With this normalization, the effect of
562 each treatment is measured with respect to its corresponding initial NC condition
563 (NC or NC_A). However, in order to appreciate the effect of pre-incubation with
564 blockers on the initial %NC_A value, we also show all pH_i kinetics plots using %NC

565 for all $\Delta\%$ calculations (Fig. S2A-D, see corresponding normalized results in Figures
566 2A, 3A, 4A and 5A).

567 **Statistical analysis**

568 Results from image-based flow cytometry are presented as boxplots of the pooled
569 fluorescence values for all analyzed cell regions from all donors using the median
570 fluorescence value at each condition divided by the median fluorescence value of
571 the NC condition (e.g. Fig S1B). The corresponding calculated $\Delta\%$ and $\Delta\%A$ values
572 are presented as mean +/- s.e.m. Differences in these values were assessed using
573 two-way ANOVA, considering capacitation time (e.g. NC, 0, 60, 240 min, etc.) as
574 one factor, and treatment (e.g. Control, Inh-172, CI-GBI, etc.) as the second factor.
575 Motility measurements are presented as mean +/- s.e.m. and statistical differences
576 assessed also with two-way ANOVA. The Tukey test was subsequently applied to
577 determine differences between treatments. A probability (p) value <0.05 was
578 considered a statistically significant difference. GraphPad Prism version 6
579 (GraphPad, USA) was used for statistical analysis. ggplot2 library (Wickham, 2009)
580 in R studio software (R Core Team, 2017) was employed for plotting and data
581 analysis. The final versions of the figures were prepared using Inkscape 0.91
582 (Inkscape.org, USA).

583 **ACKNOWLEDGMENTS**

584 We thank Paulina Torres, Andres Saralegui, Yoloxóchilt Sánchez and Jose Luis De
585 la Vega for technical assistance. We thank Shirley Ainsworth for library support. We
586 acknowledge Juan Manuel Hurtado, Roberto Rodríguez, Omar Arriaga and Arturo

587 Ocádiz for computer services. We thank Marcela Trevino for critically reading the
588 manuscript and English editing.

589 **COMPETING INTEREST**

590 The authors declare no competing or financial interests.

591 **FUNDING**

592 This study was supported by DGAPA-UNAM (IN202519 to C.L. Treviño).
593 Matamoros-Volante A., is a student of the Doctorado en Ciencias Bioquímicas-
594 UNAM program supported by CONACyT scholarship.

595 **REFERENCES**

596 **Alasmari, W., Costello, S., Correia, J., Oxenham, S. K., Morris, J., Fernandes,
597 L., Ramalho-Santos, J., Kirkman-Brown, J., Michelangeli, F., Publicover,
598 S., et al.** (2013). Ca²⁺ Signals Generated by CatSper and Ca²⁺ Stores
599 Regulate Different Behaviors in Human Sperm. *J. Biol. Chem.* **288**, 6248–
600 6258.

601 **Alvau, A., Battistone, M. A., Gervasi, M. G., Navarrete, F. A., Xu, X., Sánchez-
602 Cárdenas, C., De la Vega-Beltran, J. L., Da Ros, V. G., Greer, P. A.,
603 Darszon, A., et al.** (2016). The tyrosine kinase FER is responsible for the
604 capacitation- associated increase in tyrosine phosphorylation in murine sperm.
605 *Development* **143**, 2325–2333.

606 **Austin, C. R. and Sakkas, D.** (1951). Observations on the penetration of the
607 sperm in the mammalian egg. *Aust. J. Sci. Res.* **8**, 581–596.

608 **Avenarius, M. R., Hildebrand, M. S., Zhang, Y., Meyer, N. C., Smith, L. L. H.,
609 Kahrizi, K., Najmabadi, H. and Smith, R. J. H.** (2009). Human Male Infertility
610 Caused by Mutations in the CATSPER1 Channel Protein. *Am. J. Hum. Genet.*

611 **84**, 505–510.

612 **Battistone, M. A., Da Ros, V. G., Salicioni, A. M., Navarrete, F. A., Krapf, D.,**
613 **Visconti, P. E. and Cuasnicú, P. S.** (2013). Functional human sperm
614 capacitation requires both bicarbonate-dependent PKA activation and down-
615 regulation of Ser/Thr phosphatases by Src family kinases. *Mol. Hum. Reprod.*
616 **19**, 570–80.

617 **Battistone, M. A., Alvau, A., Salicioni, A. M., Visconti, P. E., Da Ros, V. G. and**
618 **Cuasnicú, P. S.** (2014). Evidence for the involvement of proline-rich tyrosine
619 kinase 2 in tyrosine phosphorylation downstream of protein kinase a activation
620 during human sperm capacitation. *Mol. Hum. Reprod.* **20**, 1054–1066.

621 **Bianchini, L., Nanda, A., Wasan, S. and Grinstein, S.** (1994). Activation of
622 multiple pH-regulatory pathways in granulocytes by a phosphotyrosine
623 phosphatase antagonist. *Biochem. J.* **301** (Pt 2), 539–44.

624 **Bruckman, N. G., Nuñez, S. Y., Puga Molina, L. del C., Buffone, M. G., Darszon,**
625 **A., Cuasnicu, P. S. and Da Ros, V. G.** (2019). Tyrosine phosphorylation
626 signaling regulates Ca 2+ entry by affecting intracellular pH during human
627 sperm capacitation. *J. Cell. Physiol.* **234**, 5276–5288.

628 **Buffone, M. G., Ijiri, T. W., Cao, W., Merdiushev, T., Aghajanian, H. K. and**
629 **Gerton, G. L.** (2012). Heads or tails? Structural events and molecular
630 mechanisms that promote mammalian sperm acrosomal exocytosis and
631 motility. *Mol. Reprod. Dev.* **79**, 4–18.

632 **Buffone, M. G., Wertheimer, E. V., Visconti, P. E. and Krapf, D.** (2014). Central
633 role of soluble adenylyl cyclase and cAMP in sperm physiology. *Biochim.*
634 *Biophys. Acta - Mol. Basis Dis.* **1842**, 2610–2620.

635 **Ch'en, F. F.-T., Villafuerte, F. C., Swietach, P., Cobden, P. M. and Vaughan-**
636 **Jones, R. D.** (2008). S0859, an N-cyanosulphonamide inhibitor of sodium-
637 bicarbonate cotransport in the heart. *Br. J. Pharmacol.* **153**, 972–82.

638 **Chang, M.** (1951). Fertilizing Capacity of Spermatozoa deposited into the Fallopian
639 Tubes. *Nature* **168**, 697–698.

640 **Chávez, J. C., Hernández-González, E. O., Wertheimer, E., Visconti, P. E.,**
641 **Darszon, A. and Treviño, C. L.** (2012). Participation of the Cl-/HCO(3)-
642 exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the
643 regulatory factor SLC9A3R1 in mouse sperm capacitation. *Biol. Reprod.* **86**,
644 1–14.

645 **Cross, N. L. and Razy-Faulkner, P.** (1997). Control of human sperm intracellular
646 pH by cholesterol and its relationship to the response of the acrosome to
647 progesterone. *Biol. Reprod.* **56**, 1169–1174.

648 **Damkier, H. H., Nielsen, S. and Praetorius, J.** (2007). Molecular expression of
649 SLC4-derived Na-dependent anion transporters in selected human tissues.
650 *Am J Physiol Regul Integr Comp Physiol* **293**, 2136–2146.

651 **Demarco, I. A., Espinosa, F., Edwards, J., Sosnik, J., de la Vega-Beltrán, J. L.,**
652 **Hockensmith, J. W., Kopf, G. S., Darszon, A. and Visconti, P. E.** (2003).
653 Involvement of a Na + /HCO Cotransporter in Mouse Sperm Capacitation. *J.*
654 *Biol. Chem.* **278**, 7001–7009.

655 **El Khouri, E., Whitfield, M., Stouvenel, L., Kini, A., Riederer, B., Lores, P.,**
656 **Romermann, D., di stefano, G., Drevet, J. R., Saez, F., et al.** (2018).
657 Slc26a3 Deficiency is Associated with Epididymis Dysplasia and Impaired
658 Sperm Fertilization Potential in the Mouse. *Mol. Reprod. Dev.* 1–14.

659 **Foresta, C., Garolla, A., Cosci, I., Menegazzo, M., Ferigo, M., Gandin, V. and**
660 **De Toni, L. (2014). Role of zinc trafficking in male fertility: From germ to**
661 **sperm. *Hum. Reprod.* **29**, 1134–1145.**

662 **Hereng, T. H., Elgstøen, K. B. P., Eide, L., Rosendal, K. R. and Skålhegg, B. S.**
663 **(2014). Serum albumin and HCO₃-regulate separate pools of ATP in human**
664 **spermatozoa. *Hum. Reprod.* **29**, 918–930.**

665 **Hernández-González, E. O., Treviño, C. L., Castellano, L. E., de la Vega-**
666 **Beltrán, J. L., Ocampo, A. Y., Wertheimer, E., Visconti, P. E. and Darszon,**
667 **A. (2007). Involvement of cystic fibrosis transmembrane conductance**
668 **regulator in mouse sperm capacitation. *J. Biol. Chem.* **282**, 24397–406.**

669 **Ho, H.-C., Granish, K. A. and Suarez, S. S. (2002). Hyperactivated Motility of Bull**
670 **Sperm Is Triggered at the Axoneme by Ca²⁺ and Not cAMP. *Dev. Biol.* **250**,**
671 **208–217.**

672 **Hondares, E., Brown, M. A., Musset, B., Morgan, D., Cherny, V. V., Taubert, C.,**
673 **Bhamrah, M. K., Coe, D., Marelli-Berg, F., Gribben, J. G., et al. (2014).**
674 **Enhanced activation of an amino-terminally truncated isoform of the voltage-**
675 **gated proton channel HVCN1 enriched in malignant B cells. *Proc. Natl. Acad.***
676 ***Sci. U. S. A.* **111**, 18078–83.**

677 **Hong, L., Kim, I. H. and Tombola, F. (2014). Molecular determinants of Hv1**
678 **proton channel inhibition by guanidine derivatives. *Proc. Natl. Acad. Sci. U. S.***
679 ***A.* **111**, 9971–6.**

680 **Hwang, J. Y., Mannowetz, N., Zhang, Y., Everley, R. A., Gygi, S. P.,**
681 **Bewersdorf, J., Lishko, P. V. and Chung, J. J. (2019). Dual Sensing of**
682 **Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility. *Cell* **177**,**

683 1480-1494.e19.

684 **José, O., Torres-Rodríguez, P., Forero-Quintero, L. S., Chávez, J. C., De la**
685 **Vega-Beltrán, J. L., Carta, F., Supuran, C. T., Deitmer, J. W. and Treviño,**
686 **C. L.** (2015). Carbonic anhydrases and their functional differences in human
687 and mouse sperm physiology. *Biochem. Biophys. Res. Commun.* **468**, 713–
688 718.

689 **Kalina, M., Socher, R., Rotem, R. and Naor, Z.** (1995). Ultrastructural localization
690 of protein kinase C in human sperm. *J. Histochem. Cytochem.* **43**, 439–445.

691 **Kirichok, Y., Navarro, B. and Clapham, D. E.** (2006). Whole-cell patch-clamp
692 measurements of spermatozoa reveal an alkaline-activated Ca²⁺ channel.
693 *Nature* **439**, 737–740.

694 **Li, C. Y., Jiang, L. Y., Chen, W. Y., Li, K., Sheng, H. Q., Ni, Y., Lu, J. X., Xu, W.**
695 **X., Zhang, S. Y. and Shi, Q. X.** (2010). CFTR is essential for sperm fertilizing
696 capacity and is correlated with sperm quality in humans. *Hum. Reprod.* **25**,
697 317–327.

698 **Lishko, P. V. and Kirichok, Y.** (2010). The role of Hv1 and CatSper channels in
699 sperm activation. *J. Physiol.* **588**, 4667–4672.

700 **Lishko, P. V., Botchkina, I. L., Fedorenko, A. and Kirichok, Y.** (2010). Acid
701 Extrusion from Human Spermatozoa Is Mediated by Flagellar Voltage-Gated
702 Proton Channel. *Cell* **140**, 327–337.

703 **Lishko, P. V., Kirichok, Y., Ren, D., Navarro, B., Chung, J.-J. and Clapham, D.**
704 **E.** (2012). The control of male fertility by spermatozoan ion channels. *Annu.*
705 *Rev. Physiol.* **74**, 453–75.

706 **Liu, Y., Wang, D.-K. D.-K. and Chen, L.-M.** (2012). The Physiology of Bicarbonate

707 Transporters in Mammalian Reproduction. *Biol. Reprod.* **86**, 99–99.

708 **Lopez-Gonzalez, I., Torres-Rodriguez, P., Sanchez-Carranza, O., Solis-Lopez, A., Santi, C. M., Darszon, A. and Trevino, C. L.** (2014). Membrane

709 hyperpolarization during human sperm capacitation. *Mol. Hum. Reprod.* **20**,

710 619–629.

712 **Mannowetz, N., Wandernoth, P. M. and Wennemuth, G.** (2012). Glucose is a

713 pH-dependent motor for sperm beat frequency during early activation. *PLoS*

714 *One* **7**, e41030.

715 **Marquez, B. and Suarez, S. S.** (2007). Bovine Sperm Hyperactivation Is Promoted

716 by Alkaline-Stimulated Ca²⁺ Influx1. *Biol. Reprod.* **76**, 660–665.

717 **Matamoros-Volante, A., Moreno-Irusta, A., Torres-Rodriguez, P., Giojalas, L., Gervasi, M. G., Visconti, P. E. and Treviño, C. L.** (2018). Semi-automatized

719 segmentation method using image-based flow cytometry to study sperm

720 physiology: the case of capacitation-induced tyrosine phosphorylation. *Mol.*

721 *Hum. Reprod.* **24**, 64–73.

722 **Miller, M. R., Mansell, S. A., Meyers, S. A. and Lishko, P. V** (2015). Cell Calcium

723 Flagellar ion channels of sperm : similarities and differences between species.

724 *Cell Calcium* **58**, 105–113.

725 **Miller, M. R., Kenny, S. J., Mannowetz, N., Mansell, S. A., Wojcik, M., Mendoza, S., Zucker, R. S., Xu, K. and Lishko, P. V.** (2018). Asymmetrically

727 Positioned Flagellar Control Units Regulate Human Sperm Rotation. *Cell Rep.*

728 **24**, 2606–2613.

729 **Mishra, A. K., Kumar, A., Swain, D. K., Yadav, S. and Nigam, R.** (2018). Insights

730 into pH regulatory mechanisms in mediating spermatozoa functions. *Vet.*

731 *World* **11**, 852–858.

732 **Morgan, D., Cherny, V. V., Finnegan, A., Bollinger, J., Gelb, M. H. and**
733 **DeCoursey, T. E.** (2007). Sustained activation of proton channels and
734 NADPH oxidase in human eosinophils and murine granulocytes requires PKC
735 but not cPLA₂ α activity. *J. Physiol.* **579**, 327–344.

736 **Mortimer, S. T.** (2000). CASA—Practical Aspects. *J. Androl.* **21**, 515–524.

737 **Musset, B., Capasso, M., Cherny, V. V., Morgan, D., Bhamrah, M., Dyer, M. J.**
738 **S. and DeCoursey, T. E.** (2010). Identification of Thr29 as a critical
739 phosphorylation site that activates the human proton channel Hvcn1 in
740 leukocytes. *J. Biol. Chem.* **285**, 5117–5121.

741 **Nanda, A. and Grinstein, S.** (1995). Chemoattractant-induced activation of
742 vacuolar H⁺ pumps and of an H⁺-selective conductance in neutrophils. *J. Cell.*
743 *Physiol.* **165**, 588–599.

744 **Navarro, B., Kirichok, Y. and Clapham, D. E.** (2007). KSper, a pH-sensitive K⁺
745 current that controls sperm membrane potential. *Proc Natl Acad Sci U S A*
746 **104**, 7688–7692.

747 **Neuhaus, E. M., Mashukova, A., Barbour, J., Wolters, D., Hatt, H., Giordano,**
748 **R., Magnano, A. R., Lorenzini, R., Lavia, P. and Spadafora, C.** (2006).
749 Novel function of beta-arrestin2 in the nucleus of mature spermatozoa. *J. Cell*
750 *Sci.* **119**, 3047–56.

751 **Nishigaki, T., José, O., González-Cota, A. L., Romero, F., Treviño, C. L. and**
752 **Darszon, A.** (2014). Intracellular pH in sperm physiology. *Biochem. Biophys.*
753 *Res. Commun.* **450**, 1149–1158.

754 **Okamura, N., Tajima, Y., Soejima, A., Masuda, H. and Sugita, Y.** (1985).

755 Sodium bicarbonate in seminal plasma stimulates the motility of mammalian
756 spermatozoa through direct activation of adenylate cyclase. *J. Biol. Chem.*
757 **260**, 9699–9705.

758 **Okamura, N., Tajima, Y., Ishikawa, H., Yoshii, S., Koiso, K. and Sugita, Y.**
759 (1986). Lowered levels of bicarbonate in seminal plasma cause the poor
760 sperm motility in human infertile patients. *Fertil Steril* **45**, 265–272.

761 **Orta, G., de la Vega-Beltran, J. L., Martín-Hidalgo, D., Santi, C. M., Visconti, P.**
762 **E. and Darszon, A.** (2018). CatSper channels are regulated by protein kinase
763 A. *J. Biol. Chem.* **293**, 16830–16841.

764 **Owen, D. H. and Katz, D. F.** (2005). A review of the physical and chemical
765 properties of human semen and the formulation of a semen simulant. *J.*
766 *Androl.* **26**, 459–469.

767 **Parkkila, S., Rajaniemi, H. and Kellokumpu, S.** (1993). Polarized expression of a
768 band 3-related protein in mammalian sperm cells. *Biol. Reprod.* **49**, 326–331.

769 **Puga Molina, L. C., Pinto, N. A., Torres Rodríguez, P., Romarowski, A., Vicens**
770 **Sanchez, A., Visconti, P. E., Darszon, A., Treviño, C. L. and Buffone, M.**
771 **G.** (2017). Essential Role of CFTR in PKA-Dependent Phosphorylation,
772 Alkalization, and Hyperpolarization During Human Sperm Capacitation. *J.*
773 *Cell. Physiol.* **232**, 1404–1414.

774 **Puga Molina, L. C., Pinto, N. A., Torres, N. I., González-Cota, A. L., Luque, G.**
775 **M., Balestrini, P. A., Romarowski, A., Krapf, D., Santi, C. M., Treviño, C.**
776 **L., et al.** (2018). CFTR/ENaC-dependent regulation of membrane potential
777 during human sperm capacitation is initiated by bicarbonate uptake through
778 NBC. *J. Biol. Chem.* **293**, 9924–9936.

779 **Pushkin, A., Abuladze, N., Newman, D., Lee, I., Xu, G. and Kurtz, I.** (2000). *Two*
780 *C-Terminal Variants of NBC4, a New Member of the Sodium Bicarbonate*
781 *Cotransporter Family: Cloning, Characterization, and Localization*. John Wiley
782 & Sons, Ltd.

783 **Qi, H., Moran, M. M., Navarro, B., Chong, J. A., Krapivinsky, G., Krapivinsky,**
784 **L., Kirichok, Y., Ramsey, I. S., Quill, T. a and Clapham, D. E.** (2007). All
785 four CatSper ion channel proteins are required for male fertility and sperm cell
786 hyperactivated motility. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 1219–23.

787 **R Core Team** (2017). R: A Language and Environment for Statistical Computing.

788 **Ren, D., Navarro, B., Perez, G., Jackson, A. C., Hsu, S., Shi, Q., Tilly, J. L. and**
789 **Clapham, D. E.** (2001). A sperm ion channel required for sperm motility and
790 male fertility. *Nature* **413**, 603–609.

791 **Rotem, R., Pazy, G. F., Homonnait, Z. T., Kalinat, M. and Naor, Z.** (1990).
792 Protein kinase C is present in human sperm: Possible role in flagellar motility.
793 *Proc. Natl. Acad. Sci. USA* **87**, 7305–7308.

794 **Santi, C. M., Martínez-López, P., de la Vega-Beltrán, J. L., Butler, A., Alisio, A.,**
795 **Darszon, A. and Salkoff, L.** (2010). The SLO3 sperm-specific potassium
796 channel plays a vital role in male fertility. *FEBS Lett.* **584**, 1041–6.

797 **Sousa, A. P., Amaral, A., Baptista, M., Tavares, R., Caballero Campo, P.,**
798 **Caballero Peregrín, P., Freitas, A., Paiva, A., Almeida-Santos, T. and**
799 **Ramalho-Santos, J.** (2011). Not all sperm are equal: functional mitochondria
800 characterize a subpopulation of human sperm with better fertilization potential.
801 *PLoS One* **6**, e18112.

802 **Suarez, S. S.** (2008). Control of hyperactivation in sperm. *Hum. Reprod. Update*

803 **14**, 647–657.

804 **Touré, A., Lhuillier, P., Gossen, J. A., Kuil, C. W., Lhôte, D., Jégou, B.,**
805 **Escalier, D. and Gacon, G.** (2007). The testis anion transporter 1 (Slc26a8) is
806 required for sperm terminal differentiation and male fertility in the mouse. *Hum.*
807 *Mol. Genet.* **16**, 1783–93.

808 **Ui, M.** (1966). A role of phosphofructokinase in pH-dependent regulation of
809 glycolysis. *Biochim. Biophys. Acta - Gen. Subj.* **124**, 310–322.

810 **Wandernoth, P. M., Raubuch, M., Mannowetz, N., Becker, H. M., Deitmer, J.**
811 **W., Sly, W. S. and Wennemuth, G.** (2010). Role of carbonic anhydrase IV in
812 the bicarbonate-mediated activation of murine and human sperm. *PLoS One*
813 **5**, e15061.

814 **Wang, D., King, S. M., Quill, T. A., Doolittle, L. K. and Garbers, D. L.** (2003). A
815 new sperm-specific Na⁺/H⁺ Exchanger required for sperm motility and fertility.
816 *Nat. Cell Biol.* **5**, 1117–1122.

817 **Wennemuth, G.** (2003). Bicarbonate actions on flagellar and Ca²⁺-channel
818 responses: initial events in sperm activation. *Development* **130**, 1317–1326.

819 **Wennemuth, G., Carlson, A. E., Harper, A. J. and Babcock, D. F.** (2003).
820 Bicarbonate actions on flagellar and Ca²⁺-channel responses: initial events in
821 sperm activation. *Development* **130**, 1317–1326.

822 **Wickham, H.** (2009). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag
823 New York.

824 **Xu, W. M., Shi, Q. X., Chen, W. Y., Zhou, C. X., Ni, Y., Rowlands, D. K., Yi Liu,**
825 **G., Zhu, H., Ma, Z. G., Wang, X. F., et al.** (2007). Cystic fibrosis
826 transmembrane conductance regulator is vital to sperm fertilizing capacity and

827 male fertility. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 9816–21.

828 **Zeng, Y., Oberdorf, J. A. and Florman, H. M.** (1996). pH regulation in mouse

829 sperm: identification of Na(+)-, Cl(-)-, and HCO3(-)-dependent and

830 arylaminobenzoate-dependent regulatory mechanisms and characterization of

831 their roles in sperm capacitation. *Dev. Biol.* **173**, 510–520.

832 **Zeng, X.-H., Yang, C., Kim, S. T., Lingle, C. J. and Xia, X.-M.** (2011). Deletion of

833 the Slo3 gene abolishes alkalization-activated K⁺ current in mouse

834 spermatozoa. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 5879–84.

835 **Zeng, X.-H., Navarro, B., Xia, X.-M., Clapham, D. E. and Lingle, C. J.** (2013).

836 Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and

837 voltage-activated current in mouse spermatozoa. *J. Gen. Physiol.* **142**, 305–

838 13.

839

840

841

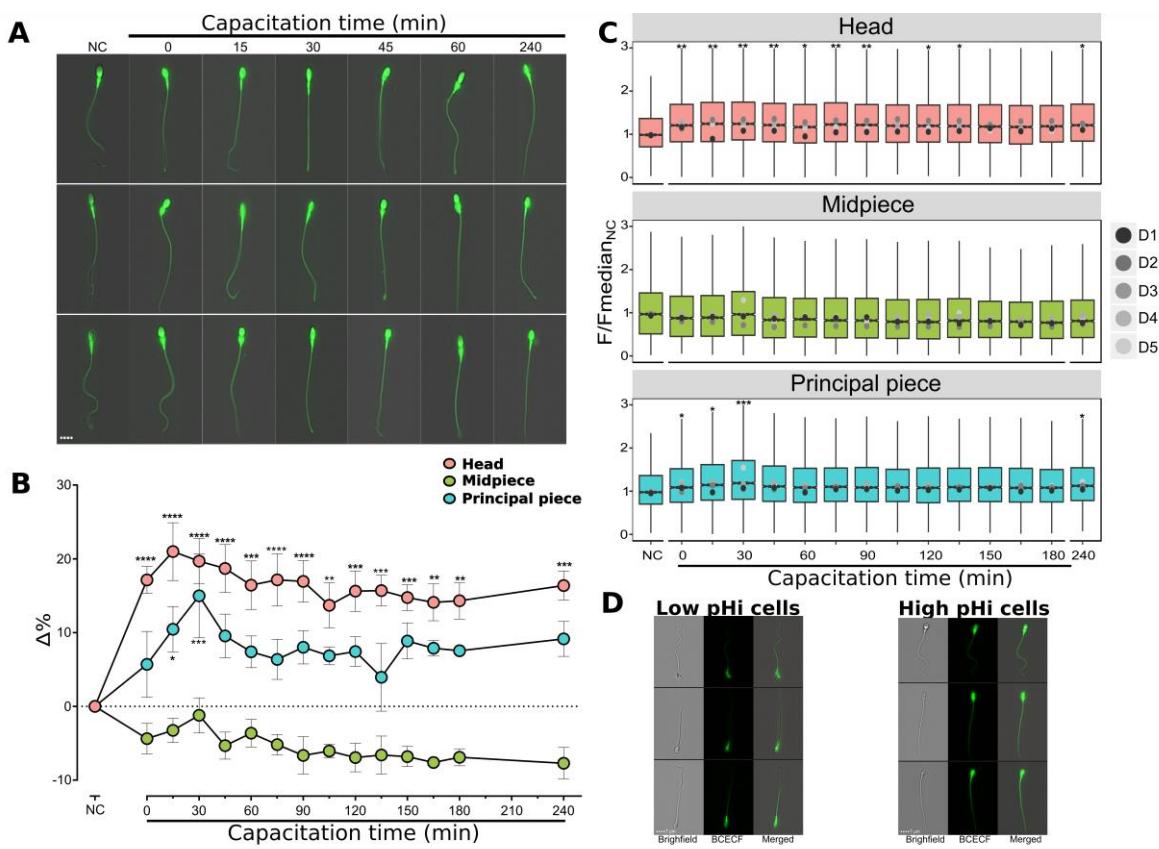
842

843

844

845

846


847

848

849

850

851 **Figure 1**

852

853 **Figure 1. Intracellular alkalization during sperm capacitation occurs in the**
854 **head and the principal piece but not in the midpiece. A.** Three representative
855 fluorescence images of BCECF-stained human sperm cells either non-capacitated
856 (NC) or at the indicated capacitation times. **B.** $\Delta\%$ values ($\Delta\% = \%T - \%NC$) for each
857 subcellular region in cells either non-capacitated (NC) or at the indicated capacitation
858 times. Data represent the mean \pm s.e.m. (n=5). **C.** Boxplots of normalized BCECF
859 fluorescence values for each subcellular region in cells either non-capacitated (NC)
860 or at the indicated capacitation times. Gray-scale dots (D1-D5) within boxplots
861 indicate the median fluorescence value for the entire sperm population from each
862 donor, consisting of at least 1,000 cells each (n=5). Data were compared by one-
863 way ANOVA considering capacitation time as one factor. Tukey's multiple

864 comparison test was employed as post hoc analysis. * $p<0.05$, ** $p<0.01$, *** $p<0.001$,
865 **** $p<0.0001$. **D.** Three representative images of cells considered as having high or
866 low pH_i.

867

868

869

870

871

872

873

874

875

876

877

878

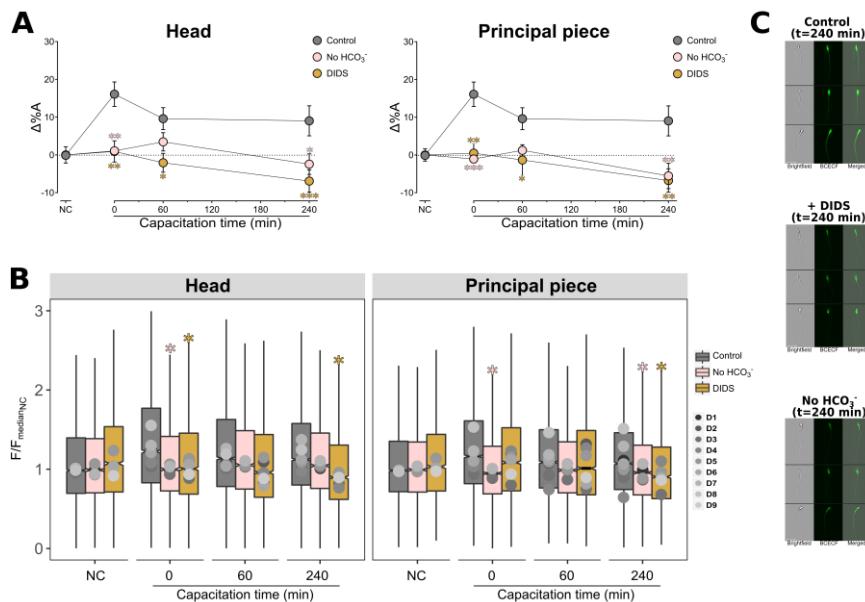
879

880

881

882

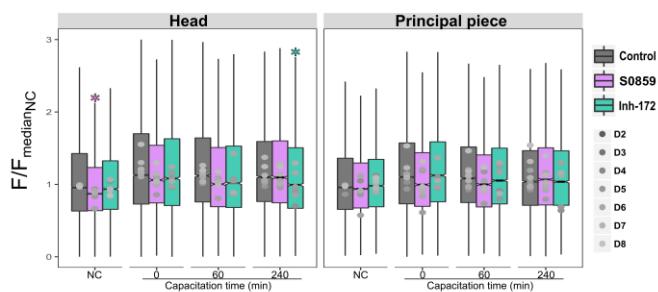
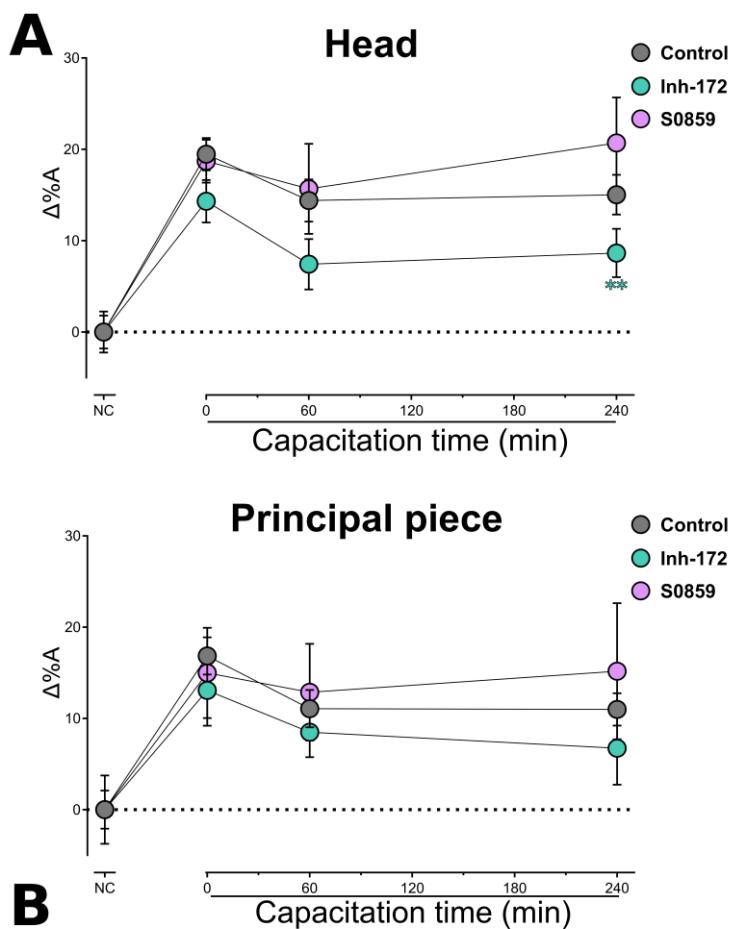
883


884

885

886

887



888 **Figure 2**

889

890 **Figure 2. HCO₃⁻ influx is required for the initial and sustained pH_i increase in**
891 **the head and the principal piece. A.** $\Delta\%$ A values ($\Delta\%A = \%T - \%NCA$) for each
892 subcellular region from human sperm cells placed in non-capacitating medium or in
893 complete capacitating medium and in both media in the presence or absence of 100
894 μ M DIDS, or medium lacking HCO₃⁻ (applies only to capacitating medium). Values
895 were measured at the indicated capacitation times. Data represent the mean \pm
896 s.e.m. (n=9 for Control, n=6 for DIDS, n=4 No HCO₃⁻). **B.** Boxplots of normalized
897 BCECF fluorescence values for each subcellular region in cells under the same
898 conditions as in **A**. Gray-scale dots (D1-D9) within boxplots indicate the median
899 fluorescence value for the entire sperm population from each donor, consisting of at
900 least 1,000 cells each (n=9 for Control, n=6 for DIDS, n=4 No HCO₃⁻). **C.** Three
901 representative images of cells capacitated for 240 min under the indicated
902 conditions. Data were compared using two-way ANOVA with incubation time as one
903 factor, and treatment as the other factor. *p<0.05, **p<0.01, ***p<0.001.

904 **Figure 3**

905

906 **Figure 3. NBC and CFTR have a minor role in cytoplasmic alkalization during**
907 **capacitation. A.** $\Delta\%A$ values ($\Delta\%A = \%T - \%NC_A$) for each subcellular region from
908 human sperm cells placed in non-capacitating medium or in complete capacitating
909 medium and in both media in the presence or absence of 5 μM S0859 or Inh172.
910 Values were measured at the indicated capacitation times. Data represent the mean

911 \pm s.e.m. (n=8 for Control and Inh-172, n=6 for S0859). **B.** Boxplots of normalized
912 BCECF fluorescence values for each subcellular region in cells under the same
913 conditions as in **A**. Gray-scale dots (D1-D8) within boxplots indicate the median
914 fluorescence value for the entire sperm population from each donor, consisting of at
915 least 1,000 cells each (n=8 for Control and Inh-172, n=6 for S0859). Data were
916 compared using two-way ANOVA with incubation time as one factor, and treatment
917 as the other factor. * $p<0.05$, ** $p<0.01$.

918

919

920

921

922

923

924

925

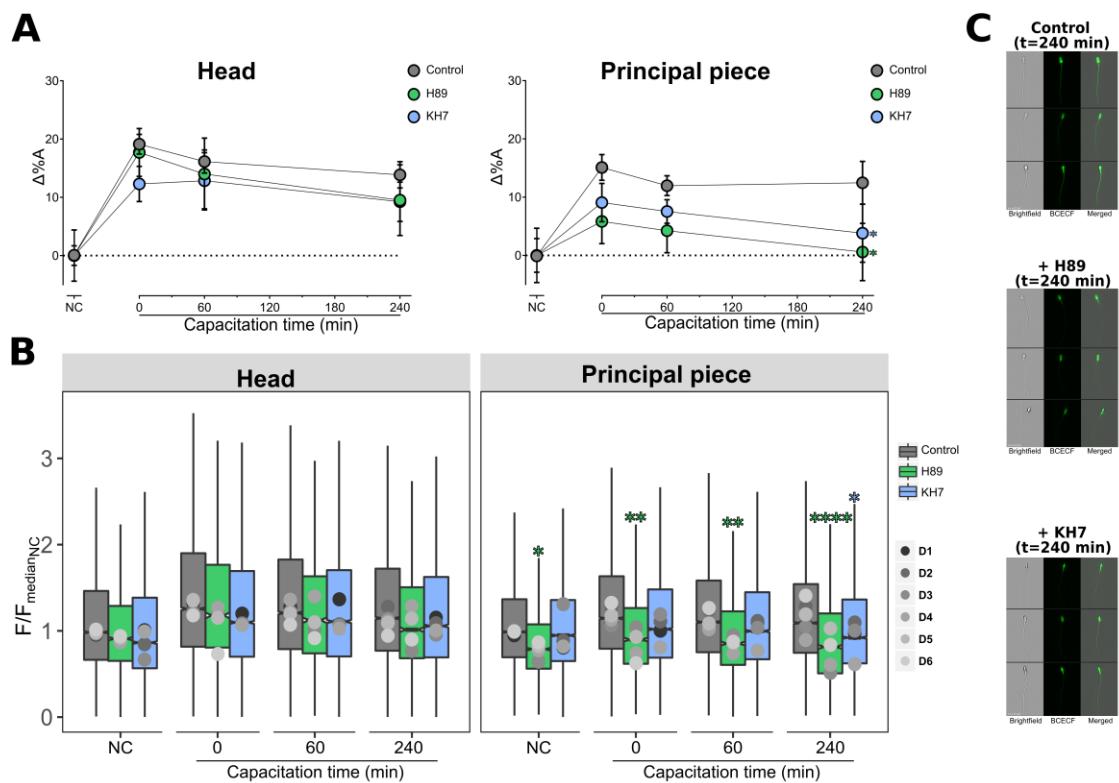
926

927

928

929

930


931

932

933

934

935 **Figure 4**

936

937 **Figure 4. The PKA signaling pathway participates in the regulation of**
938 **capacitation-associated alkalization in the principal piece, but not in the head.**

939 **A.** $\Delta\%A$ values ($\Delta\%A = \%T - \%NC_A$) for each subcellular region from human sperm
940 cells placed in non-capacitating medium or in complete capacitating medium and in
941 both media in the presence or absence of 50 μ M KH7 or 30 μ M H89. Values were
942 measured at the indicated capacitation times. Data represent the mean \pm s.e.m. (n=6
943 for Control, n=4 for KH7 and H89). **B.** Boxplots of normalized BCECF fluorescence
944 values for each subcellular region in cells under the same conditions as in **A**. Gray-
945 scale dots (D1-D6) within boxplots indicate the median fluorescence value for the
946 entire sperm population from each donor, consisting of at least 1,000 cells each (n=6
947 for Control, n=4 for KH7 and H89). Data were compared using two-way ANOVA with

948 incubation time as one factor, and treatment as the other factor. * $p<0.05$, ** $p<0.01$,
949 **** $p<0.0001$.

950

951

952

953

954

955

956

957

958

959

960

961

962

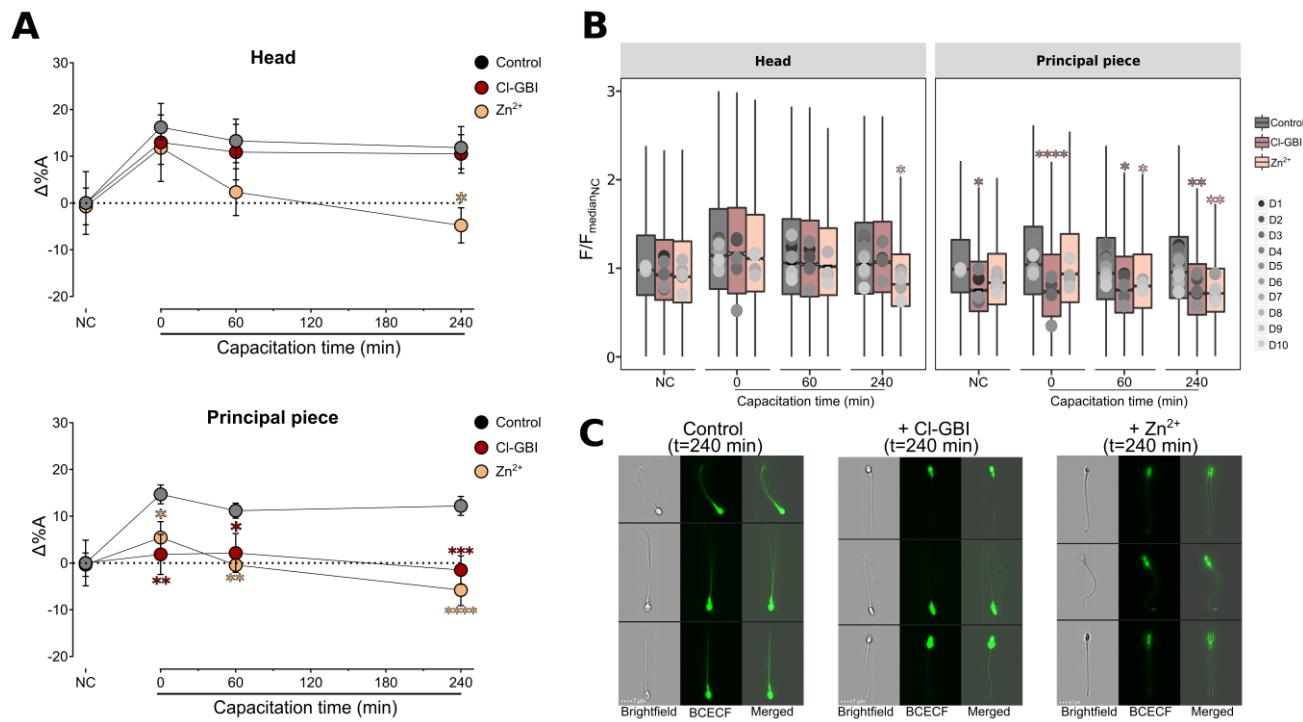
963

964

965

966

967

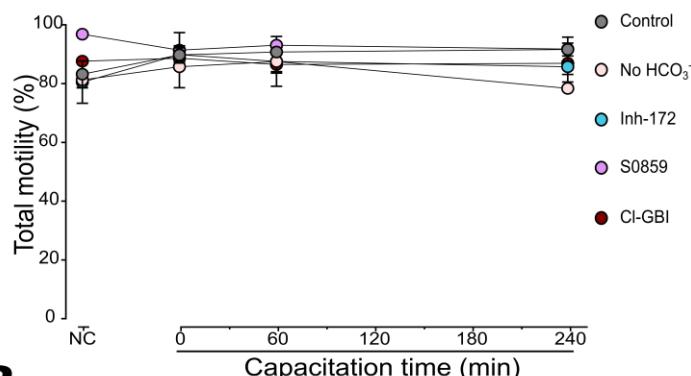

968

969

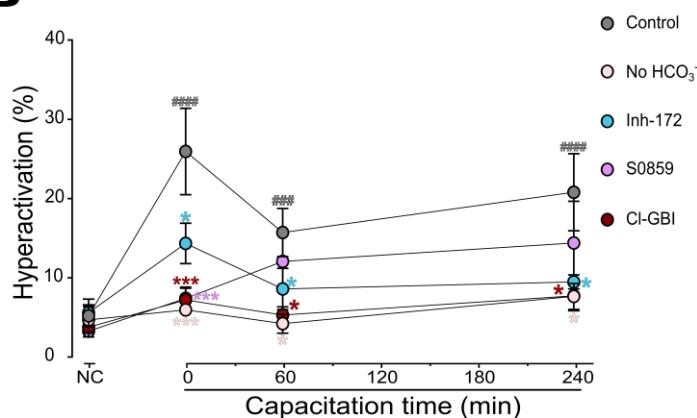
970

971

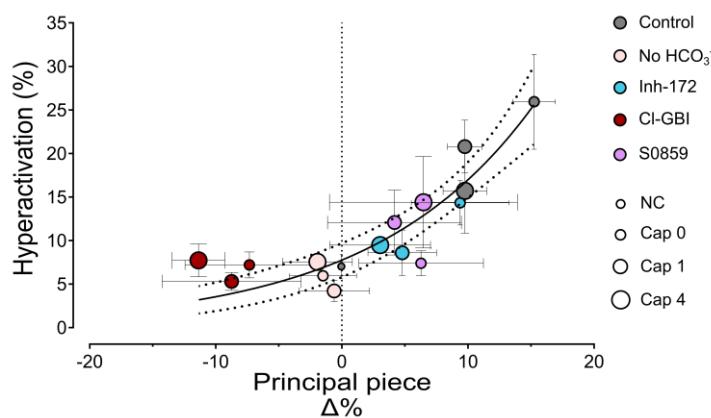
972 **Figure 5**


973

974 **Figure 5. Inhibition of Hv1 prevented alkalinization in the principal piece but not**
975 **in the head. A.** $\Delta\%A$ values ($\Delta\%A = \%T - \%NC_A$) for each subcellular region from
976 human sperm cells placed in non-capacitating medium or in complete capacitating
977 medium and in both media in the presence or absence of 200 μ M Cl-GBI or Zn^{2+} .
978 Values were measured at the indicated capacitation times. Data represent the mean
979 \pm s.e.m. (n=10 control, n=5 for Cl-GBI and Zn^{2+}). **B.** Boxplots of normalized BCECF
980 fluorescence values for each subcellular region in cells under the same conditions
981 as in **A**. Gray-scale dots (D1-D10) within boxplots indicate the median fluorescence
982 value for the entire sperm population from each donor, consisting of at least 1,000
983 cells each (n=10 control, n=5 for Cl-GBI and Zn^{2+}). **C.** Three representative images
984 of cells capacitated for 240 min under the indicated conditions. Data were compared


985 using two-way ANOVA with incubation time as one factor, and treatment as the other
986 factor. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$.
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009 **Figure 6**


A

B

C

1010

1011 **Figure 6. Proteins involved in pH_i control are required for hyperactivated**
1012 **motility but not for total motility. A.** Total motility measurements of human sperm
1013 cells placed in non-capacitating medium or in complete capacitating medium and in

1014 both media in the presence or absence of 5 μ M S0859 or Inh172, or 200 μ M Cl-GBI
1015 at different times of incubation. Data represent the mean \pm s.e.m. (n = 5 for Control
1016 and Inh-172, n = 4 for Cl-GBI, S0859 and No HCO_3^-). **B.** Quantification of proportion
1017 of hyperactive cells during the time and conditions mentioned in A. Data represent
1018 the mean \pm s.e.m. (n = 5 for Control and Inh-172, n = 4 for Cl-GBI, S0859 and No
1019 HCO_3^- Data were compared using two-way ANOVA with incubation time as one
1020 factor, and treatments as the other factor. * $p<0.05$, *** $p<0.001$. # $p<0.001$,
1021 ##### $p<0.0001$. **C.** Changes in hyperactivation as a function $\Delta\%$. The incubation time
1022 (NC, capacitation at 0, 60 and 240 min) are depicted as increasing size circles. Solid
1023 line indicates the exponential fit (fit parameters are indicated in main text). Dotted
1024 line are the 95% confidence intervals. Data represent the mean \pm s.e.m.
1025
1026