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Abstract 
Understanding the persistence of genetic variation within populations has long been a goal of 

evolutionary biology.  One promising route towards achieving this goal is using population genetic 
approaches to describe how selection acts on the loci associated with trait variation. In particular, gene 
expression provides a model trait for addressing the challenge of the maintenance of variation because it can 
be measured genome-wide without information about how gene expression affects traits. Previous work has 
shown that loci affecting the expression of nearby genes (cis-eQTL) tend to be under purifying selection, but 
we lack a clear understanding of the selective forces acting on variants that affect the expression of large 
numbers of genes across the genome (large-effect trans-eQTL). Here, we identify loci that affect the 
expression of coexpression networks using genomic and transcriptomic data from one population of the 
obligately outcrossing plant, ​Capsella grandiflora. ​ We identify nine loci associated with the expression of 10s to 
1000s of genes. One of these loci is also associated with trait variation, but we do not detect evidence of 
balancing selection acting on sequence variation surrounding these loci.  
 

Introduction 
Understanding why genetic variation persists in populations has long been a goal of evolutionary 

biology ​(Mitchell-Olds et al. 2007) ​. Variation within populations may be 1) neutral and maintained by 
mutation-drift balance, 2) deleterious and maintained by mutation-selection balance, or 3) conditionally 
beneficial and maintained by balancing selection ​(Johnson and Barton 2005) ​. The availability of large genomic 
and phenotypic datasets offer the potential of evaluating the relative importance of these three hypotheses by 
identifying the genetic loci that are associated with a trait and use population genetic approaches to describe 
how selection acts on these loci ​(Josephs et al. 2017a; Sella and Barton 2019) ​. Alongside this research 
program, gene expression has emerged as a powerful model trait for addressing the challenge of the 
maintenance of variation ​(Kliebenstein 2009) ​. Gene expression is a crucial aspect of the genotype to 
phenotype map and expression studies provide a large set of traits that can be easily measured without prior 
information about how these traits might relate to fitness ​(Rockman and Kruglyak 2006) ​. Examining a large 
set of gene expression traits thus offers the potential of understanding the evolutionary forces acting on traits 
in general, rather than a few or a handful of traits chosen for specific reasons. Here, we ask whether we can 
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detect loci that affect the expression of large numbers of genes and, if so, whether we can determine the 
evolutionary forces maintaining variation at these loci. 

 The genetic variation that shapes expression can be partitioned into two categories: cis-regulatory 
variants that only affect the allele they are linked to and trans-regulatory variants, that affect both alleles 
equally and can be located near or far from the gene they regulate ​(Wittkopp et al. 2004; Emerson and Li 
2010) ​. Previous work has mapped the genetic variants that affect expression (eQTLs) and shown that eQTLs 
that act in cis are generally under negative selection ​(Battle et al. 2014; Josephs et al. 2015; Glassberg et al. 
2019; Hernandez et al. 2019) ​. These studies have been possible using small samples (100-1000) because 
cis-eQTLs will be located near the genes they regulate, so fewer tests are needed to find them than would be 
needed for trans-eQTLs, which could be anywhere in the genome ​(Albert et al. 2018) ​. However, a focus on 
cis-regulatory variants necessarily misses trans-eQTLs, which may be under different selection pressures than 
cis-eQTLs.  

Since trans-regulatory variation affects the expression of multiple genes, trans-regulatory elements 
may have greater pleiotropic effects on phenotype and be subject to stronger purifying selection than 
cis-regulatory variants ​(McGuigan et al. 2014) ​.  This prediction is supported by evidence of greater 
trans-regulatory variation within species compared to between species ​(Wittkopp et al. 2004; Wittkopp et al. 
2008) ​, reduced population frequencies of distant eQTLs compared to local eQTLs ​(Zhang et al. 2011) ​, and 
greater effect sizes of standing cis-regulatory variation than trans regulation ​(Kliebenstein 2009; Liu et al. 
2016; Mähler et al. 2017) ​, although these effect size differences may also be caused by differences in 
mutational input ​(Metzger et al. 2016) ​.   

However, despite the expectation that purifying selection will reduce trans-acting regulatory variation 
within species, linkage mapping from crossing experiments and population-based association mapping have 
often found trans-regulatory hotspots, where genetic variation at a locus affects expression of numerous 
genes ​(Keurentjes et al. 2007; West et al. 2007; Rockman et al. 2010; Lowry et al. 2013; Battle et al. 2014; Liu 
et al. 2016; Albert et al. 2018) ​ but see ​(Mähler et al. 2017) ​. Segregating trans-variation is more likely to be 
tissue-specific than cis-regulatory variation in humans ​(GTEx Consortium et al. 2017) ​ and, in ​Arabidopsis 
thaliana​, trans-eQTLs are particularly important for expression changes in response to drought ​(Lowry et al. 
2013; Clauw et al. 2016) ​. These findings suggest that trans-eQTLs contribute to standing variation, especially 
in specific tissues and environments. 

While well-powered studies in crosses or large population samples have been able to detect 
significant trans-regulatory variation, the large number of tests required to map genome-wide trans eQTLs for 
every gene make identifying trans-eQTLs challenging in many experiments with even moderate sample sizes. 
One potential approach to detecting trans eQTLs is to look for loci associated with the expression of many 
genes ​(Kliebenstein et al. 2006; Hore et al. 2016; Brynedal et al. 2017) ​. Coexpression networks can be used to 
summarize expression across many genes and test for associations between genetic variants and the 
expression of network modules. Coexpression networks are being increasingly appreciated as a powerful way 
to find patterns in large transcriptomic datasets ​(Saha et al. 2016; Josephs et al. 2017b; Mähler et al. 2017; 
Wisecaver et al. 2017; Palakurty et al. 2018; Mack et al. 2019) ​. For example, coexpression networks made 
across conditions, tissues, and developmental time can successfully identify specialized metabolic pathways 
(Wisecaver et al. 2017) ​ and coexpression modules made with a diverse panel of mouse lines correlate with 
phenotype ​(Mack et al. 2018) ​. In addition, changes in coexpression module expression have been linked to 
adaptation ​(Campbell-Staton et al. 2017) ​ and changing ecological conditions ​(Palakurty et al. 2018) ​.  
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In this study we map eQTLs associated with variation of coexpression networks in a single 
population of the plant ​Capsella grandiflora​. ​Capsella grandiflora ​ is an obligately outcrossing member of the 
Brassicaceae family with large effective population size and high levels of genetic sequence diversity ​(Slotte et 
al. 2010; Williamson et al. 2014) ​. We show how these coexpression eQTLs correspond to some extent to the 
eQTLs detected in standard approaches, link eQTLs and coexpression networks to phenotypic variation, and 
use population genomic data to test for evidence of selection on eQTLs.  
 

Results 
 
Coexpression module GWAS 
We identified 24 coexpression modules ranging in size from 73 to 4005 genes ​(Figure S1) ​. We summarized 
expression level across modules, which we will refer to as ‘module expression’, for each individual using 
eigengenes. Module expression values showed varying distributions: some modules had normal distributions, 
some were bimodal, and some showed strong skews where a few individuals had very high module expression 
compared to other individuals ​(Figure S2) ​. Because the skewed distribution of module expression values 
could lead to false positives during association mapping, we quantile-normalized expression level for 
association mapping. Of the 24 ​C. grandiflora ​ coexpression modules detected, 10 modules showed a high 
degree of preservation in ​A. thaliana ​, and another 11 showed a moderate degree of preservation ​(Table S1) ​.  

Genome-wide association mapping identified nine SNPs associated with eight modules (FDR < 0.1, 
Table 1) ​. We refer to these SNPs as ‘coexpression-eQTLs’. Two coexpression eQTLs were located in coding 
regions, three in exons, one in a conserved noncoding sequence, and four in intergenic sequence ​(Figure 1, 
Table 1) ​.  

One intergenic SNP that controlled expression of the ‘lightcyan’, ‘magenta’, and ‘mediumpurple’ 
modules was also associated with the expression of a nearby gene Carubv10025200m (p = 2.24x10​-6​, n=144) 
and heterozygotes at this SNP had stronger allele-specific expression than homozygotes (p = 0.00283, n = 
89), consistent with this locus acting in cis ( ​Figure 2A, B) ​. The gene Carubv100252000m is also in the 
‘lightcyan’ module and it has the 18th highest intramodular connectivity out of the 2,886 genes in the module, 
putting it in the top 1% of connected genes. Additionally, there is transposable element (TE) located near the 
eQTL present in three individuals ​(Uzunović et al. 2019) ​. All three of these individuals carrying the TE were 
homozygous for the reference allele of the eQTL, but TE presence was not associated with gene expression, 
allele-specific expression, or flowering time ​(Fig. S3) ​. Carubv10025200m is an ortholog of the ​Arabidopsis 
thaliana ​gene AT2G35040.1 and has a number of predicted functions including catalysis of a reaction 
involving formyltetrahydrofolate, a chemical involved in regulating flowering time ​(Wang et al. 2017) ​. 

 
How coexpression-eQTLs relate to all-by-all eQTLs 

eQTL studies typically test for associations between all SNPs and all genes, so it is useful to know 
how coexpression-eQTLs relate to eQTLs that would be found using standard analyses (referred here to as 
‘all-by-all’). We tested for associations between leaf expression at all genes (n=20,792) with tag SNPs and 
identified 18 associations between 17 SNPs and the expression of 15 genes (p < 4.55 x 10​-11​ , FDR < 0.1, 
Fig. S4, Fig. S5​).  

There were 14 all-by-all eQTLs located within 5kb of the genes whose expression they were 
associated with and all but one of the 17 all-by-all eQTLs were located within 15kb of the gene they regulated. 
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There were no SNPs shared between the 18 all-by-all eQTLs and the 9 coexpression module eQTLs. 
However, in the all-by-all eQTL analysis with a relaxed significance threshold (p < 0.001) all of the 
coexpression eQTLs were associated with the expression of at least one gene (median = 64 genes, range = 12 
- 389). Within the set of associations between coexpression modules and individual genes, six out of the nine 
coexpression QTLs showed enrichments for associations with individual genes within the correct modules 
(chi squared test p < 0.05, ​Fig. 3) ​. This finding suggests that coexpression eQTLs and all-by-all eQTLs are 
picking up on similar associations even though there are not overlaps between significantly associated SNPs 
from the two methods. 

 
Relating coexpression modules to traits 

We also conducted GWAS on phenotypic traits (days to bolting, days to flower, leaf nitrogen 
content, leaf carbon content and leaf shape traits) following the same procedures described above for 
coexpression modules. No associations were significant at a FDR < 0.1 or even at an FDR < 0.25. 

Module expression was correlated with a number of trait measurements. For example, expression of 
the ‘lightcyan’ module was correlated with both days to bolting (rho = 0.32, p < 0.0005, ​Fig. 4A ​) and leaf 
nitrogen content (rho = 0.61, p < 0.0001, ​Fig. 4B ​).  We plot the relationship between all measured traits and 
the seven modules that had at least one significant eQTL in ​Fig. 5. ​ We saw a number of patterns, where 
expression in some modules, like ‘green’ and ‘royalblue’, only had significant correlations with one trait, while 
other modules, like ‘lightcyan’ and ‘turquoise’, showed a significant correlation with multiple traits. In 
addition, while life history and leaf traits were significantly correlated with a number of modules, leaf shape 
traits dissection index and alpha shape dissection index were not correlated with any of these modules. As 
might be expected from these correlations between expression module and traits, the eQTL discovered for 
the ‘lightcyan’ module was significantly correlated with days to bolt (p = 0.00487, n = 139, ​Figure 2C ​). 
Individuals with one alternate copy at this eQTL flowered an average of 3 days later than individuals 
homozygous for the reference allele. 
 
Signatures of selection on eQTLs. 

While we have evidence that local cis-regulatory eQTLs are in general under negative selection in this 
population ​(Josephs et al. 2015) ​, we were curious if we could detect evidence of selection on eQTLs detected 
in the coexpression eQTL analysis as well as in the all-by-all analysis. We measured 𝛑 and Tajima’s D at 
putatively neutral sites across the genome in 500 bp windows and used SweeD to test for evidence of 
selective sweeps in 50 SNP windows. None of the coexpression eQTLs were located in windows that were 
outliers (top 2.5% of windows) for 𝛑, Tajima’s D, or sweep likelihood ( ​Fig. S6, Fig. S7, Fig. S8​). All-by-all 
eQTLs were slightly more likely to be found in windows with high 𝛑 and/or Tajima’s D: Specifically, out of 
50 SNPs identified to be associated with the expression of at least one gene in the all-by-all analysis, 2 were in 
windows that were in the top 2.5% of the distribution for 𝛑 and 3 were in windows in the top 2.5% 
distribution for Tajima’s D (1 expected by chance). However, this result may not be that surprising in that we 
have better power to detect associations with high frequency alleles, and these alleles may be preferentially 
found in regions with many other high frequency alleles. None of the all-by-all eQTLs were in the top 2.5% 
of the distribution for sweep likelihood. We also compared local (within 5kb of gene) and trans eQTL 
identified in the all-by-all analysis but there were no significant differences in 𝛑, Tajima’s D or selective sweep 
likelihood in the two groups. 
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Discussion 
 

We have mapped the genetic basis of genome-wide regulatory variation within a single population of 
an outcrossing plant. We used coexpression modules to summarize the expression of multiple genes and 
identified a number of associations between module expression and genotype. These associations included 
coding SNPs, local eQTL for genes within the module, and noncoding SNPs. Coexpression eQTLs are 
different than eQTLs found in all-by-all mapping but the association signals are shared across the two 
methods. One of the coexpression eQTLs related to phenotypic differences in flowering time and nitrogen 
content. Overall, we show that relatively common trans-eQTLs are present within this single population, with 
consequences for expression and trait variation. 

Mapping the expression level (eigengene) of coexpression modules is a powerful alternative to 
mapping the expression of genes individually and mapping trait values. Previous work has shown that 
mapping trait summaries is more successful at finding associations that mapping individual traits 
(Kliebenstein et al. 2006; Angelovici et al. 2017) ​. One of the potential explanations for the success of 
coexpression mapping is that, if errors in measuring expression are uncorrelated across genes, summarizing 
expression using modules will have less error than looking at each gene independently ​(Kliebenstein 2009) ​. 
Additionally, trans-eQTLs that affect the expression of many genes could themselves shape coexpression 
modules, increasing our power to detect these trans-eQTLs. However, it is also important to consider that by 
focussing on coexpression eQTLs, we may not be finding a representative sample of all trans-eQTLs, as is 
shown in comparisons of our results from the coexpression eQTL analysis and the all-by-all analysis. It is 
important for researchers to keep the differences in methods in mind as they decide how to do their own 
eQTL analyses. 

While we detected a number of coexpression eQTLs that segregate in the population, it is still 
unclear what evolutionary forces have allowed these large-effect alleles to approach intermediate or high 
frequency. These alleles have appreciable frequencies (6% to 36%) and effect sizes (absolute values ranging 
from 0.68 to 1.25; Table 1) while affecting the expression of numerous genes (ranging from 73 to 4005). 
Expression of these modules, in turn, is significantly associated with flowering time, a trait closely related to 
fitness and expected to be under fluctuating selection in variable climates. Despite their frequency, effect size, 
and potential link to traits expected to be under fluctuating selection, we failed to detect population genetic 
evidence of balancing selection around coexpression eQTLs. The signatures of within-population balancing 
selection are difficult to detect in population genomic data, so it may be that these alleles are under balancing 
selection but this is not detectable ​(Charlesworth 2006) ​. Alternatively, these alleles could be selectively neutral, 
perhaps because they have larger effects in lab conditions than in the wild. Or they may be at high frequency 
due to recent immigration from other populations, as has been seen in other plants ​(Monnahan et al. 2015) ​, 
or from other species like the sympatric selfing species ​Capsella rubella ​. 

One important aspect of our use of coexpression modules in the eQTL analysis is that we used 
“genotype networks’ generated from expression data measured in the same tissue type at the same time in a 
set of genetically distinct individuals. Therefore, the coexpression modules we observed were shaped by 
genetic perturbations, not tissue or developmental differences. While coexpression measured across multiple 
timepoints (‘developmental networks’) has been linked to functional relationships ​(Eisen et al. 1998; Stuart et 
al. 2003) ​, coexpression modules generated from genetically distinct individuals have different properties than 
those generated from different tissue types ​(Mähler et al. 2017; Schaefer et al. 2018) ​. In some cases, this 

5 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2019. ; https://doi.org/10.1101/763870doi: bioRxiv preprint 

https://paperpile.com/c/aEELZf/ji1r+PaLO
https://paperpile.com/c/aEELZf/GEVR
https://paperpile.com/c/aEELZf/T7cD
https://paperpile.com/c/aEELZf/WKd1
https://paperpile.com/c/aEELZf/3Vy2+k8iP
https://paperpile.com/c/aEELZf/3Vy2+k8iP
https://paperpile.com/c/aEELZf/MBos+Ov8x
https://doi.org/10.1101/763870
http://creativecommons.org/licenses/by/4.0/


 

difference is helpful: analyses combining GWAS and coexpression networks have the most power when using 
coexpression networks made from genetically distinct samples ​(Schaefer et al. 2018) ​. However, it is important 
to keep in mind that the expression datasets used will affect coexpression modules. 

Mapping eQTLs has furthered our understanding of the nature of genetic variation maintained 
within natural populations. Analyses combining genomic and transcriptomic data from natural populations 
are relevant in the context of models using transcriptomic data to build a mechanistic understanding of the 
evolutionary forces maintaining variation within populations ​(Boyle et al. 2017; Wray et al. 2018; Liu et al. 
2019) ​. In addition, since gene expression is important for adaptive divergence ​(Shapiro et al. 2004; Whitehead 
and Crawford 2006; Fraser 2013) ​, understanding the maintenance of genetic variation for expression is 
important for understanding how organisms will adapt to new environments. 

 

Materials and Methods 
 
Genomic, transcriptomic, and phenotypic data 

All genomic and transcriptomic sequence data was previously published in Josephs et al. (2015) and 
Josephs et al. (2017b). We collected individuals from a single population of ​C. grandiflora ​ individuals located 
near Monodendri, Greece. We conducted a generation of random crosses in the greenhouse, and then grew 
146 individuals descended from these random crosses in a growth chamber with 16 hours of daylight at 22​o ​C. 
We measured traits on these individuals, extracted RNA from leaf tissue collected and flash frozen 39 days 
after planting using Qiagen RNAeasy kits. We extracted DNA from leaf material using a CTAB procedure. 
Both RNA and DNA was sequenced at the Genome Quebec facility with Hiseq 2000 with Truseq libraries 
with 100bp long reads. DNA was mapped to the standard ​C. rubella ​reference genome ​(Slotte et al. 2013) ​ with 
Stampy ​(Lunter and Goodson 2011) ​ and RNA was mapped to an exon-only reference genome using Stampy 
as well. SNPs were called from the genomic sequence data using GATK Unified Genotyper ​(Van der Auwera 
et al. 2002) ​ and expression levels were measured with HTseq ​(Anders et al. 2015) ​. 

In addition to collecting RNA and DNA for sequencing on these 146 individuals, we measured a 
number of phenotypes. We measured days to bolting and days to flowering daily (measured since planting 
date). We collected leaves at day 49 after planting, scanned leaves, and measured leaf shape as reported in 
(Sicard et al. 2014) ​. Briefly, dissection index was calculated as DI = (perimeter ​2​)/(4π*area), so that a circle of 
the same area would have a value of 1.0 and increasing values indicate increasing complexity and alpha shape 
dissection index is a similar parameter, but for alpha shapes. We measured leaf carbon and nitrogen content 
in one leaf per individual. Leaves were collected at day 49 after planting, dried, and ground to powder for 
elemental analysis by the Ecosystems Analysis Lab at the University of Nebraska. We note that both shape 
and elemental data came from different leaves than the RNAseq data. We estimated Pearson and spearman 
correlations between module expression and trait values with the cor.test function in R ​(R Core Team 2018) ​. 
 
Building coexpression networks 

We used the program WGCNA ​(Langfelder and Horvath 2008) ​(version 1.34, running under R 
version 2.15.1) to identify coexpression modules present within the 146 transcriptomes using the expression 
level of all genes with median expression greater than 0 (n = 20,792).  The coexpression analysis groups 
together genes with similar patterns of pairwise correlation of expression. We were interested in retaining the 
information embodied in the sign of the gene expression correlations, so we conducted a signed network 
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analysis using the following adjacency function: ​a ​ij​ ​= |0.5 + 0.5 x cor( ​x​i​,x ​j​)|​
β ​, where cor( ​x​i​,x ​j​) is the correlation 

of gene expression of the ​i ​th and ​j​th gene, and β is the soft thresholding value. We used a soft thresholding 
value of 12, as suggested by the authors of the WGCNA package for signed networks. Genes that exhibited 
similar patterns of connectivity (i.e., genes showing high “topological overlap”) were grouped together in the 
same coexpression modules, based on hierarchical clustering of topological overlap values, in which a 
dynamic branch-cutting algorithm was used to define initial gene co-expression modules. Module eigengenes 
(the first principal component of the gene expression values of modules) were calculated, and modules whose 
eigengenes were highly correlated were merged to arrive at the final set of co-expression modules. The 
resulting modules were labeled with different colors for ease of referencing. Total connectivity for these genes 
was previously reported in ​(Josephs et al. 2017b) ​.  

We used module preservation analysis to determine whether and to what extent co-expression 
modules detected in ​C. grandiflora ​ (the “reference data set”) are conserved in a second (or “test”) data set, 
published RNAseq data for 19,706 genes obtained from seedling tissue of 20 ecotypes of ​A. thaliana ​ ​(Gan et 
al. 2011) ​. We applied the ​C. grandiflora ​ modules identified above to the test ​A. thaliana ​ dataset, and calculated 
network-based preservation statistics. We combined these statistics into a single composite preservation 
measure that reflects preservation of both module density and module connectivity patterns ​(Langfelder and 
Horvath 2008) ​. We calculated a Z-statistic for the composite preservation measure by randomly permuting 
the module labels assigned to the test data and re-calculating the network-based preservation statistics 200 
times. The Z-summary statistic asymptotically follows the normal distribution with mean 0 and SD = 1, and 
can be converted to a p-value under the standard normal distribution. Simulations conducted by ​(Langfelder 
and Horvath 2008)​) show that Z-summary values > 10 correspond with strong evidence of module 
preservation in the test data, Z-summary values between 2 and 10 correspond with moderate evidence of 
module preservation in the test data. 

Many of the modules had expression levels that were very skewed, such that a few individuals 
showed extremely high module expression compared to the rest of the individuals ​(Fig S1) ​. To reduce 
potential false-positives due to skewed expression levels, we quantile normalized module expression levels 
using the qqnorm function in R ​(R Core Team 2018) ​. 
 
Association mapping 
We tested for associations between SNP genotype and individual gene expression, phenotypes, and module 
expression. For all association mapping analyses, we filtered out SNPs with a minor allele frequency below 
0.01 and more than 0.05 missing data, leaving 5,560,798 SNPs. We used Haploview to identify 1,873,867 tag 
SNPs with minor allele frequency > 0.05 that described the dataset. 

We tested for associations between tag SNPs with the expression of 20,794 genes using the linear 
model in Matrix eQTL ​(Shabalin 2012)​. While all samples came from the same population, we controlled for 
residual population structure by generating a centered kinship matrix with GEMMA ​(Zhou and Stephens 
2012) ​ and including the first five principal components of the kinship matrix as covariates. Gene expression 
levels were quantile normalized following the same procedure used for coexpression module eigengenes. 
Since all tag SNPs were tested against all genes, we conducted 39,348,132,582 tests. Matrix eQTL estimates 
false discovery rates using a Benjamini–Hochberg procedure.  

We did association mapping with GEMMA ​(Zhou and Stephens 2012) ​ on module eigengenes (PC1 
of expression values of a module), morphological, and life history traits as our phenotypes. We controlled for 
residual population structure using the standardized kinship matrix and SNPs with minor allele frequency > 
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0.01 and missing data < 0.05. We used the likelihood ratio p values ​(Xing et al. 2012) ​ and calculated the 
p-value cutoffs corresponding to a false discovery rate of 0.1 for each trait and module expression level using 
QValue ​(Dabney and Storey) ​. 

After trans-eQTLs were identified using GWAS, we conducted post-hoc tests to see if these loci 
were associated with total expression level. Expression levels and trait values were quantile normalized with 
the qqnorm function in R and then we used the lm function in R to test for a linear relationship between the 
number of alternate alleles in an individual and normalized expression or normalized trait values ​(R Core 
Team 2018) ​. We used a similar procedure to test for associations between trans-eQTL genotype and allele 
specific expression of nearby genes, which was measured for 99 individuals in ​(Josephs et al. 2015) ​, except 
that this time we conducted a t-test for differences in quantile-normalized allele-specific-expression between 
heterozygous and homozygous individuals. We also used t-tests to compare expression traits and flowering 
time for individuals that did or did not carry a transposable element insertion ​(Uzunović et al. 2019) ​. We 
identified orthologs between genes in the ​C. rubella ​ reference genome and ​A. thaliana ​ as described in 
(Williamson et al. 2014) ​. 
 
Population genetic signatures of selection  

We used genomic sequence from 188 individuals published in ​(Josephs et al. 2015) ​. We 
downsampled all sites to 320 chromosomes per site and then calculated pi and Tajima’s D in 500 bp windows 
across the genome at non-coding (excluding conserved non-coding sites from ​(Haudry et al. 2013) ​), intronic, 
and 4-fold degenerate sites. We used SweeD to calculate the likelihood of a selective sweep occuring on every 
50th SNP (windows were ~600 bp wide on average) using non-conserved intergenic, intronic, and 4-fold 
degenerate sites for 182 individuals from the focal population ​(Pavlidis et al. 2013) ​. 
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Table 1: Information about significant coexpression eQTLs (FDR < 0.1). ​‘CNS’ stands for ‘conserved 
noncoding sequence’. 
 

Module  SNP 
Allele 
Frequency  Effect size  P value  Site Type 

green  scaffold_1:4926298  0.14  0.8402709  5.48 x 10​-8  CNS 

green  scaffold_7:3258417  0.127  0.9443182  2.02 x 10​-8  0-fold degenerate 

lightcyan  scaffold_4:9693971  0.13  0.8587179  2.19 x 10​-8  Intergene 

mediumpurple3  scaffold_4:9693971  0.13  0.8562629  2.47 x 10​-8  Intergene 

magenta  scaffold_4:9693971  0.13  -0.8297452  5.19 x 10​-8  Intergene 

royalblue  scaffold_2:9078261  0.178  -0.8757908  5.77 x 10​-9  Intergene 

saddlebrown  scaffold_5:3468364  0.065  1.284273  2.65 x 10​-8  Intron 

sienna3  scaffold_6:9131753  0.164  0.8564962  4.61 x 10​-8  Intergene 

sienna3  scaffold_8:9343275  0.223  -0.7306257  2.71 x 10​-8  Intron 

turquoise  scaffold_6:5791152  0.271  0.7710614  6.06 x 10​-9  Exon (not 0-fold or 4-fold) 

turquoise  scaffold_6:5791770  0.356  0.6880041  4.29 x 10​-8  Intron 
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Figures 
 
 

 
Figure 1: Physical locations of coexpression QTLs. ​Coexpression eQTLs are represented by points 
colored by the modules they are associated with. All other SNPs are plotted in gray. All SNPs are plotted by 
location, on the x axis, and the significance of association with the module indicated by color on the y axis. 
A) scaffold_1:4926298, B) scaffold_7:3258417, C) scaffold_4:9693971 (associated with the light cyan, 
magenta, and mediumpurple3 modules), D) scaffold_2:9078261, E) scaffold_5:3468364, F) 
scaffold_6:9131753, G) scaffold_8:9343275 and H) scaffold_6:5791152 and scaffold_6:5791770. Nearby 
genes are indicated by rectangles colored by module membership with black lines indicating the direction of 
transcription.  
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Figure 2: Effects of genotype at the eQTL for the light cyan module ​on ​ ​A) expression of the nearby 
gene Carubv10025200m (n=144, p=2.24x10​-6​), B) allele-specific expression (n=89, p=2.83x10​-​), and C) days 
to bolt (n=139, p=0.00487) 
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Figure 3: ​ ​Shared associations between coexpression eQTL and all-by-all eQTL. ​This plot shows the 9 
SNPs associated with coexpression modules on the x axis (the same SNP is shown in positions 3-5 because it 
is associated with the expression of three modules) and, on the y-axis, the colored dots show proportion of 
associations between that SNP and all other genes (p < 0.01) that are with genes in the same module whose 
expression is associated with the coexpression eQTL. Gray dots show the proportions observed in 200 
permutations where the module identity of each gene was randomly sampled from the distribution of all 
modules. The order of coexpression eQTL is the same as presented in Table 1. 
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Figure 4: Correlations between module expression level and traits. ​A) the correlation between 
expression of the light cyan module and days to bolt. Dots represent individual plants, gray lines are linear 
regressions. B) The same figure as A, except that the y axis now shows nitrogen content in leaves. 
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Figure 5: Correlations between module expression level and traits. ​Each line is a Pearson correlation 
between the quantile-normalized trait value and module expression. “Di” refers to dissection index and “asdi” 
to the alpha shape dissection index.  
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Figure S1: The number of genes in each module. ​There is an asterisk above modules if this module had a 
significant eQTL at FDR < 0.1. 
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Figure S2: Distribution of un-normalized eigengenes. ​Each plot shows a histogram of eigengene 
expression for a specific coexpression module. The module name is labeled below the x axis. 
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Figure S3: Effects of presence absence of TE “rnd-1_family-413” on ​A) expression of the nearby gene 
Carubv10025200m (n=144, p = 0.638) allele-specific expression (n=89, p=0.524), and C) days to bolt 
(n=139, p=0.805). 
 
 
 

 
 
 
Figure S4: QQ plot for all-by-all analysis. 
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Figure S5: ​ Associations between SNPs and gene expression level plotted for each chromosome.  Black dots 
show associations where FDR < 0.1. 
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Figure S6 ​:  Diversity (𝛑) at putatively neutral sites in 500 bp windows around coexpression-eQTLs. Dotted 
lines show 95% cutoffs of the observed distribution. Each panel corresponds to the eQTL shown in ​Fig. 1. 
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Figure S7 ​: Tajima’s D at putatively neutral sites in 500 bp windows around coexpression-eQTLs. Dotted 
lines show 95% cutoffs of the observed distribution. Each panel corresponds to the eQTL shown in ​Fig. 1. 
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Figure S8 ​: SweeD sweep likelihoods in windows around coexpression-eQTLs. Dotted lines show 95% 
cutoffs of the observed distribution of likelihoods. Each panel corresponds to the eQTL shown in ​Fig. 1. 
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Module  Z score  Preservation 

bisque4  3.827004515  Moderate 

black  8.104335146  Moderate 

blue  12.66389021  High 

brown  -1.149348995  Low 

darkgrey  1.194865185  Low 

darkorange2  4.59774833  Moderate 

darkred  3.276554588  Moderate 

darkturquoise  6.151745241  Moderate 

floralwhite  5.314340775  Moderate 

gold  9.440480564  Moderate 

green  3.10372058  Moderate 

grey60  3.873707795  Moderate 

lightcyan  18.41008199  High 

lightsteelblue1  -0.078025751  Low 

magenta  0.084835506  Low 

mediumpurple3  13.53882312  High 

midnightblue  24.00151223  High 

plum1  10.28628803  High 

royalblue  14.43400336  High 

saddlebrown  10.66207142  High 

sienna3  11.23932229  High 

skyblue3  21.61021517  High 

tan  2.090374819  Moderate 

turquoise  6.410564238  Moderate 

yellowgreen  10.23190232  HIgh 

 
Table S1​: Module preservation Z statistics. Following ​(Langfelder and Horvath 2008) ​, we define modules 
with a Z score > 10 as highly preserved and modules with a Z score between 2 and 10 as moderately 
preserved. 
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