

Gene flow and species delimitation in fishes of Western North America: Flannelmouth (*Catostomus latipinnis*) and Bluehead sucker (*C. Pantosteus* *discobolus*)

Running Head: Species delimitation and introgression

Max R. Bangs^{1,2,*}, Marlis R. Douglas¹, Tyler K. Chafin¹, Michael E. Douglas¹

¹Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA

²Department of Biological Sciences, Florida State University, Tallahassee, Florida 32304, USA

Running Head: Species delimitation in the presence of gene flow

Key words: Species delimitation, ddRAD, hybridization, introgression, phylogenomics,
Catostomus

Corresponding Author:

Max R. Bangs
Department of Biological Sciences
University of Arkansas
Fayetteville, AR 72701
Email: maxbangs@gmail.com
Phone: 340-514-0188
Fax: 479-575-4010

***Present address:** Department of Biological Sciences, Florida State University, Tallahassee FL 32304

Abstract

2 The delimitation of species-boundaries, particularly those obscured by reticulation, is a critical
4 step in contemporary biodiversity assessment. It is especially relevant for conservation and
6 management of indigenous fishes in western North America, represented herein by two species
8 with dissimilar life-histories co-distributed in the highly modified Colorado River (i.e.,
10 Flannelmouth Sucker, *Catostomus latipinnis*; Bluehead Sucker, *C. Pantosteus discobolus*). To
12 quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed
14 double-digest restriction-site associated DNA sequencing (ddRAD), yielding 39,755 unlinked
16 SNPs across 139 samples. These were subsequently evaluated with multiple analytical
18 approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian
20 assignment test highlighted similar phylogenomic patterns in each, but with considerable
22 difference in presumed times of divergence. Three lineages were detected in Bluehead Sucker,
24 supporting elevation of *C. P. virescens* to species-status, and recognizing *C. P. discobolus*
yarrowi (Zuni Bluehead Sucker) as a discrete entity. Admixture in the latter necessitated a
reevaluation of its contemporary and historic distributions, underscoring how biodiversity
identification can be confounded by complex evolutionary histories. In addition, we defined
three separate Flannelmouth Sucker lineages as ESUs (Evolutionarily Significant Units), given
limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance
(per the genealogical concordance component of the phylogenetic species concept). Introgression
was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our
diagnostic methods, and the alignment of our SNPs with previous morphological, enzymatic, and
mitochondrial work, allowed us to partition complex evolutionary histories into requisite
components, such as isolation *versus* secondary contact.

1| INTRODUCTION

26 The delimitation of species (i.e., the process by which boundaries are not only identified but new
species discovered; Wiens, 2007), is a fundamental issue in biology, and its mechanics contain
28 aspects both theoretical and applied (Carstens et al., 2013). It is a requirement not only for
effective biodiversity conservation (Frankham, 2010) but also for management, particularly with
30 regards to the Endangered Species Act (ESA) (Waples, 1991). However, distinct boundaries
traditionally assumed to characterize species (Sloan, 2008, Baum, 2009), are particularly difficult
32 to identify early in the speciation process (Sullivan et al., 2013) or within groups where extensive
reticulation has occurred (Mallet et al., 2015). This has led to an evolving interpretation of the
34 speciation process, now viewed as a continuum from population through various ascending steps,
but with genealogical distinctiveness achieved gradually and manifested differentially across the
36 genome (Mallet, 2001).

Another complicating factor is the daunting number of narrow concepts that now
38 encapsulate speciation (Coyne and Orr, 2004). Here, it is important to recognize that species are
defined by morphological and genetic gaps, rather than a define ‘process’ and thus contribute but
40 little to species delineation. Clearly, a more nuanced approach (see below) would help define
conservation units across the population-species continuum. This would not only advance
42 species conservation but also promote effective management strategies to protect genetic
diversity (as stipulated in Strategic Goal C of the 2010 United Nations Convention on Biological
44 Diversity <<https://www.cbd.int/sp/targets/>>).

The most commonly utilized approach for delineating lineages is DNA-based, but with
46 questionable reliance upon a single marker (i.e. DNA barcoding; Ahrens et al., 2016), especially
given the semipermeable boundaries now recognized in species. Despite being cofounded by

48 various problems, single-gene methods still predominate in the literature, often with sample sizes
that do not capture intraspecific haplotype variability, an issue scarcely parameterized (Phillips et
50 al., 2019). Additionally, single-locus delimitation methods fall under several broad categories,
yet each suffers from limitations not easily overcome (Dellicour & Flot, 2018).

52 However, genomic DNA techniques are increasingly being applied to more formally
delineate lineages (Allendorf et al., 2017). SNP (single nucleotide polymorphisms) panels are
54 being applied to not only broaden and extend signals of population and species differentiation,
but also to unravel their interrelationships. Two insights have emerged so far from the
56 application of contemporary genomic approaches. First increased resolution provided by SNP
panels has identified populations that diverge markedly within taxa previously-identified. These
58 are subsequently characterized as ‘cryptic’ species (Singhal et al., 2018; Spriggs et al., 2019),
with population histories not only statistically inferred but also tested against alternative models
60 of divergence. A second insight is the revelation that admixture among lineages is not only quite
common but also greater than previously thought (Dasmahapatra et al., 2012; Fontaine et al.,
62 2015; Quattrini et al., 2019), even to the extent of promoting new adaptive radiations
(Lamichhaney et al., 2018).

64 The increased resolution provided by reduced-representation genomic approaches has
negative connotations as well. For example, elevated lineage resolution (as above) has the
66 propensity to re-ignite earlier debates regarding the over-splitting of species (Isaac et al., 2004;
Sullivan et al., 2014). Not surprisingly, this process is rife with value judgments, one of which
68 seemingly intuits that species defined by parsing previously identified biodiversity are more
problematic than those discovered *de novo* (Padial and de la Riva, 2006; Sullivan et al., 2014).
70 Similar issues emerge when intraspecific diversity is interpreted for conservation actions (Funk

et al., 2012). For example, the Evolutionarily Significant Unit (ESU) was conceived as a complement to existing taxonomy (Ryder, 1986; Moritz, 1994), with an intent to quickly identify conservation units worthy of protection without resorting to a laboriously slow and unwieldy taxonomic categorization. Again (as above), population genomics provides an abundance of neutral loci for delimitation of ESUs. However, despite its intended simplicity, the ESU concept (Frazer & Bernatchez, 2001; Holycross & Douglas, 2007) has seemingly become an either/ or categorization (i.e., dichotomized) such that it not only contravenes the continuum through which populations evolve, but also reflects those difficulties that emerge when subspecies are designated arbitrarily from continuous geographic distributions (Douglas et al., 2006).

Similarly, the Management Unit (MU) is yet another conservation category with traditional roots, generally referred to in fisheries literature as a ‘stock’ (Ryman & Utter, 1986).

It now has a more contemporaneous meaning, defined primarily by population genomic data, and represents a conservation unit isolated demographically from other such units (Palsbøll et al., 2014; Mussmann et al., 2019). While genomic data clearly hold great potential for elucidating the evolutionary process, arguments must still be resolved before they become a de facto diagnostic tool for species delineation (Stanton et al., 2019). For example, genomic techniques were unsuccessful in unravelling a hybrid complex among Darwin’s Finches in the Galapagos (Zink & Vázquez-Miranda, 2019).

In this study, we applied a contemporary framework for genomic analysis (Leaché & Fujita, 2010), by initially clustering our admixed study species so as to detect erroneous species-designations derived from inter-specific gene flow (Camargo et al., 2012; Stewart et al., 2014). This approach gains additional power when multiple lines of evidence are integrated, such as life history, geographic distributions, and morphology (Knowles & Carstens, 2007; Schlick-Steiner

94 et al., 2010; Fujita et al., 2012). As a result, the complex histories of study species can be more
95 clearly discerned despite difficulties imposed by introgression. This is particularly appealing as
96 herein, when problematic species are a focus of conservation concern (Pyron et al., 2016).

98 **1.1 | The Biogeography of our Study Species**

99 Flannelmouth Sucker (*Catostomus latipinnis*) and Bluehead Sucker (*C. Pantosteus discobolus*)
100 have complex evolutionary histories that reflect historical introgression (Smith et al., 2013), as
101 well as contemporary hybridization with various congeners (Douglas & Douglas, 2010;
102 Mandeville et al., 2015; Bangs et al., 2017). Both have been relatively understudied, yet their
103 conservation concerns have accelerated due to a prolonged drought in western North America
104 superimposed onto an ever-increasing anthropogenic demand for water (Seager & Vecchi, 2010).
105 Given this, a federal and multi-state effort has now coalesced on basin-wide mitigation and
106 recovery of both species (Carmen, 2007). Consequently, the accurate delimitation of species, as
107 well as the designation of potential conservation units are highly relevant, especially given that
108 our study species comprise, in an historic sense, the greatest endemic fish abundance/ biomass in
109 the Upper Colorado River Basin (Hubbs et al., 1948).

110 Each species exhibits a different life history (Sigler and Miller, 1963; Behn & Baxter,
111 2019), with Flannelmouth Sucker primarily inhabiting the mainstem (Douglas et al., 1998, 2003)
112 and Bluehead Sucker preferring higher elevation streams that have subsequently become more
113 fragmented over time (Hopken et al., 2013). However, mark–recapture studies (Fraser et al.,
114 2017) still emphasize tributaries in the upper Colorado River basin as important habitat for both
115 species.

116 The response of our study species to the geologic history of western North America is an
118 aspect of their life histories (reviewed in Bezzerides & Bestgen, 2002). Vicariant processes (i.e.,
120 vulcanism and drainage rearrangements) coupled with episodic drought, have induced long
122 periods of isolation sporadically augmented by more pluvial periods that, in turn, have promoted
secondary contact (Smith et al., 2010). Thus, a comparative study of each species can not only
provide insights into the manner by which admixture has influenced their evolution, but also
clarify our understanding of the Colorado River Basin itself.

Both species are primarily endemic to the Upper Colorado River Basin, but Flannelmouth
124 Sucker is also found in the Virgin River of the Lower Colorado River Basin, and Bluehead
Sucker in the neighboring Bonneville Basin to the west (Figure 1). The latter may potentially
126 represent a different species (*C. P. virescens*), as judged by morphological (Smith et al., 2013),
mitochondrial (Hopken et al., 2013; Unmack et al., 2014), and nuclear phylogenies (Bangs et al.
128 2018b). Taxonomic uncertainties within Flannelmouth and Bluehead sucker present additional
management complications, especially with regard to the presence of potentially unique lineages
130 in one major tributary - the Little Colorado River (Figure 2). One lineage may represent a unique
species (i.e., Little Colorado River Sucker), currently grouped with Flannelmouth Sucker,
132 whereas a second may be a unique subspecies (i.e., Zuni Bluehead Sucker, *C. P. d. yarrowi*) now
found only in the Zuni River (NM) and Kin Lee Chee Creek (AZ), but with a presumed historic
134 distribution that potentially included the entire Little Colorado River (Minckley, 1973).

The quantification of molecular variability in both catostomids is a key element in
136 delimiting species-boundaries, management units, and historic patterns of reticulation. Here we
build upon previous work (Bangs et al., 2018b) by applying species delimitation methods,
138 phylogenomic (i.e., concatenated and multispecies coalescence), and population genomic

approaches (i.e., Bayesian clustering and hybrid detection) to identify potential species range-
140 wide, but with special focus on the Little Colorado River. In this regard, the impacts of divergent
life histories, as well as the role of stream capture and hybridization, are particularly germane
142 with regard to the breadth and depth of differentiation found within each.

144 **2 | METHODS**

2.1 | Sample acquisition

146 Samples were collected as either fin clips or tissue plugs between 1995 and 2011. Genomic DNA
was extracted using the PureGene® Purification Kit or DNeasy® Tissue Kit (Qiagen Inc.,
148 Valencia CA) following manufacturer's protocols, and stored in DNA hydrating solution.
Additional samples were obtained from the Museum of Southwestern Biology (University of
150 New Mexico) (see Acknowledgements).

A total of 139 samples (Table 1) included 81 (subgenus *Pantosteus*) and 57 (subgenus
152 *Catostomus*) (per Smith et al., 2013). Bluehead Sucker samples (*C. P. discobolus*, N=65)
spanned its range, including the Bonneville Basin (N=5), Grand Canyon AZ (N=10), Chinle
154 Wash NM (N=10), Little Colorado River (N=29), and various sites in the Upper Colorado River
Basin above Grand Canyon (N=11) (Figure 1, Table 1). Rio Grande Sucker (*C. P. plebeius*;
156 N=6) and Desert Sucker (*C. P. clarkii*; N=8) were also examined so as to evaluate their potential
contributions with regard to hybridization with other *Pantosteus*. Mountain Sucker from the
158 Missouri River Basin (*C. P. jordani*, N=2) was included as outgroup for *Pantosteus*.

Flannelmouth Sucker (N=35) was collected range-wide, to include the Virgin River UT
160 (N=8), Little Colorado River (N=14), Grand Canyon AZ (N=5), and various sites in the Upper
Colorado River Basin above Grand Canyon (N=8) (Figure 1). White Sucker (*C. commersonii*)

162 obtained from locations in its native range (N=3), and an introduced population in the Colorado
River (N=2), were incorporated as a *Catostomus* outgroup (Table 1). We also incorporated
164 Sonora Sucker (*C. insignis*; N=10), Utah Sucker (*C. ardens*; N=4), and Razorback Sucker
(*Xyrauchen texanus*; N=4) due to their geographic proximity, close phylogenetic relationships,
166 and potential for hybridization with Flannelmouth.

168 **2.2 | Data collection**

DNA was extracted with PureGene® Purification Kit or DNeasy® Tissue Kit (Qiagen Inc,
170 Valencia CA) and stored in DNA hydrating solution (same kits). Libraries for double digest
restriction-site associated DNA (ddRAD) were generated following Bangs et al. (2018b). This
172 included: Digestion with PstI (5'-CTGCAG-3') and MspI (5'-CCGG-3'), pooling 48 individuals
prior to a size selection of 350-400bps, PCR amplification, and the combination of two libraries
174 per lane of Illumina HiSeq, 2000 single-end 100bp sequencing. Samples for each reference
species and region were randomly distributed across several libraries and lanes so as to reduce
176 the potential for library preparation bias. Sequencing was performed at the University of
Wisconsin Biotechnology Center (Madison).

178 **2.3 | Filtering and alignment**

180 Illumina reads were filtered and aligned per Bangs et al. (2018b) using PYRAD v.3.0.5 (Eaton &
Ree, 2013). This included: Clustering at a threshold of 80% based the uncorrected sequence
182 variation in catostomid fishes (Chen & Mayden, 2012; Bangs et al., 2017), and removal of
restriction site sequence and barcode. In addition, loci were removed if they displayed: 1) <5
184 reads per individual), 2) >10 heterozygous sites within a consensus, 3) >2 haplotypes for an

individual, 4) >75% heterozygosity for a site among individuals, and 5) <50% of individuals at a
186 given locus.

188 **2.4 | Clustering algorithm and phylogenetic methods**

All analyses utilized the unlinked SNPs file generated from PYRAD, save for the concentrated
190 SNP phylogenetic methods that required the all SNPs file. Bayesian clustering (STRUCTURE v.
2.3.4; Pritchard et al., 2000) employed the admixture model with correlated allele frequencies
192 and a burn-in of 100,000 generation, followed by 500,000 iterations post-burn-in. No population
priors were used. Genetic clusters (k=1-16) were each performed with 15 iterations, averaged
194 across iterations to determine final values. The most likely clusters were resolved by using the
estimated log probability of data $\text{Pr}(x|k)$, and the Δk statistic (per Evanno et al., 2005). Bayesian
196 clustering also substantiated that all contemporary hybrids with invasive White Sucker had been
eliminated.

198 Concatenated SNPs were used to generate both maximum likelihood (ML) and Bayesian
phylogenies without *a priori* assumptions, and with the ML analysis conducted in RAXML (v.
200 7.3.2; Stamatakis, 2006) using GTRCAT with 1,000 bootstraps. The Bayesian analysis was
performed in MRBAYES (v. 3.2.3; Ronquist et al., 2012) using GTR (10,000,000 iterations), with
202 sampling every 1,000 iterations and a 25% burn-in subsequently discarded.

However, methods employing concatenated SNPs can potentially overestimate support
204 values for erroneous or poorly supported nodes (Liu et al., 2015; Edwards et al., 2016). This can
be especially problematic in the presence of introgression, because the majority of loci may not
206 support the resulting topology (Twyford & Ennos, 2012; Leaché et al., 2014a). However,
multispecies coalescent methods perform well in situations where introgression is limited, and

208 thus represent an important consideration when species with admixed ancestries are delimited
(Edwards et al., 2016).

210 Applicability of these methods is limited with regards to SNP data, due to the common
requirement of *a priori* inference of gene trees (see Leaché et al. 2017). Thus, multispecies
212 coalescent inference was restricted to SVDquartets (Chifman & Kubatko, 2015) as implemented
in PAUP* v. 4.0 (Swofford, 2003) that effectively bypasses the gene-tree inference step, thereby
214 extending its applicability to SNP datasets. This approach uses a coalescent model to test support
for quartets, and to calculate frequencies of SNPs for each species. The process does not require
216 concatenation, but does necessitate the *a priori* partitioning of individuals into species or
populations. Because of extensive run-times using exhaustive tip sampling, species were instead
218 subdivided into populations based on high support under both concatenated SNP methods. All
possible quartets were exhaustively sampled using 1000 bootstraps.

220 A multispecies coalescent phylogeny was generated from unlinked SNPs in
SVDQUARTETS (Chifman & Kubatko, 2015) as implemented in PAUP* v. 4.0 (Swofford, 2003).
222 This approach uses a coalescent model to test support for quartets, and to calculate frequencies of
SNPs for each species. The process does not require concatenation, but does necessitate the *a*
224 *priori* partitioning of individuals into species or populations. Species were subdivided into
populations based on high support under both concatenated SNP methods. All possible quartets
226 were exhaustively sampled using 1000 bootstraps.

228 **2.5 | Bayesian species delimitation**

230 Species delimitation methods are a popular analytical approach, especially those coalescent-
based (Fujita et al., 2012), and applicable to larger datasets. However, these can lead to over-
splitting, particularly with respect to integrative taxonomic methods and Bayesian assignment

232 tests (Miralles & Vences, 2013). The response of these methods to the effects of introgression
are still tentative, and thus should be viewed with caution (Leaché et al., 2014b). Bayes Factor
234 Delimitation (BFD; Leaché et al., 2014b) is another powerful tool for testing proposed
taxonomic revisions, and to assess if models are congruent with the patterns of divergence
236 obtained from multilocus genetic data. We applied it to test alternative models of species
delimitation in: 1) Flannelmouth Sucker, 2) Bluehead Sucker, and 3) Zuni Bluehead Sucker. The
238 latter is especially important, given the ongoing debate regarding its recent listing as an
endangered subspecies (Federal Register, 2014).

240 BFD was performed using the SNP and AFLP Package for Phylogenetic analysis
(SNAPP: Bryant et al., 2012). To accommodate assumptions and runtime limitations, we filtered
242 the dataset to include only biallelic SNPs found across 95% of individuals, yielding data matrices
of N=1,527 (FMS) and 1,742 (BHS). We estimated prior specifications for the population
244 mutation rate (θ) as the mean pairwise sequence divergence within identified individuals of sister
taxa (1.04×10^{-3} using *C. insignis* for FMS; 4.07×10^{-4} using *C. clarkii* for BHS). These were then
246 used as the means for a gamma-distributed prior. We tested multiple prior-specifications for the
lineage birth rate (λ) of the Yule model, using both fixed- and hyper-prior sampling of a gamma
248 distribution. Fixed λ -values were calculated using PYULE (github.com/joaks/pyule), assuming
tree height as $\frac{1}{2}$ the maximum observed pairwise sequence divergence (i.e., 104.16 for FMS and
250 123.40 for BHS), and assuming the most conservative number of terminal nodes. Bayes factors
for model comparison were calculated on normalized marginal likelihoods (Leaché et al.,
252 2014b).

254 **2.6 | Hybrid detection**

We calculated a hybrid index by mapping against interspecific heterozygosity. This served as a
256 second means of assessing admixture, as well as to assess contemporary hybrid events. The est.h
function (R-package INTROGRESS; Gompert & Buerkle, 2010) was used to estimate the hybrid
258 index (Gompert & Buerkle, 2009) for samples at locations suggesting potential admixed
ancestry. This included: 1) Rio Grande and Bluehead sucker (Zuni River, NM); 2) Sonora and
260 Flannelmouth sucker [Little Colorado (AZ) and Virgin rivers (UT)]; and 3) Bluehead Sucker
lineages (Little Colorado River). The calc.intersp.het and triangle.plot functions in INTROGRESS
262 were also used to assess how contemporary were hybrid events. This was done by calculating
interspecific heterozygosity, and by generating triangle plots for each admixture test, with recent
264 hybrids identified according to high interspecific heterozygosity.

NEWHYBRIDS (Anderson & Thompson, 2002) was used to test the probability of hybrid
266 assignment, to include first-filial (F1), second-filial (F2), first- and second-generation backcross
(Bx), as well as those more ancestral (as gauged by Hardy-Weinberg expectations for random
268 mating over several generations). Unlinked SNPs were used in both INTROGRESS and
NEWHYBRIDS analyses, with additional filtering to remove loci that occurred: (a) Only in a single
270 species, (b) In <80% of individuals, and (c) With a minimum allele frequency >10%.

272 **3 | Results**

After filtering, a total of 20,928 loci and 98,230 SNPs were recovered in *Pantosteus*, with 60.8%
274 (N=59,729) being parsimony-informative (PI) and 29.3% as missing data. For the subgenus
Catostomus, 21,306 loci and 104,372 SNPs were recovered, with 66.4% (N=69,306) being PI,
276 with 28.2% missing data. Unlinked SNPs (*Catostomus*, N=19,717; *Pantosteus*, N=20,038) were

used to generate Bayesian clustering and multispecies coalescent phylogenies. Average coverage
278 post-filtering was 17.8x, with all individuals at >8.9x coverage and with <80% missing data.

280 **3.1 | Phylogeny**

Both concatenated SNP methods produced the same topology for each species (Figures 3A, 4A),
282 with posterior probabilities of one and a bootstrap support of 100% for all species-level nodes, as
well as for some populations within species. The multispecies coalescent phylogenies returned
284 the same general topology as that produced by concatenated methods, but with variance in
placement of the Rio Grande Sucker (*C. P. plebeius*)/ Desert Sucker (*C. P. clarkii*)/ Bluehead
286 Sucker (*C. P. discobolus* and *C. P. virescens*) clade in the *Pantosteus* subgenus (Figure 3B). For
the concatenated methods, Bluehead Sucker was placed outside the remaining species (Figure
288 3A), whereas for the multispecies coalescent method, Rio Grande Sucker was outside (Figure
3B). The latter reflects the results of previous research, to include morphological phylogenies,
290 fossil evidence (Smith et al., 2013), as well as mitochondrial (Chen & Mayden, 2012; Unmack et
al., 2014), and nuclear phylogenies (Bangs et al. 2018b). One impact of introgression was to
292 obscure lineage-level topologies in *Catostomus* (Bangs et al. 2018b). Given this, we elected to
emphasize full-lineage concatenated topologies, and note in so doing that topological
294 discrepancies among the employed methods are both minimal, and reflective of processes that
have been reviewed elsewhere.

296 For *Pantosteus*, isolated drainages were identified with high support in all phylogenetic
analyses, to include: 1) Mimbres and Rio Grande rivers (Rio Grande Sucker), 2) Bill Williams
298 and Gila rivers (Desert Sucker), and 3) Bonneville Basin, Upper Colorado and Little Colorado
rivers (Bluehead Sucker) (Figure 2, 3A, 3B). There was scant resolution among populations in the
300 Upper Colorado River, but highly-supported nodes for MUs were consistent with those derived

in previous microsatellite and mtDNA analyses (Hopken et al., 2013). Several highly supported
302 groups were found within the Little Colorado River: 1) Defiance Plateau (AZ); 2) Willow Creek
(AZ); 3) Silver Creek (AZ); 4) Upper Little Colorado River (AZ); and 5) Zuni River (NM)
304 (Figures 2, 3A, 3B).

For *Catostomus*, highly supported splits were found not only between species but within
306 Flannelmouth Sucker as well (i.e., Virgin, Upper Colorado, and Little Colorado rivers, Figure
4A). The Little Colorado River clade was sister to the Upper Colorado River, with the Virgin
308 River outside of this grouping (Figure 4A, 4B). These results were consistent with previous
phylogenomic results (Bangs et al. 2018b). ML analyses indicated three moderately-supported
310 groups (80-90% bootstrap support) within the Little Colorado River: 1) Chevelon Canyon Lake
(AZ); 2) Silver Creek (AZ); and 3) Wenima Wildlife Area (Upper Little Colorado River, AZ)
312 (Figure 2, Figure 4A). All were supported at 1.0 Bayesian posterior probability in MRBAYES, but
less so by SVDQUARTETS (<70% bootstrap support). Also, the split between Upper Colorado and
314 Little Colorado rivers was only moderately supported (at 86%). It should be noted that Wenima
was not included in the SVDQUARTETS phylogenetic analysis, due to hybridization with Sonora
316 Sucker. However, its removal had no effect on topology or supports.

318 **3.2 | Structure**

The optimum number of supported clusters for *Pantosteus* was k=6, corresponding to: 1)
320 Mountain Sucker (*C. P. jordani*); 2) Desert Sucker (*C. P. clarkii*); 3) Rio Grande Sucker (*C. P.*
plebeius); and three clusters within Bluehead Sucker representing 4) Bonneville Basin (*C. P.*
322 *virescens*); 5) Colorado River; and 6) Little Colorado River. The only Zuni River population
assigned to Rio Grande Sucker was Rio Nutria (NM) (Figure 3C).

324 The only other mixing among *Pantosteus* clusters \was between Bluehead Sucker from
the Colorado and Little Colorado rivers. This occurred in: 1) two (out of ten) samples from
326 Chinle Wash (AZ), a tributary of the San Juan River; and 2) all Little Colorado River samples
with the exception of Zuni River populations (the only group fully assigned to the Little
328 Colorado River cluster). The proportion of assignments varied between regions in the Little
Colorado River, but was largely consistent within each, with the Defiance Plateau (AZ) having
330 the greatest assignment to the Colorado River cluster (32.7-38.6%), followed by populations
from the Upper Little Colorado River (12.9-22.4%), and Willow and Silver creeks (AZ) (0.5-
332 1.6%) (Figure 3C).

For *Catostomus*, the optimum number of supported clusters was k=5, corresponding to
334 currently recognized species: 1) White Sucker (*C. commersonii*); 2) Utah Sucker (*C. ardens*); 3)
Razorback Sucker (*Xyrauchen texanus*); 4) Sonora Sucker (*C. insignis*); and 5) Flannelmouth
336 Sucker (*C. latipinnis*). No structure was apparent within Flannelmouth, even at higher k-values.
Wenima was the only population to have mixed assignment, being allocated to both
338 Flannelmouth and Sonora sucker, but with variation apparent in that four samples had lower
assignments to Sonora Sucker (10.3-13.9%) when compared to the other three (26.9-28.3%). We
340 interpret this as representing different hybrid classes (Figure 4C).

342 3.3 | Hybridization

Individuals (N=4) from the Rio Nutria were tested for hybridization by employing Rio Grande
344 Sucker (N=6) and Zuni Bluehead Sucker (N=8) as parentals. There were no missing data in the
302 unlinked SNPs [of which 59.2% (N=179) were fixed between species]. All four samples
346 assigned with perfect support to the NEWHYBRIDS category “random mating over several

generations.” An evaluation of Rio Nutria individuals by INTROGRESS yielded hybrid index
348 values that were somewhat larger for Rio Grande Sucker (0.228-0.347) than the q-scores from
STRUCTURE (0.170-0.252). However, the 95%-confidence intervals in INTROGRESS overlapped
350 with the q-scores from STRUCTURE (Figure 5D), indicating agreement.

Hybridization between Sonora and Flannelmouth sucker was also tested in the Little
352 Colorado (N=14) and Virgin rivers (N=8), using Sonora Sucker (N=10) and the remaining
Flannelmouth Sucker (N=13) as parentals. This analysis had 12.8% missing data, with 625
354 unlinked SNPs [of which 38.9% (N=243) were fixed between species]. Wenima was the only
Little Colorado River population to reflect statistically significant hybridization with Sonora
356 Sucker. An evaluation using INTROGRESS yielded slightly larger hybrid index values for Sonora
Sucker (0.170-0.320) than the q-scores from STRUCTURE (0.103-0.283). Again, the 95%
358 confidence interval generated by INTROGRESS overlapped with q-scores from STRUCTURE,
indicating agreement. NEWHYBRIDS assigned four Wenima samples with greater than 95%
360 probably as second generation (Bx) backcrosses into Flannelmouth Sucker. It also failed to
assign the other three samples with high significance to any hybrid class, but instead assigned
362 each to a mixture of different classes: F2, second generation backcrosses (Bx) into Flannelmouth
Sucker, and “the random mating over several generations” category. All Flannelmouth Sucker
364 samples from the Virgin River also had low, but significant, hybrid index values for Sonora
Sucker (0.079-0.096). STRUCTURE did not detect this but it is consistent with the significant
366 Patterson’s D-statistic of Bangs et al. (2018b) that point to historic introgression (Figure 5B).

Chinle Wash (N=10) and the Little Colorado River (N=17), with exclusion of Zuni River,
368 were evaluated for mixing between the two clusters of Bluehead Sucker found in the Colorado
River Basin. Here, parentals were: 1) Bluehead Sucker throughout the Upper Colorado River

370 (N=21), and 2) those from Agua Remora and Tampico Springs of the Zuni River (N=8). The
latter were used as they assigned completely to the Little Colorado River cluster in STRUCTURE
372 (Figure 3C). A total of 546 unlinked SNPs served as input to INTROGRESS [17.9% fixed
differences (N= 98) with 11.3% missing data]. Results essentially mirrored those of STRUCTURE,
374 with the greatest hybrid index values for the Colorado River Bluehead cluster found in the
Defiance Plateau (0.601-0.628), followed by Upper Little Colorado River (0.355-0.403), then
376 Silver and Willow creeks (AZ) (0.266-0.333). Hybrid indices for all admixed individuals were
significantly higher than q-scores, based on 95% confidence intervals in INTROGRESS. No overlap
378 was found between the 95% CI of the hybrid index for any sample and the standard deviation
between STRUCTURE runs. Two samples from Chinle Wash also showed significant admixture,
380 with hybrid index values being 0.654 and 0.945 for the Colorado River cluster. The former had a
high interspecific heterozygosity value, indicating potentially recent admixture (Figure 5C).

382 **3.4 | Bayes factor delimitation**

384 To minimize the impact of introgression on species delimitation, all populations that showed
significant introgression from outside species in STRUCTURE were removed from BFD runs. This
386 included Rio Nutria (Bluehead Sucker) and Wenima (Flannelmouth Sucker), and included 1,527
and 1,742 unlinked SNPs respectively.

388 Splitting models were favored over lumping models in both Flannelmouth and Bluehead
sucker, with the highest-ranked models being those with the most groups. Within Flannelmouth
390 Sucker, the separation of the Virgin River was ranked higher than splitting either of the
remaining two populations (i.e., Little Colorado and Colorado rivers). For Bluehead Sucker,
392 splitting the Bonneville from the Colorado and Little Colorado rivers had greater ranking than
splitting the Little Colorado River, but ranked lower than splitting all three. The currently-

394 debated listings of the Zuni Bluehead Sucker, where the Zuni River or the Zuni-and-Defiance
Plateau are split from the rest of the Little Colorado and Colorado rivers, were ranked lower than
396 a model that split the Little Colorado River (to include Zuni River, Defiance Plateau, and Upper
Little Colorado) from the Colorado River. However, the highest ranked model was one that split
398 all three groups in the Little Colorado River (Table 2).

400 **4 | DISCUSSION**

Contemporary hybridization is problematic for freshwater conservation and management,
402 particularly with regard to invasions (Bangs et al., 2018a; Hargrove et al., 2019) and
translocations (Bruce & Wright, 2018). Yet these situations can most often be resolved through
404 proper application of genomic approaches. However, it is much more difficult in a deep history
context, in that phylogenetic relationships may be obscured as a result. Similarly, introgression is
406 difficult to detect given genetic recombination (Wallis et al., 2016). Interestingly, freshwater
fishes show particularly high levels of hybridization, due in large part to the occurrence of
408 numerous sympatric species with small population numbers that are subsequently fragmented by
environmental perturbations (Dowling & Secor, 1997). These issues have clearly impacted
410 western North American freshwater fishes and, in particular, the genera evaluated herein
(Dowling et al., 2016; Mandeville et al., 2017).

412 The six states that encompass the Colorado River Basin signed a ‘Range-wide
Conservation Agreement Plan’ (2004) to adaptively manage our two study species basin-wide
414 [as well as a third species, Roundtail Chub (*Gila robusta*)]. This, in turn, was a pre-emptive
mechanism for these states to avoid potential listing under the Endangered Species Act (Carmen,

416 2007). All three species exhibit distinct life histories and habitat preferences that may have
417 driven their potential divergences across the basin.

418 Since speciation is a gradual process with biodiversity elements scattered along its
419 continuum (Sullivan et al., 2014), potential incongruence would be expected when different
420 species delimitation methods are employed. Introgression would further complicate this process,
421 yet its impacts on most species delimitation methods remain unknown, thus confounding any
422 attempt to decipher results (Camargo et al., 2012). As such, the guideline of Carstens et al.
423 (2013) are important considerations in this process, i.e., be conservative and employ multiple
424 lines of evidence, given that a failure to delineate is expected. This includes the use of multiple
425 algorithms for analyses of multi-locus data, and alternative lines of evidence that include (when
426 possible) the life histories, morphologies, distributions, fossil histories, and behaviors of the
427 biodiversity elements under study.

428 Here we explore different species delimitation approaches for two species, Flannelmouth
429 and Bluehead sucker, to include the recent listing of the endangered Zuni Bluehead Sucker under
430 the ESA. Our purpose was to evaluate similarities and differences in patterns of divergence in
431 these two largely sympatric species with different life histories, and to diagnose (if appropriate)
432 the potential for taxonomic revisions. In doing so, we also examined the impacts of introgression
433 as a mechanism to disentangle their complex evolutionary histories that have evolved in lockstep
434 with the geomorphology of the basin.

436 **4.1 | Life history and its effects on differentiation**

Comparative phylogenomics of *Catostomus* and *Pantosteus* subgenera (per Smith et al., 2013)
437 revealed parallel patterns throughout much of the Colorado River and neighboring basins (Bangs

et al. 2018b). However, the scale of divergence varied greatly between these groups, as
440 emphasized within the Upper Colorado River Basin (Figure 1).

Although three distinct clades were identified in Flannelmouth Sucker, they are relatively
442 recent as underscored by the lack of distinct clustering (Figure 4) and having less than 1% fixed
SNP sites as compared to >1.9% for all other comparisons (Table 3). These level of
444 differentiation fits with recent events, including volcanic barriers that appeared during in the last
20kya, such as Grand Falls on the Little Colorado River (~20kya).

446 Lineages of Bluehead Sucker, on the other hand, reflect temporally deeper origins as
underscored by the distinct clustering, branch lengths (Figure 3) and number of fix SNPs (1.9-
448 3.3%; Table 3) that are equal to or greater than well-established species pairs represented in our
analyses, as well as by previous mitochondrial dating (4.5-3.5mya; Unmack et al., 2014).
450 However, the disentanglement of phylogenomic histories, and consequently the delineation of
units for conservation and management, have been complicated by the secondary contact among
452 lineages, as well as their hybridization with other species.

We suggest the contrasting timescales for these clades may stem from life history
454 differences, particularly with regard to subgeneric habitat preferences. *Pantosteus* is commonly
designated as ‘mountain sucker,’ due to its predilection for cooler habitats within higher
456 elevation streams, whereas *Catostomus* is physically larger, omnivorous, and restricted to larger
rivers that form lower-elevation components of basins (Sigler & Miller, 1962; Smith, 1966).
458 Although Bluehead and Flannelmouth sucker largely co-occur, their habitat preferences are
profound and must, in turn, influence diversification rates. For example, Douglas et al. (2003)
460 suggested Flannelmouth Sucker in the Upper Colorado River Basin were driven into the Lower
Basin by rapid Late Pleistocene warming and concomitant desiccation within the Upper Basin

462 (e.g., the Hypsithermal; Pielou, 1974). It later recolonized the Upper Basin via the Grand
Canyon. Although the same pattern was observed in mainstem Bluehead Sucker, populations
464 likely persisted within the high elevation refugia that occurred in numerous tributaries of the
Upper Colorado River Basin. This in turn would yield the shallow, but discernable genetic
466 divergences among populations, and is consistent with the recognition of several as distinct
management units (MUs) (Hopken et al., 2013).

468
470 **4.2 | Bonneville Basin**
472 Although both species are sympatric in the Colorado River Basin, the Bluehead Sucker also
occurs in the Bonneville and Upper Snake River basins (Figure 1). Therein, it may represent a
474 unique species (originally described as *C. P. virescens* Cope & Yarrow 1875; Snyder, 1924) that
was subsequently collapsed into *C. P. discobolus* (Smith, 1966). The split between *C. P.*
476 *virescens* in the Bonneville Basin/ Snake River, and *C. P. discobolus* in the Colorado River
Basin, is supported in all of our analyses. This includes population clustering, three different
478 phylogenetic methods, and BFD analyses (Figure 3; Table 2). The convergence of all methods,
along with recent morphological (Smith et al., 2013) and mitochondrial phylogenies (Hopken et
480 al., 2013; Unmack et al., 2014), supports the reclassification of the Bonneville Bluehead Sucker.
Furthermore, the chronology for the split between these two species (i.e., ~4.8 mya per mtDNA
482 time-calibrated phylogenies) exceeds that found in other catostomid species (Unmack et al.,
2014), and emphasizes the deep divergence.

482
484 **4.3 | Little Colorado River Basin**
486 Our phylogenetic analyses also separate the Little Colorado River Flannelmouth and Bluehead
suckers from those in the Upper Colorado River Basin, to include the Grand Canyon (Figures 3,

486 4). The Little Colorado River lineages represent 1) Zuni Bluehead Sucker (*C. P. discobolus*
yarrowi) now with a drastically reduced range that was influential in promoting its recent listing
488 under the Endangered Species Act (Federal Register, 2014); and 2) Little Colorado River Sucker,
currently recognized by Arizona Game and Fish Department as an undescribed species
490 morphologically distinct from Flannelmouth Sucker (Miller, 1972; Minckley, 1980).

492 **4.4 | Zuni Bluehead Sucker**

When *Pantosteus* was first described (Cope & Yarrow, 1875), the Zuni Bluehead Sucker was
494 designated as a separate species. Subsequent allozymic and morphological data (Smith et al.,
1983) not only recalibrated it to subspecies, but also suggested a hybrid origin that encompassed
496 Bluehead and Rio Grande sucker. However, results from our studies now refute this hypothesis
by demonstrating alleles from Rio Grande Sucker are found only within a single population (i.e.,
498 Rio Nutria) (Figure 3C, Figure 5D). This result is consistent with more contemporary analyses of
allozymes (Crabtree & Buth, 1987) as well as single-gene sequencing data (Turner & Wilson,
500 2009; Hopken et al., 2013).

Zuni Bluehead Sucker seemingly originated in the mountains of northeast Arizona and
502 northwest New Mexico, to include the Zuni River and Kin Lee Chee Creek of the Defiance
Plateau (Smith et al., 1983). However, phylogenetic analyses render populations in Kin Lee Chee
504 Creek and the Defiance Plateau as paraphyletic with the Zuni River and the remainder of the
Little Colorado River (Figure 3A, 3B). In addition, the entire Little Colorado River Basin clade
506 is a monophyletic group sister to the remainder of the Colorado River (Figure 3A, 3B). This
suggests that Zuni Bluehead Sucker spread into the Little Colorado River following its
508 integration with mountain streams (per Minckley, 1973; Smith et al., 1983). The current

hypothesis (Smith et al., 1983) suggests that it was replaced by Bluehead Sucker in all Little
510 Colorado River drainages, save Zuni River and Kin Lee Chee Creek.

However, population-clustering analyses (Figure 3C) yielded a clade unique to the Little
512 Colorado River, within which only Zuni River populations were assigned. All other populations
were assigned to a composite representing this cluster and the remainder of the Colorado River
514 Basin, with proportions for the latter ranging from 0.5-38.6%. This admixture was also detected
in hybrid index analyses, suggesting the remainder of the Little Colorado River Basin may
516 represent an admixture of these two lineages (Figure 5C). Thus, Bluehead Sucker may have
hybridized with Zuni Bluehead Sucker in the Little Colorado River rather than replacing it, with
518 admixed populations now found in all but the Zuni River. The Defiance Plateau may be the
source for this Bluehead Sucker invasion, based on a greater proportion of assignments with the
520 Colorado River cluster. This may presumably be the result of stream capture with Chinle Wash
(Figures 3C, 5C).

522 Further investigations employing a diversity of techniques (e.g., morphology, stable
isotopes, and transcriptomes) may clarify how admixture has affected the breadth of lineages in
524 the Little Colorado River. Our results support the Zuni Bluehead Sucker, and highlight the
necessity of including the entire Little Colorado River clade when its status is assessed. This is
526 particularly highlighted in the model testing of BFD, where the current listing (to include both
the Zuni River and Kin Lee Chee Creek of the Defiance Plateau) was ranked lower than either a
528 splitting of the entire Little Colorado River, or just the Zuni River (Table 2). This necessitates a
reassessment of the Zuni Bluehead distribution, so as to either separate from it the Kin Lee Chee
530 Creek population or include it within the Little Colorado River Basin.

532 **4.5 | Little Colorado River Sucker**

In contrast to the Zuni Bluehead Sucker, the Little Colorado River Sucker did not cluster
534 separately, despite its representation as a monophyletic group in all phylogenetic analyses
(Figure 4). This may reflect its recent origin, concomitant with formation of Grand Falls ~20kya.
536 This vicariant break effectively separated the Upper Little Colorado River from the rest of the
Colorado River, and prevented contemporary upstream gene flow (Duffield et al., 2006).
538 Although similar contemporary phylogeographic patterns are found in Zuni Bluehead Sucker and
Little Colorado River Sucker, different evolutionary histories are apparent, as driven by habitat
540 preference. This process ultimately resulted in levels of divergence that differ, but within similar
contemporary ranges. This underscores the chaotic fluvial history of the Desert Southwest, as
542 well as the need for comparative studies that can disentangle the organismal histories that coexist
there.

544 Hybridization was also detected between Sonora and Flannelmouth sucker in Wenima
Wildlife Area of the Little Colorado River (Figure 4C). These admixed individuals are
546 presumably due to a recent hybrid event, as gauged by the variation in q-scores found in Sonora
Sucker (Figure 4C), as well as hybrid index values (Figure 5B), high interspecies heterozygosity
548 (Figure 5B), and the presence of four second-generation hybrids. Regardless, further sampling is
needed to confirm this assumption.

550

4.6 | Virgin River

552 Despite forming a monophyletic group, the Little Colorado River Sucker fell within a
paraphyletic Flannelmouth Sucker. This was due largely to the placement of the Virgin River
554 (Figure 4), also suggested as potentially unique due to an elevated morphological variability
stemming from potential hybridization with Sonora Sucker (*C. insignis*) and Razorback Sucker
556 (*Xyrauchen texanus*) (Minckley, 1980). Indeed, historic introgression with Sonora Sucker was

detected in all Virgin River samples, as reflected in the elevated hybrid index and low
558 interspecies heterozygosity (Figure 5B). Although the Sonora Sucker proportion is reduced, it is
nevertheless significant based on previous D-statistic tests (Bangs et al., 2018b) and hybrid index
560 values for all samples (Figure 5B).

Although the phylogenetic splitting of the three Flannelmouth Sucker groups (i.e., Upper
562 Colorado, Little Colorado, and Virgin River) was also supported in BFD (Table 2). they grouped
as a single cluster in STRUCTURE (Figure 4C) and the splits could not be replicated in cluster
564 analyses, even at higher k-values. This, in turn, suggests a recent origin for these groups, further
supported by their short branch lengths (Figure 4A). There is also a lack of fixed differences
566 between these lineages in a previous mitochondrial analysis (Douglas et al., 2003). These
considerations fit well with the previous assumption that the Virgin River population may have
568 separated recently, i.e., Late Pleistocene, most likely due to climatic oscillations that alternately
connected and separated Grand Canyon and Virgin River as recently as 7.5kya (Douglas et al.,
570 2003). The support in BFD for the splitting of these groups may be due to an increased
sensitivity in defining recent splits, or may instead be biased by differential introgression with
572 Sonora Sucker, particularly given the unknown capacity of this method to discern introgression
(Leaché et al., 2014b).

574

5 | CONCLUSIONS

576 Flannelmouth and Bluehead sucker are recognized as 'species of concern' in the Colorado River
Basin (Carmen, 2007). Proposed taxonomic revisions will not only impact the management of
578 these species, but also the basin as a biogeographic unit. Both species reflect similar
phylogenomic patterns, yet their levels of divergence underscore evolutionary histories that

580 differ significantly, and which impact their species delimitations. Three lineages of Bluehead
Sucker were detected in all phylogenetic and population genetic methods, with *C. P. virescens* in
582 the Bonneville and Upper Snake River elevated as a species separate from *C. P. discobolus* in the
Colorado River (per Smith et al., 2013; Unmack et al., 2014). Results also support the Zuni
584 Bluehead Sucker as a unique form. However, the current designation of Kin Lee Chee Creek as
congruent with the Zuni River is erroneous, as they are instead paraphyletic. This situation can
586 be resolved by including the of Little Colorado River Bluehead Sucker, or by removing Kin Lee
Chee Creek from the listing of the Zuni Bluehead Sucker under the ESA. The situation is further
588 complicated by hybridization with Rio Grande Sucker, and Bluehead Sucker from the Colorado
River.

590 The Little Colorado River Sucker falls within a paraphyletic Flannelmouth Sucker, and
can only be resolved by designating the Virgin River population as a unique lineage. However,
592 these three clades are of recent origin, based on population genetic analyses (herein) and the lack
of resolution found in mitochondrial analyses (Douglas et al., 2003). Thus, all three
594 Flannelmouth Sucker lineages are more accurately represented as evolutionary significant units
(ESUs), as reflected by their reduced phenotypic and genetic differentiation. They thus lack
596 concordance under the genealogical component of the phylogenetic species concept.

598 **ACKNOWLEDGEMENTS**

Numerous agencies contributed field expertise, specimens, technical assistance, collecting
600 permits, funding or comments for the completion of this study. We are in debt to students,
postdoctorals, and faculty who contributed to the development of our research: S. Mussmann, A.
602 Albores, P. Brunner, M. Davis, T. Dowling, R. Cooper, J. Cotter, E. Fetherman, M. Hopken, M.
Kwiatkowski, A. Reynolds, J. Reynolds, C. Secor, and P. Unmack. Sampling procedures were

604 approved under IACUC permit 98-456R (Arizona State University) and 01-036A-01 (Colorado
State University). Samples were also provided by the Museum of Southwestern Biology,
606 University of New Mexico (T. Turner, L. Snyder). Accession numbers for samples from the
Museum of Southwestern Biology are: MSB 44046, 44047, 44052, 44059, 44067, 49715, 49962,
608 53500, 63249, and 88362. Analyses were supported by the Arkansas High Performance
Computing Center (AHPCC), funded through multiple National Science Foundation grants and
610 the Arkansas Economic Development Commission. This research was also supported by
generous endowments to the University of Arkansas: The Bruker Professorship in Life Sciences
612 (M.R. Douglas), and 21st Century Chair in Global Change Biology (M.E. Douglas).

614 **CONFLICT OF INTEREST**

None Declared.

616

AUTHOR CONTRIBUTIONS

618 MRB, MRD and MED designed the study; MRB prepared DNA and generate ddRAD libraries;
MRB and TKC completed data analyses; all authors contributed in drafting the manuscript and
620 all approved its final version.

622 **DATA ACCESSIBILITY**

Raw fastq files for each individual as well as all alignments used in this study are available on
624 the Dryad Digital Repository (address added after acceptance of article).

626

628 **REFERENCES**

630 Agapow, P. M, Bininda-Emonds, O. R, Crandall, K. A, Gittleman, J. L, Mace, G. M, Marshall, J. C, & Purvis, A. (2004). The impact of species concept on biodiversity studies. *The Quarterly Review of Biology*, 79, 161–179. doi:10.1086/383542

632

634 Ahrens, D, Fujisawa, T, Krammer, H. J, Eberle, J, Fabrizi, S, & Vogler, A. P. (2016). Rarity and incomplete sampling in DNA-based species delimitation. *Systematic Biology*, 65, 478–494. doi:10.1093/sysbio/syw002

638 Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2017). Genomics and the future of conservation genetics. *Nature Reviews Genetics*, 11, 697–709. doi:10.1038/nrg2844

640

642 Anderson, E. C, & Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. *Genetics*, 160, 1217–1229. PMCID: PMC1462008

644

646 Avise, J. C, & Ball, R. M. (1990). Gene genealogies and the coalescent process. *Oxford Survey in Evolutionary Biology*, 7, 43–67.

648 Bangs, M.R, Douglas, M.R, Thompson, P, & Douglas, M.E. (2017). Anthropogenic impacts facilitate native fish hybridization in the Bonneville Basin of Western North America. *Transactions of the American Fisheries Society*, 146, 16–21. doi:10.1080/00028487.2016.1235611

650

652 Bangs, M. R., Oswald, K. J., Greig, T. W., Leitner, K. J., Rankin, D. M., & Quattro, J. M. (2018a). Introgressive hybridization and species turnover in reservoirs: A case study involving endemic and invasive basses (Centrarchidae: *Micropterus*) in southeastern North America. *Conservation Genetics*, 19, 57–69. doi:10.1007/s10592-017-1018-7

654

656

658 Bangs, M.R., Douglas, M.R., Mussmann, S.M. & Douglas, M.E. (2018b). Unraveling historical introgression and resolving phylogenetic discord within *Catostomus* (Osteichthys: Catostomidae). *BMC Evolutionary Biology*, 18, 86 v

660

662 Baum, D. A. (2009). Species as ranked taxa. *Systematic Biology*, 58, 74–86. doi:10.1093/sysbio/syp011

664

666 Behn K. E., & Baxter, C. V. (2019) The trophic ecology of a desert river fish assemblage: Influence of season and hydrologic variability. *Ecosphere*, 10, e02583. doi:10.1002/ecs2.2583

668

670 Bezzerides, N., & Bestgen, K. (2002). Status review of Roundtail Chub *Gila robusta*, Flannelmouth Sucker *Catostomus latipinnis*, and Bluehead Sucker *Catostomus discobolus* in the Colorado River basin. Colorado State University, Larval Fish Laboratory, Contribution 118, Final Report, Fort Collins.

672

674 Bruce, S. A., & Wright, J. J. (2018). Estimates of gene flow and dispersal in wild riverine Brook
676 Trout (*Salvelinus fontinalis*) populations reveal ongoing migration and introgression from
stocked fish. *Ecology and Evolution*, 8, 11410–11422. doi:10.1002/ece3.4556

678 Bryant, D, Bouckaert, R, Felsenstein, J, Rosenberg, N, & RoyChoudhury, A. (2012). Inferring
680 species trees directly from biallelic genetic markers: bypassing gene trees in a full
coalescent analysis. *Molecular Biology and Evolution*, 19, 1917–1932.
doi:10.1093/molbev/mss086

682 Camargo, A, Morando, M, Avila, L. J, & Sites, J. W. (2012). Species delimitation with ABC and
684 other coalescent-based methods: a test of accuracy with simulations and an empirical
example with lizards of *Liolaemus darwini* complex (Squamata: Liolaemidae).
686 *Evolution*, 66, 2834–2849. doi:1111/j.1558-5646.2012.01640.x

688 Carman, S. M. (2007). Bluehead Sucker *Catostomus discobolus* and Flannelmouth Sucker
690 *Catostomus latipinnis* conservation strategy. New Mexico Department of Game and Fish
Santa Fe, New Mexico.
http://www.wildlife.state.nm.us/download/conservation/species/fish/management-
692 recovery-plans/NM-Sucker-Conservation-Strategy.pdf

694 Carstens, B. C, Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species
delimitation. *Molecular Ecology*, 22, 4369–4383. doi:10.1111/mec.12413

696 Chen, W. J, & Mayden, R. L. (2012). Phylogeny of suckers (Teleostei: Cypriniformes:
698 Catostomidae): Further evidence of relationships provided by the single-copy nuclear
gene IRBP2. *Zootaxa*, 3586, 195–210.
700 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.854

702 Chifman, J., & Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the
704 coalescent model with time-reversible substitution processes, site-specific rate variation,
and invariable sites. *Journal of Theoretical Biology*, 374, 35–47.
doi:10.1016/j.jtbi.2015.03.006

706 Cope, E. D., & Yarrow, H. C. (1875). Report upon the collections of fishes made in portions of
708 Nevada, Utah, California, Colorado, New Mexico, and Arizona, during the years 1871,
1872, 1873, and 1874. *Reptile Geography and Geology Exploration and Survey* 5:635–
710 703. <https://babel.hathitrust.org/cgi/pt?id=njp.32101076035672>

712 Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer Associates, Sunderland, Massachusetts.

714 Crabtree, C. B, & Buth, D. G. (1987). Biochemical systematics of the catostomid genus
716 *Catostomus*: Assessment of *C. clarki*, *C. plebeius* and *C. discobolus* including the Zuni
sucker, *C. d. yarrowi*. *Copeia*, 1987, 843–854.
718 https://www.fws.gov/southwest/es/NewMexico/documents/ZBSESD/Crabtree_and_Buth
_1987.pdf

720 Dasmahapatra, K. K., & The *Heliconius* Genome Consortium. (2012). Butterfly genome reveals
722 promiscuous exchange of mimicry adaptations among species. *Nature*, 487, 94–98.
doi:10.1038/nature11041

724 Dellicour, S., & Flot, J-F. (2018). The hitchhiker's guide to single-locus species delimitation.
726 *Molecular Ecology Resources*, 18, 1234–1246. doi:10.1111/1755-0998.12908

728 Douglas, M. E., & Marsh, P. C. (1998). Population and survival estimates for *Catostomus*
730 *latipinnis* in northern Grand Canyon, with distribution and abundance of hybrids with
Xyrauchen texanus. *Copeia*, 1998, 915—925. doi:10.2307/1447338

732 Douglas, M. R., Brunner, P. C., & Douglas, M. E. (2003). Drought in an evolutionary context:
734 Molecular variability in Flannelmouth Sucker (*Catostomus latipinnis*) from the Colorado
River Basin of western North America. *Freshwater Biology*, 48, 1254–1273.
doi:10.1046/j.1365-2427.2003.01088.x

736 Douglas, M. E., Douglas, M. R., Schuett, G. W., & Porras, L. W. (2006). Evolution of
738 Rattlesnakes (Viperidae: *Crotalus*) in the warm deserts of western North America shaped
by Neogene vicariance and Quaternary climate change. *Molecular Ecology*, 15, 3353–
3374. doi:10.1111/j.1365-294X.2006.03007.x

740 Douglas, M. R., & Douglas, M. E. (2010). Molecular approaches to stream fish ecology. Pages
742 157–195 in K. Gido and D. Jackson, editors. *Community Ecology of Stream Fishes*.
744 *American Fisheries Society, Symposium 73*, Bethesda, Maryland.
<https://www.researchgate.net/publication/319088105>

746 Dowling, T. E., & Secor, C. L. (1997). The role of hybridization and introgression in the
748 diversification of animals. *Annual Review of Ecology and Systematics*, 28, 593–619.
doi:10.1146/annurev.ecolsys.28.1.593

750 Dowling, T. E., Markle, D. F., Tranah, G. J., Carson, E. W., Wagman, D. W., & May, B. P.
752 (2016). Introgressive hybridization and the evolution of lake-adapted Catostomid Fishes.
PLoS ONE, 11, e0149884. doi:10.1371/journal.pone.0149884

754 Duffield, W., Riggs, N., Kaufman, D., Champion, D., Fenton, C., Forman, S., McIntosh, W.,
756 Hereford, R., Plescia, J., & Ort, M. (2006). Multiple constraints on the age of a
Pleistocene lava dam across the Little Colorado River at Grand Falls, Arizona.
Geological Society of America Bulletin 118, 421–429. doi:10.1130/B25814.1

758 Eaton, D. A., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: An
760 example from flowering plants (*Pedicularis*: Orobanchaceae). *Systematic Biology*, 62,
689–706. doi:10.1093/sysbio/syt032

762 Edwards, S. V., Xi, Z., Janke, A., Faircloth, B. C., McCormack, J. E., Glenn, T. C., Zhong, B.,
764 Wu, S., Lemmon, E. M., Lemmon, A. R., & Leaché, A. D. (2016). Implementing and

766 testing the multispecies coalescent model: A valuable paradigm for phylogenomics.
766 *Molecular Phylogenetics and Evolution*, 94, 447–462. PubMedID:26518740

768 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals
768 using the software STRUCTURE: A simulation study. *Molecular Ecology*, 14, 2611–2620.
770 doi:10.1111/j.1365-294X.2005.02553.x

772 Federal Register, 2014. Endangered and threatened wildlife and plants; proposed designation of
772 critical habitat for the Zuni Bluehead Sucker. Federal Register 78(17) 25 January 2013,
774 5351. <https://www.gpo.gov/fdsys/pkg/FR-2013-01-25/pdf/2013-01302.pdf>

776 Fontaine, M.C., Pease, J. B., Steele, A., Waterhouse, R. M., Neafsey, D. E., Sharakhov, I. V.,
776 Jiang, X., Hall, A. B., Catteruccia, F., Kakani, E., Mitchell, S. N., Wu, Y., Smith, H. A.,
778 Love, R. R., Lawniczak, M. K., Slotman, M. A., Emrich, S. J., Hahn, M. W., &
780 Besansky, N. J. (2015). Extensive introgression in a malaria vector species complex
revealed by phylogenomics. *Science*, 347, 1258524. doi:10.1126/science.1258524

782 Frankham, R. (2010). Challenges and opportunities of genetic approaches to biological
782 conservation. *Biological Conservation*, 143, 1919–1927.
784 doi:10.1016/j.biocon.2010.05.011

786 Frazer, D. J., & Bernatchez, L. (2001). Adaptive evolutionary conservation: Towards a unified
786 concept for identifying conservation units. *Molecular Ecology*, 10, 2741–2752.
788 doi:[10.1046/j.0962-1083.2001.01411.x](https://doi.org/10.1046/j.0962-1083.2001.01411.x)

790 Frazer, G. S., Winkelman, D. L., Bestgen, K. R., & Thompson, K. G. (2017). Tributary use by
790 imperiled Flannelmouth and Bluehead suckers in the Upper Colorado River Basin.
792 *Transactions of the American Fisheries Society*, 146, 858–870.
794 doi:10.1080/00028487.2017.1312522

796 Fujita M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., & Moritz, C. (2012). Coalescent-
796 based species delimitation in an integrative taxonomy. *Trends in Ecology and Evolution*,
27, 480–488. doi.org/10.1016/j.tree.2012.04.012

800 Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics
800 for delineating conservation units. *Trends in Ecology and Evolution*, 27, 489–496.
802 doi:10.1016/j.tree.2012.05.012

804 Gompert, Z., & Buerkle, C. A. (2009). A powerful regression-based method for admixture
804 mapping of isolation across the genome of hybrids. *Molecular Ecology*, 18, 1207–1224.
806 doi:10.1111/j.1365-294X.2009.04098.x

808 Gompert, Z., & Buerkle, C. A. (2010). INTROGRESS: a software package for mapping
808 components of isolation in hybrids. *Molecular Ecology Resources*, 10, 378–384.
810 doi:10.1111/j.1755-0998.2009.02733.x

812 Hedin, M., Carlson, D., & Coyle, F. (2015). Sky island diversification meets the multispecies
coalescent – divergence in the spruce-fir moss spider (*Microhexura montivaga*, Araneae,
Mygalomorphae) on the highest peaks of southern Appalachia. *Molecular Ecology*, 24,
3467–3484. doi:10.1111/mec.13248

816 Hargrove, J. S., Weyl, O. F. L., Zhao, H., Peatman, E., & Austin, J. D. (2019). Using species-
diagnostic SNPs to detail the distribution and dynamics of hybridized black bass
populations in southern Africa. *Biological Invasions*, 21, 1499–1509.
doi:10.1007/s10530-018-01912-8

820 Holycross, A. T., & Douglas, M. E. (2007). Geographic isolation, genetic divergence, and
ecological non-exchangeability define ESUs in a threatened sky-island rattlesnake.
Biological Conservation, 134, 142–154. doi:10.1016/j.biocon.2006.07.020

824 Hopken, M. W., Douglas, M. R., & Douglas, M. E. (2013). Stream hierarchy defines riverscape
genetics of a North American desert fish. *Molecular Ecology*, 22, 956–971.
doi:10.1111/mec.12156

828 Hubbs, C. L., & Miller, R. R. (1948). The Great Basin with emphasis on glacial and postglacial
times. II. The zoological evidence. *Bulletin of the University of Utah*, 38, 17–166.

832 Isaac, N. J., Mallet, J., & Mace, G. M. (2004). Taxonomic inflation: Its influence on
macroecology and conservation. *Trends in Ecology and Evolution*, 19, 464–469.
doi:10.1016/j.tree.2004.06.004

836 Knowles L. L., & Carstens, B. C. (2007). Delimiting species without monophyletic gene trees.
Systematic Biology, 56, 887–895. doi:10.1080/10635150701701091

838 Lamichhaney, S., Han, F., Webster, M. T., Andersson, L., Grant, B. R., & Grant, P. R. (2017).
Rapid hybrid speciation in Darwin's finches. *Science*, 359, 224–228.
doi:10.1126/science.aoa4593

842 Leaché, A. D., and Fujita, M. K. (2010). Bayesian species delimitation in West African forest
geckos (*Hemidactylus fasciatus*). *Proceedings of the Royal Society B*, 277, 3071–3077.
doi:10.1098/rspb.2010.0662

846 Leaché, A. D., Harris, R. B., Rannala, B., & Yang, Z. (2014a). The influence of gene flow on
species tree estimation: A simulation study. *Systematic Biology*, 63, 17–30.
doi:10.1093/sysbio/syt049

850 Leaché, A. D., Fujita, M. K., Minin, V. N., & Bouckaert, R. R. (2014b). Species delimitation
using genome-wide SNP data. *Systematic Biology*, 63, 534–542.
doi:10.1093/sysbio/syu018

854

856 Liu, L., Xi, Z., Wu, S., Davis, C. C., & Edwards S. V. (2015). Estimating phylogenetic trees
from genome-scale data. *Annals of the New York Academy of Sciences*, 1360, 36–53.
doi:10.1111/nyas.12747

858

860 Mallet, J. (2001). The speciation revolution. *Journal of Evolutionary Biology*, 14, 887–888.
doi:[10.1046/j.1420-9101.2001.00342.x](https://doi.org/10.1046/j.1420-9101.2001.00342.x)

862 Mallet, J., Besansky, N., & Hahn, M.W. (2015). How reticulated are species? *Bioessays*, 38,
140–149. doi: 0.1002/bies.201500149

864

866 Mandeville, E. G., Parchman, T. L., McDonald, D. B., & Buerkle, C. A. (2015). Highly variable
reproductive isolation among pairs of *Catostomus* species. *Molecular Ecology*, 24, 1856–
1872. doi:10.1111/mec.13118

868

870 Miller, R. R. (1972). Threatened freshwater fishes of the United States. *Transactions of the
American Fisheries Society*, 101, 239–252. doi:10.1577/1548-
8659(1972)101<239:TFFOTU>2.0.CO;2

872

874 Minckley, W.L. (1973). *Fishes of Arizona*. Arizona Game and Fish Department, Sims Printing
Company.

876 Minckley, W. L. (1980). Morphological variation in catostomid fishes of the Grand Canyon
Region, middle Colorado River basin. Final Report US National Park Service Contract,
878 Grand Canyon National Park, Grand Canyon, Arizona. Arizona State University, Tempe.

880 Miralles, A., & Vences, M. (2013). New metrics for comparison of taxonomies reveal striking
discrepancies among species delimitation methods in *Madascincus* lizards. *PLoS One*, 8,
68242. doi:10.1371/journal.pone.0068242

884 Moritz, C. (1994). Defining evolutionarily significant units for conservation. *Trends in Ecology
and Evolution*, 9, 373–375. doi:10.1016/0169-5347(94)90057-4

886

888 Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that
sustain it. *Systematic Biology*, 51, 238–254.

890

892 Mussmann, S. M., Douglas, M. R., Chafin, T. K., & Douglas, M. E. (2019). BA3-SNPs:
Contemporary migration reconfigured in BayesAss for next-generation sequence data.
Methods in Ecology & Evolution, 2019, 1–6. doi:10.1111/2041-210X.13252

894

896 Padial, J. M., & de la Riva, I. (2006). Taxonomic inflation and the stability of species lists: The
perils of ostrich's behavior. *Systematic Biology*, 55, 859–867.
doi:10.1080/1063515060081588

900

Palsbøll, P.J., Bérubé, M., & Allendorf, F.W. (2014). Identification of management units using
population genetic data. *Trends in Ecology and Evolution*, 22, 13–15.
doi:10.1016/j.tree.2006.09.003

902 Petit, R. J., & Excoffier, L. (2009). Gene flow and species delimitation. *Trends in Ecology and Evolution*, 24, 386–393. doi:10.1016/j.tree.2009.02.011

904 Phillips, J. D., Gillis, D. J., & Hanner, R. H. (2019). Incomplete estimates of genetic diversity
906 within species: Implications for DNA barcoding. *Ecology and Evolution*, 9, 2996–3010.
908 doi:10.1002/ece3.4757

910 Pielou, E. C. (1974). *Population and community ecology: Principles and methods*. Gordon and Breach Publishers, New York.

912 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using
914 multilocus genotype data. *Genetics*, 155, 945–959. PMC1461096

916 Pyron, R. A, Hsieh, F. W., Lemmon, A. R., Lemmon, E. M., & Hendry, C. R. (2016). Integrating
918 phylogenomic and morphological data to assess candidate species-delimitation models in brown and red-bellied snakes (*Storeria*). *Zoological Journal of the Linnean Society*, 177, 937–949. doi:10.1111/zoj.12392

920 Quattrini, A. M., Wu, T., Soong, K., Jeng, M-S., Benayahu, Y., & McFadden, C. S. (2019). A
922 next generation approach to species delimitation reveals the role of hybridization in a
924 cryptic species complex of corals. *BMC Evolutionary Biology*, 19, 116.
doi:10.1186/s12862-019-1427-y

926 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., Larget, B., Liu,
928 L., Suchard, M. A., & Huelsenbeck J. P. (2012). MRBAYES 3.2: Efficient Bayesian
phylogenetic inference and model choice across a large model space. *Systemic Biology*, 61, 539–542. doi:10.1111/zoj.12392

930 Ryder, O. A. (1986). Species conservation and systematics – the dilemma of subspecies. *Trends in Ecology and Evolution*, 1, 9–10. doi:10.1016/0169-5347(86)90059-5

932 Ryman, N., & F. Utter (Eds.). (1987). *Population Genetics and Fisheries Management*.
934 University of Washington Press, Seattle.

936 Schlick-Steiner, B. C, Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H.
938 (2010). Integrative taxonomy: A multisource approach to exploring biodiversity. *Annual Review of Entomology*, 55, 421–438. doi:10.1146/annurev-ento-112408-085432

940 Seager, R., & Vecchi, G. A. (2010). Greenhouse warming and the 21st century hydroclimate of
942 southwestern North America. *Proceedings of the National Academy of Sciences*, 107, 21277–21282. doi:10.1073/pnas.0910856107

944 Sigler, W. F., & Miller, R. R. (1963). *Fishes of Utah*. Utah State Department of Fish and Game,
946 Salt Lake City, UT.

948 Singhal, S., Hoskins, C. J., Couper, P., Potter, S., & Moritz, C. (2018). A framework for
resolving cryptic species: A case study from the lizards of the Australian wet tropics.
Systematic Biology, 67, 1061–1075. doi:10.1093/sysbio/syy026

950

952 Sloan, P. R. (2008). Originating species. Darwin on the species problem, p. 67–86. In: The
Cambridge Companion to the “Origin of Species. M. Ruse and R. J. Richards (eds.).
Cambridge University Press, Cambridge, UK. doi:10.1017/CCOL9780521870795.007

954

956 Smith, G. R. (1966). Distribution and evolution of the North American catostomid fishes of the
subgenus *Pantosteus*, genus *Catostomus*. *Miscellaneous Publications Museum of
Zoology, University of Michigan*, 129, 1–132.
<https://deepblue.lib.umich.edu/handle/2027.42/56373>

958

960 Smith G. R., Hall, J. G., Koehn, R. K., Innes, D. J. (1983). Taxonomic relationships of the Zuni
mountain sucker, *Catostomus discobolus yarrowi*. *Copeia*, 1983, 37–48.
doi:10.2307/1444696

962

964 Smith, G. R., Badgley, C., Eiting, T. P., & Larson, P. S. (2010). Species diversity gradients in
relation to geological history in North American freshwater fishes. *Evolutionary Ecology
Research*, 12, 693–726.
https://www.academia.edu/13062152/Species_diversity_gradients_in_relation_to_geological_history_in_North_American_freshwater_fishes

966

970 Smith, G. R., Stewart, J. D., & Carpenter, N. E. (2013). Fossil and recent mountain suckers
Pantosteus, and significance of introgression in catostomid fishes of Western United
States. *Occasional Papers Museum of Zoology University of Michigan*, 724, 1–59.
<https://deepblue.lib.umich.edu/handle/2027.42/122717>

972

974 Snyder, J. O. (1924). Notes on certain catostomid fishes of the Bonneville system, including the
type of *Pantosteus virescens* Cope. *Bulletin of the United States National Museum*, 64, 1–
6. https://repository.si.edu/bitstream/handle/10088/15302/USNMP-64_2508_1924.pdf?sequence=1&isAllowed=y

976

980 Spriggs, E. L., Eaton, D. A., Sweeney, P. W., Schlutius, C., Edwards, E. J., & Donoghue, M. J.
(2019). Restriction-site-associated DNA sequencing reveals a cryptic *Viburnum* species
on the North American coastal plain. *Systematic Biology*, 68, 187–203.
doi:10.1093/sysbio/syy084

982

984

986 Stanton, D. W. G., Frandsen, P., Waples, R. K., Heller, R., Russo, I-R. M., Orozco-terWengel, P.
A., Tingskov Pedersen, C-E., Siegismund, H. R., & Bruford, M. W. (2019). More grist
for the mill? Species delimitation in the genomic era and its implications for
conservation. *Conservation Genetics*, 20, 101–113. doi:10.1007/s10592-019-01149-5

990

992

994 Stewart, J. E., Timmer, L. W., Lawrence, C. B., Pryor, B. M., & Peever, T. L. (2014). Discord
996 between morphological and phylogenetic species boundaries: incomplete lineage sorting
998 and recombination results in fuzzy species boundaries in an asexual fungal pathogen.
BMC Evolutionary Biology, 14, 38. doi:10.1186/1471-2148-14-38

1000 Sullivan, B. K., Walker, J. M., Taylor, H. L., Cordes, J. E., Kwiatkowski, M. A., Sullivan, K. O.,
1002 Sullivan, J. R., Douglas, M. R., & Douglas, M. E. (2013). Morphological diagnosability
in the *Aspidoscelis inornata* complex. *Copeia*, 2013, 366–377. doi:10.1643/CH-12-097

1004 Sullivan, B. K., Douglas, M. R., Walker, J. M., Cordes, J. E., Davis, M. A., AnthonySamy, W. J.,
1006 Sullivan, K. O., & Douglas, M. E. (2014). Conservation and management of polytypic
1008 species: The Little Striped Whiptail Complex (*Aspidoscelis inornata*) as a case study.
Copeia, 2014, 519–529. doi:10.1643/CG-13-140

1010 Swofford, D. L. (2003). PAUP*: Phylogenetic analysis using parsimony (*and other methods),
1012 version 4.0a147. Sinauer, Sunderland, Massachusetts, USA.
http://paup.sc.fsu.edu/Cmd_ref_v2.pdf

1014 Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., & Fisher,
1016 M. C. (2000). Phylogenetic species recognition and species concepts in fungi. *Fungal
Genetics and Biology*, 31, 21–32. doi:10.1006/fgb.2000.1228

1018 Turner, T. F., & Wilson, W. D. (2009). Conservation genetics of Zuni bluehead sucker
(*Catostomus discobolus yarrowi*) in New Mexico. Final Report, Conservation Services
Division, New Mexico Department of Game and Fish, Santa Fe, New Mexico.
https://www.fws.gov/southwest/es/NewMexico/documents/ZBSESD/Turner_Wilson_2009.pdf

1020 Twyford, A. D., & Ennos, R. A. (2012). Next-generation hybridization and introgression.
1022 *Heredity* 108:179–189. doi:10.1038/hdy.2011.68

1024 Unmack, P. J, Dowling, T. E., Laitinen, N. J., Secor, C. L., Mayden, R. L., Shiozawa, D. K., &
1026 Smith, G. R. (2014). Influence of introgression and geological processes on phylogenetic
1028 relationships of western North American mountain suckers (*Pantosteus*, Catostomidae).
PloS ONE 9:e90061. doi:10.1371/journal.pone.0090061

1030 Wallis, G. P., Cameron-Christie, S. R., Kennedy, H. L., Palmer, G., Sanders, T. R., & Winter, D.
1032 J. (2016). Interspecific hybridization causes long-term phylogenetic discordance between
1034 nuclear and mitochondrial genomes in freshwater fishes. *Molecular Ecology*, 26, 3116–
3127 doi:10.1111/mec.14096

1036 Wiens, J. J. (2007). Species delimitation: New approaches for discovering diversity. *Systematic
Biology*, 56, 875–878. doi:10.1080/10635150701748506
1038

1040 Zink, R. M., & Vázquez-Miranda, H. (2019). Species limits and phylogenomic relationships of
Darwin's Finches remain unresolved: Potential consequences of a volatile ecological
setting. *Systematic Biology*, 68, 347–357. doi:10.1093/sysbio/syy073

1042

Tables

1044

Table 1: Sample sizes for each species by major drainage, location, and state. Included for each
1046 species are number of sample sites (Sites) and individuals (N).

Species	Major Drainage	Location	State	Sites	N
<i>C. (P.) jordani</i>	Missouri	Beaver Creek	MT	1	2
<i>C. (P.) virescens</i>	Bonneville	Various	WY, UT	5	5
<i>C. (P.) discobolus</i>	Upper Colorado	Green River	WY, UT, CO	4	4
		Colorado River	UT, CO	4	4
		San Juan River	UT, NM	3	3
		Chinle Wash	AZ	5	10
	Grand Canyon	Grand Canyon	AZ	5	10
	Little Colorado	Defiance Plateau	AZ	3	6
		Upper Little Colorado	AZ	3	6
		Silver Creek	AZ	2	3
		Willow Creek	AZ	1	2
<i>C. (P.) d. yarrowi</i>	Little Colorado	Zuni River	NM	3	12
<i>C. (P.) clarkii</i>	Bill Williams	Bill Williams River	AZ	1	2
	Gila	Verde River	AZ	2	2
		Gila River	NM	2	2
		San Francisco River	NM	2	2
<i>C. (P.) plebeius</i>	Mimbres	Mimbres River	NM	2	2
	Rio Grande	Rio Grande	CO, NM	4	4
<i>X. texanus</i>	Upper Colorado	San Juan River	UT, NM	2	4
<i>C. ardens</i>	Bonneville	Various	WY, UT	2	4
<i>C. latipinnis</i>	Upper Colorado	Green River	WY, UT, CO	4	4
		Colorado River	UT, AZ	2	2
		San Juan River	UT, NM	2	2
	Grand Canyon	Grand Canyon	AZ	5	5
	Virgin River	Beaver Dam Wash	UT	1	8
<i>C. sp. cf latipinnis</i>	Little Colorado	Chevelon Canyon	AZ	1	4
		Silver Creek	AZ	1	3
		Wenima	AZ	1	7
<i>C. insignis</i>	Bill Williams	Bill Williams River	AZ	1	2
	Gila	Verde River	AZ	2	2
		Gila River	NM	2	2
		San Francisco River	NM	2	4
<i>C. commersonii</i>	Mississippi	Various	ND, IL	3	3
	Upper Colorado	Green River	WY, CO	2	2
			Total	85	139

1048

Table 2: Bayes Factor Delimitation for (A) Flannelmouth Sucker and (B) Bluehead Sucker. Group abbreviations under Model include: sos=Sonora Sucker, vir=Virgin River, lcr=Little Colorado River, col=Colorado River, des=Desert Sucker, bon=Bonneville Basin, zuni=Zuni River, def=Defiance Plateau, ulcr=Upper Little Colorado River (includes all populations above Grand Falls in the Little Colorado River, except for the Zuni River and Defiance Plateau). Marginal Likelihood (MarL) and Bayes Factor (BF) are shown for each model, with BF calculated by comparing to the least complex model for each species. Models are ranked by BF with the model most supported being above and least supported below. Models for Bluehead Sucker are split into two groups, with the last five involved with the splitting of the Zuni Bluehead Sucker. Results for BFD using alternative prior specifications did not vary, and so results only using a fixed λ are reported.

A. Flannelmouth Sucker

Model	Description of Model	# groups	MarL	BF	Rank
1. sos, vir+lcr+col	Single species	2	-13009.53	-	5
2. sos, vir, lcr+col	Virgin River split	3	-12419.37	-590.16	2
3. sos, lcr, vir+col	Little Colorado split	3	-12765.16	-244.37	4
4. sos, col, vir+lcr	Colorado split	3	-12644.89	-364.64	3
5. sos, vir, lcr, col	All split	4	-12334.89	-674.64	1

B. Bluehead Sucker

Model	# groups	MarL	BF	Rank
1. des, bon+lcr+col	Single species	-24014.34		9
2. des, bon, lcr+col	<i>C. P. virecsens</i> split	-22678.56	-2671.56	7
3. des, lcr, bon+col	Little Colorado split	-22758.92	-2510.84	8
4. des, bon, lcr, col	Little Colorado + <i>C. P. virecsens</i> split	-21530.57	-4967.54	4
Zuni Bluehead Sucker Models				
5. des, bon, zuni, col+ulcr+def	Zuni River split	-21833.52	-4361.64	5
6. des, bon, zuni+def, col+ulcr	Current listing on the Federal Register	-22178.81	-3671.06	6
7. des, bon, col, zuni, ulcr+def	Zuni River split within Little Colorado	-20949.68	-6129.32	2
8. des, bon, col, zuni+def, ulcr	Current listing with Little Colorado split	-21365.32	-5298.04	3
9. des, bon, col, zuni, def, ulcr	All Little Colorado split	-20780.44	-6467.8	1

Table 3: Total number of fixed SNPs between groups for (A) subgenus *Catostomus* and (B) subgenus *Pantosteus*. Below diagonal is the total number of fixed SNPs across all loci and above the diagonal is the proportion of fixed sites across all loci in percentage. In (A) the first three groups (Upper Colorado River Basin, Little Colorado River, and Virgin River) are Flannelmouth Sucker. In (B) the first three groups (Upper Colorado River Basin, Zuni River, and Bonneville Basin) are Bluehead Sucker.

A. Subgenus *Catostomus*

	Upper Colorado	Little Colorado	Virgin River	Sonora Sucker	Razorback Sucker	Utah Sucker	White Sucker
Upper Colorado	-	0.2%	0.3%	3.7%	7.1%	11.7%	18.8%
Little Colorado	216	-	0.9%	4.2%	7.1%	10.9%	16.7%
Virgin River	314	986	-	4.1%	8.1%	13.3%	20.2%
Sonora Sucker	3879	4414	4263	-	7.6%	12.9%	19.3%
Razorback Sucker	7381	7389	8493	7956	-	14.1%	20.1%
Utah Sucker	12249	11373	13837	13419	14719	-	15.4%
White Sucker	19608	17445	21078	20102	21012	16090	-

B. Subgenus *Pantosteus*

	Upper Colorado	Zuni River	Bonneville Basin	Desert Sucker	Rio Grande Sucker	Mountain Sucker
Upper Colorado	-	1.9%	2.7%	2.0%	6.3%	11.2%
Zuni River	1862	-	5.7%	6.2%	9.4%	13.1%
Bonneville Basin	2611	5576	-	6.3%	9.3%	12.8%
Desert Sucker	1985	6070	6231	-	7.3%	12.1%
Rio Grande Sucker	6176	9196	9181	7178	-	13.2%
Mountain Sucker	11033	12908	12549	11917	12951	-

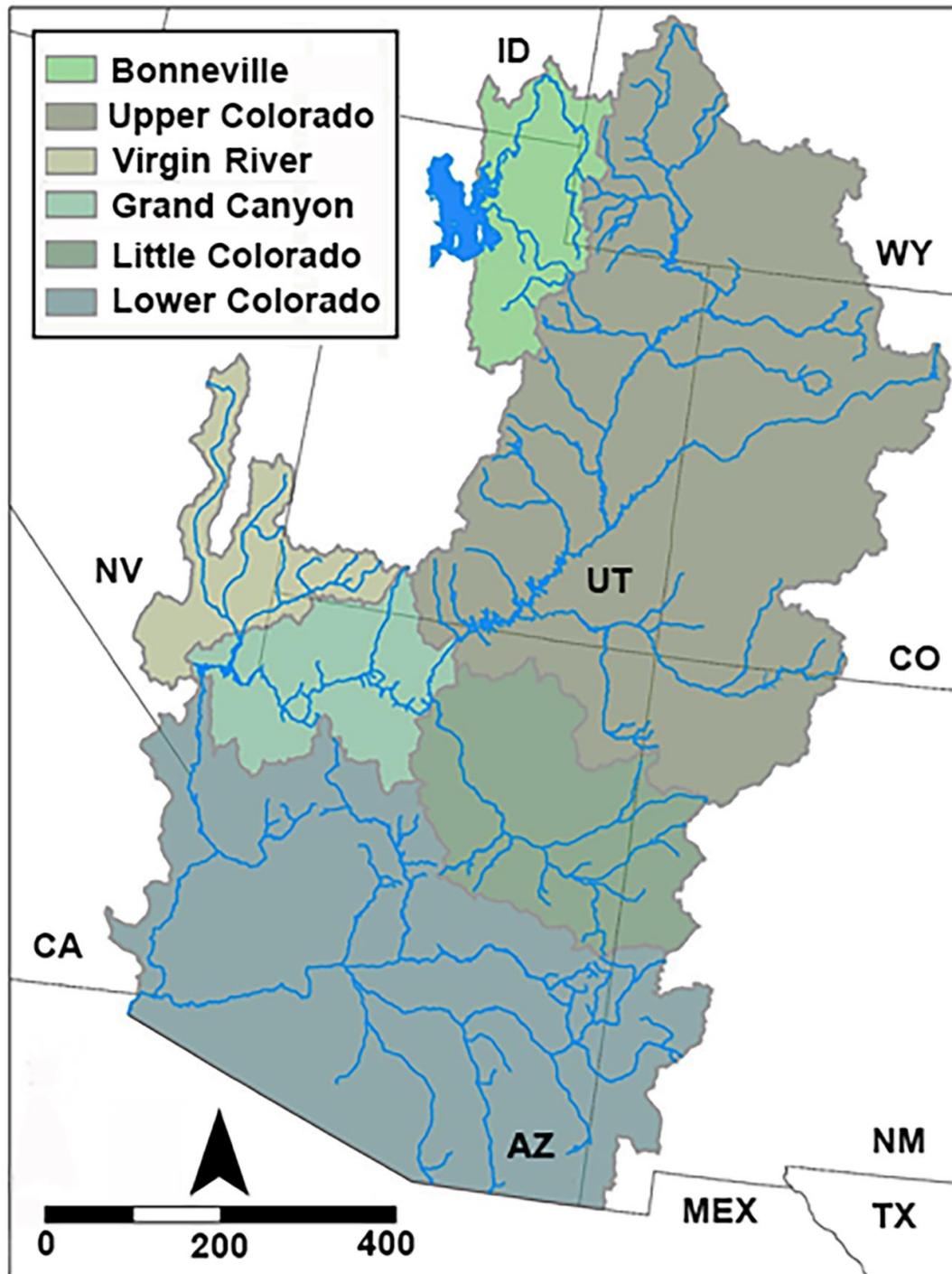


Figure 1: Map depicting the Colorado River and Bonneville basins, with adjacent basins or recognized geographic regions; ID=Idaho; MEX=México; NM=New Mexico; NV=Nevada; TX=Texas; UT=Utah; WY=Wyoming.

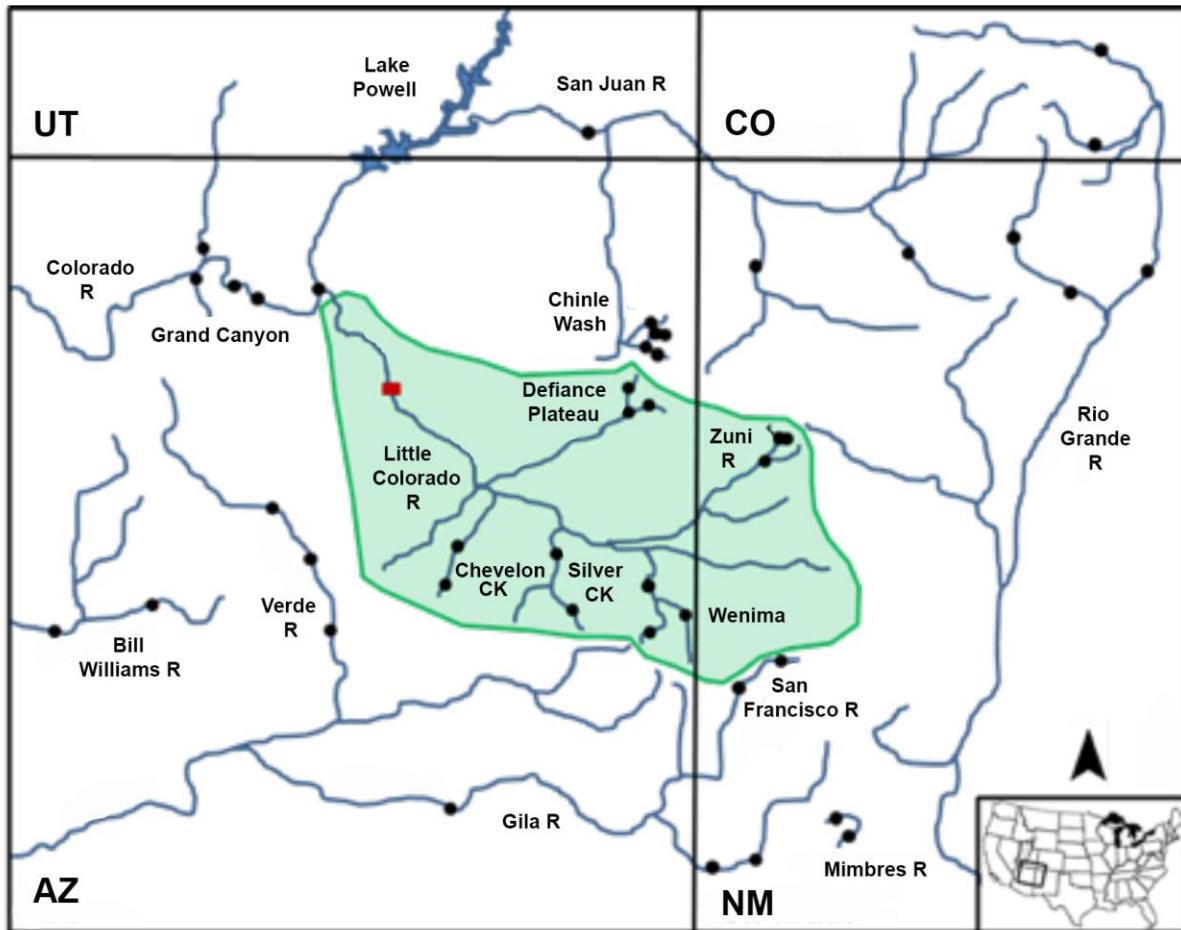


Figure 2: Topographic location of the Little Colorado River watershed (green) and surrounding drainages. Black dots represent collection sites. Red rectangle depicts Grand Falls, a vicariant barrier. AZ=Arizona; CO=Colorado; NM=New Mexico; UT=Utah.

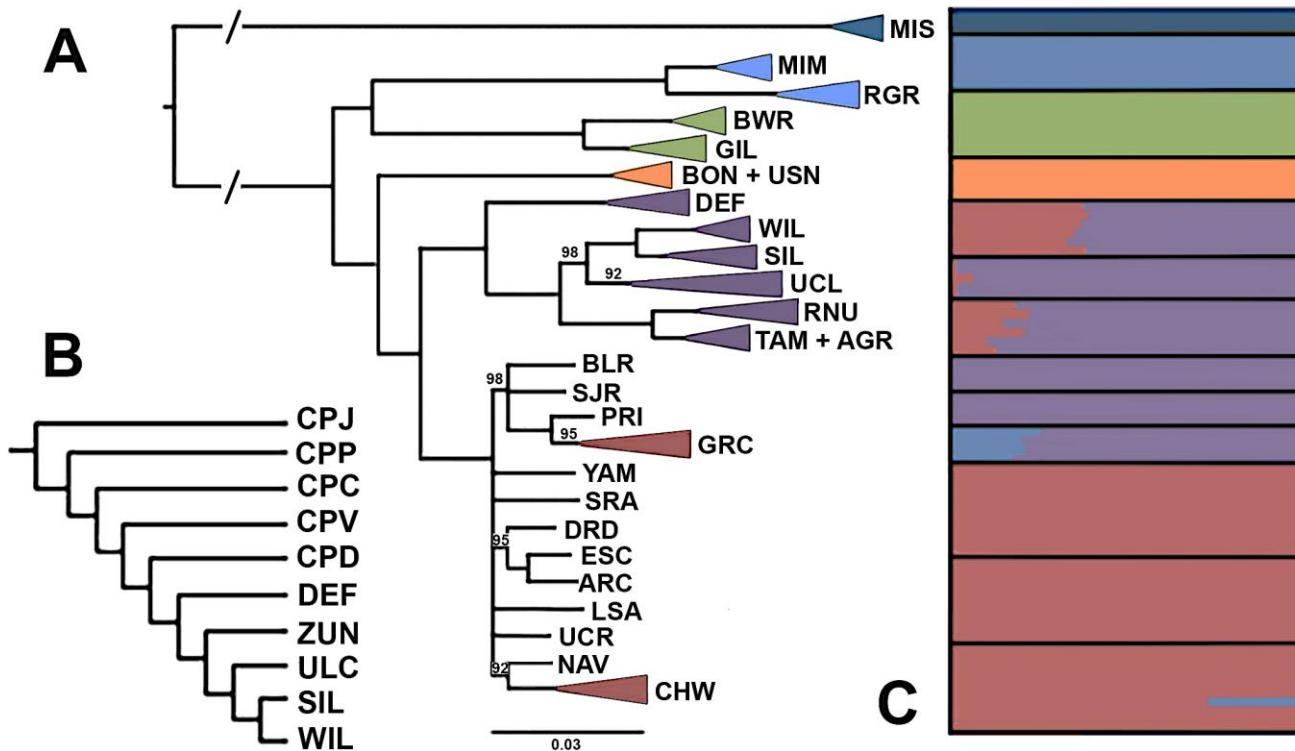


Figure 3: Phylogenetic and clustering results for subgenus *Pantosteus*. (A) Maximum likelihood phylogeny generated from 98,230 SNPs. Numbers represent bootstrap support, with nodes <80% collapsed. (B) Multispecies coalescent phylogeny generated from 20,038 unlinked SNPs, with bootstrap support <100 indicated (CPJ= *Catostomus Pantosteus jordani*; CPP= *C.P. plebeius*; CPC= *C.P. clarki*; CVP= *C.P. virescens*; CPD= *C.P. discobolus*; DEF=Defiance Plateau; ZUN=Zuni River; ULC=Upper Little Colorado River; SIL=Silver Creek; WIL=Willow Creek); (C). Population clustering as provided by STRUCTURE, using 20,038 unlinked SNPs [arranged vertically as in (A)]. (MIS=Missouri River; MIM=Mimbres River; RGR=Rio Grande River; BWR=Bill Williams River; GIL=Gila River; BON=Bonneville Basin; USN=Upper Snake River; DEF=Defiance Plateau; WIL=Willow Creek; SIL=Silver Creek; UCL=Upper Colorado River; RNU=Rio Nutria; TAM=Tampico Springs; AGR=Agua Remora; BLR=Black Rocks; SJR=San Juan River; PRI=Price River; GRC=Grand Canyon; YAM=Yampa River; SRA=San Raphael; DRD=Dirty Devil; ESC=Escalante; ARC=Arch Canyon; LSA=Little Sandy; UCR=Upper Colorado River; NAV=Navajo; CHW=Chinle Wash).

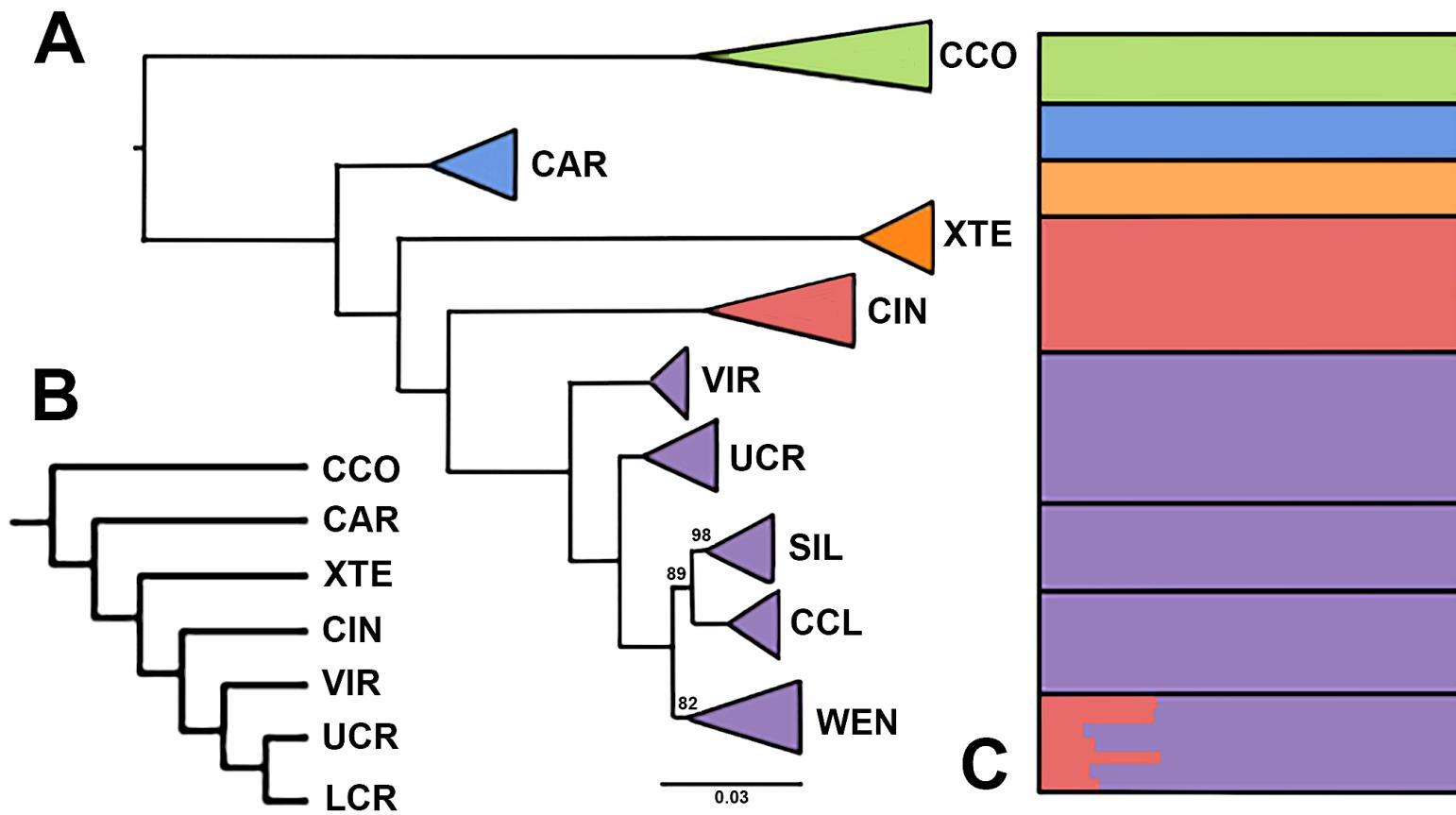


Figure 4: Phylogenetic and clustering results for subgenus *Catostomus*. (A) Maximum likelihood phylogeny generated from 69,306 SNPs. Numbers represent bootstrap support, with nodes <80% collapsed (CCO=*Catostomus commersonii*; CAR=*C. ardens*; XTE=*Xyrauchen texanus*; CIN=*C. insignis*; VIR=Virgin River; UCR=Upper Colorado River; LCR=Little Colorado River). (B) Multispecies coalescent phylogeny generated from 19,717 unlinked SNPs, with bootstrap support <100 indicated (Abbreviations as in A, in addition to: SIL=Silver Creek; CCL=Chevelon Canyon Lake; WEN=Wenima Wildlife Area). (C) Population clustering as provided by STRUCTURE, using 19,717 unlinked SNPs [arranged vertically as in (A)].

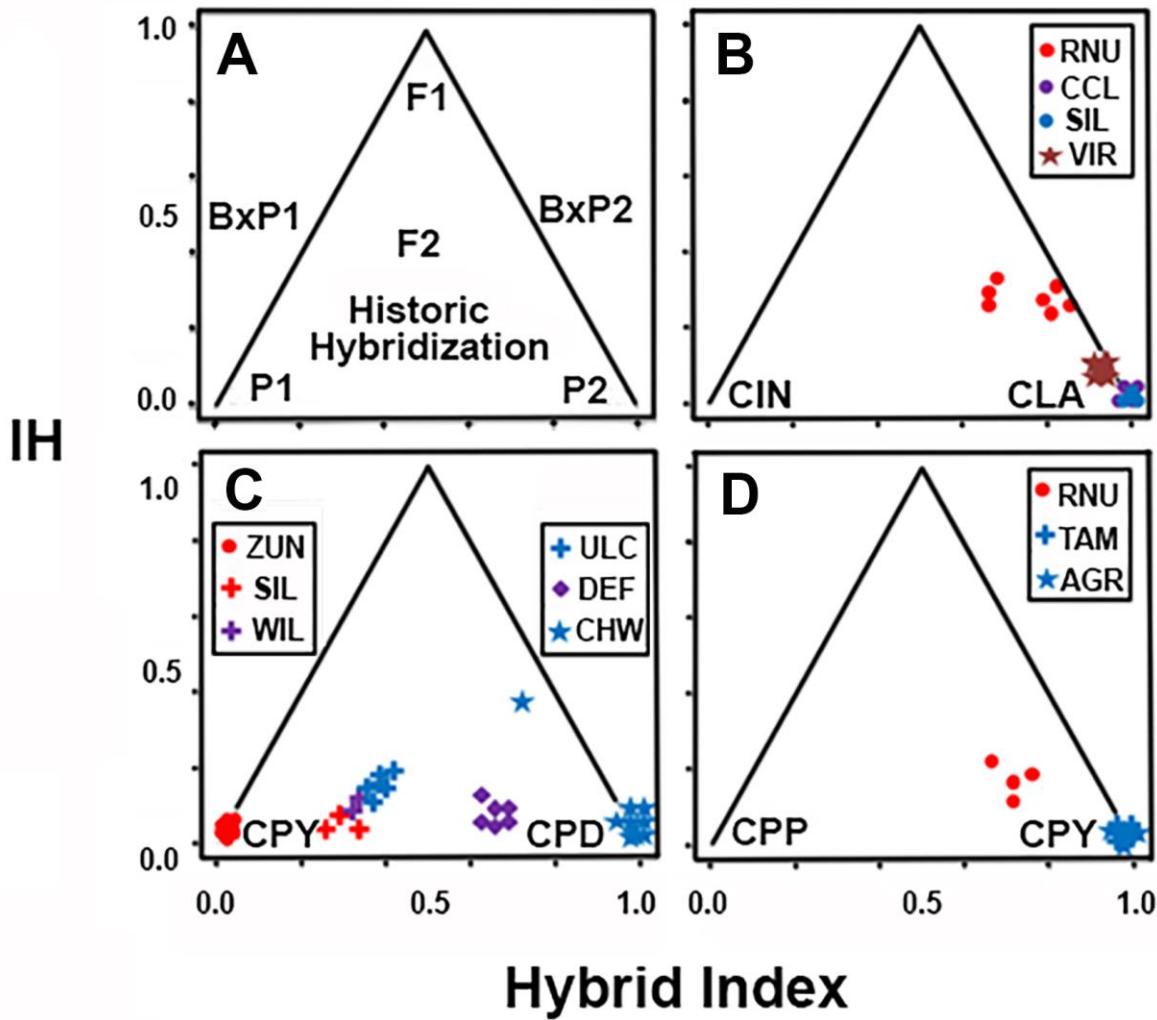


Figure 5: Triangle plots of interspecific heterozygosity versus hybrid index. (A) Hypothetical representation of pure, hybrid or backcrossed classes, with P1 and P2=Pure parental species; F1=First filial; F2=Second filial; and Bx=Backcross. (B) Sonora (CIN) x Flannelmouth sucker (CLA); (C) Zuni Bluehead (CPY) x Bluehead sucker (CPD); and (D) Rio Grande (CPP) x Zuni Bluehead sucker (CPY). Site abbreviations: AGR=Agua Remora; CCL=Chevelon Canyon Lake; CHW=Chinle Wash; DEF=Defiance Plateau; RNU=Rio Nutria; SIL=Silver Creek; TAM=Tampico Springs; ULC=Upper Little Colorado River; VIR=Virgin River; WEN=Wenima Wildlife Area; WIL=Willow Creek; ZUN=Zuni River.