

1 The role of the diencephalon in the guidance of thalamocortical

2 axons in mice

3 Idoia Quintana-Urzainqui¹, Pablo Hernández-Malmierca P^{2,3}, James M. Clegg¹,
4 Ziwen Li⁴, David J Price¹

5 ¹ Centre for Discovery Brain Sciences, Hugh Robson Building, George Square,
6 Edinburgh EH8 9XD, United Kingdom

7 ² Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-
8 STEM gGmbH), 69120 Heidelberg, Germany

³ Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ)
and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany

11 ⁴ Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little
12 France Crescent, Edinburgh EH16 4TJ, United Kingdom

13 Corresponding author address: idoia.quintana@ed.ac.uk

14 Key words (3-6)

15 Thalamocortical tract, axon guidance, diencephalon, Pax6, thalamus, prethalamic
16 pioneer axons.

17

18 Abstract

19 Thalamocortical axons (TCAs) cross several tissues on their journey to the cortex.
20 Mechanisms must be in place along the route to ensure they connect with their
21 targets in an orderly fashion. The ventral telencephalon acts as an instructive tissue,
22 but the importance of the diencephalon in TCA mapping is unknown. We report that
23 disruption of diencephalic development by Pax6 deletion results in a thalamocortical
24 projection containing mapping errors. We used conditional mutagenesis to test
25 whether these errors are due to the disruption of pioneer projections from
26 prethalamus to thalamus and found that, while this causes abnormal TCA
27 fasciculation, it does not induce topographical errors. To test whether the thalamus
28 contains important navigational cues for TCAs, we used slice culture transplants and
29 gene expression studies. We found the thalamic environment is instructive for TCA
30 navigation and that the molecular cues Netrin1 and Semaphorin3a are likely to be
31 involved. Our findings indicate that the correct topographic mapping of TCAs onto
32 the cortex requires the order to be established from the earliest stages of their
33 growth by molecular cues in the thalamus itself.

34 **Introduction**

35 A striking feature of the axonal tracts that interlink the nervous system's component
36 parts is the high degree of order with which they map the array of neurons in one
37 structure onto the array of neurons in their target. Often, the order of axons at the
38 target closely mirrors that at the source. An excellent example is the mapping of
39 thalamic neurons onto their cerebral cortical targets via the thalamocortical pathway
40 (Fig. 1A). Thalamic neurons located at one end of the thalamus in a dorsolateral
41 region called the dorsal lateral geniculate nucleus (dLGN) innervate the caudal
42 (visual) part of cortex; neurons located at the other end of the thalamus in more
43 rostral-medial regions known as the ventrolateral (VL) and ventromedial (VM) nuclei
44 innervate more rostral cortical regions, including motor and frontal cortex; neurons
45 located in between - in the ventromedial posterior (VMP) nuclei - innervate central
46 (somatosensory) cortex (Fig. 1A) (Amassian and Weiner, 1966; Bosch-Bouju et al.,
47 2013; Jones, 2007; Tlamsa and Brumberg, 2010). The mechanisms that generate
48 this orderly topographic mapping remain poorly understood.

49 The maintenance of order among thalamic axons as they grow is likely to contribute
50 to the generation of orderly topographic mapping in the mature thalamocortical tract.
51 During embryogenesis, thalamic axons exit the thalamus from about E12.5 onwards
52 (Auladell and Hans, 2000; Braisted et al., 1999; Tuttle et al., 1999), approximately
53 coincident with the cessation of neurogenesis in this structure (Angevine, 1970; Li et
54 al., 2018). They then cross the adjacent prethalamus and turn laterally out of the
55 diencephalon and into the ventral telencephalon where they traverse two
56 consecutive instructive regions - the corridor (Lopez-Bendito et al., 2006) and the
57 striatum - before entering the cortex. There is evidence that the maintenance of
58 spatial order among thalamocortical axons (TCAs) crossing the ventral

59 telencephalon requires interactions between the axons and signals released by cells
60 they encounter in this region (Bielle et al., 2011; Bonnin et al., 2007; Braisted et al.,
61 1999; Dufour et al., 2003; Molnár et al., 2012; Powell et al., 2008). The importance of
62 earlier interactions within the diencephalon remains unclear.

63 Here, we tested the effects of mutating the gene for the Pax6 transcription factor,
64 which is essential for normal diencephalic patterning (Caballero et al., 2014; Clegg et
65 al., 2015; Parish et al., 2016; Pratt et al., 2000; Stoykova et al., 1996; Warren and
66 Price, 1997), on the topographic mapping of TCAs onto the cortex. Pax6 starts to be
67 expressed in the anterior neural plate well before TCAs start to form (Walther and
68 Gruss, 1991). As the forebrain develops from the anterior neural plate, Pax6
69 expression becomes localized in (i) cortical progenitors that generate the target
70 neurons for TCAs, (ii) diencephalic (thalamic and prethalamic) progenitors and (iii)
71 prethalamic (but not thalamic) postmitotic neurons (Quintana-Urzainqui et al., 2018;
72 Stoykova et al., 1996; Warren and Price, 1997). We discovered that deletion of Pax6
73 from mouse embryos at the time when thalamic axons are starting to grow results in
74 the development of a thalamocortical projection containing mapping errors. Axons
75 from dorsolateral thalamus are misrouted medially and end up projecting abnormally
76 rostrally in the cortex. We went on to explore the reasons for this defect.

77 We first used conditional mutagenesis to test whether misrouting is due to the loss of
78 Pax6 from prethalamic neurons, since previous work has shown that (i) Pax6 is not
79 required in the cortex for normal TCA topography (Piñon et al., 2008) and (ii) Pax6 is
80 neither expressed nor required autonomously by thalamic neurons for them to
81 acquire the ability to extend axons to the cortex (Clegg et al., 2015). We found that
82 while loss of Pax6 from a specific set of prethalamic neurons prevented them
83 developing their normal axonal projections to thalamus and resulted in the abnormal

84 fasciculation of thalamic axons, it did not cause TCAs to misroute. This suggested
85 that the thalamus itself contains important navigational cues for TCAs. We used slice
86 culture transplants and gene expression studies to show (i) that the thalamic
87 environment is indeed instructive for TCA navigation and (ii) to identify molecular
88 changes within the thalamus that likely cause the disruption in TCA topography
89 observed upon Pax6 deletion. Our findings indicate that the normal topographic
90 mapping of TCAs requires that order be established and maintained from the earliest
91 stages of their growth by molecular cues in the thalamus itself.

92 **Results**

93 **Thalamocortical topography is disrupted in CAG^{CreER} but not in Emx^{CreER} Pax6 94 conditional knockouts**

95 Previous studies have shown that constitutive loss of Pax6 function causes a total
96 failure of TCA development, which is hypothesized to be a secondary consequence
97 of anatomical disruption at the interface between the diencephalon and the
98 telencephalon (Clegg et al., 2015; Georgala et al., 2011; Jones et al., 2002). No such
99 failure occurs if Pax6 is deleted conditionally after this anatomical link is formed
100 (Clegg et al., 2015). We first assessed whether delayed ubiquitous Pax6 deletion,
101 induced in $CAG^{CreER-TM}$ $Pax6^{fl/fl}$ embryos (referred to here as CAG^{CreER} Pax6 cKOs),
102 disrupts the topography of TCA connections. We induced Cre recombinase
103 activation by tamoxifen administration at E9.5 which caused Pax6 protein loss in
104 CAG^{CreER} Pax6 cKOs from E11.5 onwards (Quintana-Urzainqui et al., 2018), which is
105 when the generation of most thalamic neurons is starting (Li et al., 2018) and before
106 many TCAs have begun to grow (Auladell and Hans, 2000; López-Bendito and
107 Molnár, 2003). We used both wild type and CAG^{CreER} $Pax6^{fl/+}$ littermate embryos as

108 controls since the latter express normal levels of Pax6 protein, almost certainly
109 because of a feedback loop that compensates for a deletion in one allele by
110 increasing the activity of the other (Caballero et al., 2014; Manuel et al., 2015).

111 We inserted two different axonal tracers in two cortical areas in E15.5 fixed brains.
112 DiA was placed in the visual (caudal) cortex while Dil was placed in the
113 somatosensory (more rostral) cortex (Fig. 1B). In controls (both wild type and
114 *Pax6*^{f/f}), DiA retrogradely labelled cells in dorsolateral thalamic areas (dLGN; green
115 labelling in Fig. 1C-F), while Dil labelled cells in ventromedially-located thalamic
116 regions (red labelling in Fig. 1C-F). Labelling of these two thalamic regions was
117 clearly separated in all cases (indicated by dotted line in Fig. 1C-F; n=3 independent
118 replicates for each of the two genotypes). In *CAG*^{CreER} *Pax6* cKO, however, the two
119 labelled populations overlapped (Fig. 1G-I). In these mutants, the distribution of the
120 DiA-labelled thalamic cells (from caudal cortical injections) was not obviously
121 changed with respect to controls. However, the Dil-labelled cells (projecting to more
122 rostral cortical areas) showed a much wider distribution than in controls and
123 expanded to lateral thalamic areas (compare Fig. 1 C-F,C',E'F' versus G-I,H',I'), even
124 overlapping with DiA stained cells at the dLGN (Fig. 1 H',I'). This observation was
125 consistent across three independent experiments, indicating that some TCAs from
126 neurons located at dorsolateral thalamic levels that should project to the caudal
127 cortex are misrouted towards more rostral cortical areas in the *CAG*^{CreER} *Pax6* cKO
128 (Fig. 1L).

129 Since Pax6 is expressed both in the cortex and diencephalon during TCA
130 development, the mapping defects described above might have been due to the loss
131 of Pax6 from the cortex. This was unlikely because a previous study showed that
132 Pax6 is not required in the cortex for the establishment of proper topographical

133 thalamocortical connections (Piñon et al., 2008). To confirm this, we used a cortex-
134 specific, tamoxifen-inducible Cre line ($Emx1^{CreER}$). We administered tamoxifen at
135 E9.5, which results in a near-complete loss of cortical Pax6 between E11.5-12.5
136 (Georgala et al., 2011; Mi et al., 2013), and performed Dil/DiA labelling at E15.5,
137 following the same experimental design described above for the CAG^{Cre} line. We
138 found that the two retrogradely-labelled populations did not overlap in controls
139 ($Emx1^{CreER} Pax6^{fl/+}$, n=3) or in mutants ($Emx1^{CreER} Pax6^{fl/fl}$, n=3) (Fig. S1A,B),
140 suggesting that the defects of TCA mapping found in the $CAG^{CreER} Pax6$ cKOs were
141 not attributable to cortical abnormalities.

142 To define the anatomical region where thalamic axons probably deviated from
143 ordered growth, we examined the TCA bundle in $CAG^{CreER} Pax6$ cKOs. This bundle
144 was ordered and segregated into rostral/somatosensory (Dil) and caudal/visual (DiA)
145 halves at its point of exit from the prethalamus and entry into the ventral
146 telencephalon (arrows in Fig. 1 G-I), which indicated that the misrouting of lateral
147 TCAs from dorsolateral thalamus might happen before this point, i.e. within the
148 diencephalon.

149 **TCAs fasciculate prematurely as they cross the prethalamus in *Pax6*
150 conditional mutants**

151 Within the diencephalon, the first structure that thalamic axons encounter as they
152 leave the thalamus is the prethalamus, and its neurons normally express high levels
153 of Pax6. Therefore, we investigated whether the defects of TCA mapping in
154 $CAG^{CreER} Pax6$ cKOs might arise from a disordered growth of thalamic axons
155 through the prethalamus. As a first step, we examined the effects of Pax6 deletion
156 on the behaviour of thalamic axons as they cross the prethalamus.

157 Since the neural cell adhesion molecule L1CAM (L1) is expressed in TCAs (Fukuda
158 et al., 1997; Ohyama et al., 2004), we examined the distribution of L1-positive
159 thalamic axons at E13.5 in transverse and sagittal sections through the prethalamus.
160 In controls, axons emerging from the thalamus converge progressively as they cross
161 the prethalamus (Fig. 2A-E) to subsequently form a single thalamocortical bundle
162 that turns laterally and exits the prethalamus (arrows in Fig. 2A,B,E). We found that
163 in *CAG^{CreER} Pax6* cKOs (Fig. 2F-L), thalamic axons prematurely converge into larger
164 bundles as soon as they cross the thalamic-prethalamic boundary (empty arrows in
165 Fig. 2G-I,L).

166 To obtain a quantitative measurement of this observation we positioned three
167 equally-spaced lines across different diencephalic levels in sagittal sections: (1) at
168 the thalamic-prethalamic border (Th-PTh), guided by prethalamic expression of
169 Pax6; (2) at a lower prethalamic position (low-PTh), guided by the end of Pax6
170 prethalamic expression; and (3) at the midpoint position between the two other lines
171 (mid-PTh) (lines represented in Fig. 2D,E,K,L). We used Fiji software (Schindelin et
172 al., 2012) to quantify the number of axon bundles crossing each line and the width of
173 each individual bundle. We recognized individual bundles as each single L1-positive
174 structure above a consistent intensity threshold (red lines in Fig. 2M,N). We found a
175 significant decrease in the number of bundles crossing all three checkpoints (Fig.
176 2O). Axon bundle width strikingly increased at the Th-PTh border and the mid-PTh,
177 with no significant change at the low-PTh checkpoint line (Fig. 2P) (see figure legend
178 for statistical details). These data indicate that, in the absence of Pax6, TCAs begin
179 to fasciculate prematurely in their route, forming bigger and fewer bundles as they
180 cross the prethalamus (Fig. 2Q). We next tested the role of the prethalamus in TCA
181 formation and the potential establishment of their topography.

182 **Prethalamic pioneer axons fail to form in *Gsx2*^{Cre} *Pax6* cKOs producing**
183 **abnormal TCA fasciculation but no changes in topography**

184 The prethalamus has been proposed to host a population of neurons that extend
185 axons to the thalamus which act as “pioneer guides” for TCA navigation (Price et al.,
186 2012; Tuttle et al., 1999). We assessed whether this population is disrupted by Pax6
187 loss from the prethalamus since, if it is, this might provide an explanation for
188 phenotypes described above.

189 From about E9.5 on, most cells in the prethalamus express, or are derived from cells
190 that expressed, *Gsx2*. We used a *Gsx2*^{Cre} line (Kessaris et al., 2006) carrying an
191 EGFP Cre reporter (Sousa et al., 2009) to visualize neurons and axons belonging to
192 the *Gsx2* lineage and we observed that prethalamic Pax6-expressing cells are
193 included within the location of the *Gsx2* lineage prethalamic population (Fig. 3A,B).

194 *Zic4* is also expressed by some prethalamic cells, with an onset of expression similar
195 to that of *Gsx2* (about E9.5; Gaston-massuet et al., 2005), and most diencephalic
196 *Zic4* lineage cells express and require Pax6 for their normal development (Li et al.,
197 2018). Using a *Zic4*^{Cre} line (Rubin et al., 2011) we observed that prethalamic neurons
198 derived from *Zic4* lineage were located in a narrow band close to the thalamic-
199 prethalamic border (Fig. 3C-D). We assessed whether these prethalamic populations
200 normally send axons to the thalamus.

201 *Gsx2*-lineage GFP-positive axons extended throughout the thalamus forming
202 ordered and parallel projections (Fig. 3E) and running in close apposition to L1-
203 positive TCAs (Fig. 3E',E'') from E12.5 onwards (Fig. S2). By contrast, *Zic4*-lineage
204 prethalamic cells did not project axons to the thalamus (Fig. 3D), indicating that

205 prethalamic pioneer axons arise from *Gsx2*-lineage and not from *Zic4*-lineage

206 prethalamic cells.

207 Since *Gsx2* is also expressed in the ventral telencephalon (Fig. 3A), and ventral

208 telencephalic neurons are known to project to the thalamus (López-Bendito and

209 Molnár, 2003; Métin and Godement, 1996; Molnár et al., 1998), there was a

210 possibility that *Gsx2*^{Cre} lineage axons innervating the thalamus actually originated

211 from ventral telencephalic neurons. To confirm the existence of *Gsx2*-lineage

212 prethalamic neurons projecting to the thalamus we injected the neuronal tracer

213 Neurobiotin™ in the thalamus of E13.5 *Gsx2*^{Cre} embryos and successfully labelled

214 prethalamic neurons (arrow in Fig. 3F). Neurobiotin™-positive cells were GFP-

215 expressing *Gsx2* lineage (Fig. 3F-F'',G) and most of them also expressed Pax6

216 (arrows in Fig. 3H,H'; see summary in Fig. 3I). (Note that individual injections each

217 involved only subregions of the thalamus, explaining why each one only labelled a

218 discrete subset of the prethalamic neurons projecting to the thalamus). This

219 experiment confirmed that *Gsx2*-lineage cells in the prethalamus project to the

220 thalamus.

221 Having established that pioneer prethalamic axons belong to the *Gsx2* lineage and

222 express Pax6 we next aimed at disrupting their formation by conditionally deleting

223 Pax6 in *Gsx2*-lineage cells. We crossed mice carrying the floxed *Pax6* allele and

224 EGFP Cre reporter with the *Gsx2*^{Cre} line. Pax6 conditional deletion in *Gsx2*-lineage

225 cells (*Gsx2*^{Cre} *Pax6* cKOs) caused a visible reduction in the number of GFP-positive

226 axons projecting from prethalamus to thalamus in E12.5, E13.5 and E14.5 embryos

227 (Fig. 4A-F). These phenotypes were seen consistently in three independent

228 replicates of each genotype at each age. To confirm that the prethalamic axons that

229 were lost in *Gsx2*^{Cre}, *Pax6*^{loxP/loxP} embryos were Pax6-expressing, we used the

230 DTy54 YAC reporter allele to express tauGFP in cells in which the *Pax6* gene is
231 active, irrespective of whether it is mutant or not (Tyas et al., 2006). Whereas there
232 were many tauGFP-labelled axons running from prethalamus to thalamus in controls,
233 there were very few in experimental embryos (Fig. 4G-J).

234 Dil placed in the thalamus of E13.5 CAG^{CreER} controls ($CAG^{CreER} Pax6^{fl/+}$; n=3)
235 retrogradely labelled a prethalamic population (arrow in Fig. 4K). In the absence of
236 *Pax6* ($CAG^{CreER} Pax6$ cKOs, n=3), no prethalamic cell bodies were labelled by
237 thalamic Dil injection (Fig. 4L), providing further evidence that the prethalamic
238 pioneer population does not form correctly when *Pax6* is deleted. Overall, our results
239 show that prethalamic pioneer axons originating from *Gsx2*-lineage cells both
240 express and require *Pax6* to develop normal connections with the thalamus (Fig.
241 4T).

242 We then studied the TCAs of $Gsx2^{Cre} Pax6$ cKOs. Similar to the phenotype
243 described in $CAG^{CreER} Pax6$ cKOs, *Pax6* deletion in *Gsx2* lineage caused abnormal
244 premature fasciculation of axons crossing the thalamic-prethalamic border, as
245 evidenced by L1 immunohistochemistry (Fig. 4M-R). However, unlike $CAG^{CreER} Pax6$
246 cKOs, $Gsx2^{Cre} Pax6$ cKOs did not show abnormal topographical projections, with no
247 obvious overlap between thalamic retrogradely-labelled populations after cortical DiA
248 and Dil placement in caudal and more rostral cortex respectively (Fig. 1B; Fig. 4S)
249 (n=4).

250 We conclude that, while prethalamic pioneer axons play a role in avoiding premature
251 TCA fasciculation, they are not required for the establishment of accurate
252 thalamocortical topographic mapping (Fig. 4T).

253 **Evidence for the importance of navigational cues in the thalamus itself**

254 We next considered the potential importance of thalamic factors in the establishment
255 of thalamocortical topographic order. Our results above indicate that thalamic axons
256 might have deviated from their normal trajectories before they exited the thalamus in
257 *CAG*^{CreER} *Pax6* cKO^s (arrows mark deviant axons in Fig. 1 H',I' and Fig. 1H"; no
258 such axons were observed in the controls, Fig. 1C',E',F'). A misrouting of TCAs in
259 the thalamus was also evident with L1 staining (Fig. 5 A,B). In controls, L1-positive
260 axons showed a high degree of order, forming small, parallel bundles as they exit the
261 thalamus (Fig. 5A), while in *CAG*^{CreER} *Pax6* cKO^s they were disorganized. The
262 largest collections of deviant axons were observed projecting from lateral to medial
263 thalamic regions (arrow in Fig. 5B), suggesting that the loss of *Pax6* had disrupted
264 normal navigational mechanisms operating within the thalamus.

265 We looked for evidence that thalamic axons are actively guided through the normal
266 thalamus by using *in vitro* slice culture transplants to assess the effects of
267 repositioning lateral or medial thalamic neurons on the routes taken by their axons.

268 We grafted thalamic slice explants from E13.5 GFP-positive donor embryos into
269 GFP-negative host slices and cultured them for 72 hours to allow thalamic axons to
270 regrow and navigate through the host environment. The donor grafts were positioned
271 so that their axons had to traverse at least 200 μ m of host thalamic tissue before
272 encountering the Th-PTh boundary, allowing us to assess how the host thalamic
273 tissue affected the trajectory of the axons emerging from the donor tissue. We
274 isolated donor explants from either lateral or medial thalamus, and grafted them
275 either medially or laterally into host thalamus (Fig. 5C,E,G,I).

276 We found that axons from lateral thalamic explants showed a strong preference to
277 follow a lateral trajectory, irrespective of whether they were grafted laterally or
278 medially (3/3 independent experiments) (Fig. 5C-F). When the lateral axons were

279 confronted with medial host thalamus, most made a sharp turn towards lateral
280 positions before heading towards the prethalamus (Fig. 5E,F).

281 When medial explants were grafted into the medial thalamus (Fig. 5G,H), most of
282 them navigated through a medial corridor close to and parallel with the ventricular
283 surface (empty arrow in Fig. 5H), whereas when medial explants were grafted
284 laterally many of their axons turned medially (arrows in Fig. 5J) (5/5 independent
285 experiments). In addition, all transplants of medial grafts, irrespective of their location
286 in the host, generated significant numbers of axons that navigated laterally through
287 the thalamus (Fig. 5H,J).

288 These results indicated that different subsets of thalamic axons exhibit different
289 chemotactic responses to the thalamic environment and therefore that thalamic
290 axons are actively guided by mechanisms operating within the thalamus itself. To
291 gain further insight into what these mechanisms might be, we went on to examine
292 the expression of guidance molecules in the normal thalamus and in thalamus from
293 which Pax6 has been removed.

294 **Axon guidance molecule expression in normal and Pax6 deficient thalamus**

295 Semaphorin 3a (Sema3a) and Netrin 1 (Ntn1) are secreted guidance molecules
296 whose complementary gradients of expression in the ventral telencephalon are key
297 for the correct establishment of topographical connections between thalamus and
298 cortex (Bielle et al., 2011; Braisted et al., 1999; Molnár et al., 2012; Powell et al.,
299 2008; Wright et al., 2007). Interestingly, we found that their transcripts are also
300 distributed in opposing gradients in the thalamus (Fig. S3A,B). *Ntn1* is most highly
301 expressed at rostral-medial levels (Fig. S3A) while *Sema3a* is most highly expressed
302 in a more caudal-lateral aspect of the thalamus and in the lateral prethalamus (Fig.

303 S3B). In transverse *in situ* hybridization (ISH) of E13.5 controls we observed that
304 *Ntn1* is expressed in a narrow rostral-medial thalamic population of neurons (arrow
305 in Fig. 6A) while *Sema3a* is expressed in caudal-lateral thalamic neurons (arrows in
306 Fig. 6B) as well as flanking the TCA bundles in the prethalamus (empty arrow in Fig.
307 6B).

308 To obtain a clearer three-dimensional view of these expression patterns we
309 reconstructed them from serial, adjacent sections stained for *Sema3a*, *Ntn1*, Pax6
310 and L1 in controls (Fig. 6C). The scaffold of the 3D model was built from transverse
311 slices stained for DAPI (for the general tissue profile), Pax6 (to define thalamus and
312 prethalamus boundaries) and L1 (to label TCAs). The location of the signalling cues
313 was incorporated within the boundaries of the model by comparing adjacent
314 transverse sections stained for *Sema3a* and *Ntn1*, with dots representing staining
315 density. The 3D reconstruction confirmed that *Sema3a* and *Ntn1* form opposing
316 gradients in the normal embryonic thalamus (Fig. 6C), with *Sema3a* highest at
317 caudal-lateral thalamic levels while *Ntn1* is highest at rostral-medial thalamic levels.

318 We next investigated the expression patterns of the main receptors for *Ntn1* and
319 *Sema3a* in the thalamus of control embryos. The most interesting finding was that
320 *Unc5c*, encoding a *Ntn1* receptor mediating axonal repulsion (Leonardo et al., 1997),
321 was expressed differentially from lateral to medial across the thalamus (Fig. 6D).
322 Laterally, almost all cells expressed high levels of *Unc5c* whereas medially many
323 cells did not (Fig. 6D'). *Unc5c* was largely absent from a narrow strip of cells close to
324 and parallel with the ventricular zone. This strip coincided with the region that
325 contained *Ntn1*-positive cells (compare Fig. 6D and A). *Plxna1*, encoding a *Sema3a*
326 receptor that mediates repulsion (Rohm et al., 2000; Takahashi et al., 1999;

327 Tamagnone et al., 1999) was found to be distributed relatively homogenously across
328 the thalamus (Fig. 6E, S3C).

329 These expression patterns suggest that, whereas all thalamic axons might be
330 repelled by *Sema3a* (due to their expression of *Plxna1*), only some axons might be
331 repelled by *Ntn1* (i.e. those originating laterally, which express *Unc5c*, and those
332 *Unc5c*-expressing axons that originate medially) (Fig. 6K). This could explain why, in
333 the grafting experiments described above, axons from lateral explants invariably
334 navigated laterally, which would be away from medially located high levels of *Ntn1*. It
335 could also explain why medial explants generated axons able to navigate on a
336 broader front: some axons (those that express *Unc5c*) would be pushed relatively
337 laterally by repulsion from medially expressed *Ntn1*; others (those that do not
338 express *Unc5c*) would be able to maintain a medial trajectory through *Ntn1*-
339 expressing territory, thereby avoiding the high levels of *Sema3a* expressed in lateral
340 thalamus (Fig. 6K).

341 Other receptor-coding genes analysed (*Dcc*, *Unc5a*, *Unc5d*) showed little or no
342 expression within the main body of the thalamus and are therefore unlikely to
343 contribute to the navigation of thalamic axons within the thalamus (Fig. S3E,G,I).

344 We next asked whether the thalamic expression of *Ntn1* and *Sema3a* and their
345 receptors change in a way that might explain the medially-directed deviation of
346 lateral axons that we observed in the thalamus of CAG^{CreER} *Pax6* cKO^s. In these
347 embryos, we found that the medial domain of *Ntn1*-expression was retained and
348 appeared enlarged. *Sema3a* was still expressed higher laterally, although overall
349 levels seemed reduced (Fig. 6F,G). These patterns are reconstructed in 3D in Fig.

350 6H. *Ntn1* and *Sema3a* expression in the subpallium of CAG^{CreER} *Pax6* cKOs
351 appeared to be unaffected (Fig. S3J-M).

352 Regarding the expression of guidance receptors, fewer laterally-located neurons
353 expressed *Unc5c* in CAG^{CreER} *Pax6* cKOs than in controls (compare Fig. 6I' and D').
354 Significant numbers of *Unc5c*-negative neurons were now intermingled with *Unc5c*-
355 positive neurons even in the most lateral thalamic tissue (Fig. 6I'). *Plxna1*'s thalamic
356 expression pattern did not change in the absence of *Pax6* (Fig. 6J, S3D), nor did that
357 of any of the other receptor-coding genes studied (Fig. S3E-J).

358 As reported above, we discovered that CAG^{CreER} *Pax6* cKOs show a misrouting in a
359 medial direction of axons from the lateral thalamus (Fig. 1), and our finding that
360 many laterally-located thalamic neurons lose their expression of *Unc5c*, provides a
361 likely explanation, summarized in Fig. 6L. We propose that *Unc5c*-negative laterally-
362 located thalamic neurons in CAG^{CreER} *Pax6* cKO thalamus would no longer be
363 repelled from the medial thalamus by its high levels of *Ntn1*. Consequently, they
364 would be more likely to stray, or perhaps to be pushed by relatively high lateral levels
365 of *Sema3a*, towards a medial direction (Fig. 6L). Overall, our findings indicate that
366 mechanisms exist within the thalamus itself to ensure that its TCAs exit in an orderly
367 manner and that these mechanisms play an important part in the correct topographic
368 mapping of TCAs onto the cortex.

369 **DISCUSSION**

370 During embryonic development, thalamic axons undertake a long journey, having to
371 navigate through several tissues before they arrive to the cortex. It is therefore
372 crucial that their guidance is tightly regulated by mechanisms placed all along the
373 route. Previous studies have demonstrated the importance of the ventral

374 telencephalon as an intermediate target for the establishment of correct
375 topographical connections between thalamus and cortex. Here, gradients of
376 signalling molecules seem to sort different subsets of TCAs towards different areas
377 of the embryonic cortex (Antón-Bolaños et al., 2018; Bielle et al., 2011; Braisted et
378 al., 1999; Dufour et al., 2003; Métin and Godement, 1996; Molnár et al., 2012;
379 Vanderhaeghen and Polleux, 2004). To date, the importance of other tissues along
380 the route in the establishment and/or maintenance of axonal topography remained
381 unexplored. In this work, we show that if thalamic axons do not emerge in order from
382 the thalamus they will connect with the wrong areas of the cortex, resulting in
383 topographical defects of the thalamocortical tract. This highlights the importance of
384 maintaining axonal order throughout the route and suggests the existence of
385 guidance mechanisms within the diencephalon to guarantee this happens.

386 Indeed, our *in vitro* graft experiments demonstrated that the embryonic thalamic
387 tissue is instructive for TCAs and seems to sort axons according to their original
388 medio-lateral position. We went on to find a possible guidance mechanism acting
389 within the thalamus. The thalamus expresses *Ntn1* and *Sema3a*, some of the same
390 guidance molecules known to guide TCAs in the ventral telencephalon (Bielle et al.,
391 2011; Powell et al., 2008; Wright et al., 2007). What is more, there is an interesting
392 correspondence between the regions expressing each of those molecules in the
393 thalamus and in the ventral telencephalon. TCAs that emerge and navigate through
394 the *Sema3a*-high region of the thalamus (lateral-caudal thalamus, dLGN) are steered
395 towards the *Sema3a*-high region in the ventral telencephalon, while axons that
396 emerge and navigate through the *Ntn1*-high region of the thalamus (ventral-medial
397 thalamus, VMP) are sorted towards *Ntn1*-high regions in the ventral telencephalon.
398 This suggests that each subset of thalamic axons might maintain the expression of

399 the same combination of axon guidance receptors along the route and therefore
400 show the same chemotactic response when confronting gradients of signalling cues.
401 Likewise, it indicates that the same gradients of guidance molecules are re-used at
402 different levels of the thalamocortical pathway to maintain topographic order.
403 The chemotactic behaviour of TCAs with respect to *Sema3a* and *Ntn1* gradients in
404 the thalamus and ventral telencephalon can be explained by our observations of the
405 expression of *Sema3a* and *Ntn1* receptors in developing thalamus. We show that all
406 thalamic neurons seem to express homogeneous levels of *Plxna1*, a receptor
407 mediating repulsion to *Sema3a* (Rohm et al., 2000; Takahashi et al., 1999;
408 Tamagnone et al., 1999), while *Unc5c*, a receptor mediating repulsion to *Ntn1*
409 (Leonardo et al., 1997), was found to be expressed in a lateral-high medial-low
410 gradient. According to these observations, we propose a model in which
411 complementary expression patterns of *Sema3a* and *Ntn1* can establish
412 topographical order on TCAs by a mechanism of double repulsion, in which all
413 thalamic axons have the potential to be repelled by *Sema3a* but only lateral axons
414 are additionally repelled by *Ntn1*. It is possible that laterally-derived axons
415 experience stronger *Ntn1* repulsion the more lateral they are. Thus, lateral thalamic
416 axons prefer to navigate through *Sema3a*-high, *Ntn1*-low regions because they
417 might be more strongly repelled by *Ntn1* than by *Sema3a*. Axons located in
418 intermediate regions of the thalamus express lower levels of *Unc5c*, thus they might
419 be equally repelled by *Sema3a* and *Ntn1* and chose to navigate across regions with
420 moderate levels of both signalling cues. Likewise, medial axons are only repelled by
421 *Sema3a* and neutral to *Ntn1*, therefore they chose to navigate through *Sema3a*-low,
422 *Ntn1*-high areas.

423 Supporting this model are the experiments showing that TCAs are repelled by Nnt1
424 (Bielle et al., 2011; Bonnin et al., 2007; Powell et al., 2008) and thalamic growth
425 cones show retraction behaviour in the presence of Sema3a (Bagnard et al., 2001).
426 Moreover, Wright and colleagues reported that in mice harbouring a mutation that
427 makes the axons non responsive to Sema3a, axons from the ventrobasal (VB)
428 thalamic nucleus, were caudally shifted and target the visual cortex instead of the
429 somatosensory cortex (Wright et al., 2007). Our double repulsion model satisfactorily
430 explains this phenotype. The VB nucleus is located in an intermediate thalamic
431 region that would contain substantial number of Unc5c-positive neurons. In those
432 mutants, VB axons lose their repulsion to Sema3a but many would still be repelled
433 by Ntn1, and therefore would steer towards Sema3a-high, Ntn1-low regions both in
434 the thalamus and the ventral telencephalon.

435 The behaviour of the TCAs in our explant experiments also supports the double
436 repulsion model. Explants from lateral thalamus, which express high levels of Unc5c,
437 invariably navigate through lateral areas of the thalamus, away from the Ntn1-rich
438 area in the medial thalamus. Explants from medial thalamus show a preference to
439 navigate through a medial corridor, parallel to the ventricular surface, where levels of
440 Ntn1 are higher. These TCAs probably correspond with the subset of neurons in the
441 medial thalamus that do not express Unc5c, and therefore are repelled by Sema3a
442 but neutral to Ntn1. Medial explants also produce axons exhibiting a mixture of
443 trajectories towards more lateral thalamic areas. This is compatible with the fact that
444 a subset of medial thalamic neurons express variable levels of Unc5c, and thus are
445 repelled with variable strength from the medial thalamus. Finally, in Pax6 deficient
446 embryos, many lateral thalamic neurons downregulate Unc5c, while the levels of
447 Plxna1 seem unaffected, meaning that lateral TCAs lose their repulsion to Ntn1 but

448 they are still repelled by lateral Sema3a. This might explain why in these mutants,
449 lateral thalamic axons are misrouted towards medial thalamic regions and
450 subsequently take the pathway medial thalamic axons normally do.

451 Other molecules known to form gradients and guide TCAs in the ventral
452 telencephalon, like Slit1 or Ephrin A5 (Bielle et al., 2011; Dufour et al., 2003; Molnár
453 et al., 2012; Seibt et al., 2003; Vanderhaeghen and Polleux, 2004) were not
454 analysed in this study. It remains to be tested whether these molecules and their
455 receptors are also expressed in the thalamus in a gradient fashion and if they follow
456 the same rules proposed in our model.

457 It is important to highlight that in this study we only considered the medio-lateral axis
458 of the main thalamic body, but the same or other guidance cues and receptors
459 probably function in other directions. For example, work in mice showed that Unc5c
460 (Bonnin et al., 2007) and DCC (Powell et al., 2008) are also highly expressed in the
461 rostral thalamus, at a level we did not cover in our expression and tracer analyses.
462 Therefore, other axes of the thalamus important for the establishment of
463 thalamocortical topography remain to be explored.

464 Another important question is why thalamic axons exit the thalamus at all. Why do
465 they navigate towards the prethalamus and not in another direction, for example
466 towards the pretectum? One previously suggested mechanism was that TCAs follow
467 the path pioneered by axons that develop in the opposite direction from prethalamus
468 to thalamus (Braisted et al., 1999; Mitrofanis and Guillory, 1993; Molnár et al., 1998;
469 Qin et al., 2019). In this work, we disrupted the formation of these pioneer axons and
470 found that TCAs not only are able to exit the thalamus but they also reach the cortex
471 and establish correct topographic connections. Therefore, there must be other

472 mechanisms in place to direct TCAs out of the thalamus. Our 3D reconstruction
473 revealed that, besides the medio-lateral Sema3a gradient, this guidance cue is also
474 higher posteriorly, where the thalamus meets the prepectum and lower anteriorly,
475 close to the prethalamus. According to our model, all TCAs are equally repelled by
476 Sema3a, therefore this directionality of the Sema3a gradient could serve to repel all
477 TCAs out of the thalamus.

478 Finally, our results have given some interesting new insights into the development
479 and the importance of the pioneer axons from the prethalamus to the thalamus. First,
480 we found that the prethalamic neurons extending pioneer axons to the thalamus
481 belong to a particular lineage, the Gsx2-lineage and not the Zic4-lineage. Second,
482 although disturbing the prethalamus-to-thalamus pioneers did not stop TCAs
483 reaching the cortex without any topographic error, it did cause them to fasciculate
484 prematurely as they crossed the prethalamus. Growing axons often increase their
485 fasciculation when they cross regions that are hostile to their growth. Our and other
486 studies have shown that the prethalamus also expresses guidance cues with
487 potential to exert a repulsive response of TCAs (Ono et al., 2014), thus it is possible
488 that interactions between the developing TCAs and prethalamic pioneers somehow
489 helps the passage of the TCAs across this region. Further work is needed to
490 discover what the consequences are if this help is unavailable.

491 **Material and Methods**

492 **Mice**

493 All animals (*Mus musculus*) were bred according to the guidelines of the UK Animals
494 (Scientific Procedures) Act 1986 and all procedures were approved by Edinburgh
495 University's Animal Ethics Committee.

496 For conditional inactivation of Pax6, we used a tamoxifen-inducible Pax6^{loxP} allele
497 (Simpson et al., 2009) and a RCE:LoxP EGFP Cre reporter allele (Sousa et al.,
498 2009) and we combined them with different Cre lines. To generate a deletion of Pax6
499 throughout the embryo, we used lines carrying a CAGGCre-ERTM allele (Hayashi
500 and McMahon, 2002; Quintana-Urzainqui et al., 2018). To inactivate Pax6 in different
501 parts of the prethalamus we used either a Gsx2-Cre (Kessaris et al., 2006) or the
502 Zic4-Cre allele (Rubin et al., 2011). For cortex-specific deletion of Pax6, we used
503 Emx1Cre-ER^{T2} (Kessaris et al., 2006).

504 The DTy54 YAC reporter allele (Tyas et al., 2006) was combined with the Gsx2-Cre
505 allele to generate Gsx2Cre; Pax6^{loxP/loxP} embryos expressing tauGFP in cells in which
506 the Pax6 gene is active.

507 Embryos heterozygous for the Pax6^{loxP} allele (Pax6^{fl/+}) were used as controls since
508 previous studies have shown no detectable defects in the forebrain of Pax6^{fl/+}
509 embryos (Simpson et al., 2009). Embryos carrying two copies of the floxed Pax6
510 allele (Pax6^{fl/fl}) were the experimental conditional knock-out (cKO) groups.

511 For thalamic explant experiments, we generated litters containing GFP-positive and
512 negative embryos by crossing a line of heterozygous studs for a constitutively active

513 form of CAGGCre-ERTM allele and the and a RCE:LoxP EGFP Cre reporter allele
514 with wild type females.

515 The day the vaginal plug was detected was considered E0.5. Pregnant mice were
516 given 10mg of tamoxifen (Sigma) by oral gavage on embryonic day 9.5 (E9.5) and
517 embryos were collected on E12.5, E13.5, E14.5, E15.5, E16.5 or E18.5 For the Dil
518 and DiA tracing experiments, wild type embryos (CD1 background) were additionally
519 used as controls.

520 **Immunohistochemistry**

521 Embryos were decapitated and fixed in 4% paraformaldehyde (PFA) in phosphate
522 buffered saline (PBS) overnight at 4°C. After washes in PBS, heads were
523 cryoprotected by immersion in 30% sucrose in PBS, embedded in OCT Compound
524 and sectioned using a cryostat at 10µm.

525 Cryo-sections were let to stabilize at room temperature for at least 2 hours and then
526 washed three times in PBST (1X PBS with 0.1% Triton X-100, Sigma). To block
527 endogenous peroxidase, sections were treated with 3% H₂O₂ for 10 minutes. After
528 PBS washes, antigen retrieval was performed by immersing the sections in Sodium
529 Citrate buffer (10mM, pH6) heated at approximate 90°C using a microwave for 20
530 minutes. Sections were then incubated with the rabbit polyclonal anti-Pax6 (1:200,
531 BioLegend Cat # 901302) overnight at 4°C. The secondary antibody (goat anti-rabbit
532 biotinylated, 1:200, Vector laboratories Cat # BA-1000) was incubated for 1 hour at
533 room temperature followed by a 30-minute incubation with Avidin-Biotin complex
534 (ABC kit, Vector laboratories Cat # PK6100). Finally, diaminobenzidene (DAB,
535 Vector Laboratories, Cat # SK4100) reaction was used to obtain a brown precipitate
536 and sections were mounted in DPX media (Sigma-Aldrich, Cat # 06522).

537 For immunofluorescence, cryosections were incubated overnight at 4°C with the
538 following primary antibodies: rat monoclonal anti-Neural Cell Adhesion Molecule L1
539 (1:500 Millipore, Cat # MAB5272, clone 324), rabbit polyclonal anti-Pax6 (1:200,
540 BioLegend Cat # 901302), goat polyclonal anti-GFP (1:200, Abcam Cat # ab6673),
541 rabbit polyclonal anti-GFP (1:200, Abcam Cat # ab290). The following secondary
542 antibodies from Thermo Fisher Scientific were incubated at room temperature for
543 one hour: Donkey anti-rat Alexa⁴⁸⁸ (1:100, Thermo Fisher, Cat # A-21208), Donkey
544 anti-rat Alexa⁵⁹⁴ (1:100, Thermo Fisher, Cat # A-21209), Donkey anti-rabbit Alexa⁵⁶⁸
545 (1:100, Thermo Fisher, A10042), Donkey anti-rabbit Alexa⁴⁸⁸ (1:100, Thermo Fisher
546 Cat # R37118), Donkey anti-goat Alexa⁴⁸⁸ (1:100, Invitrogen, Cat # A11055).
547 Sections were counterstained with DAPI (Thermo Fisher Scientific, Cat # D1306)
548 and mounted in ProLong Gold Antifade Mountant (Thermo Fisher Scientific, Cat #
549 P36930).

550 ***In situ* hybridization**

551 *In vitro* transcription of digoxigenin-labelled probes was done with DIG RNA-labeling
552 kit (Sigma-Aldrich, Cat # 11175025910). The following digoxigenin-labelled probes
553 were synthesized in the lab from cDNA: Ntn1 (kindly donated by Dr Thomas Theil;
554 forward primer: CTTCCTCACCGACCTCAATAAC, reverse primer:
555 GCGATTAGGTGACACTATAGTTGTGCC TACAGTCACACACC), Sema3a
556 (forward primer: ACTGCTCTGACTTGGAGGAC, reverse primer:
557 ACAAACACGAGTGCTGGTAG), Plxna1 (forward primer:
558 GACGAGATTCTGGTGGCTCT, reverse primer: CATGGCAGGGAGAGGAAGG),
559 DCC (forward primer: AACAGAAGGTCAAGCACGTG, reverse primer:
560 CAATCACCAACGACCAACACA), Unc5a (forward primer:
561 CTGTCAGACCCTGCTGAGT, reverse primer: GGGCTAGAGTTCGCCAGTC),

562 Unc5d (forward primer: GGACAGAGCTGAGGACAACT, reverse primer:
563 GTATCAAACGTGGCGCAGAT). Unc5c probe was kindly donated by Dr. Vassiliki
564 Fotaki, University of Edinburgh, UK and Dr Suran Ackerman, UCSanDiego, USA).
565 Cryosections were processed for *in situ* hybridization (ISH) using standard protocols.
566 Some slides were counterstained for nuclear fast red (Vector Laboratories, Cat# LS-
567 J1044-500).

568 **Axon Tract Tracing**

569 For cortical injections, brains were dissected between E15.5 and E18.5 and fixed in
570 4% PFA in PBS at 4°C for at least 48 hours. After washes in PBS, filter paper
571 impregnated in Dil (NeuroVue Red, Molecular Targeting Technologies, Cat # FS-
572 1002) and DiA (NeuroVue Jade, molecular Targeting Technologies, Cat # FS-1006)
573 was inserted approximately in the somatosensory and visual areas of the cortex,
574 respectively. Brains were incubated at 37°C in PBS for 4 weeks to allow the diffusion
575 of the tracers.

576 For thalamic injections in fixed tissue, embryos were dissected at E13.5 and fixed
577 overnight in 4%PFA in PBS at 4°C. After PBS washes, brains were cut in half at the
578 midline and Dil was inserted in the thalamus using a fine probe. Brains were
579 incubated for 1 week in PBS at 37°C.

580 Brains were then cryoprotected in 30% sucrose, embedded in OCT Compound and
581 sectioned in a cryostat at 30μm. Sections were counterstained with DAPI diluted
582 1:1000 in distilled water.

583 For thalamic injections in non-fixed tissue, we applied neurobiotin (Vector
584 Laboratories, Cat # SP-1120), and amino derivative of biotin used as an intracellular
585 label for neurons. The tracer in powder was held at the tip of an entomological

586 needle (00) and recrystallized using vapour from distilled water. Brains were cut in
587 half and the crystal was inserted in the thalamus. Brains were then immersed in
588 continuously oxygenated Ringer (124mM NaCl, 5mM KCl, 1.2mM KH₂P0₄, 1.3mM
589 MgSO₄ 7H₂O, 26mM NaHCO₃, 2.4mM CaCl₂ 2H₂O, 10mM glucose) and incubated
590 overnight at RT. The tissue was fixed in 4% PFA in PBS overnight at 4°C, washed in
591 PBS, cryoprotected in 30% sucrose and sectioned in a cryostat at 10µm. Neurobiotin
592 was visualized by incubating the sections with either Strep⁴⁸⁸ or Strep⁵⁴⁶.

593 **Thalamic explants and slice culture**

594 E13.5 embryos were dissected, embedded in 4% low melting temperature agarose
595 (Lonza, Cat # 50100) and sectioned in a vibratome to produce 300µm-thick coronal
596 slices. Lateral or medial thalamic explants were dissected from slices belonging to
597 GFP-positive embryos and transplanted into equivalent rostral/caudal slices
598 belonging to GFP-negative embryos (see schemas in Fig. 5). The thalamus and its
599 different medio-lateral regions were recognized under the dissecting scope by
600 anatomical landmarks. Slices were then cultured for 72 hours in floating membranes
601 (Whatman nucleopore track-etched membranes, Cat# WHA110414) over serum-free
602 Neurobasal medium (Thermo Fisher Scientific, Cat# 21103049) in 60mm center well
603 organ culture dishes (Falcon, Cat# 353037). Cultures were fixed in 4% PFA
604 overnight at 4°C, cryoprotected in 30% sucrose and cryosectioned at 10µm to be
605 processed for immunofluorescence.

606 **Quantifications of numbers of axons and bundle width**

607 Images were blinded-analysed for at least three embryos for each condition. We
608 positioned three lines across the prethalamus (as specified in Results) and
609 generated a L1 intensity profile using Fiji Software (Schindelin et al., 2012). Intensity

610 profiles were then processed by tracing a line at an arbitrary (but constant for all
611 quantifications) intensity level and quantifying the number and width of bundles
612 crossing the line. Statistical significance was assessed applying two-tailed unpaired
613 Student's t-test and N=3.

614 **3D reconstruction**

615 We used Free-D software (Andrey and Maurin, 2005) to reconstruct the structure of
616 thalamus and prethalamus from transverse slices stained with DAPI and antibodies
617 against L1 and Pax6 to reveal the thalamocortical tract and the limits of the
618 diencephalic structures, respectively. The thalamus territory was recognisable by an
619 intense DAPI staining and Pax6-negative mantle zone, contrasting with prethalamus
620 and pretectum, which express high levels of Pax6 in the postmitotic neurons. The
621 location of the signalling molecules was included in the model by comparison of
622 transversal and sagittal sections stained for Ntn1 and Sema3a and their adjacent
623 sections processed for Pax6 and L1 with the sections used to build the model
624 scaffold. Dots are representation of staining density.

625 **Microscopy and imaging**

626 ISH and IHQ images were taken with a Leica DMNB microscope coupled to a Leica
627 DFC480 camera. Fluorescence images were taken using a Leica DM5500B
628 automated epifluorescence microscope connected to a DFC360FX camera. Image
629 panels were created with Adobe Photoshop CS6.

630 **Acknowledgements**

631 We thank Dr Vassiliki Fotaki for providing the Unc5c probe.

632 **Competing interests**

633 No competing interests.

634 **Funding**

635 This work was supported by a Marie Curie Fellowship from the European
636 Commission [624441]; a Medical Research Council UK Research Grant [N012291]
637 and a Biotechnology and Biological Sciences Research Council UK Research Grant
638 [N006542].

639 **References**

640 **Amassian, V. and Weiner, H.** (1966) Monosynaptic and polysynaptic activation of pyramidal
641 tract neurons by thalamic stimulation. In *The thalamus* (ed. D.P. Purpura and M.D. Yahr
642 editors), pp 255–282. New York: Columbia University Press.

643 **Andrey, P. and Maurin, Y.** (2005). Free-D: an integrated environment for three-dimensional
644 reconstruction from serial sections. *J. Neurosci. Methods* **145**, 233–244.

645 **Angevine, J. A. Y. B.** (1970). Time of Neuron Origin in the Diencephalon of the Mouse . An
646 Autoradiographic Study '.

647 **Antón-Bolaños, N., Espinosa, A. and López-Bendito, G.** (2018). Developmental interactions
648 between thalamus and cortex: a true love reciprocal story. *Curr. Opin. Neurobiol.* **52**,
649 33-41.

650 **Auladell, C. and Hans, P. P.** (2000). The early development of thalamocortical and
651 corticothalamic projections in the mouse. *Anat Embryol* **201**, 169–179.

652 **Bagnard, D., Chounlamountri, N., Püschel, A.W., Bolz, J.** (2001). Axonal Surface Molecules
653 Act in Combination with Semaphorin 3A during the Establishment of Corticothalamic
654 Projections. *Cereb. Cortex* **11**, 278–285.

655 **Bielle, F., Marcos-Mondéjar, P., Leyva-Díaz, E., Lokmane, L., Mire, E., Mailhes, C., Keita,**
656 **M., García, N., Tessier-Lavigne, M., Garel, S., et al.** (2011). Emergent growth cone
657 responses to combinations of Slit1 and Netrin 1 in thalamocortical axon topography.
658 *Curr. Biol.* **21**, 1748–1755.

659 **Bonnin, A., Torii, M., Wang, L., Rakic, P. and Levitt, P.** (2007). Serotonin modulates the
660 response of embryonic thalamocortical axons to netrin-1. **10**, 588–597.

661 **Bosch-Bouju, C., Hyland, B. I. and Parr-Brownlie, L. C.** (2013). Motor thalamus integration
662 of cortical, cerebellar and basal ganglia information: implications for normal and
663 parkinsonian conditions. *Front. Comput. Neurosci.* **7**, 1–21.

664 **Braisted, J. E., Tuttle, R. and Leary, D. D. M. O.** (1999). Thalamocortical Axons Are
665 Influenced by Chemorepellent and Chemoattractant Activities Localized to Decision
666 Points along Their Path. **440**, 430–440.

667 **Caballero, I. M., Manuel, M. N., Molinek, M., Quintana-Urzainqui, I., Mi, D., Shimogori, T.**
668 **and Price, D. J.** (2014). Cell-Autonomous Repression of Shh by Transcription Factor
669 Pax6 Regulates Diencephalic Patterning by Controlling the Central Diencephalic
670 Organizer. *Cell Rep.* **8**, 1405–1418.

671 **Clegg, J. M., Li, Z., Molinek, M., Caballero, I. M., Manuel, M. N. and Price, D. J.** (2015). Pax6
672 is required intrinsically by thalamic progenitors for the normal molecular patterning of
673 thalamic neurons but not the growth and guidance of their axons. *Neural Dev.* 1–12.

674 **Dufour, A., Seibt, J., Passante, L., Depaepe, V., Ciossek, T., Frisén, J., Kullander, K.,**
675 **Flanagan, J. G., Polleux, F. and Vanderhaeghen, P.** (2003). Area specificity and
676 topography of thalamocortical projections are controlled by ephrin/Eph genes. *Neuron*

677 **39**, 453–465.

678 **Fukuda, T., Kawano, H., Ohyama, K. and Li, H.** (1997). of Neurocan and L1 in the Formation
679 of Thalamocortical Pathway. **152**, 141–152.

680 **Gaston-massuet, C., Henderson, D. J., Greene, N. D. E. and Copp, A. J.** (2005). Zic4 , a Zinc-
681 finger transcription factor, is expressed in the developing mouse nervous system. **233**,
682 1110–1115.

683 **Georgala, P. A., Carr, C. B. and Price, D. J.** (2011). The role of Pax6 in forebrain
684 development. *Dev. Neurobiol.* **71**, 690–709.

685 **Hayashi, S. and McMahon, A. P.** (2002). Efficient Recombination in Diverse Tissues by a
686 Tamoxifen-Inducible Form of Cre: A Tool for Temporally Regulated Gene
687 Activation/Inactivation in the Mouse. *Dev. Biol.* **244**, 305–318.

688 **Jones, L., López-bendito, G., Gruss, P., Stoykova, A. and Molnár, Z.** (2002). Pax6 is required
689 for the normal development of the forebrain axonal connections. **5052**, 5041–5052.

690 **Jones, E. G.** (2007). The Thalamus. 2nd Edn. Cambridge: Cambridge University Press.

691 **Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M. and Richardson, W. D.**
692 (2006). Competing waves of oligodendrocytes in the forebrain and postnatal
693 elimination of an embryonic lineage. *Nat. Neurosci.* **9**, 173–179.

694 **Leonardo, E. D., Hinck, L., Masu, M., Keino-Masu, K., Ackerman, S. L. and Tessier-Lavigne, M.** (1997). Vertebrate homologues of *C. elegans* UNC-5 are candidate netrin receptors.
696 *Nature* **386**, 833–838.

697 **Li, Z., Pratt, T. and Price, D. J.** (2018). Zic4 -Lineage Cells Increase Their Contribution to

698 Visual Thalamic Nuclei during Murine Embryogenesis If They Are Homozygous or
699 Heterozygous for Loss of Pax6 Function. *eNeuro* **1**, 1–19.

700 **Lopez-Bendito, G., Cautinat, A., Sanchez, J. A., Bielle, F., Flames, N., Garratt, A. N.,**
701 **Talmage, D. A., Role, L. W., Charnay, P., Marin, O., et al.** (2006). Tangential neuronal
702 migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon
703 navigation. *Cell* **125**, 127–142.

704 **López-Bendito, G. and Molnár, Z.** (2003). Thalamocortical development: How are we going
705 to get there? *Nat. Rev. Neurosci.* **4**, 276–289.

706 **Manuel, M. N., Mi, D., Mason, J. O. and Price, D. J.** (2015). Regulation of cerebral cortical
707 neurogenesis by the Pax6 transcription factor. *Front. Cell. Neurosci.* **9**, 1–21.

708 **Métin, C. and Godement, P.** (1996). The Ganglionic Eminence May Be an Intermediate
709 Target for Corticofugal and Thalamocortical Axons. *J. Neurosci.* **16**, 3219–3235.

710 **Mi, D., Carr, C. B., Georgala, P. A., Huang, Y. T., Manuel, M. N., Jeanes, E., Niisato, E.,**
711 **Sansom, S. N., Livesey, F. J., Theil, T., et al.** (2013). Pax6 Exerts regional control of
712 cortical progenitor proliferation via direct repression of Cdk6 and Hypophosphorylation
713 of pRb. *Neuron* **78**, 269–284.

714 **Mitrofanis, J. and Guillery, R. W.** (1993). New views of the thalamic reticular nucleus in the
715 adult and the developing brain. *Trends Neurosci.*

716 **Molnár, Z., Adams, R. and Blakemore, C.** (1998). Mechanisms Underlying the Early
717 Establishment of Thalamocortical Connections in the Rat. *J. Neurosci.* **18**, 5723–5745.

718 **Molnár, Z., Garel, S., López-bendito, G., Maness, P. and Price, J.** (2012). Mechanisms
719 Controlling the Guidance of Thalamocortical Axons Through the Embryonic Forebrain.

720 35, 1573–1585.

721 **Ohyama, K., Tan-takeuchi, K., Kutsche, M., Schachner, M., Uyemura, K. and Kawamura, K.**

722 (2004). Neural cell adhesion molecule L1 is required for fasciculation and routing of

723 thalamocortical fibres and corticothalamic fibres. **48**, 471–475.

724 **Ono, K., Clavairolly, A., Nomura, T., Gotoh, H., Uno, A., Armant, O., Takebayashi, H., Zhang, Q., Shimamura, K., Itohara, S., et al.** (2014). Development of the prethalamus is crucial

725 for thalamocortical projection formation and is regulated by Olig2. **5**, 2075–2084.

726

727 **Parish, E. V., Mason, J. O. and Price, D. J.** (2016). Expression of Barhl2 and its relationship

728 with Pax6 expression in the forebrain of the mouse embryo. *BMC Neurosci.* **17**, 1–16.

729 **Piñon, M. C., Tuoc, T. C., Ashery-padan, R. and Stoykova, A.** (2008). Altered Molecular

730 Regionalization and Normal Thalamocortical Connections in Cortex-Specific Pax6

731 Knock-Out Mice. **28**, 8724–8734.

732 **Powell, A. W., Sassa, T., Wu, Y., Tessier-lavigne, M. and Polleux, F.** (2008). Topography of

733 Thalamic Projections Requires Attractive and Repulsive Functions of Netrin-1 in the

734 Ventral Telencephalon. **6**, e116.

735 **Pratt, T., Vitalis, T., Warren, N., Edgar, J. M., Mason, J. O. and Price, D. J.** (2000). A role for

736 Pax6 in the normal development of dorsal thalamus and its cortical connections.

737 *Development* **127**, 5167–5178.

738 **Price, D. J., Clegg, J., Duocastella, X. O., Willshaw, D. and Pratt, T.** (2012). The importance

739 of combinatorial gene expression in early mammalian thalamic patterning and

740 thalamocortical axonal guidance. **6**, 1–15.

741 **Qin, J., Wang, M., Zhao, T., Xiao, X., Li, X., Yang, J., Yi, L., Goffinet, A. M., Qu, Y. and Zhou,**

742 L. (2019). Early Forebrain Neurons and Scaffold Fibers in Human Embryos. *Cereb.*
743 *Cortex* 1–16.

744 Quintana-Urzainqui, I., Kozic, Z., Tian, T., Manuel, M., Mason, J. O., Price, D. J., Mitra, S.,
745 Tian, T., Manuel, M. and Mason, J. O. (2018). Tissue-Specific Actions of Pax6 on
746 Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1
747 Dependent. **10**, 171–191.

748 Rohm, B., Ottemeyer, A., Lohrum, M. and Puschel, A. W. (2000). Plexin/neuropilin
749 complexes mediate repulsion by the axonal guidance signal semaphorin 3A. *Mech. Dev.*
750 **93**, 95–104.

751 Rubin, A. N., Alfonsi, F., Humphreys, M. P., Choi, C. K. P. and Susana, F. (2011). The
752 germinal zones of the basal ganglia but not the septum generate GABAergic
753 interneurons for the cortex. **30**, 12050–12062.

754 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
755 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for
756 biological-image analysis. *Nat. Methods* **9**, 676–682.

757 Seibt, J., Schuurmans, C., Dehay, C., Vanderhaeghen, P., Hill, C. and Carolina, N. (2003).
758 Neurogenin2 Specifies the Connectivity of Thalamic Neurons by Controlling Axon
759 Responsiveness to Intermediate Target Cues. **39**, 439–452.

760 Simpson, T. I., Pratt, T., Mason, J. O. and Price, D. J. (2009). Normal ventral telencephalic
761 expression of Pax6 is required for normal development of thalamocortical axons in
762 embryonic mice. **5**, 1–18.

763 Sousa, V. H., Miyoshi, G., Hjerling-Leffler, J., Karayannis, T. and Fishell, G. (2009).

764 Characterization of Nkx6-2-derived neocortical interneuron lineages. *Cereb. Cortex* **19**.

765 **Stoykova, A., Fritsch, R., Walther, C. and Gruss, P.** (1996). Forebrain patterning defects in

766 Small eye mutant mice. *Development* **122**, 3453-3465.

767 **Takahashi, T., Fournier, A., Nakamura, F., Wang, L. H., Murakami, Y., Kalb, R. G., Fujisawa,**

768 **H. and Strittmatter, S. M.** (1999). Plexin-neuropilin-1 complexes form functional

769 semaphorin-3A receptors. *Cell* **99**, 59–69.

770 **Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G. I., Song, H., Chedotal, A., Winberg,**

771 **M. L., Goodman, C. S., Poo, M., et al.** (1999). Plexins are a large family of receptors for

772 transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. *Cell* **99**, 71–

773 80.

774 **Tlamsa, A. P. and Brumberg, J. C.** (2010). Organization and morphology of thalamocortical

775 neurons of mouse ventral lateral thalamus. *Somatosens. Mot. Res.* **27**, 34–43.

776 **Tuttle, R., Nakagawa, Y., Johnson, J. E. and Leary, D. D. M. O.** (1999). Defects in

777 thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-

778 deficient mice. *1916*, 1903–1916.

779 **Tyas, D. A., Simpson, T. I., Carr, C. B., Kleinjan, D. A., van Heyningen, V., Mason, J. O. and**

780 **Price, D. J.** (2006). Functional conservation of Pax6 regulatory elements in humans and

781 mice demonstrated with a novel transgenic reporter mouse. *BMC Dev. Biol.* **6**, 1–11.

782 **Vanderhaeghen, P. and Polleux, F.** (2004). Developmental mechanisms patterning

783 thalamocortical projections: Intrinsic, extrinsic and in between. *Trends Neurosci.* **27**,

784 384–391.

785 **Visel, A., Thaller, C. and Eichele, G.** (2004). GenePaint.org: an atlas of gene expression

786 patterns in the mouse embryo. *Nucleic Acids Res.* **32**, D552-6.

787 **Walther, C. and Gruss, P.** (1991). Pax-6, a murine paired box gene, is expressed in the

788 developing CNS. *Development* **113**, 1435-1449.

789 **Warren, N. and Price, D. J.** (1997). Roles of Pax-6 in murine diencephalic development.

790 *Development* **124**, 1573-1582.

791 **Wright, A. G., Demyanenko, G. P., Powell, A., Schachner, M., Enriquez-barreto, L., Tran, T.**

792 **S., Polleux, F. and Maness, P. F.** (2007). Close Homolog of L1 and Neuropilin 1 Mediate

793 Guidance of Thalamocortical Axons at the Ventral Telencephalon. *27*, 13667–13679.

794

795 **Figure legends**

796 **Figure 1. Ubiquitous conditional Pax6 deletion at E9.5 causes mapping errors**

797 **in the thalamocortical connection. A)** Schema showing how thalamic axons map
798 to specific areas of the cortex via the thalamocortical pathway. **B)** Schematic drawing
799 representing the cortical location where the tracers were placed at E15.5. DiA was
800 positioned in the caudal (visual) cortex while Dil was placed in more rostral areas
801 (approximately somatosensory cortex). **C-I)** Fluorescent microphotographs showing
802 cells and axons retrogradely labelled by Dil and DiA. While in controls (C-F) the
803 areas labelled in the thalamus were clearly separated (dotted lines), in CAG^{CreER}
804 Pax6 cKOs (G-I) they visibly overlapped, indicating the existence of mapping errors
805 in these mutants. Arrows in G,H and I indicate that the thalamocortical bundle was
806 segregated in visual (green) and somatosensory (red) halves at the level of their exit
807 from the diencephalon. **C',E',F',H',I')** High power images from insets in C,E,F,H and
808 I, respectively, where only the Dil channel is shown. Arrows in H' and I' point to Dil-
809 labeled axons showing abnormal trajectories towards medial thalamic regions. **L)**
810 Schematic summary of the tract tracing results. Scale bars: 200µm (C,D,G); 50µm
811 (C',E',F',H',I'). All phenotypes were observed at least in three independent biological
812 replicates (embryos from three different litters). Ctx= cortex, OB= Olfactory Bulb,
813 Pth= prethalamus, Th= thalamus, vTel= ventral telencephalon, WT= wild type.

814 **Figure 2. Thalamic axons exhibit abnormal fasciculation as they cross the**
815 **prethalamus in CAG^{CreER} Pax6 cKOs. A-L)** Transverse (A,B, F-I) and sagittal (C-D,
816 J-L) sections showing immunofluorescence for L1 and Pax6 in controls (A-E) and
817 CAG^{CreER} Pax6 cKOs (F-L) at E13.5. White arrows in A,B and E show the point at
818 which the thalamocortical tract forms a single bundle and exits the diencephalon in
819 controls. Empty arrows in G-I and L point to thalamic axons converging prematurely

820 into big bundles as soon as they cross the thalamic-prethalamic boundary in Pax6
821 cKOs. Discontinuous lines in A, F-I mark the thalamic-prethalamic boundary.
822 Discontinuous lines in B mark the level of sections in C, D and E. Discontinuous lines
823 in D,E,K and L show the position of the lines used to quantify the number and width
824 of bundles crossing the prethalamus. **M,N)** Examples of the measurements taken for
825 the quantifications of the number and width of axon bundles crossing each line.
826 Individual bundles were identified as single L1-positive structure above a consistent
827 intensity threshold (red lines). **O,P)** Graphs showing the quantification of the number
828 (O) and width (P) of axon bundles crossing each reference line and the statistical
829 significance. Representation of means +/- SEM, n=3, where *, ** and *** stand for a
830 p-value ≤ 0.05 , 0.01 and 0.001 respectively after two-tailed unpaired Student's t-test
831 and N=3. O) We found a significant decrease in the number of bundles crossing all
832 three checkpoints (Th-PTh boundary: p value=0.046, t=2.86, df=4; Mid Pth: p
833 value=0.0085, t=4.82, df=4; low-PTh: p-value=0.012, t=4.39, df=4). P) We detected a
834 big increase in axon bundle width at the Th-PTh border (p-value<<0.001, t=9.12,
835 df=443) and the mid-PTh (p-value<< 0.001, t=7.21, df=350), but no significant
836 change at the low-PTh. **Q)** Schematic summary of the results showing how thalamic
837 axons undergo abnormal and premature fasciculation when crossing the
838 prethalamus in CAG^{CreER} Pax6 cKOs. Scale bars: 200 μ m. Ctx= cortex, Pth=839 prethalamus, TCA=thalamocortical axons, Th= thalamus, vTel= ventral
840 telencephalon.

841 **Figure 3. Prethalamic pioneer axons belong to the Gsx2 lineage and express**
842 **Pax6. (A)** EGFP reporter allele reveals Cre recombinase activity within the
843 prethalamus and ventral telencephalon of Gsx2^{Cre} embryos at E14.5. Staining for L1
844 shows the position of the thalamocortical tract. **B)** Immunohistochemistry showing

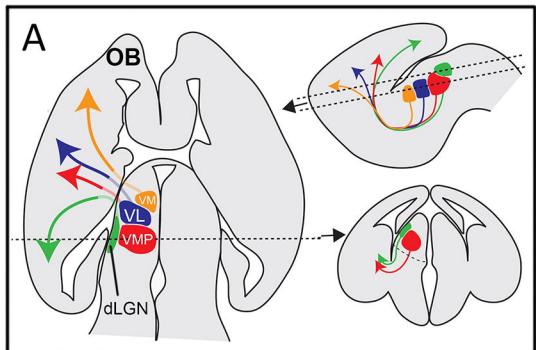
845 Pax6 expression. Note that Pax6 expression in the prethalamus is similar to
846 prethalamic Gsx2 expression pattern shown in image A. **C)** EGFP reporter allele
847 revealing Cre activity in *Zic4*^{Cre} embryos at E13.5 and thalamocortical axons
848 expressing L1. **D)** High power image showing the absence of axonal projections from
849 *Zic4*-lineage prethalamic cells towards the thalamus. **E-E''**) Neurons belonging to the
850 Gsx2 lineage extend parallel projections across the thalamus in close apposition to
851 L1-positive thalamocortical axons. E' and E'' are a higher magnification of the area
852 framed in E. **F-H)** Injection of the tracer Neurobiotin in the thalamus at E13.5 resulted
853 in the retrograde labelling of neurons in the prethalamus (arrow in F). F-G:
854 Prethalamic labelled neurons belong to the Gsx2 lineage shown by GFP
855 immunohistochemistry combined with Neurobiotin visualization. F and F' are
856 separate channels from image F''. G is a zoom of the framed area in F''. H,H':
857 Parallel section of F'' processed for Pax6 immunohistochemistry combined with
858 Neurobiotin visualization showing that most prethalamic neurobiotin-positive neurons
859 are also Pax6 positive (arrows). **I)** Schematic summary. Scale bars: 500µm
860 (A,B,C,E), 250µm (F), 100µm (D, E',G,H). Ctx= cortex, Nb= Neurobiotin, Pth=

861 prethalamus, Th= thalamus, vTel= ventral telencephalon,

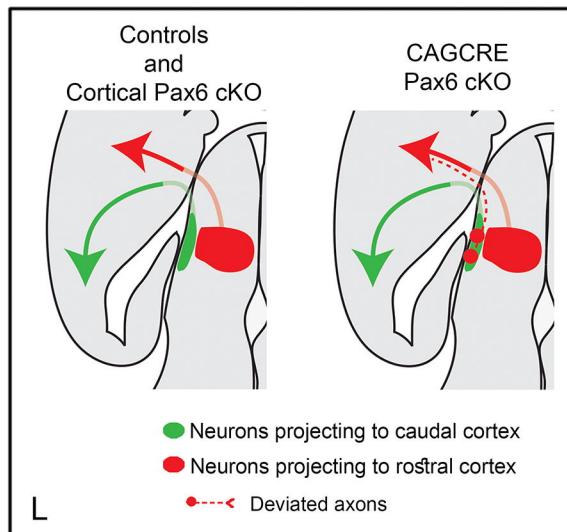
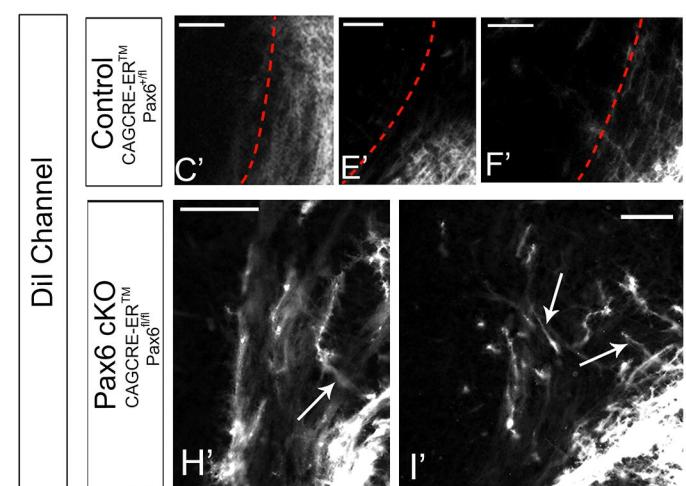
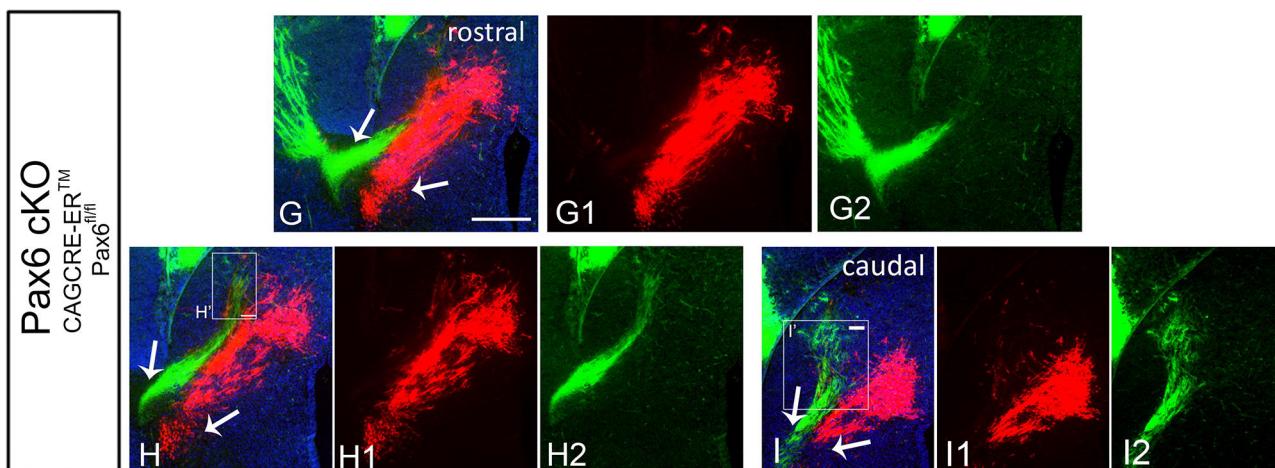
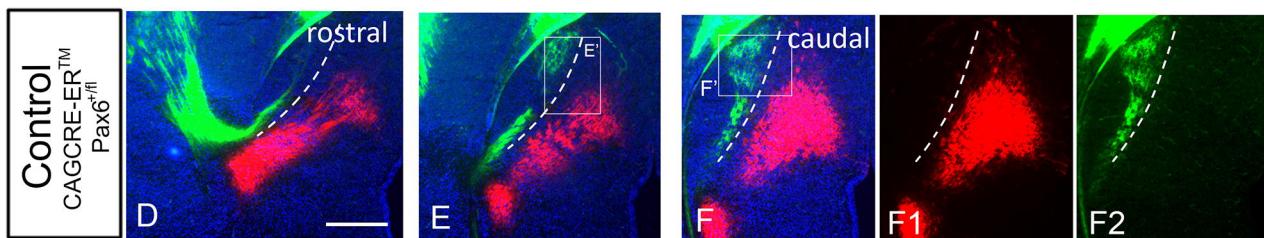
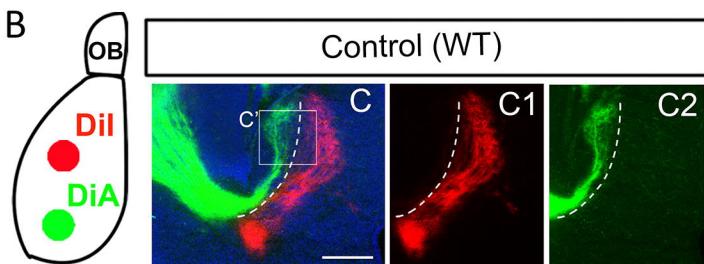
862 **Figure 4. Disruption of prethalamic pioneer axons in *Gsx2*^{Cre} Pax6 cKOs**
863 **causes abnormal fasciculation but not changes in topography. A-F)**
864 Prethalamic pioneer axons visualized by EGFP reporter in *Gsx2*^{Cre} embryos are
865 reduced in *Gsx2*^{Cre} Pax6 cKOs at E12.5 (A,B), E13.5 (C,D) and E14.5 (E,F) **G-J)**
866 Use of the DTy54 YAC reporter allele, which labels cells in which the *Pax6* gene is
867 active, also reveals a reduction in prethalamic pioneer axons crossing the thalamus.
868 **K,L)** Injection of the tracer Dil in the thalamus of E13.5 retrogradely labels cell
869 bodies in the prethalamus of controls (arrow in K) but not in *CAG*^{CreER} Pax6 cKOS

870 (L). Inset in K is a fluorescent immunohistochemistry for Pax6 combined with Dil
871 visualization showing that the Dil-labelled prethalamic neurons are expressed in the
872 Pax6 positive area. **M-N**) Immunofluorescence for L1 shows formation of abnormal
873 big bundles of thalamocortical axons crossing the prethalamus in $Gsx2^{Cre}$ Pax6
874 cKO s (arrow in N,P,R) with respect to controls (M,O,Q) at E14.5 (M,N), E16.5 (O,P)
875 and E18.5 (Q,R). **S**) Dil and DiA injection in the cortex of $Gsx2^{Cre}$ pax6 cKO embryos
876 shows that the topography of TCAs is not affected in these mutants. **T**) Schematic
877 summary. Scale bars: 250 μ m (G,H,S), 100 μ m (A-F, I-P). Ctx= cortex, Pth=

878 prethalamus, TCA= thalamocortical axons, Th= thalamus, vTel= ventral
879 telencephalon.

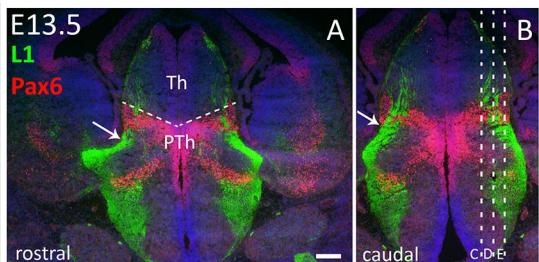

880 **Figure 5. Subsets of thalamocortical axons show a preference to navigate**
881 **through different parts of the thalamus. A,B)** Immunohistochemistry for L1 shows
882 that thalamocortical axons exhibit disorganized and erroneous trajectories in the
883 thalamus of E13.5 CAG^{CreER} Pax6 cKO s (B) with respect to controls (A). Arrow in B
884 points to one big bundle deviating from lateral to medial thalamus. **C-J)** Schemas
885 and images of the transplants using lateral (C-F) or medial (G-J) donor thalamus and
886 grafted into lateral (C,D,G,H) or medial (E,F,I,J) host tissue. Images show
887 immunofluorescence for GFP and Pax6. Lateral axons show a strong preference to
888 navigate through lateral thalamus (C-F) while medial axons show a more variable
889 response (G,J). Empty arrows in H and J point to a medial corridor through which
890 many medial axons preferentially navigate. White arrows in J show medial axons
891 turning from lateral to medial regions of the thalamus. Scale bars: 100 μ m. Ctx=

892 cortex, Pth= prethalamus, Th= thalamus, vTel= ventral telencephalon.

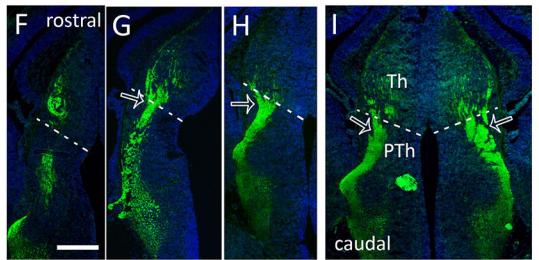





893 **Figure 6. Axon guidance molecules and their receptors are altered in the**
894 **diencephalon of CAG^{CreER} Pax6 cKO s . A-I')** Expression pattern of *Ntn1* and

895 Sema3a mRNA and their receptors *Unc5c* and *Plxna1* in the E13.5 diencephalon of
896 controls (A-E') and CAG^{CreER} Pax6 cKO^s (F-I'). C and H show two views of 3D
897 reconstructions of the expression pattern of *Ntn1* and *Sema3a* from transverse ISH
898 sections. For each panel, the 3D model show on the left is a frontal view in the same
899 plane of a transverse section while the one on the right (medial view) is a view from
900 the ventricular surface. **J,K**) Schematic model of the changes in *Ntn1* and *Sema3a*
901 expression in the thalamus of controls (J) versus CAG^{CreER} Pax6 cKO^s (K) and how
902 we hypothesize might affect the guidance of different subsets of thalamic axons. In
903 controls (J), lateral thalamic neurons express *Unc5c* and *Plxna1*, therefore are
904 repelled by both guidance cues, which direct their axons out from the thalamus and
905 towards the prethalamus in a straight trajectory. In Pax6 cKO^s (K) some lateral
906 thalamic neurons lose their *Unc5c* expression but maintain their *Plxna1* expression,
907 therefore losing their repulsion to *Ntn1* but maintaining it for *Sema3a*. This makes
908 their axons deviate towards medial thalamic regions. Scale bars: 500µm (A,B,D-
909 E,F,G,I,J), 100µm (D',I'). Ctx= cortex, Pth= prethalamus, Th= thalamus, vTel= ventral
910 telencephalon.

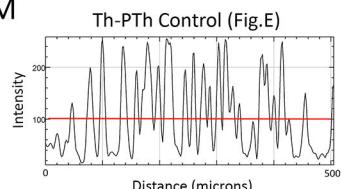
911



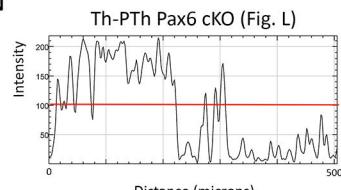
E15.5 Dil DiA DAPI


TRANSVERSE SECTIONS

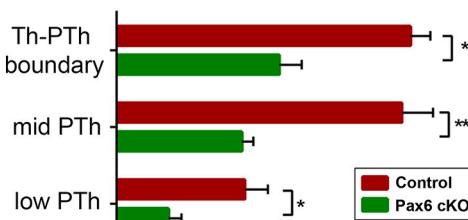
Control
(CAGCRE-ERTM Pax6^{+/−})



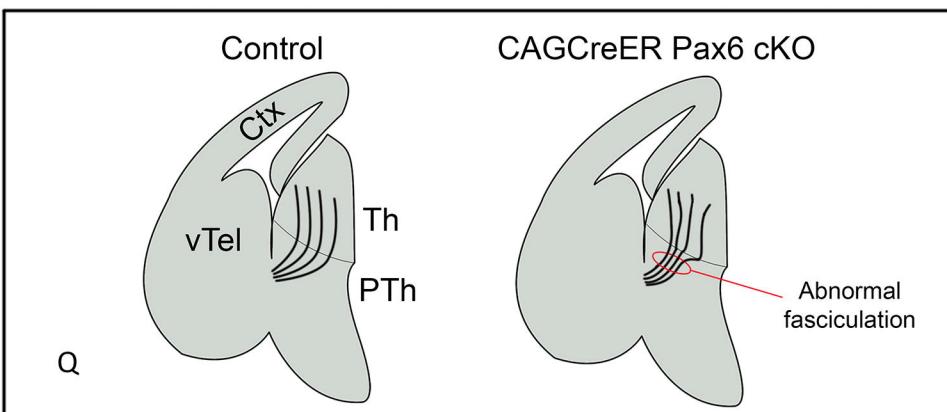
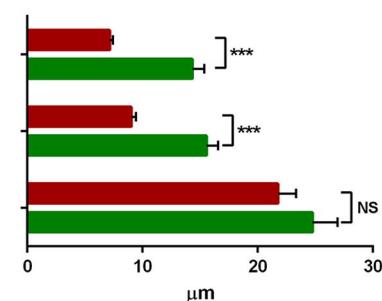
SAGITTAL SECTIONS

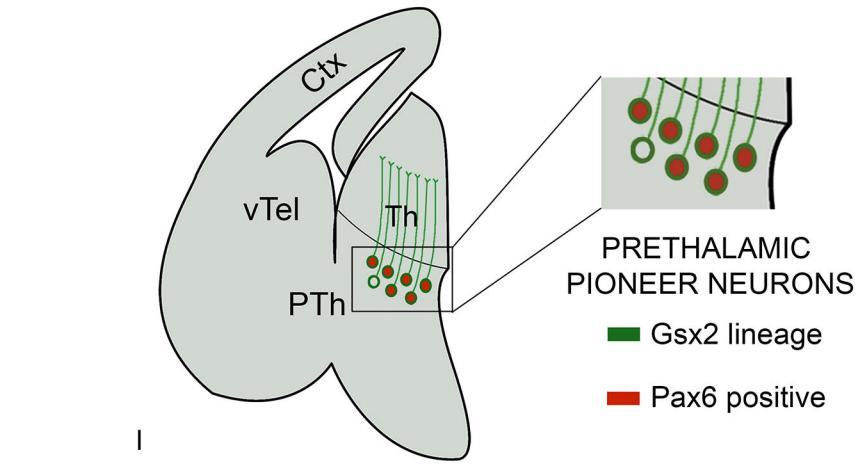
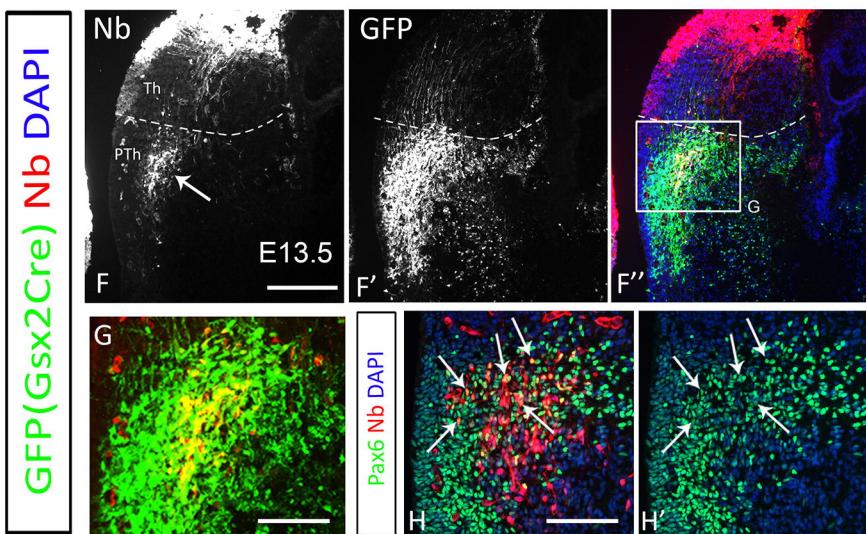
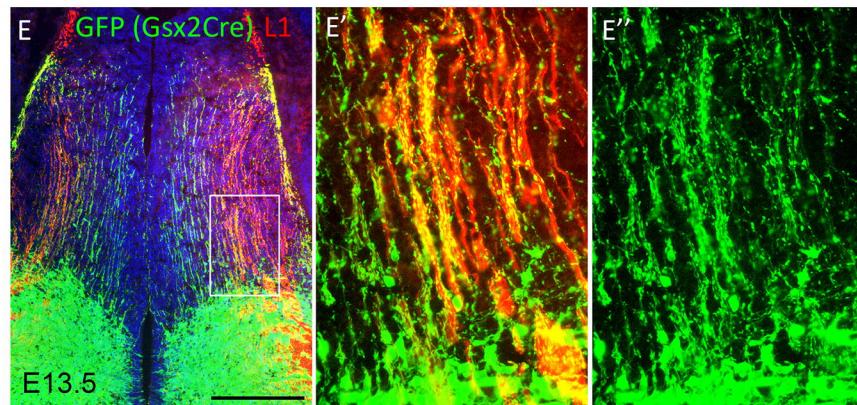
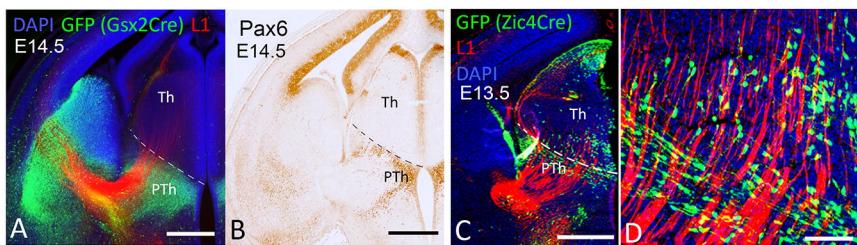

Pax6 cKO
(CAGCRE-ERTM Pax6^{−/−})

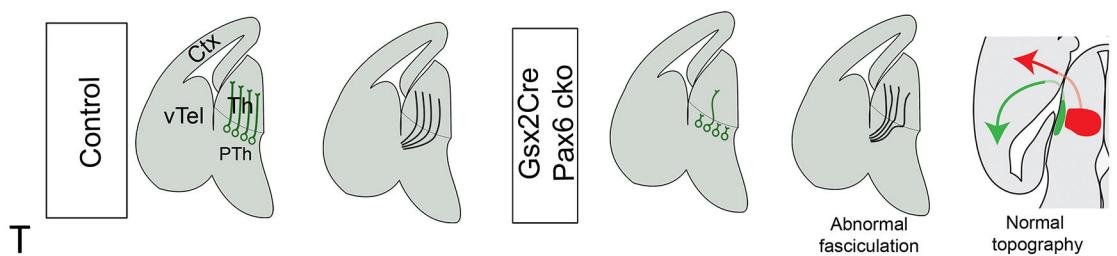
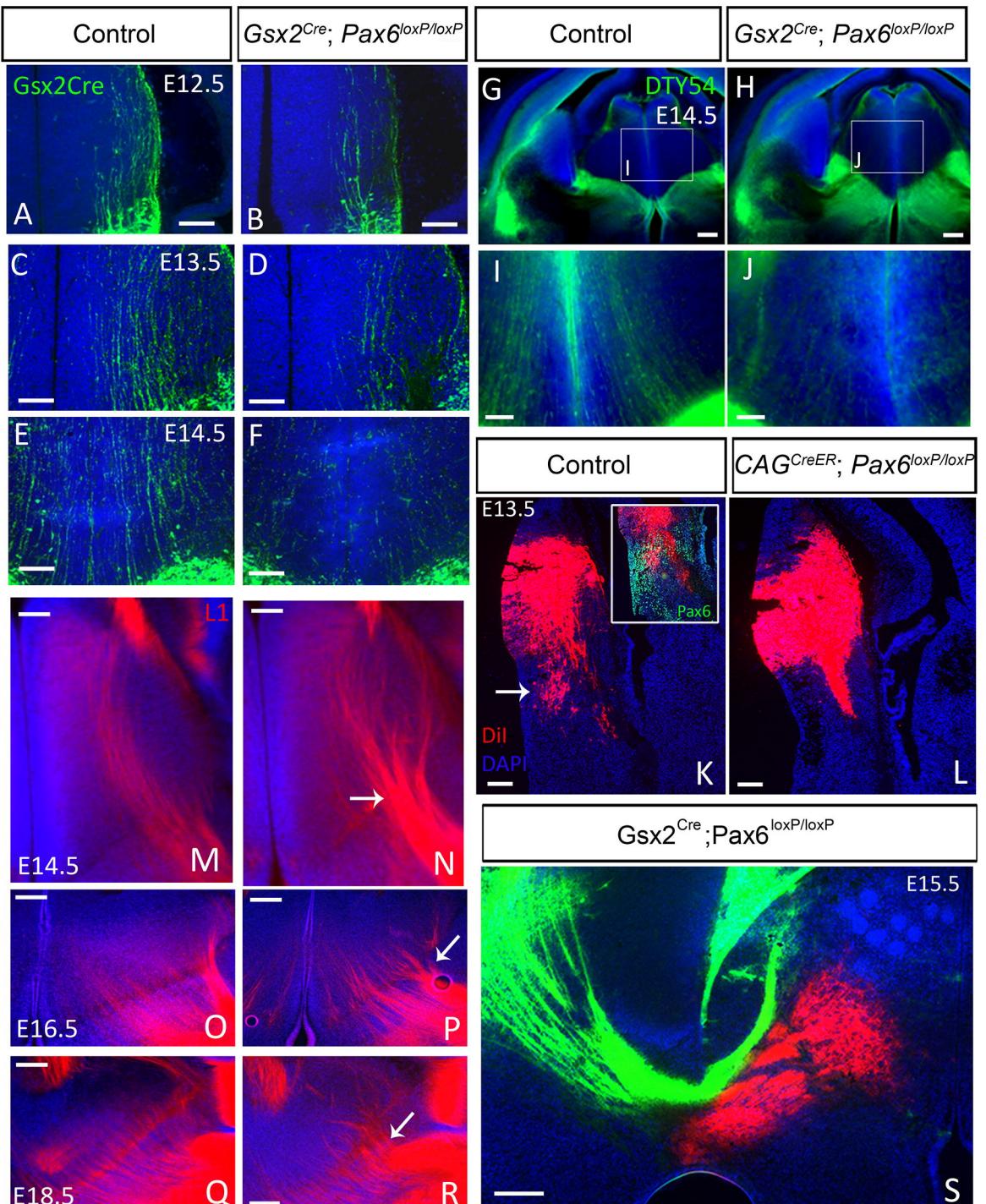
M

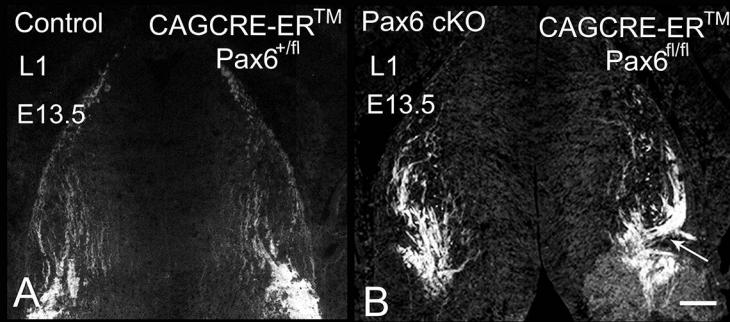


N

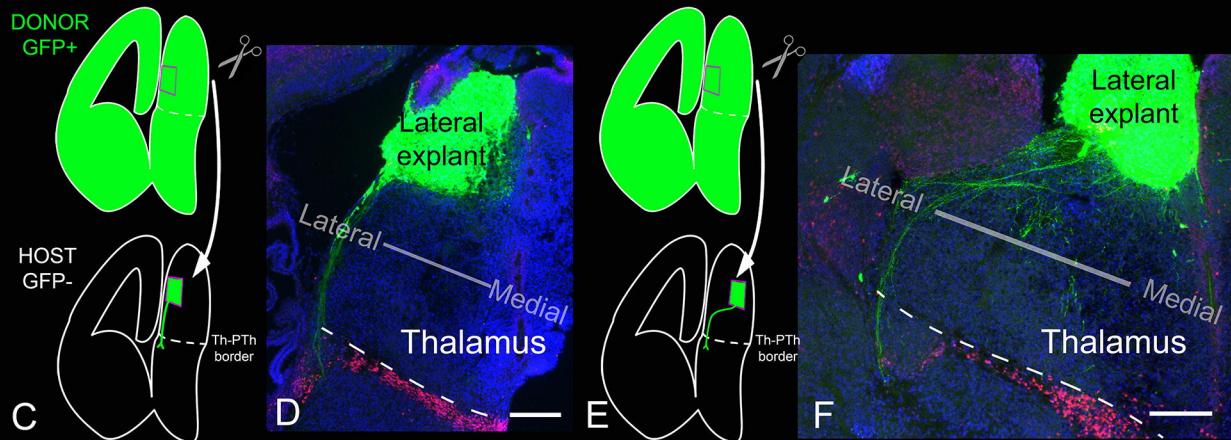


O





Number of Axon Bundles

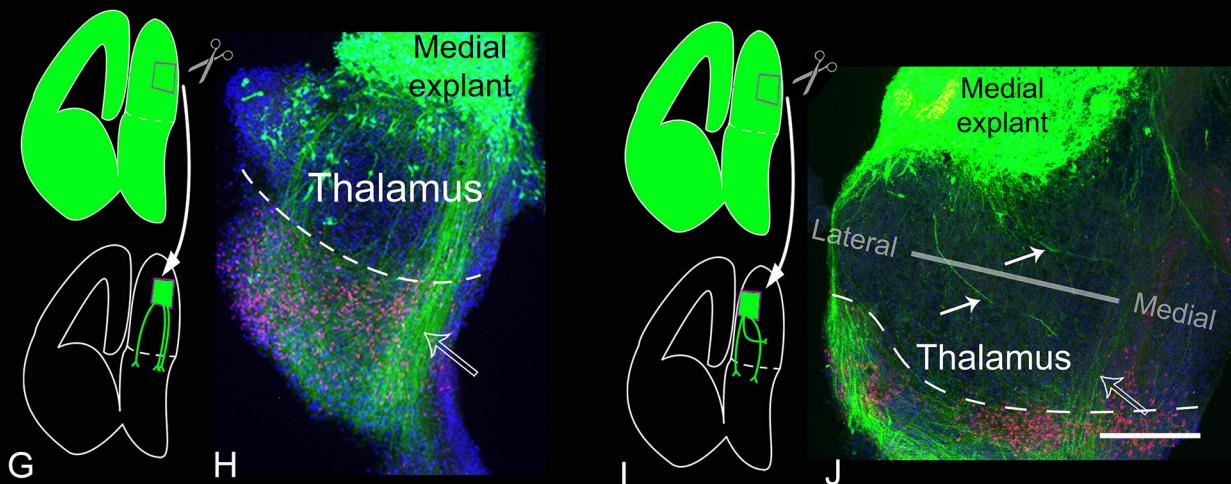

P

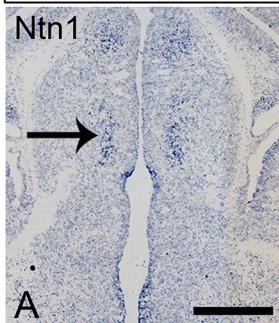
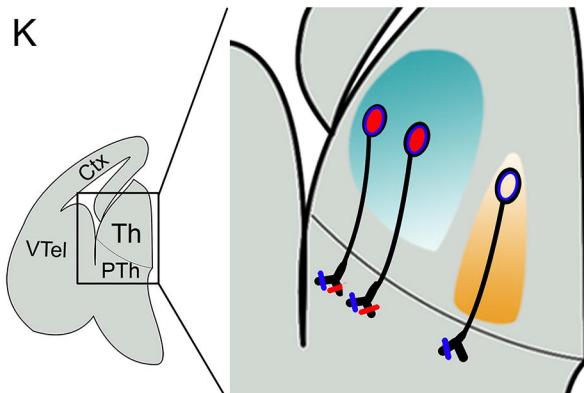
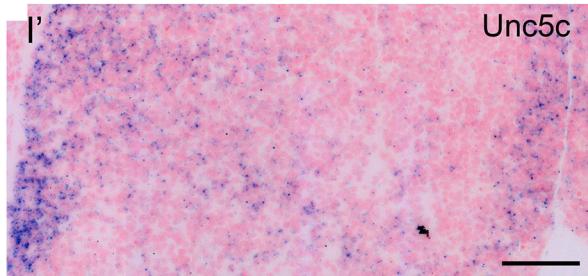
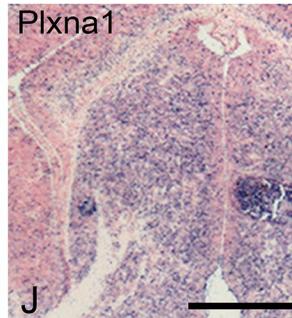
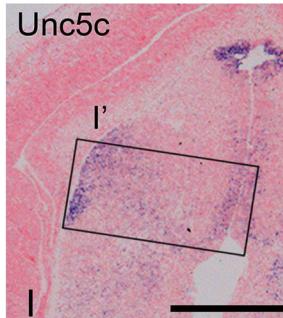
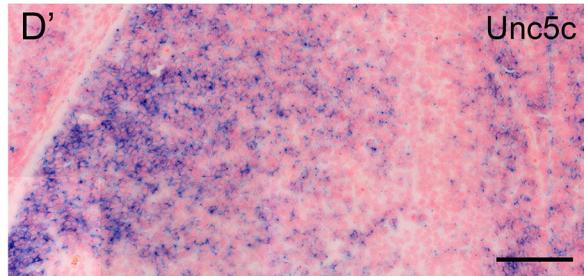
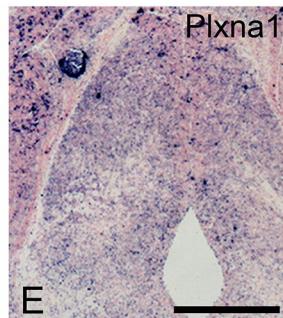
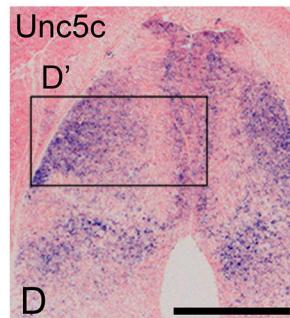
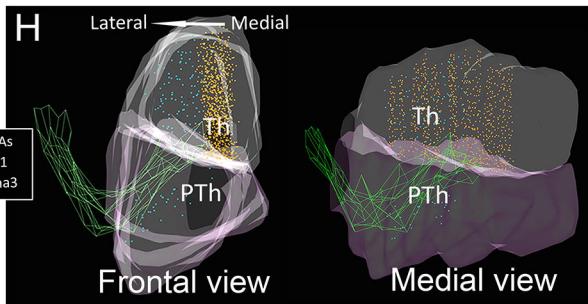
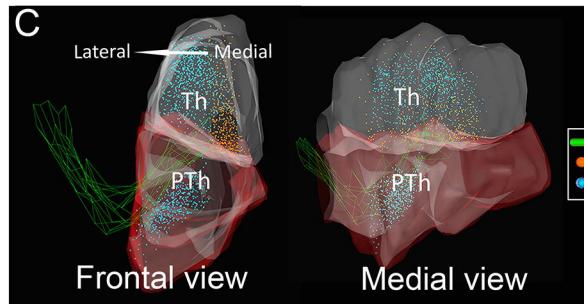
Axon Bundle Width



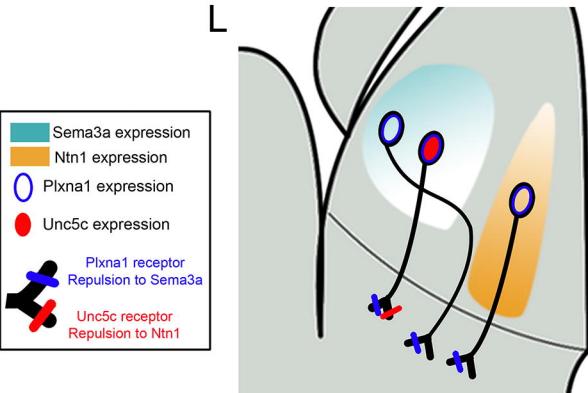
E13.5

GFP - Pax6 - DAPI


Lateral explants


E13.5


GFP - Pax6 - DAPI

Medial explants

Control (E13.5)**CAGCre Pax6 cKO (E13.5)**

- Sema3a expression
- Ntn1 expression
- Plxna1 expression
- Unc5c expression
- Plxna1 receptor
Repulsion to Sema3a
- Unc5c receptor
Repulsion to Ntn1

