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Abstract

Most current analysis tools for antibody next-generation sequencing data work with primary sequence
descriptors, leaving accompanying structural information unharnessed. We have used novel rapid
methods to structurally characterize the paratopes of more than 180 million human and mouse B-cell
receptor (BCR) repertoire sequences. These structurally annotated paratopes provide unprecedented
insights into both the structural predetermination and dynamics of the adaptive immune response. We
show that B-cell types can be distinguished based solely on these structural properties. Antigen-
unexperienced BCR repertoires use the highest number and diversity of paratope structures and these
patterns of naive repertoire paratope usage are highly conserved across subjects. In contrast, more
differentiated B-cells are more personalized in terms of paratope structure usage. Our results establish
the paratope structure differences in BCR repertoires and have applications for many fields including
immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires
from transgenic animals.
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60 1. Introduction

61 B-cells are essential components of the adaptive immune system in jawed vertebrates. They play a key
62 role in recognizing foreign molecules (antigens) via membrane-bound B-cell receptors (BCR), and
63  antibodies (secreted BCRs). Successful recognition of a broad array of structural motifs (epitopes) on
64  antigens relies on the enormous sequence and structural diversity of BCR repertoires, generated by the
65 rearrangement of V(D) gene segments in the two variable domain chains (heavy and light), each
66  consisting of four framework and three complementary-determining (CDR) loop regions “*. Upon
67  antigen stimulation, somatic hypermutation (SHM) recursively introduces changes to the variable (Fv)
68 domain of naive BCR repertoires. These occur primarily in the antibody binding interface (paratope,
69 which consists mostly of CDR residues)?®, leading to structural changes. Those B-cells whose paratopes
70  are epitope-complementary are clonally expanded, and further diversified and selected to enhance
71 antigen binding properties. BCR diversification also happens outside the Fv domain, where
72 immunoglobulin class switching changes the constant region of the heavy chain *. There are five main
73 heavy constant regions (isotypes), each with a unique profile of effector functions and antigen binding
74 avidity.

75 Next-generation sequencing of immunoglobulin genes (Ig-seq) has become an essential technique in
76  immunology >°. For example, Ig-seq has revealed the dynamics of BCR sequence diversification across
77  different B-cell types in healthy and antigen-stimulated B-cell donors “™°, advanced our understanding
78 of the adaptive immune response, and contributed to vaccine development ** and immunodiagnostics
79 *

80  Most Ig-seq analysis tools work within the remit of BCR primary sequence information ®**. These rapid
81 methods of measuring BCR diversity are highly scalable, an important property as Ig-seq datasets
82 become ever larger and more numerous . However, the decision to avoid paratope structural
83  descriptors could lead to inaccuracies **™°, as it is known that similar sequences can have markedly
84  different epitope complementarity and vice versa *°. Therefore, a computationally-efficient structure-
85 based BCR repertoire method should augment current Ig-seq analysis pipelines to deliver a clearer
86  understanding of the process of BCR development.

87  One of the first structural analyses of Ig-seq data was that of DeKosky et al., **. They demonstrated that
88 antibody models from paired-chain naive and memory BCR repertoires displayed different
89 physicochemical properties. However, their analysis was limited to 2,000 antibody models from three B-
90 cell donors . Most publicly-available BCR repertoires are unpaired, only covering either the heavy or
91 light variable domain '’ precluding the generation of refined antibody models. Krawczyk et al., > showed
92 that it was possible to annotate unpaired BCR repertoires with structural information by mapping loop
93 sequences individually onto crystallographically-solved antibody structures.

94  Using a similar approach, we have investigated structural diversity along the B-cell differentiation axis in
95  humans and mice. We show that structurally annotating BCR repertoires yields unprecedented insights
96 into both the structural predetermination and dynamics of the adaptive immune response. By
97 approximating BCR repertoire structures with rapid homology modelling techniques, we find that
98 different B-cell types can be distinguished by their usage of CDR loop structures. Our analysis reveals
99 that BCR repertoires of naive B-cells tend to contain conserved “public” CDR structure profile, whilst
100  those of more differentiated B-cell types become more personalized. These results provide crucial
101 information about the structural changes in antibody paratopes during B-cell differentiation, with a

3


https://doi.org/10.1101/762880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/762880; this version posted September 9, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

102 plethora of prospective applications in immunodiagnostics and rational immunotherapeutic
103  engineering.

104 2. Methods:

105 Data Selection

106 Human Ig-seq data from Galson et al., ’ and mouse (C57BL/6 inbred strain) Ig-seq data from Greiff et al.,
107  ° were used. Galson et al., (“human”) is a longitudinal vaccination study across nine healthy human
108  donors, in which the heavy chain of naive, marginal zone, memory, and plasma B-cell types were
109 interrogated ’. Greiff et al., (“mouse”) is a high depth sequencing study of the murine adaptive immune
110  system in response to antigenic stimulation, containing heavy chain BCR repertoires from pre, naive and
111 plasma B-cells . Both studies used FACS to sort B-cells into subpopulations according to their
112 differentiation stages.

113  The Ig-seq amino acid sequences were downloaded from the Observed Antibody Space (OAS) Y’
114 resource, retaining their Data Unit information. Each Data Unit is a sequencing sample from a single B-
115  cell donor with a defined combination of B-cell type and isotype information, and contains sequences
116  that are IMGT-numbered *° and filtered for antibody structural viability. Henceforth, OAS Data Units will
117 be referred to as B-cell receptor (BCR) repertoires.

118  To investigate structural changes along the B-cell differentiation axis, BCR repertoires with defined B-cell
119  type and isotype information were downloaded. Only IGHG and IGHM sequences were considered as
120  these were the most abundant. The total number of BCR repertoires in the human and mouse data were
121 85 and 82 respectively.

122 Structural Annotation

123  To annotate the human and mouse data with structural information, we developed a customized
124  version of our SAAB pipeline *°, SAAB+ that predicts the structural shape of the IMGT-defined CDRs.
125 CDR-H1 and CDR-H2 adopt a limited number of structural configurations, known as canonical classes
126 '®**, which can be predicted accurately and rapidly from sequence *>. SAAB+ uses SCALOP ** to
127  annotate non-CDR-H3 loop canonical classes. Canonical class annotation should be highly accurate, with
128  SCALOP predictions estimated to be within 1.5 A of the true structure 90% of the time . The June 2019
129 SCALOP database was used in this study.

23-25

130  SAAB+ uses FREAD to predict CDR-H3 structural templates . Accurately modelling all the CDR-H3s in
131 an lg-seq dataset is challenging, owing to the vastness of structural space accessible to these loops *°%,
132 relative to the small number of publicly-available crystallographically-solved antibodies (many of which
133 are highly sequence redundant) *°. In addition, structurally-solved antibodies have a CDR-H3 length
134  distribution and sequence diversity that is different from natural Ig-seq data {(Supplementary Figure 3).
135 We tested the performance of FREAD on the Ig-seq data and, at the parameters used, the expected
136 average RMSD of FREAD CDR-H3 template predictions for both human and mouse data is 2.5 A (see
137 Supplementary Methods). This is in line with current state-of-the-art CDR-H3 modelling software tools
138  (mean RMSD of 2.8 A) *°. In a similar manner to DeKosky et al., **, we limited our CDR-H3 analysis to loop
139 lengths of 16 amino acids or shorter, as far fewer structures with longer CDR-H3 loops are available and
140 longer loops have increased structural freedom. We also excluded CDR-H3 loops shorter than five amino

141  acids from our analysis, as only three CDR-H3 templates covered these lengths. FREAD templates were
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142 downloaded from SAbDab (14™ November 2018) %, and consisted of all X-ray crystal structures of
143 antibodies with a resolution better than 2.9 A.

144  CDR-H3 clustering

145  To identify similar CDR-H3 loop structures, we used the DTW algorithm *° to cluster FREAD templates by
146 backbone RMSD. Those within 0.6 A were placed in the same cluster, reducing our 2,943 FREAD CDR-H3
147  templates to 1,169 CDR-H3 clusters.

148  Filtering BCR repertoires

149 As PCR sequencing can lead to variable amplicon amplification, we removed any BCR repertoire if its two
150  most redundant CDR-H3 clusters contained more than 80% of all repertoire sequences (Supplementary
151 Figure 1). We also discarded any BCR repertoire that contained fewer than 10,000 sequences with
152 predicted CDR-H3 structures - this cutoff was selected to allow for adequate sampling of CDR-H3
153 template usages, whilst retaining as many BCR repertories as possible (Supplementary Table 3). This
154 reduced the number of repertoires for all subsequent structural analysis to 81 (human) and 73 (mouse).
155 CDR-H1 and CDR-H2 loops were not taken into account in determining BCR repertoire quality, since
156 canonical class coverage was ~95% and ~99% for the human and mouse data respectively
157  (Supplementary Table 2).

158  Patterns of CDR-H3 cluster usage

159 We analyzed the pattern of CDR-H3 cluster frequencies in the human and mouse data, to identify
160 clusters whose usages were over-represented (Structural Stems), random (Randomly-Used) and under-
161 represented (Under-Represented) within a given B-cell type.

162  The structurally-annotated human and mouse data was split into individual groups based on unique B-
163  cell type and isotype combinations. Within these groups, we calculated the CDR-H3 length distributions
164  and the proportion modellable by FREAD for each CDR-H3 length. Next, we randomly selected CDR-H3
165 templates from our FREAD library (with replacement) according to these distributions, to generate a
166 randomized dataset for each BCR repertoire. Sampling was performed across the set of FREAD
167  templates already present in each BCR repertoire. The randomized dataset sizes were set to one million
168  sequences and the total number of randomized datasets was matched to the number of the BCR
169 repertoires within the corresponding groups (Supplementary Table 3).

170 A one-sided Mann-Whitney rank test (p = 0.05) was performed on the relative usage of each CDR-H3
171 cluster in the grouped BCR repertoires and the corresponding randomized datasets, to categorize them
172 as Structural Stem, Random-Usage or Under-Represented CDR-H3 clusters.

173 Statistical Analysis

174  Statistical analyses were performed in Python using the scikit-learn®* and scipy packages. Detailed

175 information on statistical tests is outlined in the figure legends. Data visualization was performed with
176  the seaborn package.
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177 3. Results

178  Structural annotation of Ig-seq data

179  We searched the Observed Antibody Space (OAS) resource '’ for heavy chain Ig-seq studies that
180 contained at least three different B-cell types, had sequences with defined isotype information and
181  consisted of at least 50 BCR repertoires, and identified two studies: Galson et al., (“human”) ” and Greiff
182  etal., (“mouse”)°.

183 Annotating the antibody CDR sequences in these human and mouse Ig-seq studies with structural
184 information allows us to investigate how the three-dimensional shape of CDR-H1, CDR-H2 and CDR-H3
185 loops vary across BCR repertoires (Figure 1). To achieve this, we developed the SAAB+ pipeline.

186  In SAAB+, SCALOP annotates CDR-H1 and CDR-H2 sequences with structural canonical classes *, and
187 FREAD predicts whether CDR-H3s from the Ig-seq data share a similar structure to a crystallographically-
188 solved CDR-H3 structure 2*, We annotate predicted by FREAD the CDR-H3 sequence with the PDB code
189  of the crystallographically-solved CDR-H3 structure (template). To find structural templates with similar
190 CDR-H3 loop shapes (analogous to canonical loop shapes), we structurally clustered them based on their
191 backbone atom RMSD values (see Methods).

GYSITSDFAA H1-9-A || IVPKTGYT % H2-8-A GRGTYEDI ‘1’ drav._C EVOL,
192
193 Figure 1. Structural annotation of BCR repertoires. BCR repertoires are sourced from the OAS resource.
194 For each BCR sequence, CDR loop sequences are extracted, and the closest structural framework match
195 is found, which is used in CDR-H3 loop grafting *°. Next, SCALOP is used to identify canonical classes for
196 non-CDR-H3 sequences, and FREAD is used to identify whether a CDR-H3 sequence shares a structure
197 with any FREAD crystallographically-solved structures (templates). SCALOP returns a canonical class
198 cluster identification (e.g. H1-8-A); FREAD returns the PDB code of an antibody structure with a protein
199 chain specified (e.g. 5myx_B) *, a CDR-H3 structural template.
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200 Structural CDR-H3 coverage and template usage
201  We investigated the structures of CDR-H3s used across BCR repertoires of different B-cell types in the
202 human and mouse data. Table 1 shows the coverage achieved by FREAD for each species.

M
CDR-H3 template ean )
Data Total sequences ) coverage with
predicted
std
Human 5,712,939 2,750,469 (48.1%) 47.2+11%
Mouse 206,680,496 182,309,575 (88%) 88.1+4%

203 Table 1. FREAD coverage of Ig-seq data. The human data contained 5.7 million sequences with CDR-H3
204  loop lengths of 16 amino acids or shorter (see Methods). FREAD generated predictions for 48.1% of CDR-

205 H3s in the human data, with an average coverage of 47.2% across BCR repertoires. The total number of
206 mouse sequences was ~207 million, of which 88% were structurally-annotated with FREAD. The average
207 structural coverage across mouse BCR repertoires was 88.1%.

208  CDR-H3 structural coverages of BCR repertoires were similar across different B-cell types in the human
209 data (Kruskal-Wallis test, p= 0.37), but varied in the mouse data (Kruskal-Wallis test, p< 0.001). In both
210  species, the variance of coverage was lower in the BCR repertoires of antigen-unexperienced B-cells
211 (Supplementary Figure 2). The mean structural coverage was higher for mouse CDR-H3s than for human
212 CDR-H3s (Table 1). Differences in length distributions could be a major cause of this discrepancy, as CDR-
213 H3 structures are harder to predict for longer lengths, and the most common lengths were 11 and 12
214  residues in the mouse data, compared to 15 residues in the human data (Supplementary Figure 3).

215  Human and mouse BCR repertoires are the effector products of two different sets of germline genes.
216 We therefore investigated whether species germline genes might also translate into preferred CDR-H3
217  structure usage. We used reported species origin information from SAbDab *° to calculate the usages of
218 different species CDR-H3 templates across our BCR repertoires (Supplementary Figure 4). As expected,
219 human and mouse data used different frequencies of species CDR-H3 templates. The human BCR
220  repertoires tended to use more human CDR-H3 templates as compared to uniform CDR-H3 template
221  sampling, with mouse CDR-H3 templates appearing about as often as would be expected at random. In
222 the mouse data, usage of mouse CDR-H3 templates was enriched, whilst usage of human CDR-H3
223 templates was reduced. These usages were roughly similar across B-cell types in both human and mouse
224  data, suggesting a species bias towards CDR-H3 structural sampling largely independent of B-cell
225 maturation. Interestingly, 109 (or ~4%) of all FREAD templates were never used in neither the human
226 nor mouse data. Eighty eight of these templates were derived from nanobodies (Supplementary Data).

227  Together, these results confirm a structural basis for species self-tolerance. They also suggest that
228  different species may engage different epitopes on the same antigen through inherent structural biases.

229  CDR-H3 cluster profiles along the B-cell differentiation axis

230 The adaptive immune system responds to antigen exposure by selecting and optimizing the most
231  efficacious BCRs. Therefore, B-cells at different maturation stages may possess discrete paratope
232 structural properties.

233 Galson et al., ’ demonstrated that different B-cell types could be separated using three heterogeneous
234 sequence descriptors (clonality, average CDR-H3 loop length and percentage of V gene mutations) in a
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235  principal component analysis (PCA). We repeated their experiment on our human and mouse data
236 (Figure 2a,b). In the human data, their sequence descriptors distinguished B-cell types. In the mouse
237 data, pre, naive, and plasma IGHM BCR repertoires clustered together, whilst plasma IGHG were clearly
238 distinguishable from other B-cell types.

239  We investigated whether the structural annotation of CDR-H3s on its own could distinguish the BCR
240 repertoires of different B-cell types, by performing PCA on CDR-H3 cluster usages across BCR
241 repertoires. We found a clear separation of B-cell types in both the human and mouse data (Figure
242 2c¢,d), with a sequential pattern of B-cell differentiation in the human data (Naive - Marginal -
243 Memory - Plasma). Mouse IGHM and IGHG plasma BCR repertoires can be distinguished by CDR-H3
244 cluster usages, whereas neither we nor Galson et al., ’ observe the same separation in the human
245 plasma BCR repertoires. The variance of CDR-H3 cluster usages in plasma IGHM were, in fact, more
246  similar to antigen-unexperienced than to plasma IGHG BCR repertoires in the mouse data. Inaccuracies
247 arising during B-cell sorting could cause improper B-cell labeling, adding noise to the B-cell type
248  separation seen in Figure 2. In laboratory mice, the range and degree of antigen exposure is limited by
249 pathogen-free housing conditions and low organism ages. This “purity” could account for the finer
250  separation of B-cell types.

a human data, Method:Galson b mouse data, Method:Galson
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2 3 g B-cell type
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252 Figure 2. PCA on the human and mouse data. Features included in the PCA were either average CDR-H3

253 length, clonality and percentage of SHMs in V genes (a, b) or CDR-H3 cluster usages (c, d). The human
254 data is shown in a and ¢, whilst the mouse data is in b and d. The first two principal components are
255 used to visualize the separation of BCR repertoires. Colours represent different B-cell types.

256  To quantify the behavior seen in Figure 2, we employed the DBSCAN clustering algorithm with increasing
257 maximum distance to closest neighbors (g) to interrogate the densities of CDR-H3 cluster usages across
258 BCR repertoires. Clustering at lower € distances indicates a more similar distribution of CDR-H3 cluster
259  usages. In the human data, all naive BCR repertoires clustered at low & distances along with one
260 marginal zone BCR repertoire. As the value of € was increased, all marginal zone BCR repertoires merged
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261  with the naive BCR repertoire cluster, followed by memory and finally plasma BCR repertoires
262 (Supplementary Figure 5). In the mouse data, pre and naive BCR repertoires initially formed two
263  separate clusters at low € distances. As € was increased, antigen-unexperienced (pre and naive) BCR
264 repertoire merged into a single cluster, followed by plasma IGHM and plasma IGHG repertoires
265 respectively (Supplementary Figure 6).

266 BCR repertoires of different B-cell types are known to have their own characteristic distributions of CDR-
267 H3 lengths "**. To see whether this alone was driving the separation, we repeated our PCA experiment
268  at specific lengths of CDR-H3, again employing DBSCAN to interrogate the densities of CDR-H3 cluster
269  usages. For each length, we observed the same patterns, confirming that our separation of BCR
270 repertoires was not solely an artifact of CDR-H3 loop length (Supplementary Figure 7).

271  These findings give structural confirmation to our understanding of B-cell development from antigen-
272 unexperienced to terminally-differentiated plasma B-cells. The collection of CDR-H3s in a terminally-
273  differentiated BCR repertoire should be reflective of individual’s complex history of antigenic
274  stimulations yielding highly specialized, high-affinity antibodies *. These results demonstrate a mode of
275  structural BCR repertoire ontogeny, where antigen-unexperienced BCR repertoires have the most
276  conserved “public” frequencies of CDR-H3 structural clusters across individuals. Upon antigenic
277  stimulation, the somatic hypermutation (SHM) machinery of B-cells recursively introduces point
278 mutations, primarily to the antibody CDR regions ***. Our DBSCAN analysis shows that BCR repertoires
279  of different B-cell types do not use equal frequencies of CDR-H3 clusters, suggesting that affinity
280 maturation leads to discernable structural changes in the paratope. As B-cells differentiate to the next
281 developmental stage, their repertoires become more personalized; a fine-tuning of antibody paratope
282  structure along the differentiation axis.

283 Next, we checked whether above results were caused by varying numbers of utilized CDR-H3 clusters.
284  We evaluated the total number of CDR-H3 clusters represented across different B-cell types in the
285 human and mouse data (Figure 3a,b). None of the BCR repertoires used the maximum number of CDR-
286 H3 clusters (1,169), and the numbers varied between BCR repertoires, with antigen-unexperienced
287 repertoires using the most. The average number of CDR-H3 clusters in plasma IGHG BCR repertoires was
288 3-4 times smaller than in naive repertoires.
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290 Figure 3. Average number of CDR-H3 clusters in the human and mouse data. The top boxplots depict
291 the total number of CDR-H3 clusters in human (a) and mouse (b) BCR repertoires. In the bottom
292 boxplots, every human (c) and mouse (d) BCR repertoire was subsampled 100 times for 10,000
293 sequences, with the average number of CDR-H3 clusters recorded. Colors represent different B-cell
294 types. The horizontal blue line shows the total number of CDR-H3 clusters in our FREAD library, and
295 therefore the theoretical maximum.

296  This difference could potentially be explained by a smaller number of isolated plasma B-cells. To account
297  for the varying sizes of BCR repertoires, we subsampled 10,000 sequences from each of them 100 times
298 and recorded the average number of CDR-H3 clusters. The subsampling gave a similar pattern to the
299  complete data, with the average number of CDR-H3 clusters being highest in antigen-unexperienced
300 BCR repertoires (Figure 3c,d), and total numbers of represented clusters decreasing along the B-cell
301 differentiation axis. This drop in the number of CDR-H3 clusters is not caused by poorer structural
302 coverage of more differentiated BCR repertoires, as we have already shown that the coverage is not
303  significantly different across B-cell types in the human data, and increases for more differentiated cells
304 in the mouse data (Supplementary Figure 2). Therefore, we suspect that this decrease in the number of
305 represented CDR-H3 clusters along the differentiation axis was the result of only specific CDR-H3
306  structures transitioning to the next development stage.

307 To confirm this hypothesis, we investigated whether the decreased numbers of CDR-H3 clusters in
308 antigen-experienced BCR repertoires are also accompanied by structural specialization i.e. personalized
309 CDR-H3 cluster usage. We employed Shannon entropy to investigate the structural diversity of CDR-H3s
310  across our BCR repertoires. High entropy demonstrates a high diversity of CDR-H3 structures, whilst low
311 entropy indicates the over-representation of one or more CDR-H3s. To account for the decreasing
312 number of represented CDR-H3 structures, we calculated the proportion of theoretical maximum
313  entropy for each BCR repertoire to yield a normalized estimate of the diversity of CDR-H3 clusters used
314  (Supplementary Figure 8). This confirmed that the structural diversity of CDR-H3 gradually decreased
315 along the B-cell differentiation axis. Antigen-unexperienced BCR repertoires had the highest structural
316  diversity of CDR-H3s, as well as the lowest variance in entropy across B-cell types. Marginal and memory
317 IGHM BCR repertoires utilized the same number of CDR-H3 structures (p=0.66, Mann-Whitney U-Test),
318  whilst the structural diversity was significantly lower in memory B-cells (p=0.005, Mann-Whitney U-
319  Test). Our results again give structural confirmation of the affinity maturation process, where only
320 paratope structures that are specific to cognate antigens are retained.

321 Overall, the above results demonstrate that B-cell types can be distinguished based on the profile of
322 CDR-H3 structural descriptors alone and that antigen-unexperienced BCR repertoires utilized the highest
323 number and the highest entropy of CDR-H3 clusters. Cluster frequencies in naive BCR repertoires were
324  conserved across different B-cell donors. As B-cells differentiate, their CDR-H3 cluster usage becomes
325 narrower and more distinct between individuals, which is reflective of both affinity maturation and a
326 personalized history of B-cell selection. These results provide us with the first structural insight into
327  fundamental processes that govern BCR repertoire differentiation across B-cell donors.

328  Canonical class characterization

329  Our analysis so far has focused on CDR-H3, but CDR-H1 and CDR-H2 also play a key role in shaping the
330  antibody paratope *>. Most CDR-H1 and CDR-H2 loops are found in a small set of structures known as
331  canonical classes. This allows prediction of their structure from sequence with high confidence *.
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332 A single V gene encodes for both CDR-H1 and CDR-H2 loops and it is known that SHMs preferentially
333 take place in these loops during B-cell differentiation ***. As the level of SHMs increases with B-cells
334  differentiation, the number of mutations in the V gene has often been used as a proxy to study B-cell
335  development ",

336 Here, we investigated whether SHMs in the V gene lead to structural changes in CDR-H1 and CDR-H2 in
337 humans and mice. We calculated the percentage of sequences across BCR repertoires where either the
338 CDR-H1 or CDR-H2 canonical class diverged from its parent germline. Sequences with unassigned
339  canonical class information were retained in the analysis as their number was low (Supplementary Table
340 1), and SHMs can still change loop conformation to a yet uncharacterized canonical class. As of June
341 2019, only one human and six mouse V genes contained either a CDR-H1 or a CDR-H2 shape that did not
342  fall into a SCALOP canonical classes **.

343 Canonical class divergence from germline occurred in all B-cell types, but was observed to increase along
344  the B-cell differentiation axis in the human data (Supplementary Figure 9). This was less clear in the
345 mouse data. Pre and naive B-cells had less canonical class divergence from the germline, whereas
346 memory and plasma B-cells had a higher divergence. These results place structural information on the
347 knowledge that the percentage of V gene mutations increases with B-cell differentiation ’. The average
348 percentage of canonical class divergence across B-cell types were consistently higher in human than
349 mouse data. This is in agreement with previously-reported results showing that human V genes tend to
350  accumulate a larger number of SHMs than mouse *’.

351 CDR-H1 and CDR-H2 loops had different levels of canonical class divergence in both human and mouse
352 data, with CDR-H1s changing their germline loop shapes more often than CDR-H2s (Supplementary
353 Figure 10). This can probably be directly attributed to the different number of canonical classes
354  accessible to CDR-H1 and CDR-H2 (7 versus 4), which implies CDR-H1 loops have a greater degree of
355  structural freedom.

356 Both Galson et al., ” and Greiff et al., ° studies showed that the V gene usages varied across B-cell types.
357 Here, we investigated whether canonical class usages could provide a structural explanation for the
358 observed alterations in V gene utilization during B-cell differentiation. As with CDR-H3, we performed
359 PCA on combinations of canonical class usages across BCR repertoires (Supplementary Figure 11). In the
360 human data, we found a separation between naive and more differentiated B-cell types, with naive BCR
361 repertoires utilizing more similar canonical class usages. In the mouse data, BCR repertoires were
362  separated into different B-cell types with the sequential pattern of B-cell differentiation.

363  Our results demonstrate that canonical class usages are not static during B-cell differentiation, with
364  more mature B-cells exhibiting a higher level of canonical class divergence from the parent germline.
365 CDR-H1 and CDR-H2 structures are clearly modulated to help refine the antibody paratope configuration
366 against the cognate antigen.

367 Patterns of CDR-H3 cluster usage

368 Biased usage of CDR-H3 clusters is observed in different BCR repertoires along the differentiation axis.
369 For instance, antigen-unexperienced B-cells share the closest frequencies of CDR-H3 clusters (Figure 2).
370 A detailed understanding of biased CDR-H3 structure usage would significantly advance our knowledge
371 of the adaptive immune system development and maturation.
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372  To investigate patterns of biased CDR-H3 cluster usage, we split CDR-H3 clusters into three groups for
373  each B-cell type based on frequencies of CDR-H3 clusters used across these BCR repertoires. “Structural
374  Stems”, which were defined as CDR-H3 clusters, whose frequencies were significantly over-represented
375 across the BCR repertoires of a given B-cell type, “Under-Represented” which describes under-
376 represented CDR-H3 clusters. And CDR-H3 clusters, whose frequencies were not significantly different
377  from random uniform sampling -“Random-Usage” (Figure 4).

a CDR-H3 Clusters b Observed Naive BCR Repertoires

Cluster #1

Cluster #2

Cluster #4

1)
= e

€ Randomly Sampled (RS) d Cluster Usage
Naive BCR Repertoires

Cluster ID RS Observed | Classification
#1 25 41/33|30|45| Structural Stem
#2 25 30(29|30|37| Structural Stem
#3 25 272716 8 Random-Usage
378 _ #4 25 | 2 11(24 _10 Under-Represented
379 Figure 4. Pattern of CDR-H3 cluster usage within a specific B-cell type. A schematic representation of
380 how we grouped CDR-H3 clusters based on their pattern of usage. (a) In this mock example, only four

381 CDR-H3 clusters are found in (b) four naive BCR repertoires. (c) In the case of random uniform sampling,
382 each of these clusters would constitute approximately 25% of a simulated BCR repertoire. (d) Structural

383 Stems are defined as CDR-H3 clusters, which are over-represented across BCR repertoires when
384 compared to random cluster usage. Under-represented are clusters that are under-represented across
385 repertoires. CDR-H3 clusters, which usages are not significantly different from random sampling, were
386 termed Random-Usage.

387 First, we looked at the average number of CDR-H3 clusters found in our three groups (Structural Stems,
388 Random-Usage and Under-Represented) across the different B-cell types. In all BCR repertoires, Under-
389 Represented always contained the largest number of CDR-H3 clusters (Supplementary Figure 12),
390 however, this does not translate to dominance in terms of coverage (Figure 5). This is because, in most
391  cases, Under-Represented CDR-H3 clusters tend to have only a few sequences in a repertoire that share
392  that shape, whereas Structural Stems will have far higher numbers.

393 In the human data, the number of Structural Stems was largest in naive BCR repertoires and gradually
394  decreased along the B-cell differentiation axis. The number of Random-Usage CDR-H3 clusters was
395 lowest in the naive repertoires. This number increased in marginal BCR repertoires followed by a gradual
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396 decline along the B-cell differentiation axis. Similar to the human data, the number of Structural Stems
397 was the highest in antigen-unexperienced BCR repertoires in the mouse data. The number of Structural
398  Stems declined in plasma IGHM and were completely absent in plasma IGHG repertoires.

399 Next, we investigated the proportional composition of BCR repertoires across B-cell types with
400  Structural Stem, Random-Usage and Under-Represented CDR-H3 clusters. The distribution of repertoire
401 coverages differed between B-cell types in both human and mouse data (Figure 5). Structural Stems
402  cover ~70-80% of antigen-unexperienced BCR repertoires, with coverage declining along the B-cell
403  differentiation axis. In contrast, coverage with Under-Represented clusters gradually increased as B-cells
404  matured. Pre and naive BCR repertoires were least covered with Random-Usage CDR-H3 clusters (only 5-
405 10%). In the human data, coverage with Random-Usage CDR-H3 clusters showed a transient increase in
406 memory BCR repertoires followed by a decline in plasma repertoires, though this trend was less evident
407  in the mouse data. The same CDR-H3 clusters are preferentially over-represented across different B-cell
408  types with the number of these over-represented CDR-H3 clusters diminishing to none along the B-cell
409 development axis (Supplementary Data 1).

human data mouse data
1.0 — 1.0
[ Structural Stem
3 Random Usage
0.8 _|_ 0.8 =3 Under Represented
Sos So6
= =i
Q =]
a a
S04 S04
o o
02 "\‘ 0.2
0.0 L 0.0
410 Naive_IGHM Marginal_IGHM Mermory IGHM Memory_IGHG Plasma_IGHM Plasma_IGHG Pre_IGHM Naive_IGHM Plasma_IGHM Plasma_IGHG

411  Figure 5. Coverage of BCR repertoires with CDR-H3 clusters based on their pattern of usage in the
412 human and mouse data. The X-axis shows different B-cell types in the order of the B-cell differentiation
413 axis. The Y-axis shows the proportion coverage of BCR repertoire sequences with CDR-H3 clusters.

414  These results demonstrate that antigen-unexperienced BCR repertoires display CDR-H3 structural
415  conservatism. Naive BCR repertoires are largely composed of “public” sets of over-represented CDR-H3
416 clusters. During B-cell selection, CDR-H3 cluster usages become less conserved across individuals as the
417  coverage with Random-Usage and Under-Represented CDR-H3 clusters rise. In terminally-matured
418 plasma IGHG BCR repertoires, none of CDR-H3 clusters was significantly over-represented across
419 individuals. This reflects how the history of antigenic stimulations structurally shapes BCR repertoires,
420 which become increasingly specialized as B-cells differentiate.

421 4. Discussion

422  We have carried out the first systematic study of structural diversity in the BCR repertoires of multiple
423 donors and species along the B-cell differentiation axis. By mapping sequences to solved antibody
424 structures, we show the structural transformation occurring as BCR repertoires develop in humans and
425 mice.

426 Our data show that B-cell types can be distinguished based solely on the structural diversity of CDR-H3
427 loops. Antigen-unexperienced (pre and naive) BCR repertoires contain conserved “public” CDR-H3
428 cluster frequencies across individuals. As B-cells differentiate, their structural repertoires become
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429 increasingly personalized, as a reflection of each individual’'s history of antigen exposure. Antigenic
430  stimulation induces marked changes in the pattern of CDR-H3 cluster usage in BCR repertoires. The
431  repertoires utilize a smaller number of available CDR-H3 configurations, CDR-H3 structural diversity is
432 reduced, and CDR-H3 cluster usage becomes increasingly divergent from naive BCR repertoires.
433  Structural changes also take place in non-CDR-H3 loops, highlighting the importance of canonical loops
434 in paratope shaping. This shows how structure changes as B-cells, whose paratopes are complementary
435 to cognate antigens, are positively selected.

436  Our work was limited to the three CDRs encoded by heavy chain genes prohibiting generation of refined
437 antibody models. Increased availability of paired heavy/light BCR data *® and improvements in antibody
438 modelling speed ™ will facilitate further studies, allowing performance of statistical analyses on antibody
439  structure usage at the scale of an entire BCR repertoire. Structural descriptors harvested from these
440 models will push forward the resolution of our current work, enabling calculations of paratope charge
441  and hydrophobicity, as well as antibody developability profiles *°.

442 In our analysis, we achieved structural coverage for ~48% and ~88% of CDR-H3s in the human and
443 mouse BCR repertoires respectively. As more structural data becomes available and homology modelling
444  technology continues to improve, this can only add to power of these structural analyses.

445  Structural characterization of Ig-seq data can augment existing analysis pipelines ™. Current Ig-seq data
446 clustering approaches work on the premise that CDR-H3 sequence identity alone can capture structural
447  features of the paratope °. However, sequences with low CDR-H3 sequence identity can adopt close
448 shapes and vice versa . Hence, the development of structure-aware clustering methods such as SAAB+
449 allows for the direct grouping of structurally/functionally related BCR sequences *°, as well as enables
450  structural changes to be traced within individual B-cell linages.

451 A set of CDR-H3 clusters was consistently over-represented across all B-cell donors (“Structural Stems”)
452  within the specific B-cell types. These clusters encompassed 70-80% of all sequences in antigen-
453 unexperienced BCR repertoires. This shows that humans and mice largely rely on a conserved “public”
454  set of CDR-H3 clusters to initiate antigen recognition. This knowledge could be leveraged to study
455 immune system disorders, including immunosenescence, where distortions in the conserved public
456 pattern of CDR-H3 cluster usage in antigen-unexperienced BCR repertoires could signal disease states.
457 Furthermore, the knowledge of over-represented CDR-H3 clusters in naive BCR repertoires could be
458 applied in rational phage display library engineering, with Structural Stem cluster sequences used as
459  starting points for library diversity generation.

460 Recently, transgenic mouse models with human adaptive immune system have been created to raise
461 “naturally human” antibodies in non-human systems “*. However, their BCR repertoires are shaped
462 inside the murine environment, which could potentially select for BCR paratopes non-native to the
463 human body. Hence, our structural diversity analysis could also be employed in the paratope
464  “humanness” assessment of BCR repertoires derived from transgenic animals.

465 5. Data availability
466 SAAB+ is distributed under a “BSD 3-Clause” license, and can be downloaded from
467 https://github.com/oxpig/saab plus
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