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ABSTRACT

Malate transport shuttles atmospheric carbon into the Calvin-Benson cycle during NADP-ME C,
photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed
that they efficiently exchange malate across membranes. Here we identify and characterize a previously
unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate
across membranes and its expression pattern is consistent with a role in malate transport during C,
photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an
ortholog is not detectable in the maize reference genome. We found that the expression patterns of
DCT family genes in the leaves of Z. mays, and S. bicolor varied by cell type. Our results suggest that sub-
functionalization of members of the DCT family for the transport of malate into the bundle sheath (BS)
plastids occurred during the process of independent recurrent evolution of C, photosynthesis in grasses
of the PACMAD clade. This study confirms the value of using both syntenic information and gene

expression profiles to assign orthology in evolutionarily related genomes.
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INTRODUCTION

Three subtypes of C; photosynthesis are generally recognized as defined by the primary decarboxylase
in the bundle sheath (BS) cells: chloroplastic NADP-dependent malic enzyme (NADP-ME); mitochondrial
NAD-dependent malic enzyme (NAD-ME); and cytosolic phosphoenolpyruvate carboxykinase (PEPCK)
(Hatch and Slack, 1966; Hatch, 1971; Rathnam and Edwards, 1977). Different plant species may contain
various combinations of these three subtypes (Hatch, 1971; Chapman and Hatch, 1979; Furbank, 2011;
Pick et al., 2011; Wang et al., 2014b). The movement and exchange of malate across membranes, by
dicarboxylate transporters (DCTs/DiTs), plays a significant role during photosynthesis in NADP-ME and
NAD-ME C, species (Ding et al., 2015). In C; plants, DCTs are crucial to nitrate assimilation, such as the
GS/GOGAT cycle and photorespiration (Linka and Weber, 2010; Kinoshita et al., 2011). Taniguchi et al.
characterized several plant DCTs that efficiently exchange malate across membranes (Taniguchi et al.,
2002; Taniguchi et al., 2004). The differential expression of C; photosynthesis genes in mesophyll (M)
and BS cells (John et al., 2014; Tausta et al., 2014; Wang et al., 2014a) suggests that different malate
transporters may be needed to move malate out of the chloroplasts of M cells and into the chloroplasts
of BS cells. In Zea mays, an NADP-ME C, grass, dicarboxylate transporter-2 (ZmDCT2,
GRMZM2G086258) moves malate into the chloroplast of BS cells during C, photosynthesis (Ding et al.,
2015). ZmDCT2 plays a critical role during C4 photosynthesis in Z. mays, and its absence severely impairs
plant growth and development (Ding et al., 2015). The role of DCTs in C; photosynthesis in other species,

however, remains unknown.

Z. mays is the best characterized and functionally annotated C, grass species. As such, it is a useful
reference for identification of photosynthesis-related genes in poorly characterized C, grasses and for
resolving orthology (John et al., 2014; Ding et al., 2015; Huang et al., 2017). Microsynteny, the
comparison of collinearity among related species, is a reliable approach to determine orthology and
predict the function of a gene (Bennetzen and Freeling, 1997; Chen et al., 1997; Tikhonov et al., 1999;
Bennetzen, 2000; Kumar et al., 2009; Jin et al., 2016). Davidson et al. (Davidson et al., 2012) showed that
syntenic orthologs are likely to have conserved functions and expression patterns across lineages. Here
we identify a new member of the DCT family, DCT4, which is not syntenic to the photosynthetic gene
ZmDCT2 and is not detected in the maize reference genome. We demonstrate that Sorghum bicolor
DCT4 (SbDCT4) efficiently exchanges malate across membranes, consistent with a malate transport role

in C4 photosynthesis. We characterize the diverse expression patterns of DCT genes in leaves of multiple
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grass species. We also propose that sub-functionalization of DCTs in grasses of the PACMAD clade

(Sanchez-Ken and Clark, 2010) occurred during independent recurrent evolution of C, photosynthesis.

RESULTS
Identification of DCT4 in Sorghum bicolor

To learn more about C4-related dicarboxylate transporters in species evolutionarily related to maize, we
identified the syntenic ortholog of ZmDCT2 in S. bicolor. Two genes, Sobic.007G226700 and
Sobic.007G226800, are present at the predicted syntenic orthologous position on chromosome 7. We
refer to them as SbDCT2.1 and SbDCT2.2, respectively (Figure 1). ZmDCT2 is abundantly expressed
(Table 1), and its expression is enriched in BS cells of maize leaves (Figure 2) (Li et al., 2010; Tausta et al.,
2014; Ding et al., 2015). In contrast, the expression profiles of SbDCT2.1 and SbDCT2.2 in S. bicolor
leaves are low (Table 1). ShDCT2.1 expression is slightly enriched in the M cells whereas SbDCT2.2 is
enriched in BS cells (Figure 2). We also analyzed the transcript levels of two other S. bicolor
dicarboxylate transporters, SbDCT1 (Sobic.002G233700) and SbOMT1 (Sobic.008G112300). These genes
are the orthologs of the Z. mays genes ZmDCT1 (GRMZM2G040933) and Zm-oxoglutarate/malate
transporter 1 (ZmOMT1; GRMZM2G383088), respectively. We found that SbDCT1 expression, similar to
that of ZmDCT1, is relatively low (Table 1), and only slightly differentially expressed in M cells relative to
BS cells (Figure 2). The expression of both ZmOMT1 and SbOMT1 is relatively high (Table 1), and both

are slightly enriched in M cells (Figure 2).

In C4 species, the expression of many photosynthetic genes is enriched in either BS and M cells (Li et al.,
2010; John et al., 2014; Tausta et al.,, 2014; Weissmann et al., 2015; Rao et al.,, 2016). In NADP-ME
species, two transporters, one within the BS cells and another in M cells, move malate in and out of the
chloroplast during C, photosynthesis (Brautigam et al., 2008; Weissmann and Brutnell, 2012; John et al.,
2014; Tausta et al., 2014; Wang et al., 2014a). However, in sorghum leaves, we found only one highly
expressed dicarboxylate transporter, SbOMT1, that showed slightly enriched expression in M cells.
Therefore we screened the sorghum genome for additional homologs of known maize DCTs. We
identified the gene Sobic.004G035500 that showed homology to ZmDCT1 and ZmDCT2 but was not
syntenic to either gene (Figure 1). DCT3 is the name of the second transcript of ZmDCT2 (Taniguchi et al.,
2004), so we named this new gene SbDCT4. No syntenic ortholog of SbDCT4 is present in the reference
genomes of Z mays or Oryza sativa. The absence of syntenic conservation between S. bicolor and Z

mays and the lack of direct orthologs in Z. mays or C; species prevented identification of DCT4 in a
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previous bioinformatic screen for C, photosynthesis genes (Huang et al., 2017). The expression of
SbDCT4 is moderately abundant (Table 1) and strongly enriched in the BS cells of S. bicolor leaves (Figure
2).

SbDCT4 is an efficient malate transporter

To verify the ability of SbDCT4 to transport malate, we cloned coding sequences from the three sorghum
DCT genes, SbDCT1, SbDCT2, and SbDCT4. We measured the malate transport activities of the
recombinant proteins expressed in yeast. SbDCT4 was an efficient malate transporter (Table 2). The K,
of SbDCT4 was similar to that of SbDCT1, and the affinity for malate was highest in SbDCT2 among the
three SbDCTs (Table 2), consistent with the relative malate transport activities reported for maize DCT1

and DCT2 (Taniguchi et al., 2004).
Phylogenetic distribution of DCT genes in grasses

To understand the relationship of SbDCT4 to other grass DCT genes, we searched the genomes of the
grass species Setaria italica, Urochloa fusca, Brachypodium distachyon, and Dichanthelium oligosanthes.
In S. italica, an NADP-ME C, species, we identified a dicarboxylate transporter, Seita.9G375100, that
showed no syntenic orthologous relationship with dicarboxylate transporter genes in other available
grass genomes. Phylogenetic analysis showed that this gene clustered with SbDCT4 but not with SbDCT1
and SbDCT2 (Figure 3). We designated this gene SiDCT4. We did not detect orthologs, syntenic or
otherwise, in U. fusca, a PEPCK C, species, or in the two C; species. To expand the search for DCT4 in
other grasses currently lacking genome assemblies, we examined leaf-derived transcript assemblies for
Aristida congesta, Eriachne aristidea, Chasmanthium laxum, Danthoniopsis dinteri, Anthephora pubensis,
Echinochloa esculenta, Paspalum vaginatum, and Arundinella hirta (Huang et al., in preparation). We
then used the predicted coding sequences of the DCT genes from available genomes and from the de
novo leaf transcriptome assemblies to generate a phylogenetic tree of the DCT family. The resulting
phylogeny shows that DCT4 transcripts form a distinct subclade from the DCT1 clade (Figure 3). The
absence of DCT4 transcript expression does not rule out the existence of the gene in the genome. We
also used polymerase chain reaction (PCR) to survey for DCT genes in the genomes of grass species for
which whole-genome assemblies were not available. We designed conserved primers (non-degenerate
or minimally degenerate) to small regions unique to each of the three DCT genes using PrimaClade

(Gadberry et al., 2005). We detected DCT1 and DCT2 in the genomes of all species tested (Table 1,
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Supplemental Figure 1). DCT4, however, was detected only in the genomes of NADP-ME C, species of

the PACMAD clade, excluding Z. mays (Table 1, Supplemental Figure 2).

Expression of malate transporter genes in NADP-ME C, grasses

Cs species and U. fusca, a PEPCK C,4 species, express both DCT1 and DCT2 at low levels in leaves (Table 1).
C4 NADP-ME species of the PACMAD clade generally express one DCT gene in leaves at a high level and
also express one or two other DCT genes at low levels (Table 1). We did not find an apparent lineage-
specific pattern for the expression of the predominant DCT gene in the NADP-ME species we analyzed.
This finding is consistent with random evolutionary processes underlying the sub-functionalization of
members of the DCT family. Interestingly, Z. mays is the only species we examined in which DCT2 is the
predominantly expressed DCT gene (Table 1). We also examined the expression of the non-DCT malate
transporter OMT1 gene in the leaves of grasses (Table 1). Interestingly, we found that while OMT1
expression was generally abundant, there was no consistent pattern of relative expression between the

DCT and OMT genes within the NADP-ME C, species (Table 1).

DISCUSSION
Evolution of the DCT gene family in grasses

We identified DCT4 as a new member of the DCT gene family in the grasses (Figure 1). Our analysis
suggests that DCT4 is present in some C4 NADP-ME PACMAD grasses. DCT1 and DCT2 appear to have
originated from a duplication of a single DCT gene after the monocot-eudicot split (Taniguchi et al.,,
2004) and DCT4 arose from a duplication of DCT1 at the root of the PACMAD grasses (Figure 3). The
expression of DCT genes in the grasses that we analyzed exhibited no clear lineage-specific patterns
(Table 1). Therefore, we propose that different members of the DCT family subfunctionalized for

photosynthetic malate transport in the BS cells of C, grasses of the PACMAD clade.

This work also confirms the importance of including syntenic and expression data in assigning orthology
across species, and of developing multiple models for C, photosynthesis in the grasses. SiDCT4 was
previously mis-annotated as the ortholog of DCT2 (John et al., 2014), likely because of the lower
expression level of SiDCT2 (Seita.9G375100) in leaf tissue. The use of different malate transporters, for
example, DCT4 in S. bicolor and S. italica, or DCT2 in Z. mays, suggests that multiple evolutionary paths

resulted in the development of an active C; NADP-ME photosynthetic cycle. It is interesting to note
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common origins of C, photosynthesis are often defined based on the predominant decarboxylase
utilized, thus maize and sorghum are considered to have evolved from a common C; ancestor. This
analysis suggests that rather than being static, biochemical adaptations continued after the divergence
of maize and sorghum lineages. Thus, optimizations of C, activities may be continuous as breeding

pressures or climate change alters ecological niches of individual species.

Various C, subtype combinations have different transport requirements

The variation of expression levels among the different malate transporters within each NADP-ME
species (Table 1) suggests different transport requirements during C4 photosynthesis. This supposition is
in agreement with the view that the three subtypes of C; photosynthesis are mixed rather than exclusive
(Hatch, 1971; Chapman and Hatch, 1979; Furbank, 2011; Pick et al.,, 2011; Wang et al., 2014b). For
example, Z. mays utilizes both the NADP-ME (75%) and PEPCK (25%) pathways to fix carbon (Chapman
and Hatch, 1979; Wingler et al., 1999; Weissmann et al., 2015), and has similar expression levels of DCT2
and OMT1 and low expression of DCT1. S. bicolor moves carbon through both malate and aspartate,
although no PEPCK activity was detected in its leaves (Chapman and Hatch, 1979). S. bicolor has similar
expression levels for DCT4 and DCT1 and high expression of OMT1 (Table 1). Other grass species may
have dicarboxylate transporter expression ratios that correspond to their unique combination of C,4
subsystems. For example, OMT1 is highly expressed in U. fusca, ~3-7 fold higher than DCT2 or DCT1,
respectively. OMT1 transports dicarboxylates, excluding those containing an amino group (Taniguchi et
al., 2002; Taniguchi et al., 2004). Thus, in PEPCK C, plants, OMT1 may move oxaloacetate into the
mesophyll chloroplast, and 2-oxoglutarate out, to support the high production of aspartate needed to
maintain the photosynthetic cycle (Rathnam and Edwards, 1977). Interestingly, both ZmOMT1 and
SbOMT1 are only slightly differentially expressed in the M cells (Figure 2). As the loss of DCT2 in Z. mays
prevents movement of malate into the BS chloroplast (Weissmann et al.,, 2015), OMT1 cannot be
moving malate into the BS chloroplast alongside DCT2. But OMT1 may also have a role in organic acid
metabolism in both cell types, such as shuttling reducing equivalents in organelles other than the

chloroplast (Pleite et al., 2005).

CONCLUSIONS

Our results show that the newly identified member of the DCT gene family, SbDCT4, is an efficient
malate transporter. Based on the expression patterns of malate transporters among the grasses, we

suggest that different members of the DCT family may have evolved multiple roles in C4 photosynthesis.
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Further studies will be needed to verify the subcellular localization of these proteins and to define their
specific metabolic functions. Characterizing the various combinations of C, photosynthetic subsystems in
grasses will facilitate the exploitation of DCT genes, through breeding or engineering, to improve the

performance of crop plants and increase yield.

MATERIALS AND METHODS

Identification of DCT4 genes in Sorghum and other grasses

We used QUOTA-ALIGN (Tang et al., 2011) to identify syntenic orthologous regions in grass species with
sequenced genomes, following the protocol described in (Zhang et al., 2017) . To find homologous genes
at non-syntenic locations, we used two complementary approaches. For species with sequenced
genomes, we used LASTZ (Harris, 2007) to align the coding sequence of the primary transcript annotated
in Phytozome (https://phytozome.jgi.doe.gov) to the genome assembly. For species without assembled
genomes, we used LASTZ to align the coding sequence of the primary transcript from Phytozome to

transcript assemblies generated by Trinity (Grabherr et al., 2011).
Measurements of malate transport

We cloned each of the three SbDCT cDNAs between the promoter and terminator of yeast GALZ in the
pTV3e vector (Nishizawa et al., 1995). We transformed the plasmids into yeast LBY416 cells and selected
transformants on tryptophan-deficient agar plates. We prepared a crude membrane fraction from the
selected yeast transformants. We used a freeze-thaw technique to reconstitute liposomes for the

measurement of the uptake of [**C]malate (Taniguchi et al., 2002).
Phylogenetic analysis of DCT homologs

DCT coding sequences for Z. mays, S. bicolor, S. italica, B. distachyon, O. sativa, D. oligosanthes, and U.

fusca were from Phytozome (https://phytozome.jgi.doe.gov). We used BLASTN (Altschul et al., 1990) to

search de novo assembled leaf transcriptomes (Huang, manuscript in preparation) from the C,; grass
species A. congesta, E. aristidea, C. laxum, D. dinteri, A. pubensis, E. esculenta, P. vaginatum, and A. hirta
with the DCT sequences from maize, Setaria, and Sorghum as queries. We used ProGraphMSA to
generate a codon-based sequence alignment (Szalkowski, 2012). We used MEGAG6 (Tamura et al., 2013),
with default parameters and the branch support values based on 1,000 bootstraps, to generate the
phylogenetic reconstruction with the maximum likelihood method and based on the nucleotides in the

third position of codons (Simmons et al., 2006).
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Analysis of gene expression for decarboxylase transporters in grasses

For species with published leaf transcriptome profiles (Ouyang et al., 2007; Li et al., 2010; Zhang et al.,
2012; Schnable, 2014; Wang et al., 2014a; Studer et al., 2016), gene expression levels were calculated
and normalized, for each species, as Transcripts Per Million (TPM). For the other species, the
normalized TPM values were based on de novo transcriptome assemblies (Huang et al., manuscript in
preparation). The values in Table 1 only allow for intraspecies comparisons among the decarboxylase

transporters.
Identification of DCT4 in species without sequenced genomes

We aligned the coding sequences from each of the DCT genes from Z. mays, S. bicolor, S. italica, U.
fusca, B. distachyon, O. sativa, D. oligosanthes, A. congesta, E. aristidea, C. laxum, D. dinteri, A. pubensis,
E. esculenta, P. vaginatum, and A. hirta using PAL2ZNAL (Suyama et al., 2006). The resulting multiple
sequence alignment enabled the design of non-degenerate or minimally degenerate PCR primers (Table

3) using PrimaClade (Gadberry et al., 2005).

Jacob D. Washburn and J. Chris Pires (University of Missouri, Columbia) kindly provided genomic DNA
from A. congesta, E. aristidea, D. dinteri, A. pubensis, E. esculenta, and A. hirta (Washburn et al., 2015).
We used a CTAB-based method to extract genomic DNA from C. laxum, P. vaginatum, Z. mays, S. bicolor,
S. italica, and B. distachyon (Weissmann et al., 2015). Z. mays and B. distachyon were the negative
controls for DCT4 and the positive controls for DCT1 and DCT2. S. bicolor and S. italica were the positive
controls for DCT1, DCT2, and DCT4.

We conducted amplification of DCT genes by PCR using a 25-pl reaction mix and an ABI 2720 Thermal
cycler. The reaction mixture included 2.5 pl of 10X Buffer, 2.5 pl of 10 pM solutions of forward and
reverse primers, 2 pl of 2.5 mM dNTP stock, 14 pl of nuclease-free water, 0.5 pl of Choice Taqg enzyme,
and 1 pl of 100 ng/pl DNA. We performed PCR reactions as described in Table 3 with 5 pl of loading dye
added to each reaction. Aliquots of 13 pl were loaded on 3% agarose gels (Invitrogen UltraPure Agarose
1000, 1X TAE buffer, Invitrogen SYBR Safe Gel Stain) and electrophoresed for 30 minutes at 100 volts.
We based size estimates on 100bp and 50 bp DNA markers (GoldBio).
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Table 2. K, of malate for recombinant DCT proteins' demonstrates the ability of SbDCT4 to

transport malate efficiently.

K (mM)
DCT1 DCT2 DCT4
S. bicolor 1.24+0.14 0.71£0.10 1.13 £0.10
Z.mays’ 1.1+0.1 0.85+0.44 N/A

! The values are the means of three independent experiments + SE.
?Kinetic values from a previous report (Taniguchi et al., 2004).
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Table 3. Primers and PCR conditions for the amplification of grass DCT genes.

Primer Pair  Forward 5’-3’ ! Reverse 5’-3’* Cycling Conditions

DCT1 CACCAACGAGGTCATCTGG AGTAGGTGGCGATDCGGTC 94°C 3 min, [94°C 45 sec,
58°C 30 sec, 72°C 1 min] x
30, 72°C 10 min, 4°C oo.

DCT2 CVTGGATGTCRAATTGTGTTG TGGCTTGCAAABADATAGTGAA 94°C 3 min, [94°C 45 sec,
58°C-52°C (-0.5°C/cycle)
30 sec, 72°C 1 min] x 14,
[94°C 45 sec, 52°C 30 sec,
72°C1 min] x 16, 72°C 10
min, 4°C co,

DCT4 CTTYGTCAAGTGGCTCGG GACTTGATGATSGGCAGGA 94°C 3 min, [94°C 45 sec,
60°C 30 sec, 72°C 1 min] x
30, 72°C 10.0 min, 4°C co.

1B = C+G+T, D = A+G+T, R = A+G, S = C+G, V = A+C+G, Y = C+T.

11
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FIGURE LEGENDS

Figure 1. CoGe (https://genomevolution.org/coge/) genome viewer screenshots depicting the
conservation and genomic contexts of DCT genes in Z. mays and S. bicolor. Colored lines between panels
show conserved genes. SbDCT4 shows high sequence conservation with other DCT genes, but is not a

syntenic ortholog of ZmDCT2, as shown by the lack of conservation in neighboring genes.

Figure 2. Differential expression of malate transporters in Z. mays, and S. bicolor leaves between the BS
and M cells. The genome of Z. mays has one copy of DCT2 and does not contain DCT4, and ZmDCT2 is
highly enriched in BS cells. Sorghum bicolor has two copies of DCT2 (DCT2.1, and DCT2.2) in the syntenic
genomic location that are the result of gene duplication. S. bicolor also expresses DCT4, which is highly
enriched in BS cells. Both species express OMT1 and DCT1, which are only slightly enriched in the M
cells. Red bars represent enrichment in the BS cells. Blue bars represent enrichment in the M cells. The

white numbers inside the bars represent the significance (p-value) of the log2(FoldChange).

Figure 3. A phylogenetic tree of the DCT family in the grasses showing that DCT4 is a subclade of DCT1.
The DCT1, DCT2, and DCT4 gene lineages are black, blue, and red, respectively. The length of the
branches represents the evolutionary distance between ancestor to descendent nodes. The numbers

represent the confidence level of the specific branch.

Supplemental Figure 1. Gel image showing that DCT1 and DCT2 genes are present in all grass species

tested.

Supplemental Figure 2. Gel image showing the presence or absence of DCT4 genes from species lacking
genome assemblies. Negative controls were Z. mays and B. distachyon, and positive controls were S.

bicolor and S. italica.
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