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ABSTRACT 

Malate transport shuttles atmospheric carbon into the Calvin-Benson cycle during NADP-ME C4 

photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed 

that they efficiently exchange malate across membranes. Here we identify and characterize a previously 

unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate 

across membranes and its expression pattern is consistent with a role in malate transport during C4 

photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an 

ortholog is not detectable in the maize reference genome. We found that the expression patterns of 

DCT family genes in the leaves of Z. mays, and S. bicolor varied by cell type. Our results suggest that sub-

functionalization of members of the DCT family for the transport of malate into the bundle sheath (BS) 

plastids occurred during the process of independent recurrent evolution of C4 photosynthesis in grasses 

of the PACMAD clade. This study confirms the value of using both syntenic information and gene 

expression profiles to assign orthology in evolutionarily related genomes.  
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INTRODUCTION 

Three subtypes of C4 photosynthesis are generally recognized as defined by the primary decarboxylase 

in the bundle sheath (BS) cells: chloroplastic NADP-dependent malic enzyme (NADP-ME); mitochondrial 

NAD-dependent malic enzyme (NAD-ME); and cytosolic phosphoenolpyruvate carboxykinase (PEPCK) 

(Hatch and Slack, 1966; Hatch, 1971; Rathnam and Edwards, 1977). Different plant species may contain 

various combinations of these three subtypes (Hatch, 1971; Chapman and Hatch, 1979; Furbank, 2011; 

Pick et al., 2011; Wang et al., 2014b). The movement and exchange of malate across membranes, by 

dicarboxylate transporters (DCTs/DiTs), plays a significant role during photosynthesis in NADP-ME and 

NAD-ME C4 species (Ding et al., 2015). In C3 plants, DCTs are crucial to nitrate assimilation, such as the 

GS/GOGAT cycle and photorespiration (Linka and Weber, 2010; Kinoshita et al., 2011). Taniguchi et al. 

characterized several plant DCTs that efficiently exchange malate across membranes (Taniguchi et al., 

2002; Taniguchi et al., 2004). The differential expression of C4 photosynthesis genes in mesophyll (M) 

and BS cells (John et al., 2014; Tausta et al., 2014; Wang et al., 2014a) suggests that different malate 

transporters may be needed to move malate out of the chloroplasts of M cells and into the chloroplasts 

of BS cells.  In Zea mays, an NADP-ME C4 grass, dicarboxylate transporter-2 (ZmDCT2, 

GRMZM2G086258) moves malate into the chloroplast of BS cells during C4 photosynthesis (Ding et al., 

2015). ZmDCT2 plays a critical role during C4 photosynthesis in Z. mays, and its absence severely impairs 

plant growth and development (Ding et al., 2015). The role of DCTs in C4 photosynthesis in other species, 

however, remains unknown.   

 

Z. mays is the best characterized and functionally annotated C4 grass species. As such, it is a useful 

reference for identification of photosynthesis-related genes in poorly characterized C4 grasses and for 

resolving orthology (John et al., 2014; Ding et al., 2015; Huang et al., 2017). Microsynteny, the 

comparison of collinearity among related species, is a reliable approach to determine orthology and 

predict the function of a gene (Bennetzen and Freeling, 1997; Chen et al., 1997; Tikhonov et al., 1999; 

Bennetzen, 2000; Kumar et al., 2009; Jin et al., 2016). Davidson et al. (Davidson et al., 2012) showed that 

syntenic orthologs are likely to have conserved functions and expression patterns across lineages. Here 

we identify a new member of the DCT family, DCT4, which is not syntenic to the photosynthetic gene 

ZmDCT2 and is not detected in the maize reference genome. We demonstrate that Sorghum bicolor 

DCT4 (SbDCT4) efficiently exchanges malate across membranes, consistent with a malate transport role 

in C4 photosynthesis. We characterize the diverse expression patterns of DCT genes in leaves of multiple 
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grass species. We also propose that sub-functionalization of DCTs in grasses of the PACMAD clade 

(Sanchez-Ken and Clark, 2010) occurred during independent recurrent evolution of C4 photosynthesis. 

 

RESULTS 

Identification of DCT4 in Sorghum bicolor  

To learn more about C4-related dicarboxylate transporters in species evolutionarily related to maize, we 

identified the syntenic ortholog of ZmDCT2 in S. bicolor. Two genes, Sobic.007G226700 and 

Sobic.007G226800, are present at the predicted syntenic orthologous position on chromosome 7. We 

refer to them as SbDCT2.1 and SbDCT2.2, respectively (Figure 1). ZmDCT2 is abundantly expressed 

(Table 1), and its expression is enriched in BS cells of maize leaves (Figure 2) (Li et al., 2010; Tausta et al., 

2014; Ding et al., 2015). In contrast, the expression profiles of SbDCT2.1 and SbDCT2.2 in S. bicolor 

leaves are low (Table 1). SbDCT2.1  expression is slightly enriched in the M cells whereas SbDCT2.2 is 

enriched in BS cells (Figure 2). We also analyzed the transcript levels of two other S. bicolor 

dicarboxylate transporters, SbDCT1 (Sobic.002G233700) and SbOMT1 (Sobic.008G112300). These genes 

are the orthologs of the Z. mays genes ZmDCT1 (GRMZM2G040933) and Zm-oxoglutarate/malate 

transporter 1 (ZmOMT1; GRMZM2G383088), respectively. We found that SbDCT1 expression, similar to 

that of ZmDCT1, is relatively low (Table 1), and only slightly differentially expressed in M cells relative to 

BS cells (Figure 2). The expression of both ZmOMT1 and SbOMT1 is relatively high (Table 1), and both 

are slightly enriched in M cells (Figure 2).  

In C4 species, the expression of many photosynthetic genes is enriched in either BS and M cells (Li et al., 

2010; John et al., 2014; Tausta et al., 2014; Weissmann et al., 2015; Rao et al., 2016). In NADP-ME 

species, two transporters, one within the BS cells and another in M cells, move malate in and out of the 

chloroplast during C4 photosynthesis (Brautigam et al., 2008; Weissmann and Brutnell, 2012; John et al., 

2014; Tausta et al., 2014; Wang et al., 2014a). However, in sorghum leaves, we found only one highly 

expressed dicarboxylate transporter, SbOMT1, that showed slightly enriched expression in M cells. 

Therefore we screened the sorghum genome for additional homologs of known maize DCTs. We 

identified the gene Sobic.004G035500 that showed homology to ZmDCT1 and ZmDCT2 but was not 

syntenic to either gene (Figure 1). DCT3 is the name of the second transcript of ZmDCT2 (Taniguchi et al., 

2004), so we named this new gene SbDCT4. No syntenic ortholog of SbDCT4 is present in the reference 

genomes of Z. mays or Oryza sativa. The absence of syntenic conservation between S. bicolor and Z. 

mays and the lack of direct orthologs in Z. mays or C3 species prevented identification of DCT4 in a 
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previous bioinformatic screen for C4 photosynthesis genes (Huang et al., 2017). The expression of 

SbDCT4 is moderately abundant (Table 1) and strongly enriched in the BS cells of S. bicolor leaves (Figure 

2).  

SbDCT4 is an efficient malate transporter  

To verify the ability of SbDCT4 to transport malate, we cloned coding sequences from the three sorghum 

DCT genes, SbDCT1, SbDCT2, and SbDCT4. We measured the malate transport activities of the 

recombinant proteins expressed in yeast. SbDCT4 was an efficient malate transporter (Table 2). The Km 

of SbDCT4 was similar to that of SbDCT1, and the affinity for malate was highest in SbDCT2 among the 

three SbDCTs (Table 2), consistent with the relative malate transport activities reported for maize DCT1 

and DCT2 (Taniguchi et al., 2004).  

Phylogenetic distribution of DCT genes in grasses 

To understand the relationship of SbDCT4 to other grass DCT genes, we searched the genomes of the 

grass species Setaria italica, Urochloa fusca, Brachypodium distachyon, and Dichanthelium oligosanthes. 

In S. italica, an NADP-ME C4 species, we identified a dicarboxylate transporter, Seita.9G375100, that 

showed no syntenic orthologous relationship with dicarboxylate transporter genes in other available 

grass genomes. Phylogenetic analysis showed that this gene clustered with SbDCT4 but not with SbDCT1 

and SbDCT2 (Figure 3). We designated this gene SiDCT4. We did not detect orthologs, syntenic or 

otherwise, in U. fusca, a PEPCK C4 species, or in the two C3 species. To expand the search for DCT4 in 

other grasses currently lacking genome assemblies, we examined leaf-derived transcript assemblies for 

Aristida congesta, Eriachne aristidea, Chasmanthium laxum, Danthoniopsis dinteri, Anthephora pubensis, 

Echinochloa esculenta, Paspalum vaginatum, and Arundinella hirta (Huang et al., in preparation). We 

then used the predicted coding sequences of the DCT genes from available genomes and from the de 

novo leaf transcriptome assemblies to generate a phylogenetic tree of the DCT family. The resulting 

phylogeny shows that DCT4 transcripts form a distinct subclade from the DCT1 clade (Figure 3). The 

absence of DCT4 transcript expression does not rule out the existence of the gene in the genome. We 

also used polymerase chain reaction (PCR) to survey for DCT genes in the genomes of grass species for 

which whole-genome assemblies were not available. We designed conserved primers (non-degenerate 

or minimally degenerate) to small regions unique to each of the three DCT genes using PrimaClade 

(Gadberry et al., 2005). We detected DCT1 and DCT2 in the genomes of all species tested (Table 1, 
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Supplemental Figure 1). DCT4, however, was detected only in the genomes of NADP-ME C4 species of 

the PACMAD clade, excluding Z. mays (Table 1, Supplemental Figure 2). 

 

Expression of malate transporter genes in NADP-ME C4 grasses 

C3 species and U. fusca, a PEPCK C4 species, express both DCT1 and DCT2 at low levels in leaves (Table 1). 

C4 NADP-ME species of the PACMAD clade generally express one DCT gene in leaves at a high level and 

also express one or two other DCT genes at low levels (Table 1). We did not find an apparent lineage-

specific pattern for the expression of the predominant DCT gene in the NADP-ME species we analyzed. 

This finding is consistent with random evolutionary processes underlying the sub-functionalization of 

members of the DCT family. Interestingly, Z. mays is the only species we examined in which DCT2 is the 

predominantly expressed DCT gene (Table 1). We also examined the expression of the non-DCT malate 

transporter OMT1 gene in the leaves of grasses (Table 1). Interestingly, we found that while OMT1 

expression was generally abundant, there was no consistent pattern of relative expression between the 

DCT and OMT genes within the NADP-ME C4 species (Table 1).   

DISCUSSION 

Evolution of the DCT gene family in grasses 

We identified DCT4 as a new member of the DCT gene family in the grasses (Figure 1). Our analysis 

suggests that DCT4 is present in some C4 NADP-ME PACMAD grasses. DCT1 and DCT2 appear to have 

originated from a duplication of a single DCT gene after the monocot-eudicot split (Taniguchi et al., 

2004) and DCT4 arose from a duplication of DCT1 at the root of the PACMAD grasses  (Figure 3). The 

expression of DCT genes in the grasses that we analyzed exhibited no clear lineage-specific patterns 

(Table 1). Therefore, we propose that different members of the DCT family subfunctionalized for 

photosynthetic malate transport in the BS cells of C4 grasses of the PACMAD clade.     

This work also confirms the importance of including syntenic and expression data in assigning orthology 

across species, and of developing multiple models for C4 photosynthesis in the grasses. SiDCT4 was 

previously mis-annotated as the ortholog of DCT2 (John et al., 2014), likely because of the lower 

expression level of SiDCT2 (Seita.9G375100) in leaf tissue. The use of different malate transporters, for 

example, DCT4 in S. bicolor and S. italica, or DCT2 in Z. mays, suggests that multiple evolutionary paths 

resulted in the development of an active C4 NADP-ME photosynthetic cycle. It is interesting to note 
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common origins of C4 photosynthesis are often defined based on the predominant decarboxylase 

utilized, thus maize and sorghum are considered to have evolved from a common C4 ancestor.  This 

analysis suggests that rather than being static,  biochemical adaptations continued after the divergence 

of maize and sorghum lineages.  Thus, optimizations of C4 activities may be continuous as breeding 

pressures or climate change alters ecological niches of individual species.    

 

Various C4 subtype combinations have different transport requirements 

The variation of expression levels among the different malate transporters within each NADP-ME 

species (Table 1) suggests different transport requirements during C4 photosynthesis. This supposition is 

in agreement with the view that the three subtypes of C4 photosynthesis are mixed rather than exclusive 

(Hatch, 1971; Chapman and Hatch, 1979; Furbank, 2011; Pick et al., 2011; Wang et al., 2014b).  For 

example, Z. mays utilizes both the NADP-ME (75%) and PEPCK (25%) pathways to fix carbon (Chapman 

and Hatch, 1979; Wingler et al., 1999; Weissmann et al., 2015), and has similar expression levels of DCT2 

and OMT1 and low expression of DCT1. S. bicolor moves carbon through both malate and aspartate, 

although no PEPCK activity was detected in its leaves (Chapman and Hatch, 1979). S. bicolor has similar 

expression levels for  DCT4 and DCT1 and high expression of OMT1 (Table 1). Other grass species may 

have dicarboxylate transporter expression ratios that correspond to their unique combination of C4 

subsystems.  For example, OMT1 is highly expressed in U. fusca, ~3-7 fold higher than DCT2 or DCT1, 

respectively. OMT1 transports dicarboxylates, excluding those containing an amino group (Taniguchi et 

al., 2002; Taniguchi et al., 2004). Thus, in PEPCK C4 plants, OMT1 may move oxaloacetate into the 

mesophyll chloroplast, and 2-oxoglutarate out, to support the high production of aspartate needed to 

maintain the photosynthetic cycle (Rathnam and Edwards, 1977). Interestingly, both ZmOMT1 and 

SbOMT1 are only slightly differentially expressed in the M cells (Figure 2). As the loss of DCT2 in Z. mays 

prevents movement of malate into the BS chloroplast (Weissmann et al., 2015), OMT1 cannot be 

moving malate into the BS chloroplast alongside DCT2. But OMT1 may also have a role in organic acid 

metabolism in both cell types, such as shuttling reducing equivalents in organelles other than the 

chloroplast (Pleite et al., 2005). 

CONCLUSIONS 

Our results show that the newly identified member of the DCT gene family, SbDCT4, is an efficient 

malate transporter. Based on the expression patterns of malate transporters among the grasses, we 

suggest that different members of the DCT family may have evolved multiple roles in C4 photosynthesis. 
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Further studies will be needed to verify the subcellular localization of these proteins and to define their 

specific metabolic functions. Characterizing the various combinations of C4 photosynthetic subsystems in 

grasses will facilitate the exploitation of DCT genes, through breeding or engineering, to improve the 

performance of crop plants and increase yield. 

MATERIALS AND METHODS 

Identification of DCT4 genes in Sorghum and other grasses  

We used QUOTA-ALIGN (Tang et al., 2011) to identify syntenic orthologous regions in grass species with 

sequenced genomes, following the protocol described in (Zhang et al., 2017) . To find homologous genes 

at non-syntenic locations, we used two complementary approaches. For species with sequenced 

genomes, we used LASTZ (Harris, 2007) to align the coding sequence of the primary transcript annotated 

in Phytozome (https://phytozome.jgi.doe.gov) to the genome assembly. For species without assembled 

genomes, we used LASTZ to align the coding sequence of the primary transcript from Phytozome to 

transcript assemblies generated by Trinity (Grabherr et al., 2011). 

Measurements of malate transport  

We cloned each of the three SbDCT cDNAs between the promoter and terminator of yeast GAL2 in the 

pTV3e vector (Nishizawa et al., 1995). We transformed the plasmids into yeast LBY416 cells and selected 

transformants on tryptophan-deficient agar plates. We prepared a crude membrane fraction from the 

selected yeast transformants. We used a freeze-thaw technique to reconstitute liposomes for the 

measurement of the uptake of [
14

C]malate (Taniguchi et al., 2002). 

Phylogenetic analysis of DCT homologs  

DCT coding sequences for Z. mays, S. bicolor, S. italica, B. distachyon, O. sativa, D. oligosanthes, and U. 

fusca were from Phytozome (https://phytozome.jgi.doe.gov). We used BLASTN (Altschul et al., 1990) to 

search de novo assembled leaf transcriptomes (Huang, manuscript in preparation) from the C4 grass 

species A. congesta, E. aristidea, C. laxum, D. dinteri, A. pubensis, E. esculenta, P. vaginatum, and A. hirta 

with the DCT sequences from maize, Setaria, and Sorghum as queries. We used ProGraphMSA to 

generate a codon-based sequence alignment (Szalkowski, 2012). We used MEGA6 (Tamura et al., 2013), 

with default parameters and the branch support values based on 1,000 bootstraps, to generate the 

phylogenetic reconstruction with the maximum likelihood method and based on the nucleotides in the 

third position of codons (Simmons et al., 2006). 
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Analysis of gene expression for decarboxylase transporters in grasses 

For species with published leaf transcriptome profiles (Ouyang et al., 2007; Li et al., 2010; Zhang et al., 

2012; Schnable, 2014; Wang et al., 2014a; Studer et al., 2016), gene expression levels were calculated 

and normalized, for each species, as Transcripts Per Million (TPM). For the other species, the 

normalized TPM values were based on de novo transcriptome assemblies (Huang et al., manuscript in 

preparation). The values in Table 1 only allow for intraspecies comparisons among the decarboxylase 

transporters.  

Identification of DCT4 in species without sequenced genomes  

We aligned the coding sequences from each of the DCT genes from Z. mays, S. bicolor, S. italica, U. 

fusca, B. distachyon, O. sativa, D. oligosanthes, A. congesta, E. aristidea, C. laxum, D. dinteri, A. pubensis, 

E. esculenta, P. vaginatum, and A. hirta using PAL2NAL (Suyama et al., 2006). The resulting multiple 

sequence alignment enabled the design of non-degenerate or minimally degenerate PCR primers (Table 

3) using PrimaClade (Gadberry et al., 2005). 

Jacob D. Washburn and J. Chris Pires (University of Missouri, Columbia) kindly provided genomic DNA 

from A. congesta, E. aristidea, D. dinteri, A. pubensis, E. esculenta, and A. hirta (Washburn et al., 2015). 

We used a CTAB-based method to extract genomic DNA from C. laxum, P. vaginatum, Z. mays, S. bicolor, 

S. italica, and B. distachyon (Weissmann et al., 2015). Z. mays and B. distachyon were the negative 

controls for DCT4 and the positive controls for DCT1 and DCT2. S. bicolor and S. italica were the positive 

controls for DCT1, DCT2, and DCT4. 

We conducted amplification of DCT genes by PCR using a 25-μl reaction mix and an ABI 2720 Thermal 

cycler. The reaction mixture included 2.5 μl of 10X Buffer, 2.5 μl of 10 μM solutions of forward and 

reverse primers, 2 μl of 2.5 mM dNTP stock, 14 μl of nuclease-free water, 0.5 μl of Choice Taq enzyme, 

and 1 μl of 100 ng/μl DNA. We performed PCR reactions as described in Table 3 with 5 μl of loading dye 

added to each reaction. Aliquots of 13 μl were loaded on 3% agarose gels (Invitrogen UltraPure Agarose 

1000, 1X TAE buffer, Invitrogen SYBR Safe Gel Stain) and electrophoresed for 30 minutes at 100 volts. 

We based size estimates on 100bp and 50 bp DNA markers (GoldBio). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2019. ; https://doi.org/10.1101/762724doi: bioRxiv preprint 

https://doi.org/10.1101/762724
http://creativecommons.org/licenses/by/4.0/


 

 9

Table 1. Genomic presence or absence and whole leaf TPM values for dicarboxylate transporter genes in grass leaves
1
. 

 
Species Presence in genomic DNA  RNA-seq TPM values   Photosynthesis 

DCT1 DCT2 DCT4 DCT1 DCT4 DCT2 OMT1  

Brachypodium distachyon + + - 33 N/A 119 18 C
3
 

Oryza sativa + + - 16 N/A 11 101 C
3
 

Aristida congesta + + + 393 0 18 871 C4 NADP-ME 

Eriachne aristidea + + + 1348 0 89 874 C4 NADP-ME 

Chasmanthium laxum + + - 8 N/A 11 18 C
3
 

Danthoniopsis dinteri + + + 0 1555 123 305 C4 NADP-ME 

Anthephora pubensis + + + 1611 0 0 514 C4 NADP-ME 

Echinochloa esculenta + + + 1588 0 0 683 C4 NADP-ME 

Urochloa fusca + + - 50 N/A 86 344 C4 PEPCK 

Setaria italica + + + 29 658 41 328 C4 NADP-ME 

Dichanthelium oligosanthes + + - 11 N/A 13 13 C
3
 

Paspalum vaginatum + + + 591 666 0 354 C4 NADP-ME 

Arundinella hirta + + + 0 481 23 398 C4 NADP-ME 

Sorghum bicolor + + 

+ 

+ 126 229 0 
3
 

9 
4
 

483 C4 NADP-ME 

C4 NADP-ME 
2
 

Zea mays + + - 5 N/A 166 153 C4 NADP-ME + PEPCK 

 

1 
Note that interspecies comparison is not possible, because expression levels were normalized within each species. 

2
 Despite no PEPCK activity detected in Sorghum, carbon moves into the BS through aspartate (Chapman and Hatch, 1979).  

3
 SbDCT2.1 

4
 SbDCT2.2

.
C

C
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Table 2. Km of malate for recombinant DCT proteins
1
 demonstrates the ability of SbDCT4 to 

transport malate efficiently. 

Km (mM) 

 DCT1 DCT2 DCT4 

S. bicolor 1.24 ± 0.14 0.71 ± 0.10 1.13 ± 0.10 

Z. mays 
2
 1.1 ± 0.1 0.85 ± 0.44 N/A 

 

1
 The values are the means of three independent experiments ± SE. 

2 
Kinetic values from a previous report (Taniguchi et al., 2004). 
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Table 3. Primers and PCR conditions for the amplification of grass DCT genes. 

Primer Pair Forward 5’-3’ 
1 

Reverse 5’-3’ 
1 

Cycling Conditions 

DCT1 

 

 

CACCAACGAGGTCATCTGG AGTAGGTGGCGATDCGGTC 94°C 3 min, [94°C 45 sec, 

58°C 30 sec, 72°C 1 min] x 

30, 72°C 10 min, 4°C ∞. 

DCT2 CVTGGATGTCRAATTGTGTTG TGGCTTGCAAABADATAGTGAA 94°C 3 min, [94°C 45 sec, 

58°C-52°C (-0.5°C/cycle) 

30 sec, 72°C 1 min] x 14, 

[94°C 45 sec, 52°C 30 sec, 

72°C 1 min] x 16, 72°C 10 

min, 4°C ∞. 

DCT4 CTTYGTCAAGTGGCTCGG GACTTGATGATSGGCAGGA 94°C 3 min, [94°C 45 sec, 

60°C 30 sec, 72°C 1 min] x 

30, 72°C 10.0 min, 4°C ∞. 

1 
B = C+G+T, D = A+G+T, R = A+G, S = C+G, V = A+C+G, Y = C+T. 
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FIGURE LEGENDS 

Figure 1. CoGe (https://genomevolution.org/coge/) genome viewer screenshots depicting the 

conservation and genomic contexts of DCT genes in Z. mays and S. bicolor. Colored lines between panels 

show conserved genes. SbDCT4 shows high sequence conservation with other DCT genes, but is not a 

syntenic ortholog of ZmDCT2, as shown by the lack of conservation in neighboring genes.   

Figure 2. Differential expression of malate transporters in Z. mays, and S. bicolor leaves between the BS 

and M cells. The genome of Z. mays has one copy of DCT2 and does not contain DCT4, and ZmDCT2 is 

highly enriched in BS cells. Sorghum bicolor has two copies of DCT2 (DCT2.1, and DCT2.2) in the syntenic 

genomic location that are the result of gene duplication. S. bicolor also expresses DCT4, which is highly 

enriched in BS cells. Both species express OMT1 and DCT1, which are only slightly enriched in the M 

cells. Red bars represent enrichment in the BS cells. Blue bars represent enrichment in the M cells. The 

white numbers inside the bars represent the significance (p-value) of the log2(FoldChange). 

Figure 3. A phylogenetic tree of the DCT family in the grasses showing that DCT4 is a subclade of DCT1. 

The DCT1, DCT2, and DCT4 gene lineages are black, blue, and red, respectively. The length of the 

branches represents the evolutionary distance between ancestor to descendent nodes. The numbers 

represent the confidence level of the specific branch.  

Supplemental Figure 1. Gel image showing that DCT1 and DCT2 genes are present in all grass species 

tested. 

Supplemental Figure 2. Gel image showing the presence or absence of DCT4 genes from species lacking 

genome assemblies. Negative controls were Z. mays and B. distachyon, and positive controls were S. 

bicolor and S. italica. 
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