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Abstract

Understanding the molecular basis of adaptation to the environment is a central question in
evolutionary biology, yet linking detected signatures of positive selection to molecular
mechanisms remains challenging. Here we demonstrate that combining sequence-based
phylogenetic methods with structural information assists in making such mechanistic
interpretations on a genomic scale. Our integrative analysis shows that positively selected
sites tend to co-localise on protein structures and that positively selected clusters are found in
functionally important regions of proteins, indicating that positive selection can contravene the
well-known principle of evolutionary conservation of functionally important regions. This
unexpected finding, along with our discovery that positive selection acts on structural clusters,
opens new strategies for the development of better models of protein evolution. Remarkably,
proteins where we detect the strongest evidence of clustering belong to just two functional
groups: components of immune response and metabolic enzymes. This gives a coherent
picture of immune response and xenobiotic metabolism as the drivers of adaptive evolution of

mammals.
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Introduction

Over the course of evolution, the genomes of all organisms are shaped by the environment.
The results of this process can be observed by comparing evolutionarily related sequences
from different species: regions that code for essential cellular functions can remain unaltered
over hundreds of millions of years, while changing evolutionary pressures can lead to
emergence of new functions over very short evolutionary timescales. As a result, evolutionary
histories of sites in the genome hold information about their functional importance.
Functionally important regions are routinely identified by taking advantage of the fact that they
are highly conserved in evolution 2. Similarly, methods for detecting regions harbouring
adaptive changes have been developed to take advantage of the fact that rapid fixation of new
alleles is a hallmark of positive selection 34. Analyses of patterns of evolutionary change can
identify specific cases of adaptation as well as reveal general principles that guide evolution
5. Understanding evolutionary processes and distinguishing between neutral and adaptive

changes is therefore one of the key aims of modern evolutionary studies.

As most proteins have to maintain a specific three-dimensional shape to perform their function,
protein-coding genes exhibit particularly complex patterns of substitution. Biophysical
constraints restrict the allowed amino-acid substitutions and result in dependencies across the
entire protein sequence. While structural features can explain a significant proportion of
observed site-to-site rate variation ¢, previous studies have focused on evolutionary scenarios
where existing functions are maintained and little is known about the structural properties of

sites evolving under positive selection.

Present lack of understanding of structural aspects of adaptive evolution is particularly
surprising bearing in mind that many single-gene studies took advantage of protein structure
to assess the functional significance of positively selected sites identified from sequence data.
In the classic study of Hughes and Nei 7, positively selected residues in the MHC molecule

were found to cluster in the groove where pathogen-derived peptides are bound, supporting
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the hypothesis that rapid amino-acid substitutions at these sites tuned the ability to bind
peptides derived from pathogens. Similarly, positively selected sites in TRIM5a, a viral
restriction factor that can inhibit the cellular entry of HIV in non-human primates, are placed in
the region that mediates binding to the virus 8. In these studies, as in others (e.g. 9), proximity
of positively selected residues on the protein structure was used as corroborating evidence

and helped assign a molecular mechanism underlying detected adaptations.

As the amount of available genomic data increased, studies of positive selection in individual
proteins were followed by genome-wide positive selection scans '°-15. Such genomic scans,
using appropriately adapted statistical methodology 617, can identify which cellular processes
are primary targets of positive selection and generate testable hypotheses. However,
structural aspects of identified examples were largely neglected and so no coherent view of

how protein structure affects adaptive evolution has emerged from these investigations.

This is a significant gap in our understanding of evolution. Biophysical constraints restrict what
substitutions are allowed for protein function to be maintained and are also likely to limit the
emergence of adaptive changes in response to pressures from the environment, yet no
evolutionary theory predicts the structural properties of sites harbouring adaptive changes. It
is not established whether positive selection is more likely to act on protein sites where the
effect of mutations is the largest (e.g. enzyme catalytic sites or key interaction interfaces) or
regions where mutations likely have a smaller effect (e.g. allosteric regulation sites). Adaptive
changes are associated with rapid fixation of advantageous mutations, yet functional regions
are thought to be highly conserved in evolution. Contrasting these two principles leads to an

apparent paradox.

Here, we integrated structural information into evolutionary analyses in order to study the
properties of positively selected sites. We demonstrate that detailed mechanistic interpretation
of findings can be achieved on a genome-wide level, just as in the case of earlier studies of

individual proteins. In recent years, it has become apparent that structural data can be an
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96  orthogonal source of information that can serve to validate and augment findings in different
97  areas of genomics 8. Structural placement of sites of interest, such as those identified through
98 genome-wide sequence analyses, can be used to strengthen the confidence in findings —
99 clustering of sites indicates concerted function whereas unrelated sites are expected to be
100 more uniformly distributed in the structure. Recently developed methods based on clustering
101  of sites on protein structures have been successful in distinguishing causal and hitchhiking
102 mutations underlying genetic diseases '° and for identifying mutations with functional impact
103 in cancer 2023, Detailed information about the protein structure can similarly aid understanding

104  of molecular mechanisms underlying adaptation at detected sites.

105  To obtain a structurally-informed view of positive selection at the residue level, we developed
106  an approach combining a genome-wide scan for positive selection with structural information
107  (fig. 1a). We applied 3D clustering to detect genes with positively selected sites in a robust
108  manner that additionally allowed us to link identified cases to an underlying molecular
109  mechanism. We demonstrate that positively selected sites tend to occur close to one another
110  on protein structure and detect 20 high-confidence positively selected clusters (table 1).
111  Strikingly, we find that all but one of the identified cases are immune-related proteins or
112 metabolic enzymes. In both of these functional categories, interactions with dynamic
113 environmental parameters appear to have shaped the evolutionary histories of the genes
114  involved. By further analysing the placement of positively selected clusters, we find that
115  pervasive positive selection acts on regions that are typically highly conserved in evolution,
116  suggesting new strategies for the development of more accurate models of protein evolution

117  and methods for detecting positive selection.

118
119

120
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122 Figure 1. Positively selected residues tend to cluster together (a) Overview of the approach (b)
123 Distribution of w values in the dataset. With 97.6% of sites having w < 1 (indicating purifying selection),
124 and 2.4% with w =1, the mean of w across the entire dataset is 0.126. (c) QQ plot of p-value distribution
125 obtained from CLUMPS applied to positively selected sites at FDR of 0.05, 0.1, 0.2 and 0.5. If the
126 residues under positive selection were randomly distributed on protein structures, we would expect a
127 uniform distribution of p-values (grey line). The observed p-values are lower than would be expected
128 under the null hypothesis of random placement, indicating that positively selected sites tend to cluster
129  together.

130

131 Results

132  Identification of positive selection. In order to identify residues that were under positive
133 selection in mammalian evolution, we obtained coding sequences for Eutherian mammals
134  from Ensembl and phylogenetic trees from the Ensembl Compara database 24. 3D structures

135  corresponding to human proteins in our dataset were then downloaded from PDB 25 and
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136 mapped against protein sequences using the SIFTS resource 2. We aligned coding
137  sequences corresponding to each tree using the PRANK aligner 27 and used the Sir software
138  28to detect positively selected sites. The resulting dataset comprises 3,347 protein alignments
139  and covers 1,021,133 structure-mapped amino-acid sites. While the majority of sites evolve
140  under purifying selection (fig. 1b), consistent with both theoretical expectations and previous
141  empirical estimates '3, we identified 4,498 sites with strong evidence of positive selection
142  (FDR=0.05). We have made these results available as an online resource which allows for
143  displaying and downloading of the structure-mapped sitewise estimates of selective
144  constraint, as well as the underlying alignments and phylogenetic trees

145 (http://wwwdev.ebi.ac.uk/goldman-srv/sir/).

146  Detecting clustering of positively selected sites. To determine the degree of clustering of
147  positively selected sites, we applied a modification of the CLUMPS algorithm 2! to our
148  integrated dataset (see Methods). As the power to detect clustering is limited if very few
149  residues are considered, it is desirable to include as many sites with evidence of positive
150  selection as possible. At the same time, reducing the stringency in the detection of selection
151 by allowing a higher false discovery rate (FDR) can dilute the signal of clustering by including
152  more false positives. As it is not clear a priori what the tradeoff between these phenomena is
153 and at what threshold the power to detect clustering is maximised, we applied the chosen
154  clustering detection method separately to positively selected sites detected at different
155  stringency levels. In order to determine the degree to which positively-selected residues form
156  clusters on protein structures, we inspected the overall distribution of p-values obtained for
157  each protein from CLUMPS at four FDR thresholds at which positively selected sites were
158  detected (fig. 1c). We find a significant tendency for positively selected sites to cluster together
159  and this trend is maintained at each FDR threshold, indicating that our findings are robust to

160  how stringently positively selected sites are identified.
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161  Clusters of positively selected sites Having established that positively selected sites tend
162  tooccur close to one another on protein structures, we went on to select cases where evidence
163  for clustering is the strongest. Depending on the FDR threshold used to identify sites as
164  positively selected, between 35 and 52 proteins with clusters of positively selected residues
165  were detected (FDR of clustering <0.05), with substantial overlap between clusters detected
166  at different thresholds (suppl. fig. 2). For 22 proteins, clusters were identified at all four FDR
167  thresholds suggesting that these constitute the most robust findings. For these proteins, we
168 inspected the underlying alignments from which positively selected sites were identified.
169  Correlation on the sequence level can introduce clusters on the level of structure and for this
170  reason it is important to distinguish 3D clusters resulting purely from closeness of sites of
171  interestin the sequence. In all but two cases, we find that positively selected sites are identified
172 in regions of good alignment quality and that clusters of positively selected sites arise mostly
173 from residues that are not adjacent in the sequence and become close to each other only
174  once the protein is folded into its native conformation. The two cases where detected signature
175  of positive selection appears to result from a stretch of contiguous residues in a region of poor
176  alignment quality were rejected from further analysis. The remaining 20 proteins are
177  summarised in table 1. Remarkably, nine of them are immune-related proteins and ten are
178  metabolic enzymes. The remaining protein, nicastrin, is the substrate-recruiting component of
179  gamma-secretase 2°, a protein complex with catalytic activity and we therefore consider it

180  together with other enzymes.

181  Positive selection in proteins involved in immunity

182  Confirmation of validity of clustering approach Rapid evolutionary rates in genes involved
183  in both adaptive and innate branches of the immune system are a classic example of positive
184  selection 7830-32, Proteins where we identified positively-selected clusters (table 1) include
185 cases where positive selection has been documented previously, such as in HLA-DRB1 7,

186 CD1a 33, TLR4 33 and TfR, a protein which is known to have been hijacked by arenaviruses
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188 Figure 2. Clusters of positively selected sites in serpin B3 (a) Placement of positively selected sites
189  on the structure of serpin B3 (PDB 4zk0). (b) Mode of action of serpins shown using PDB structures
190 1k90 (top) and 1ezx (bottom) with the substrate shown in black and the RCL marked in blue. Regions
191 analogous to those where positively selected clusters were marked as in (a). Serpins function by binding
192 their target proteases using a reactive center loop (RCL) that mimics the protease substrate. They then
193  form a covalent bond with the protease and undergo a large conformational change resulting in the
194 protease being deformed and then acylated 35:36. We find that positively selected residues surround the
195 RCL and are also located on the opposite side of the protein to which the bound protease is dragged.

196

197  for facilitating cellular entry 34. Positively selected residues are located primarily in regions
198 involved in antigen binding, such as the structurally similar binding clefts of HLA-DRB1 and
199  CD1a (suppl. fig. 3-6). While these findings were reported previously, they give confidence in
200  the approach we applied here.

201  Novel findings of selection clusters We also identify cases where to our knowledge positive
202  selection has not been previously described: ficolin 2 (suppl. fig. 7; though positive selection
203  in the related ficolin-3 has been reported 37), complement component 5 (suppl. fig. 8),

204  complement component 8a (suppl. fig. 9), SIGLECS (suppl. fig. 10) and serpin B3 (fig. 2).
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205  The placement of positively selected sites in serpin B3 is particularly interesting as this protein
206  exhibits two clusters concentrated on the opposite poles of the protein (fig. 2a). Serpin B3
207  belongs to the serpin superfamily of protease inhibitors, though unlike most serpins it binds
208  cysteine rather than serine proteases. Serpins contribute to immunity by inhibiting proteases
209 secreted by bacteria. Serpin B3 inactivates leaked lysosomal cathepsins, inactivates
210  pathogen-derived cathepsins and is also thought to be involved in autoimmunity 38,
211  Comparison with other available structures of serpins reveals a remarkable correspondence
212 of these positively selected sites to the protease binding sites before and after the
213 conformational change that characterises the mode of action of serpins (fig. 2b). Furthermore,
214  thereis previous evidence that serpin B3 homologs have changed their substrate specificities
215  over the course of evolution consistent with the action of positive selection 3940, The presence
216  of two positively selected residue clusters at opposite poles of the protein implies that both
217  regions participate in the tuning of function. The importance of these regions in the proteolytic
218  function of serpins demonstrates that the positive selection we detect is likely to have

219  functional consequences.

220  Interactions with pathogens are known to be one of the dominant pressures shaping
221  mammalian evolution 2°. Our analysis adds mechanistic details to these findings: positively
222  selected clusters in proteins involved in host-pathogen interactions are placed in regions
223 directly mediating binding of pathogen-derived molecules. Binding of pathogen-derived
224 peptides by HLA and subsequent triggering of the immune response is a classic example of
225  this #'. Here we have identified further examples of similar mechanisms in components of both
226  innate and adaptive branches of the immune system. Interestingly, these include not only
227  proteins or protein-derived peptides but also lipids (CD1a) and lipopolysaccharides (TLR4).
228  Thisis true both when binding is facilitating the neutralisation of pathogens and, as in the case
229  of TfR, where host proteins are hijacked by a pathogen to facilitate cellular entry. These

230  scenarios are examples of high evolutionary rate being the result of an ‘arms race’ between
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231  host and pathogen. Such dynamics are predicted by the Red Queen hypothesis, which posits

232 that evolution is driven by inter-species competition 42,

233 Positive selection acting on metabolic enzymes

234  Cytochrome P450s Ten out of eleven remaining positively selected clusters are found in
235 enzymes. Three of the identified clusters of positively selected sites are in members of the
236  cytochrome P450 (CYP) superfamily (fig. 3). CYPs are the most important drug-metabolising
237  enzyme class, contributing to the metabolism of 90% of drugs as well as many other
238  xenobiotics such as pollutants. These liver enzymes catalyse monooxygenation reactions on
239  a wide range of small and large substrates. More than 50 CYPs have been identified in the

240  human genome but relatively few are known to have a role in drug metabolism 43.

241  Strikingly, all three of the CYPs where we identify positively selected clusters of residues are
242 known to be important for drug metabolism: CYP3A4 (fig. 3a-b) is the most promiscuous of all
243 CYPs, contributing to the metabolism of ~50% of marketed drugs, and CYP2C9 (fig. 3c-d) and
244  CYP2D6 (fig.3e-f) are also among the six principal CYPs thought to contribute the most to
245  drug metabolism 44, In our dataset, alignments containing the three CYPs mentioned before
246  also contain two further cytochrome P450 paralogs that are important for drug metabolism —
247  intotal 5 out of 6 enzymes thought to be responsible for the majority of cytochrome P450 drug

248  metabolism show evidence of positive selection.
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249

250  Figure 3. Positively selected residues in CYPs cluster in the substrate entry channel and
251 catalytic site Positively selected residues in (a, b) CYP3A4 (PDB 3tjs), (c, d) CYP2C9 (PDB 1r90) and
252 (e, f)y CYP2D6 (PDB 2f9qg). Hemes are shown coloured in dark grey, other ligands in blue. Additional
253 ligands were transferred from other PDB structures by superimposition: (a, b)
254  desthiazolylmethyloxycarbonyl ritonavir, ketoconazole (PDB 2vOm), erythromycin (PDB 2j0d). (c, d):
255  flurbiprofen (e, f) prinomastat (PDB: 3gm4). Specificity for the extraordinary diversity of substrates in
256  this enzyme superfamily is facilitated by a large, flexible binding pocket at the bottom of which heme is
257 located. In all three structures, the location of the positively selected residues tracks the binding of a
258 ligand, and in general can be found on the sides of helices and in loops that form the binding pocket.
259

260  Aldo-keto reductases We identified positively-selected clusters in two members of the 15
261  aldo-keto reductases (AKRs) present in human. Similarly to CYPs, AKRs are a family of highly
262  promiscuous enzymes that utilise NAD(P)(H) co-factors and can reduce a wide range of
263  substrates 45. AKRs are part of phase Il metabolism and can transform or detoxify both
264  endogenous and environmental aldehydes and ketones 46-48, Positively selected residues in

265  both AKRs cluster around the region where the substrate binds but not around the NADP+ co-
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266  factor (fig.4). This suggests that evolution has tuned substrate specificity while maintaining

267  binding to the cofactor.

268

269  Figure 4. Positively selected residues in AKRs surround the substrate binding site positively
270  selected residues in (a) AKR1B10 (PDB 1zua) and (b) AKR1C4 (PDB 2fvl). Tolrestat marked in blue,
271  NADP+ marked in dark grey. Positively selected residues in AKR1B10 cluster around the bound ligand
272  tolrestat, an inhibitor developed for diabetes treatment, but not around the NADP+ cofactor. The
273 structure of AKR1C4 has been solved without ligand but the positively selected residues cluster in a
274  similar region of the structure when compared to AKR1B10. As in the case of AKR1B10, there are no
275  positively selected residues in the neighbourhood of the NADP+ cofactor.

276

277  Other enzymes We also identified individual positively selected clusters in the members of
278  three other protein families involved in detoxification: glutathione S-transferase alpha 3 49-52,
279  carboxylesterase 1 5354 and sulfotransferase 2A1 5556, In all cases, positively selected sites

280  cluster around the active site of the enzyme where the substrate binds (fig. 5a-c).

281 In the remaining three cases, positively selected clusters are located in sub-domains that

282  interact with substrates. Adenylate kinase 5 (AK5) is a member of a family of enzymes
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283  important for maintaining the energetic balance in the cell by converting ADP into ATP 57.
284  Positively selected residues in AK5 fall in the lid sub-domain (fig. 5d) which has been shown
285 tohave arole in tuning the enzyme activity 8. The three positively selected sites that constitute
286  the positively selected cluster in AK5 flank a DD motif which is highly conserved in AK5 and
287  in other enzymes of the family. Experimentally mutating a residue homologous to V507, one
288  of the sites we have predicted, has been shown to have an effect on the enzyme’s kinetic
289  parameters %9, strongly suggesting that the positively selected sites we detect contribute to

290  enzyme specificity and kinetics.

291  Inthe case of oleoyl-ACP hydrolase (OLAH), an enzyme involved in controlling the distribution
292 of chain lengths of fatty acids, positively selected residues are located in the capping domain
293  that covers the substrate (fig. 5e). Detailed mutational data for OLAH is lacking but enzymes
294 of the same class have been shown to undergo changes of specificity in other species ©°.
295  Positively selected sites in nicastrin (suppl. fig. 11) are primarily located in the lid domain that
296  covers the substrate ¢!, and changes at positively selected sites in these enzymes are

297  therefore also consistent with positive selection acting to fine-tune enzymatic activity.

298  Pervasive positive selection in metabolic enzymes, similar to that experienced by immune-
299 related genes, may seem surprising. Although examples of episodic adaptation of enzymes in

300 specific lineages, particularly in primates, exist 6263, signatures of pervasive positive selection
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301

302  Figure 5. Positively selected residues in other enzymes (a) Positively selected sites in GSTA3 (PDB
303 1tdi). Glutathione shown in dark grey, delta-4-androstene-3-17-dione (blue) transferred by structure
304  superimposition from structure 2VCV. (b) Positively selected residues in sulfotransferase 2A1 (PDB
305 3f3y). Adenosine-3’-5’ diphosphate shown in dark grey, lithocholic acid shown in blue. (c) Positively
306  selected sites in carboxylesterase 1 (PDB 1mx1). Tacrine shown in blue. (d) Positively selected residues
307 in adenylate kinase 5 PDB (PDB 2bwj). (e) Positively selected sites in oleoyl-ACP hydrolase (PDB 4xjv).

308

309 were not previously thought to be common in enzymes. However, enzymes where we
310 identified positively selected clusters are involved in interactions with the environment and
311  share a number of other characteristics that make them plausible targets of positive selection.
312 Eight out of ten such enzymes we identified are involved in the catalysis of xenobiotics. Much
313  like parts of the immune system that directly interact with pathogens, these metabolic enzymes
314  form an interface with the environment and act as one line of defence. The diversification of

315 ~mammals involved adaptation to varied environments and new diets and as the environment
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316  in which they live and feed has changed, so did their exposure to toxins. This is likely to have

317  required widespread, repeated adaptive changes that we observe.
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319 Figure 6. Properties of positively selected sites (a) Distance of positively selected residues from
320 bound exogenous ligands. (b) The distribution of w as a function of distance from catalytic residues. (c)
321 Departures from the background amino acid frequencies in positively selected residues. (d) Distribution
322  of fraction of gene duplications in proteins with positively selected clusters.

323

324  Placement of positively-selected sites in relation to functional sites Having observed the
325 tendency of observed clusters to occur in the direct neighbourhood of bound ligands, we
326  sought to quantify this trend. For structures solved with exogenous ligands, we obtained the
327  distribution of distances for positively-selected residues and compared them to remaining

328 residues (fig. 6a). We find that positively selected residues are significantly closer to those
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329

330 ligands (mean distance 16.9A vs. 24.4A; P<2.2x10-16; Kolmogorov-Smirnov test),
331  confirming that positively-selected clusters tend to occur closer to bound ligands than would
332 be expected by chance and providing further evidence for positive selection acting to fine-tune

333  ligand binding.

334  We then investigated the overall distribution of w as a function of distance to catalytic sites,
335 using annotations from Catalytic Site Atlas 6. In proteins where we detected no evidence of
336  positive selection, purifying selection is the strongest in the neighbourhood of catalytic sites
337  and gradually relaxes with distance from them (fig. 6b). This trend is consistent with previous
338  studies of selective constraint where positive selection was not considered 6. However, in
339  cases where we detected positively selected sites we observed a very different distribution of
340  w, with a peak at 20A from the catalytic residues. In cases where we detected 10 or more
341  positively selected sites, this trend is even more pronounced, with the peak of w occurring at
342 14A from catalytic residues. The enrichment of positively selected residues and elevated
343  mean w in the neighbourhood of catalytic sites indicates that the action of positive selection

344  reshapes the selective constraint on the entire protein structure.

345  Properties of amino acids at positively selected sites As different regions of proteins are
346  known to have different amino-acid frequencies %67, we asked whether the positively selected
347  residues we detected exhibit a distinct amino acid distribution. For each protein class, we
348  calculated the change in amino acid frequency at positively selected sites compared to the
349  background frequencies (fig. 6¢). While the overall distributions of amino acids are very similar
350 in the different proteins classes (suppl. fig. 12), we observe differences in the distribution of
351 amino acids at positively selected sites compared to the background distribution (fig. 6¢). We
352  correlated these enrichment scores with common amino acid physicochemical properties

353  (size, hydrophabicity, net charge and polarity) but found no significant correlations (suppl.
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354  table 1), indicating that, while certain amino acids are preferred or avoided at positively

355 selected sites, these trends bear no straightforward relationship to amino acid properties.

356 The role of gene duplication events in adaptive evolution Gene duplications are thought
357 to be one of the main forces driving evolution, providing ‘raw material’ for evolutionary
358 innovations . While gene duplications events in themselves are frequently assumed to have
359  no effect on fitness, their retention can be evidence of adaptation . In order to quantify the
360 effect of duplication events in our dataset, we calculated the fraction of gene duplications (i.e.
361  the number of duplication nodes divided by the total number of nodes) for each phylogenetic
362  tree. We find that both in enzymes and in immune-related genes, the mean paralog fraction is
363  significantly larger than in other genes (0.342 and 0.276, respectively, compared to 0.0397 in

364 the remaining trees; fig. 6d). This trend is significant both in the case of immune proteins and

365 metabolic enzymes (P=0.015 and P=3.1x10"0, respectively; Kolmogorov-Smirnov test).
366 This elevated duplication rate in genes where we detected positively selected clusters is
367  consistent with positive selection acting not only on point mutations but also driving gene
368  duplication events to fixation. At the same time, some genes where we detected strong
369 evidence of adaptation (complement component 5, transferrin receptor 1, complement
370  component 8a, adenylate kinase 5 and nicastrin) have not undergone any gene duplications,

371  proving that rapid sitewise evolutionary rate and gene duplications can occur independently.

372 Discussion

373  Inthis study, we curated a dataset covering over one million structurally mapped sites in 3,347
374 mammalian proteins and assessed the placement of positively selected residues on their 3D
375  structures in an unbiased, genome-wide manner. We find that positively selected sites tend to
376  occur closer to each other in protein structures than is expected by chance and to form clusters
377  inthe neighbourhood of functionally important regions. Strikingly, proteins where we found the
378  strongest evidence for clustering of positively selected sites are primarily involved in two major

379  types of environmental responses: host-pathogen interactions and metabolism of xenobiotic
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380 compounds. The fact that we observe the strongest evidence of positive selection in these
381  types of proteins gives a coherent view of mammalian evolution being shaped by these two
382  majorinfluences from the environment. Clusters of positively selected sites we identified share
383  both functional and structural similarities and allow us to infer more general principles

384  underlying adaptive evolution.

385  Xenobiotic-metabolising enzymes are typically able to process a wide range of substrates.
386 Indeed, CYPs and AKRs, where we identified three and two positively selected clusters,
387  respectively, are among the most promiscuous known protein superfamilies. Promiscuous
388  enzymes are thought to be malleable in evolution, as they can maintain their original function
389  as well as acquire specificity for new substrates by going through a promiscuous intermediate
390  which can bind multiple substrates 0. The mechanisms by which enzymes acquire new
391 substrates has to date been primarily studied by directed evolution 7'-74, The examples we
392  have highlighted here provide direct evidence that similar scenarios are also common in

393 natural evolution.

394  Enzymes involved in xenobiotic metabolism are of great medical relevance, as in humans they
395 are responsible for metabolism of prescribed drugs. Traditional analyses of protein
396  conservation are frequently not suitable for the analysis of genes involved in xenobiotic
397  metabolism, as these tend to evolve rapidly and the analyses used do not explicitly distinguish
398  between neutral evolution and positive selection 75. Specific examples we have identified here
399  could be investigated further, for example by detailed mutational studies that have been shown

400  to augment statistical modelling of adaptive evolution 76.

401  Our study highlights the power of incorporating independent sources of information to
402  understand principles governing evolution. The clusters we detected consist of residues that
403  are distributed along the linear sequence of proteins and could not be found without
404  considering protein structure. Consideration of structural information has also allowed us to

405  better understand the mechanistic details of processes underlying adaptation in terms of
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406  specific structural and functional features. Information about structural placement of residues
407  can also help to address technical issues that have hindered methods for detecting positive
408  selection. Criticisms levelled at methods for detecting positive selection have revolved around
409 the non-neutrality of synonymous substitutions, local variation in synonymous substitution rate
410 778 and the influence of errors in alignment 882, These phenomena may cause false positives
411  in parts of a protein sequence, but none will result in clustering on protein structure. Structural
412  information can thus serve as an independent validation and a means of demonstrating that
413  observed patterns of positive selection are not a product of confounding factors. Structural
414  clusters can additionally be inspected post hoc for proximity to functional features to assess

415  their plausibility and aid interpretation.

416  The structural and functional similarities we identified here point towards common rules
417  governing the occurrence of pervasive positive selection. Positively selected metabolic
418 enzymes we described here share many structural and functional similarities: positively
419  selected clusters lie in close proximity to bound ligands, indicating that the primary mode in
420  which these enzymes adapt is by affecting residues in the direct neighbourhood of active sites.
421  This finding may seem to contradict the common assumption that functionally important
422  residues are conserved in evolution: for example, the finding that average evolutionary rate is
423  lowest in the neighbourhood of catalytic sites 6. However, this is only a superficial
424  disagreement: while functional regions evolve more slowly on average, this does not mean
425  that cannot harbour rapidly evolving, positively selected sites. Indeed, non-functional regions

426  cannot, by definition, undergo adaptive evolution.

427  As we demonstrate here, while functional regions of proteins are typically more conserved,
428  they can also exhibit a high evolutionary rate that is a hallmark of adaptive evolution. This
429  strongly suggests that instances where positive selection is operating can contradict overall
430  trends of protein evolution. For this reason, it may be counterproductive to incorporate known

431  correlates of evolutionary rate into statistical models for detecting positive selection. In
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432  contrast, the fact that positively selected residues can form clusters on protein structures could
433  inform the development of better methods for detecting positive selection. One of the ultimate
434  goals of evolutionary research is integrating evolution of sequence with structure in a general
435  model of protein evolution 884, Such a universal model of protein evolution has been elusive
436  so far, primarily because the most general approaches require an intractable number of
437  parameters. We would suggest that one way forward is to identify further universal
438  evolutionary trends and gradually incorporate them into mathematical models of protein

439  evolution.

440  We have demonstrated that analysing selective constraint in the context of structure can help
441  interpret findings and increase their robustness, but all approaches reliant on detailed
442  structural information are limited by the availability and coverage of crystal structures. We
443 hope that the results highlighted here and others we made available online in our web server
444  will assist experimental validation and further understanding of protein function and
445  adaptation. We aimed to establish the relationship between protein structure and the
446  occurrence of positive selection and this proof-of-principle study called for the highest-possible
447  quality data, but incorporating homology-based structural models would be a direct extension
448  to our approach. It is likely that the PDB database is currently biased towards certain protein
449  families which suggests that in future more examples of adaptation will be identified in protein
450  families where currently little or no structural information is available. Similarly, the analysis

451  performed here focused on mammals but could be extended to other clades.
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463 Methods

464 Genomic data

465  Coding sequences for mammalian genomes were downloaded from Ensembl 8, version 78.
466  Non-eutherian genomes (platypus, gray short-tailed opossum, wallaby and Tasmanian devil)
467  were excluded. Coding sequences for principal isoforms were used. Incomplete and stop

468 codons at ends of sequences were removed.

469  Phylogenetic data

470  The Compara database 8 provides gene trees for species stored in Ensembl. The Compara
471  pipeline generates trees containing up to 750 related genes which frequently results in multiple
472  paralogs being included in the same tree. Bearing in mind that selective constraint can be
473  estimated more accurately if more sequences are included, but that including more paralogs
474  can result in averaging over genes which may be under different constraints, we designed a
475  tree-splitting scheme to enable single-gene analysis. As we aimed to maximise the number of
476  orthologous sequences included in each alignment while minimising the number of paralogous
477  sequences, we quantified these criteria in different possible subtrees by calculating the
478  percentage of all species included (taxonomic coverage) and the total number of additional
479  genes for each species beyond the first gene per species (permitting calculation of the paralog
480 fraction). We required a taxonomic coverage of at least 60% and wished to minimise the
481 paralog fraction. To achieve this, starting from each human protein, the tree is traversed
482  towards the root until the desired taxonomic coverage was achieved. Then, the tree is
483  traversed further but only if this does not increase the paralog fraction. The final node of this

484  traversal process and all its descendant nodes then become a tree used for further analysis.
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485  Sequence alignment

486  Compara gene trees are reconstructed using principal isoforms and the same sequences were
487  used for alignment. The PRANK aligner 27 has been show to limit the number of false positive
488 identifications of positive selection compared to other commonly used aligners 828788, PRANK
489  was run in codon mode on sets of sequences corresponding to each Compara-derived tree

490  and with these trees used as guide trees.

491 Detecting positive selection

492  SLR 28 was used to obtain sitewise estimates of w within each alignment, using tree topologies
493  from Ensembl Compara and allowing branch lengths to be optimised by SLR. SLR implements
494  a statistical test for positive selection based on the rates of fixation of nonsynonymous and
495  synonymous mutations (w, or dN/dS). This measure is derived from neutral theory 89, which
496  provides a general framework for studying selective effects and allows for explicitly identifying
497  genomic regions that evolve under positive selection. If mutations that arise are deleterious,
498  they will undergo purifying selection and will be purged from a population, resulting in a low
499  observed evolutionary rate. Conversely, if mutations result in beneficial changes, they will be
500 rapidly driven to fixation. The ratio of fixation probabilities of nonsynonymous and synonymous
501  substitutions can thus be used to estimate the selective constraint acting on the protein level:
502 w = 1 indicates neutral evolution; w < 1 purifying selection; and w > 1 positive selection °1.
503  SLR implements the Goldman-Yang codon site model 92 similar to that in PAML 3. The main
504  difference between SLR and PAML is that SLR makes no assumption about the distribution of
505  w values over the sites of the alignment. SLR first estimates parameters of the phylogenetic
506  model for the entire alignment and then performs a likelihood ratio test between the optimal
507 w and w =1 for each site. P-values reported by SLR associated with each structure-mapped
508  site (see below) were then corrected for multiple testing using the Benjamini-Hochberg FDR

509 method 9.
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510  Structural data

511  PDB structures matching human proteins in the sequence dataset were downloaded from
512  PDBe 2. Structures covering fewer than 100 residues were excluded, and in cases where
513  more than one structure was available the one with the highest sequence similarity to the
514  protein sequence was chosen. In rare cases where more than one human protein with a
515  structure was present for an alignment, one was retained at random. Individual residues were
516  then mapped using the SIFTS database 2. SIFTS provides a mapping between PDB 25 and
517  UniProt ® sequences and, as the UniProt protein sequences can vary from those in Ensembl,
518 we performed an additional mapping step by constructing pairwise alignments between
519  UniProt and Ensembl sequences, resulting in a sitewise mapping between Ensembl and PDB
520  residues. The pairwise alignments were calculated using the Biopython % implementation of
521  the Smith-Waterman algorithm 6, using the scoring of 1 for matching characters and 0

522 otherwise, and gap opening and extension penalties of -10 and -0.5 respectively.

523  Clustering of positively selected sites

524  The degree of clustering of the positively selected sites within each protein structure was
525  assessed using the CLUMPS algorithm 2'. In CLUMPS, the degree of clustering for a set of
526  residues of interest is quantified by the sum of pairwise distances in 3D space. In contrast to
527  the original implementation, we used equal weights for all sites when calculating the pairwise
528  distances. For each set of residues, we then performed 100,000 Monte Carlo simulations
529  permuting the placement of sites by randomly selecting positions from the PDB chain, in order
530  to determine statistical significance of observed patterns. P-values resulting from this analysis

531  were then corrected for multiple comparisons using the Benjamini-Hochberg FDR method 9.

532  Statistical analyses were performed in the R environment 97,
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534  Tables
Gene Gene name Protein | PDB | PDB | Substrate/relevant ligand in Number of
symbol length sites | PDB pos. sel.
sites'

Immune-related proteins

HLA-DRBI major histocompatibility 266 | 1aqd 187 | endogenous peptide 16/19/21/25
complex, class Il, DR beta 1

FCN2 Ficolin 2 313 | 2j3f 217 | N-acetyl-D-galactosamine 6/9/10/13

SERPINB3 Serpin B3 390 | 4zk0 367 | - 24/26/31/42

TLR4 toll-like receptor 4 839 | 4g8a 601 | LPS, LP4 51/61/80/11

9
CD1A CD1a molecule 327 | 1ong 271 | sulfatide self-antigen 40/44/50/64
C5 Complement component 5 1676 | 3cu7 162 | - 28/37/53/89
5

C8A Complement component 8a 584 | 3ojy 478 | - 16/20/27/34

SIGLEC5 Sialic acid binding Ig-like 551 | 2zg1 208 | sialic acid 24/32/38/43
lectin 5

TFRC transferrin receptor 1 760 | 3s9l 638 | - 17/19/24/40

Metabolic enzymes

CYP2C9 Cytochrome P450, family 2, 490 | 1r9% 453 | flurbiprofen 29/30/35/40
member C9

CYP2D6 Cytochrome P450, family 2, 497 | 2f9q 454 | - 6/8/10/14
member D6

CYP3A4 Cytochrome P450, family 3, 503 | 3tjs 449 | desthiazolylmethyloxycarbonyl 22/27/33/41
member A4 ritonavir

AKR1B10 Aldo-keto reductase family 1, 316 | 1zua 316 | tolrestat 13/18/19/23
member B10

AKR1C4 Aldo-keto reductase family 1, 323 | 2fvl 323 | - 19/21/23/26
member C4

SULT2A1 Sulfotransferase family 2A 285 | 3f3y 282 | lithocholic acid 15/18/22/32
member 1

CES1 Carboxylesterase 1 568 | 1mx 532 | tacrine 12/16/19/31

1

GSTA3 Glutathione S-transferase 222 | 1tdi 218 | glutathione 11/13/16/20
alpha 3

OLAH Oleoyl-ACP hydrolase 318 | 4xjv 216 | - 8/12/18/24

AK5 Adenylate kinase 5 562 | 2bwj 195 | AMP 3/3/3/3

NCSTN Nicastrin 709 | 5a63 665 | phosphocholine 7/8/11/18

535 Table 1. Proteins with clusters of positively selected sites. Protein length refers to human orthologs.
536 "The number of positively selected sites is given at FDR thresholds of 0.05, 0.1, 0.2 and 0.5, respectively.
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