

1 **Individual Learning Phenotypes Drive Collective Cognition**

2

3 Chelsea N. Cook^{1*}, Natalie J. Lemanski², Thiago Mosqueiro², Cahit Ozturk¹, Jürgen
4 Gadau³, Noa Pinter-Wollman^{2◊}, Brian H. Smith^{1◊}

5

6 **Affiliations**

7 ¹ School of Life Sciences, Arizona State University, Tempe, USA

8 ² Department of Ecology and Evolutionary Biology, University of California Los Angeles,
9 Los Angeles, USA

10 ³ Institute for Evolution and Biodiversity, University of Münster, Münster, Germany

11 [◊]Co-Senior Authors

12 *Corresponding Author, cncook1@asu.edu

13

14 **Classification:** Major: Evolution, Minor: Ecology

15

16 **Keywords:** Collective Cognition, Collective Behavior, Learning, Latent Inhibition, Honey
17 Bees, Foraging

18

19 **Author Contributions:** CNC, TM, JG, NPW, BHS conceived of and helped design the
20 study. CNC, NJL, and TM analyzed the data. CNC and CO created the genetically
21 selected lines and CO maintained them. CNC carried out data collection and wrote the
22 first draft of the manuscript. CNC, TM, NJL, NPW, BHS discussed results. All authors
23 commented on the manuscript.

24

25 **This PDF includes:**

26 *Main Text*

27 Figures 1-4

28 *Supplemental Materials*

29 Figure S1

30 Tables S1 to S8

31

32 **Abstract**

33 Variation in cognition can influence how individuals respond to and communicate about
34 their environment, which may scale to shape how a collective solves a cognitive task.
35 However, few empirical examples of variation in collective cognition emerges from
36 variation in individual cognition exist. Here, we show that interactions among individuals
37 that differ in the performance of a cognitive task drives collective foraging behavior in
38 honey bee colonies by utilizing a naturally variable and heritable learning behavior
39 called latent inhibition (LI). We artificially selected two distinct phenotypes: high LI bees
40 that are better at ignoring previously unrewarding familiar stimuli, and low LI bees that
41 can learn previously unrewarding and novel stimuli equally well. We then provided
42 colonies composed of these distinct phenotypes with a choice between a familiar feeder
43 or a novel feeder. Colonies of high LI individuals preferred to visit familiar food locations,
44 while low LI colonies visited novel and familiar food locations equally. However, in
45 colonies of mixed learning phenotypes, the low LI bees showed a preference to visiting
46 familiar feeders, which contrasts with their behavior when in a uniform low LI group. We
47 show that the shift in feeder preference of low LI bees is driven by foragers of the high
48 LI phenotype dancing more intensely and attracting more followers. Our results reveal
49 that cognitive abilities of individuals and their interactions drive emergent collective
50 outcomes.

51

52 **Significance Statement:**

53 Variation in individual cognition affects how animals perceive their environment and which
54 information they share with others. Here we provide empirical evidence that how individual
55 honey bees learn contributes to collective cognition of a colony. By creating colonies of distinct
56 learning phenotypes, we evaluated how bees make foraging choices in the field. Colonies
57 containing individuals that learn to ignore unimportant information preferred familiar food
58 locations, however colonies of individuals that are unable to ignore familiar information visit
59 novel and familiar feeders equally. A 50/50 mix of these phenotypes prefer familiar food
60 locations, because individuals who learn the familiar location recruit nestmates by dancing more
61 intensely. Our results reveal that variation in individual cognition scales non-linearly to shape
62 collective outcomes.

63

64 **INTRODUCTION**

65 Collective behavior allows animals to undertake tasks that they could not
66 accomplish alone. Individuals utilize local information to adjust to ecological changes as
67 a collective. Local information is implicitly or explicitly communicated among group
68 members to form a collective response (1–3). Individuals within a group vary in their
69 cognitive abilities. Cognition at the individual level occurs when an organism perceives,
70 integrates, and utilizes acquired information. Collective cognition is a form of collective
71 behavior that emerges from the interactions among individuals working together to solve
72 a cognitive task that could not be accomplished as effectively at the individual level (1,
73 4). Many of the basic rules that explain collective behavior and cognition come from
74 theoretical models, which emphasize the importance of variation in perception and
75 cognition among individuals within a social group (5). For example, leaders can emerge
76 in computer simulations to guide uninformed group members to a resource. However,
77 both informed and uninformed individuals are needed to effectively move in the correct
78 direction (6). Although individual variation in responsiveness and cognitive ability is
79 recognized as critical for the emergence of collective cognition, empirical work on the
80 mechanisms by which variation in individual cognition and the interaction between these
81 different behavioral types scales to the collective are rare.

82

83 One way in which animals differ from one another in their cognitive abilities is the
84 way in which they perceive information (7). This perception may be driven by several
85 cognitive properties, including the ability to learn relevant information. This ability has
86 important ecological and evolutionary consequences(8). For example, learning is the
87 foundation of the evolution of aposematic coloration (9). Humans that are able to quickly
88 learn important information report increased productivity compared with individuals that
89 cannot focus on pertinent information (10–12). Naturally, collective groups of organisms
90 will consist of individuals that vary in how they learn information. Here we ask how
91 individual variation in learning shapes the way in which individuals learn and share
92 ecological information with group members to shape collective outcomes.

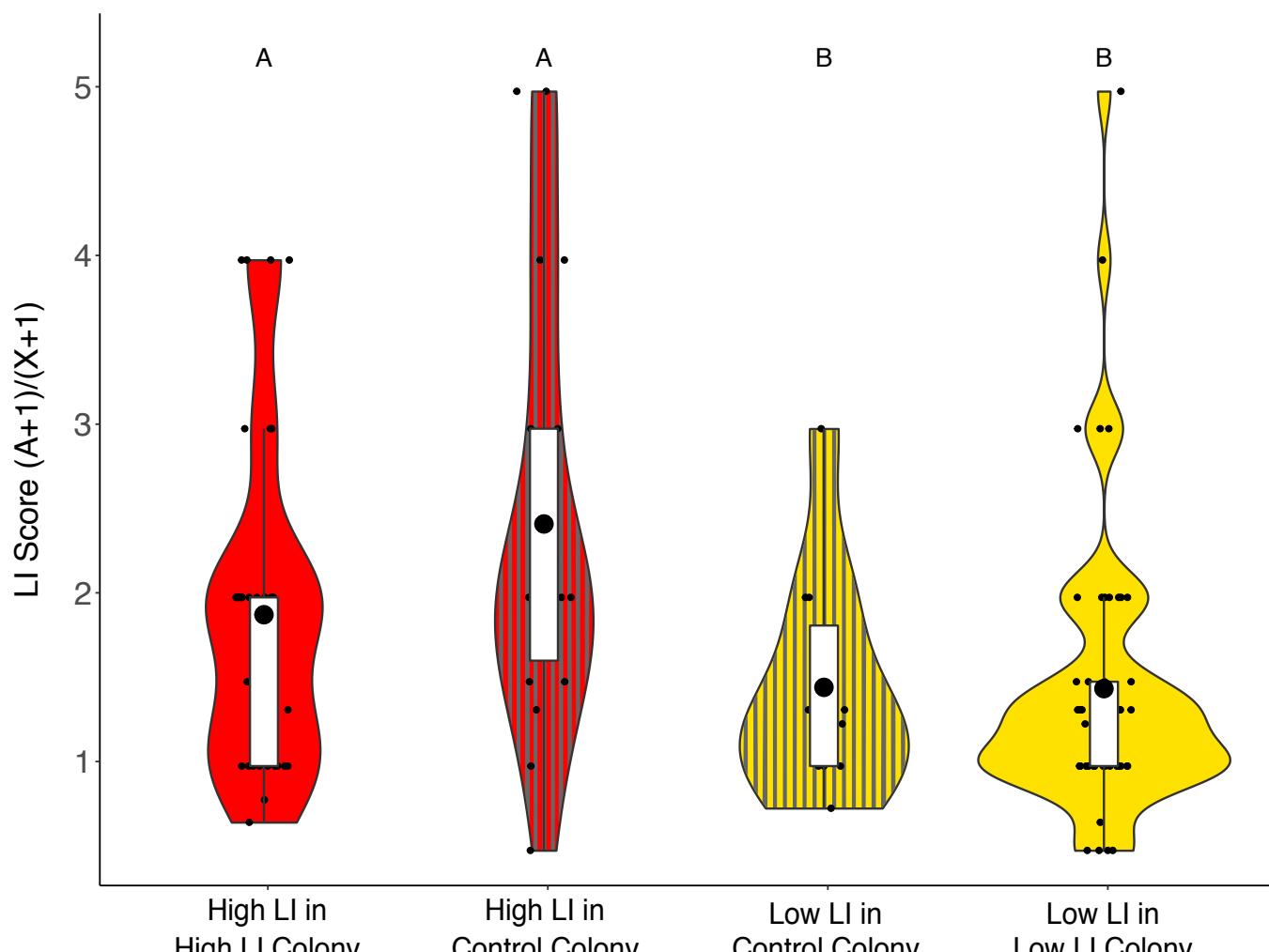
93

94 While foraging, honey bees (*Apis mellifera*) must learn various aspects about the
95 location of food sources, such as landmarks, odors, and direction (13–15). Honey bee
96 foragers then return to the colony to communicate this spatial information to colony
97 members at the nest via their recruitment dances(13). In the lab, honey bees exhibit
98 variation in their ability to learn to ignore unimportant information, such as unrewarding
99 odors, known as latent inhibition (16, 17). LI has been studied in vertebrates (18–22)
100 and is correlated with attention disorders in humans (10). LI is heritable in honey bees
101 (23). Foraging honey bees vary in their expression of LI; scouts tend to exhibit high LI
102 and ignore familiar odors, while recruits tend to exhibit low LI and learn familiar and
103 novel odors equally well (24). Despite our knowledge of variation among individuals in
104 latent inhibition (23, 25), and its effects on predator avoidance (18, 19, 26), it is
105 unknown whether or how this variation affects ecologically relevant decisions in social
106 systems.

107

108 We provide empirical evidence that the interaction of individuals that vary in their
109 cognitive abilities drives collective cognition. Using the genetic heritability of LI, we first
110 tested reproductive queen and drone honey bees to characterize their LI, then we
111 selected two distinct phenotypes from the reproductive individuals: high LI and low LI.
112 We then created genetic learning lines from singly inseminated queens by like
113 performing drones to produce two distinct lines of workers that exhibit similar LI to their
114 parents. First, we verify that the social environment of adult honey bees from selected
115 lines does not affect their LI phenotypes as foragers. We then created 24 colonies
116 composed of single cohorts of only low, only high, 50/50 mixed high and low LI workers,
117 as well as age-matched non-selected control bees. To compare collective foraging
118 behavior across these selected colonies, we placed them in semi-natural foraging
119 conditions, then evaluated the number of forager visits, first visits, and re-visits to the
120 familiar or novel food locations. To explore the mechanisms underlying how individual
121 variation in LI affects collective foraging, we quantified the round recruitment dance in 6
122 mixed colonies while the colonies visited novel and familiar feeders. These experiments
123 allowed us to simultaneously quantify how collectives vary in performing cognitive tasks

124 as a result of the composition of the individuals of that collective, as well as how
125 cognitively distinct individuals interact to shape collective outcomes.


126

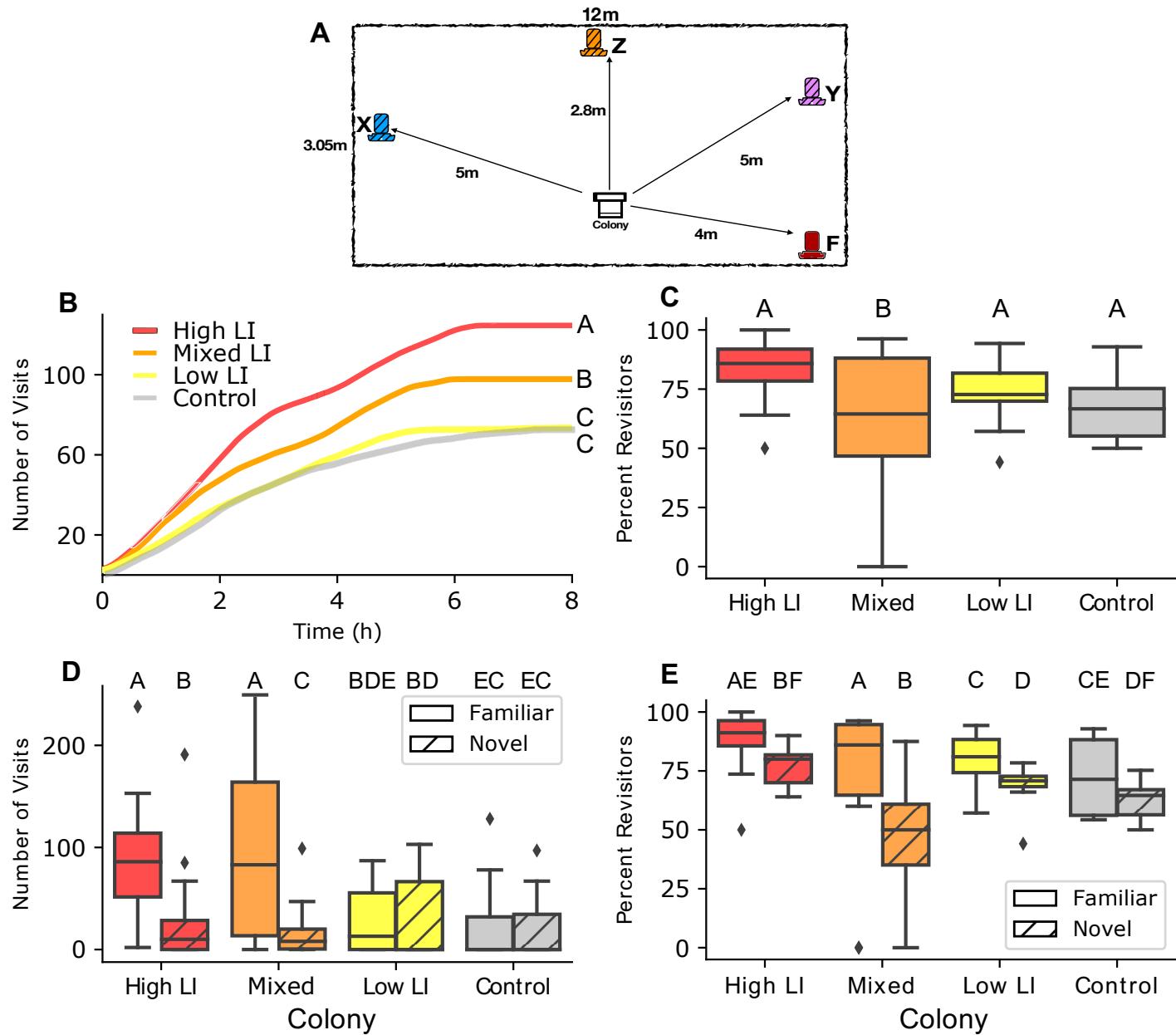
127

128 **RESULTS**

129 To ensure workers in different social environments exhibited the predicted
130 heritable LI phenotype, we evaluated the LI score of foragers after 21 days in either
131 their natal colony or a control colony. We marked 1000 individuals from each selected
132 line (high or low LI) on the day of emergence. We then placed 500 individuals back into
133 their natal colony and 500 individuals into an established control colony of equal size
134 with an open mated queen, i.e. workers with a variety of learning phenotypes. We
135 monitored the colonies until marked bees began to make foraging flights (~21 days). We
136 then collected marked foragers as they returned to the colony and brought them into the
137 laboratory to evaluate their LI. We avoided pollen foragers as they tend to exhibit
138 different learning behavior compared to nectar foragers(27). We found that foragers
139 retained the expected LI based on the LI of their parents, regardless of whether they
140 were housed with same or with variable learning phenotypes. Foragers from the high
141 and low lines differed in expression of LI as expected (GLM: $\chi^2 = 4.84$, df=1, p=0.027,
142 Figure 1). We did not detect an effect of the identity of the colony in which the bees
143 were housed on LI phenotype ($\chi^2 = 3.28$, df=2, p=0.193, Figure 1).

144

162 To determine how the learning phenotypes influenced colony-level foraging
163 behavior, we placed small single-cohort (same age bees) colonies into a flight cage and
164 monitored foraging activity. We evaluated 4 colony types each week: one control colony
165 consisting of approximately 1300 age-matched bees from open mated queens; one
166 colony consisting of 650 workers from high LI queens plus 650 age-matched control
167 bees; one colony consisting of 650 workers from low LI queens plus 650 aged-matched
168 control bees; and one 50/50 mixed colony with 325 workers from each LI line plus 650
169 aged-matched control bees. In the last 3 types, the supplemented 650 age-matched
170 bees from open mated queens were used to ensure a small but functioning colony as
171 we did not have enough workers from the single-drone-inseminated queens and
172 colonies of just 650 individuals would be too weak to forage. Honey bee division of labor
173 is largely influenced by worker age, so we used age-matched bees to remove any
174 influence that age may have on foraging propensity. On day 1, we trained bees to a
175 feeder inside the tent containing 1M sucrose and an odor, which became the 'familiar'
176 feeder. During the subsequent 3 days, in addition to the familiar feeder, we introduced a
177 single novel feeder each day with a different odor and color, but with the same sugar
178 concentration as the familiar feeder (Figure 2A). To evaluate the collective ability of the
179 colony to find a new feeder, we recorded the number of visits to each feeder by bees
180 from each selected line according to the color of paint on the bees' thorax. We further
181 marked bees with a feeder-specific color on their abdomen when they visited the feeder
182 for the first time to determine if bees revisited that feeder. We repeated this for 6 weeks
183 on 6 colonies for each group type.


184 Colony composition strongly influenced overall number of visits to the food
185 locations (N = 6 colonies in each line, 24 total, 6172 total visits; GLM: $\chi^2 = 1270$, df = 3,
186 p < 0.0001, Figure 2B). High LI colonies had significantly more visits to all food locations
187 compared to low LI colonies (Tukey post hoc: Z=25.5, p < 0.0001, Figure 2A), mixed
188 colonies (Z=5.18, p<0.0001), and controls (Z=26.6, p<0.0001). Mixed LI colonies also
189 had significantly more visits compared to low (Z=20.7, p < 0.0001) and controls (Z=21.8,
190 p<0.0001). Low LI and control colonies had the fewest total visits and were not
191 significantly different from each other (Z=-1.38, p=0.50).

192 Foraging in the high, low, and control colonies was largely performed by bees
193 revisiting the feeders. (GLM, $\chi^2 = 22.32$, df =3, $p < 0.0001$, Figure 2C). However, the
194 mixed LI colonies had a significantly lower proportion of revisiting foragers compared to
195 the low (Tukey post hoc: $Z = -4.2$, $p = 0.0002$), high ($Z = -3.1$, $p = 0.01$), and control colonies
196 ($Z = -3.33$, $p = 0.004$). We did not detect significant differences among the other colony
197 types (See Supplementary Table 3).

198 A colony's LI phenotype composition determined its preference between the
199 novel and familiar feeders (GLM: Feeder*Colony $\chi^2 = 473.64$, df=3, $p < 0.0001$; Figure
200 2D). High and mixed colonies preferred the familiar feeder over the novel one (Tukey
201 Posthoc: High Familiar:Novel: $Z = 20.2$, $p < 0.0001$; Mixed Familiar:Novel: $Z = 25.6$,
202 $p < 0.0001$). Low LI and control colonies did not show a strong preference for either
203 feeder, visiting them equally (Low Familiar:Novel: $Z = -1.24$, $p = 0.92$; Control
204 Familiar:Novel: $Z = 2.03$, $p = 0.46$). For full pairwise comparisons, see Supplementary
205 Table 4).

206 The number of re-visits to the novel and familiar feeders was different across
207 colony compositions (Figure 2E: Colony*Feeder $\chi^2 = 53.67$, $p < 0.0001$). All colonies had
208 a higher proportion of re-visits to the familiar feeder compared to the novel feeder.
209 However, the mixed LI colonies had a much lower proportion of re-visitation to the novel
210 feeders than the other colony types (Supplementary Table 5). Thus, new foragers in the
211 mixed colonies that visited the novel feeder were less likely to return to it compared to
212 foragers who visited the novel feeders in other colonies.

213

214

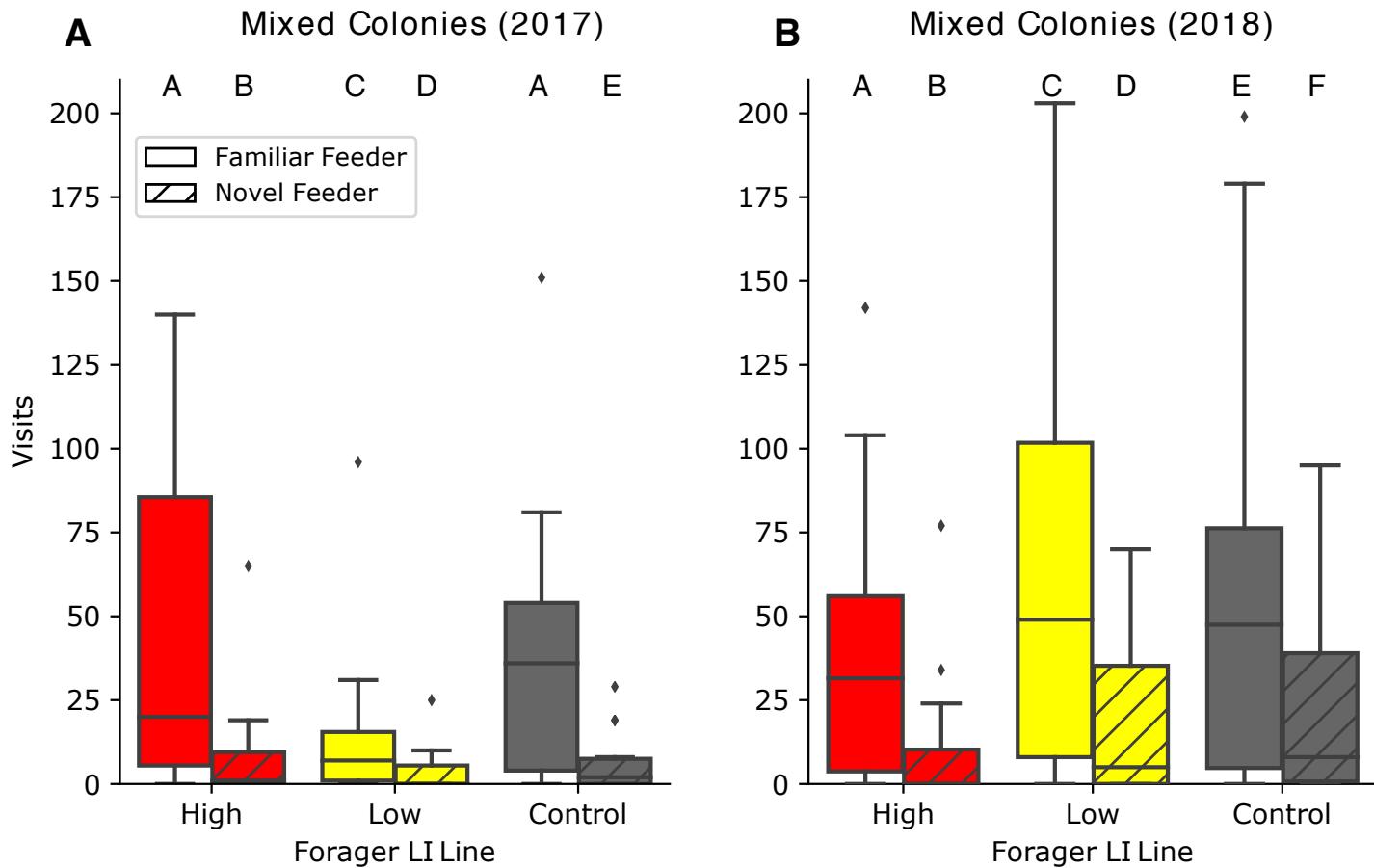
215 **Figure 2: Colonies constructed from different genetic lines selected for high or**
 216 **low latent inhibition exhibited differences in collective foraging behavior. (A)** The
 217 experimental set up illustrating the location of feeders in relation to the location of the
 218 colony (center, white) within the experimental arena (large rectangle). The familiar
 219 feeder (red) was provided on day 1 and on all subsequent days. Novel feeder X (blue)
 220 was presented on day 2, novel feeder Y (purple) on day 3, and novel feeder Z (orange)
 221 on day 4. See Supplementary Table 2 for associated odors. Visits to all novel feeders
 222 were combined for statistical analysis. (B) Cumulative number of visits of bees to all
 223 feeders over time by colony type. Different letters to the right of the lines indicate
 224 statistically significant differences according to a post hoc Tukey test. For further

225 illustration of visitation by each colony on each day, see Supplementary Figure 1. (C)
226 Percent of re-visits out of the total number of visits to all feeders by colony type. Here
227 and in all following panels, different letters above boxes indicate statistically significant
228 differences according to a post hoc Tukey test. (D) Number of all visits to the familiar
229 feeder (solid boxes) and a novel feeder (hatched boxes) for each type of colony, when
230 both novel and familiar feeders were presented simultaneously (days 2-4). (E) Percent
231 of re-visits out of the total number of visits to either the familiar or the novel feeder by
232 type of colony when both novel and familiar feeders were presented simultaneously
233 (days 2-4). In C, D and E, horizontal lines are the median, the boxes are the
234 interquartile range (IQR), whiskers extend to 1.5*IQR, and the small points beyond the
235 whiskers are outliers. N=24 colonies, 6 colonies per group type, 6172 total visits.
236

237 To determine why the mixed colonies showed a preference for the familiar feeder
238 (Figure 2D), we examined how individual lines visited each feeder (Figure 3). In 2017,
239 we tested mixed colonies placed in a flight cage. In 2018, we reselected lines and then
240 placed mixed colonies into two-frame observation hives to evaluate recruitment dances
241 along with visitation to the feeders in the flight cages. We found that there was a
242 significant year effect (Supplementary Table 6), likely due to reselection and different
243 environmental conditions. We therefore statistically analyzed each year separately to
244 focus on the within-year variation between the selected lines.

245 Low LI and control individuals shift their preference to the familiar feeder when
246 mixed with high LI bees. In 2017, we found a significant interaction between the
247 selected line and which feeder foragers visited (GLM: $\chi^2 = 7.79$, df=2, p=0.02; Figure
248 3A). Although low LI and control colonies did not show a preference to a novel or
249 familiar feeder when they had a uniform colony composition (Figure 2E), when mixed
250 with high LI individuals, low LI and control individuals exhibited a preference to the
251 familiar feeder (GLM: Low Familiar:Novel: Z=13.28, p<0.0001; Control Familiar:Novel:
252 Z=18.32, p<0.0001; Figure 3A). High LI individuals showed a preference to familiar
253 feeders (GLM: Familiar:Novel: Z=22.03, p<0.0001) just as colonies comprised of only
254 high LI individuals did (Figure 2E). We found a significant interaction between selected
255 line and feeder in 2018 (GLM: $\chi^2 = 85.27$, df=2, p<0.0001; Figure 3B), with low LI and
256 control individuals showing preference to the familiar feeder over the novel feeder
257 (GLM: Low Familiar:Novel: Z=25.05, p<0.0001; Control Familiar:Novel: Z=13.90,
258 p<0.0001; Figure 3B) similar to high LI individuals preferring the familiar feeders

259 (Familiar:Novel: $Z=18.48$, $p<0.0001$). For full contrasts from 2017 see Supplementary
260 Table 7, for 2018 see Supplementary Table 8.


261

262

263

264

265

266

267

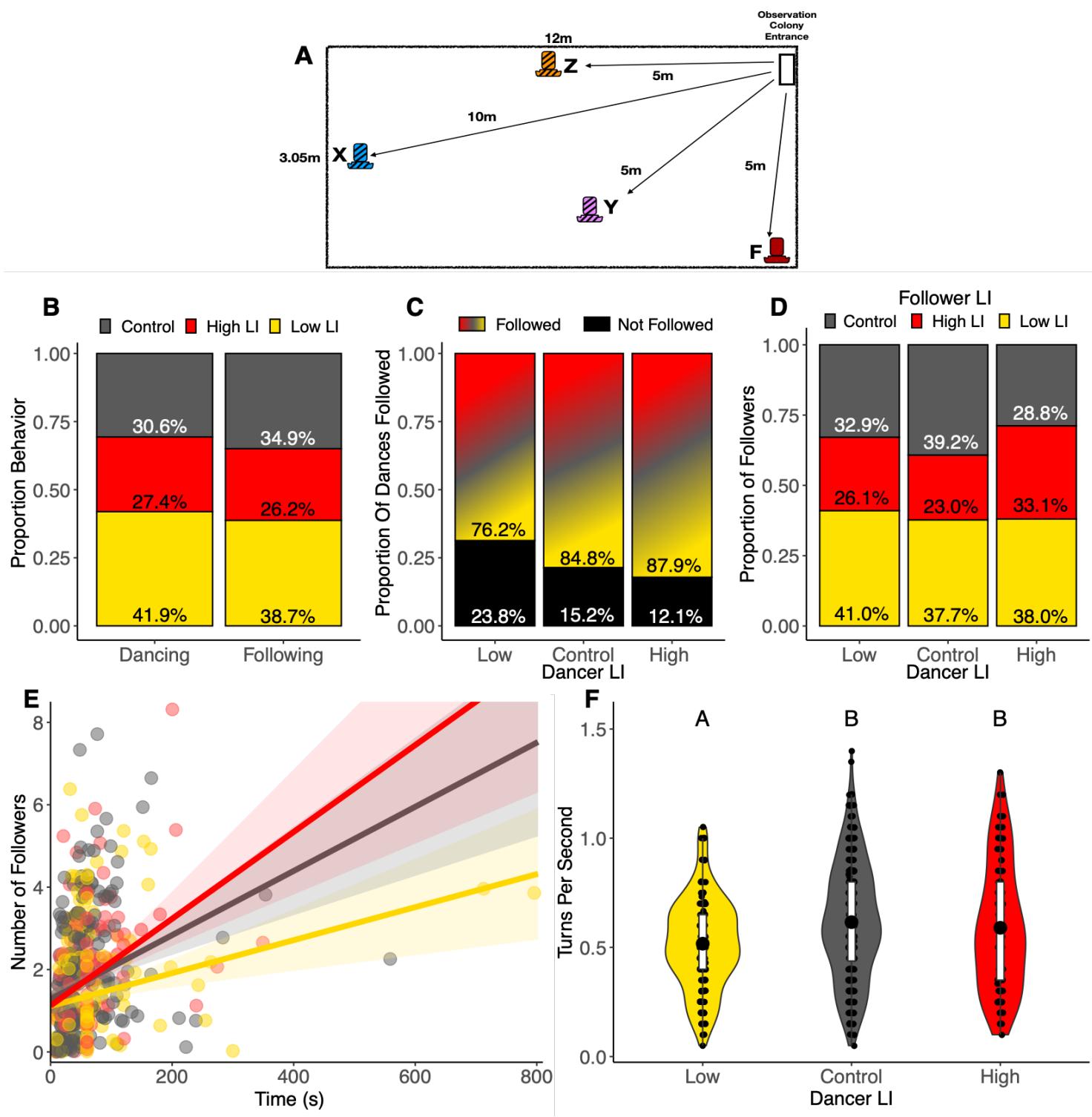
268

269 **Figure 3: Visits of individuals from different genetically selected lines when in a**
270 **mixed colony.** Daily visits to the familiar (solid) and novel (hatched) feeders by
271 individual bees in mixed colonies from low LI parents (yellow), high LI parents (red) or
272 open mated queens (grey) in (A) 2017, $N=6$ mixed colonies, 2347 overall visits and (B)
273 in mixed colonies from lines that were re-selected in 2018, $N=6$ colonies, 6272 overall
274 visits. The horizontal line in the box is the median, the box is 25-75% of the data,
275 whiskers represent 95% of the data, and diamonds show outliers beyond 95%. Different
276 letters above boxes indicate statistically significant differences according to a post hoc
277 Tukey test.

278

279

280 To uncover the behavioral mechanisms that underlie the switching of low LI
281 individuals from having no feeder preference when in a uniform colony composition to
282 preferring the familiar feeder when in a mixed colony, we examined the round dance,
283 the modified waggle dance used at short distances(28), of individuals from each
284 selected line in mixed colonies as they returned from foraging. Using observation hives
285 with glass walls, we video recorded bees performing the round dance to recruit other
286 individuals in the colony to forage. To determine which selected line recruited to each
287 feeder, we noted the selected line of the dancer (high or low LI) according to the paint
288 marks on the individuals' thorax and whether the dancer had visited a feeder according
289 to the paint marks on abdomens. We did not record dancers without abdominal marks
290 as they were likely collecting from and recruiting to unmonitored water sources. To
291 determine who the information about a feeder was communicated to, we counted the
292 number of followers of each dancer and the selected line of the followers. To quantify
293 the dance intensity, we recorded the duration of the dance, and the number of turns the
294 dancer made during the first 20 seconds of the dance.


295 Individuals from the lines differed in their likelihood to perform a round dance
296 (Chi-square test: $\chi^2=26.61$, df=2, p<0.0001; Figure 4B). Low LI individuals were
297 significantly more likely to perform a dance compared to high Li individuals (pairwise
298 chi-square test: p=0.0001) and controls (pairwise chi-squared test: p=0.004). High LI
299 individuals were just as likely to perform a dance as controls (p=0.36). Individuals
300 differed in their likelihood to follow a dance based on their selected line (Chi-square test:
301 $\chi^2=28.26$, df=2, p<0.0001; Figure 4B). Low LI individuals were significantly more likely
302 to follow a dance compared to high LI bees (pairwise chi-square test: p<0.0001) and
303 controls (pairwise chi-square test: p<0.003). High LI and control individuals were equally
304 likely to follow a dance (pairwise chi-square test: p=0.240).

305 Although the high LI individuals danced less often, high LI dances had
306 significantly more followers compared to low and control bees (Chi-square test: $\chi^2=$
307 13.93, df=2, p<0.001; Figure 4C). Low LI bees performed more dances that had no
308 followers compared to high LI and control dances. We did not detect a statistically
309 significant difference between the proportion of individuals from each line that followed

310 each line of dancer (Chi-square test: $\chi^2= 7.05$, df = 4, p= 0.13, Figure 4D). Low LI
311 individuals spent more time dancing; however they attracted fewer followers than high
312 and control dancers, indicated by the significant interaction between the LI of the dancer
313 and dance duration when predicting the number of followers (GLMM: $\chi^2= 6.42$, df=2,
314 p=0.04; Figure 4E).

315 The relative attraction of dances of high LI bees could be due to the intensity of
316 the dance. High LI bees performed more turns per second during their dances (ANOVA:
317 $\chi^2=12.8$, df=2, p=0.002; Figure 4F). High LI dancers performed an average of 0.59 turns
318 per second, significantly higher than low LI dancers, who performed an average of 0.52
319 turns per second (Tukey: t=-3.13, p=0.005). Control bees also performed more turns per
320 second than low LI bees (Tukey: t=-2.5, p=0.03), but not different than high LI bees, at
321 an average 0.62 turns per second (Tukey: t=-0.7, p=0.7).

322

323

324 **Figure 4: Recruitment dances facilitate integration of information from different**
 325 **genetically selected lines.** (A) The experimental set up illustrating the location of

326 feeders in relation to the location of the colony entrance (top right, white) within the

327 experimental arena (large rectangle). The familiar feeder (red) was provided on day 1

328 and on all subsequent days. Novel feeder X (blue) was presented on day 2, novel
329 feeder Y (purple) on day 3, and novel feeder Z (orange) on day 4. See supplementary
330 table 2 for associated odors. Visitation to novel feeders were combined for statistical
331 analysis. (B) Proportion of dances (N=667) or follows (N=1201) across 6 colonies
332 performed by bees from each line, relative to their abundance in the mixed colony (350
333 high, 350 low, 700 control). We accounted for the difference in abundance of each
334 selected line by dividing the number of observed control dancers by 2 before calculating
335 these proportions. (C) Proportion of dances performed per LI line type that were either
336 followed by at least one individual (colored) or not followed by any other bees (black).
337 (D) Proportion of dances by LI line type that were followed (from panel B) broken down
338 by LI of the follower. (E) Relationship between number of followers and duration of a
339 dance by line. Point and line colors indicate LI of dancer. Best fit line represents the
340 GLM, shaded area represents the 95% confidence interval. (F) Rate of turns per second
341 in a dance by line. The large black dot in the box is the mean, the box is 25-75% of the
342 data, whiskers represent 95% of the data. The violin shapes illustrate distribution of the
343 data. Different letters above violins indicate statistically significant differences according
344 to a post hoc Tukey test.

345

346

347 **DISCUSSION**

348 By combining techniques from experimental psychology and behavioral ecology,
349 we have developed a system for investigating how variation in individual learning
350 behavior drives collective cognition. We utilized this system to demonstrate that a
351 laboratory-selected heritable learning behavior with natural individual variation scales to
352 shape the collective performance of a honey bee colony on foraging tasks. In the lab,
353 high LI honey bees learn to ignore familiar odors that they experienced without
354 reinforcement, while readily learning novel odors. When a stimulus is rewarding, high LI
355 bees exhibit increased attention to that information. One interpretation of reduced
356 learning to a familiar, unrewarding, stimulus is that pre-exposure reduces attention to,
357 and thus associability of, that stimulus. This interpretation is an extension of conditioned
358 attention theory(29, 30), which proposes that latent inhibition is induced by allowing
359 animals to focus their attention on important information(30–32). Our observations of
360 field behavior of low and high LI individuals and colonies are consistent with this
361 interpretation, whereby high LI individuals have stronger attention capacities to food
362 compared to low LI individuals. Once high LI individuals have found a food location,

363 they continue to revisit it, 'attending' more strongly to reinforced feeders over new ones.
364 The increased impact of the resource on these bees could translate into stronger, more
365 vigorous dances. In contrast, low LI individuals learn and visit both known and new
366 feeders equally, dividing their attention across resources and acting more like generalist
367 foragers. In mixed colonies, this broadened attention by low LI individuals may therefore
368 make them the perfect audience for the high LI dancers, driving them to prefer feeders
369 that high LI individuals preferentially visit. Under natural conditions, where queens mate
370 with many different drones, most colonies would possess both types of learners,
371 perhaps more closely resembling our mixed colonies(33). Attention is critical for many
372 individual behaviors, including finding the correct mate or prey(34). We propose that this
373 diversity of 'attention' aspect of individual cognitive phenotypes may enhance the overall
374 efficacy with which a group finds and exploits resources(35). In summary, our work
375 indicates that individual cognition scales to shape the collective cognition of animals
376 solving critical ecologically relevant tasks.

377

378 **MATERIALS AND METHODS**

379 *Obtaining queens and drones*

380 To obtain queens for producing selected lines of a specific LI behavior, we
381 performed the LI assay as outlined in(23, 24) on mature virgin queens 10 days after
382 emergence. Briefly, we familiarized bees to an odor by puffing it at them 40 times every
383 5 minutes, then used the proboscis extension reflex to test their ability to learn to
384 associate a food reward to the familiar versus a novel odor. Tested queens were placed
385 into individually labelled queen cages and returned to a queenless colony until
386 insemination, which typically occurred within a week of testing. To obtain fertile drones,
387 we collected them from their returning unsuccessful mating flights at the entrance of
388 colonies. We placed them into cages overnight in a queenless colony for LI testing the
389 next day. After testing, drones were marked for individual identification and placed into a
390 cage and placed into a queen bank for no longer than 3 days until inseminations
391 occurred.

392

393 *Queen Inseminations*

394 We used instrumental insemination to inseminate a queen with sperm from a
395 single drone. We inseminated a high LI queen with a high LI drone, and a low LI queen
396 with a low LI drone(36, 37). LI varies across individuals. However, for this behavioral
397 selection, we used the highest and lowest LI scoring individuals to create the high and
398 low colonies, respectively. We then introduced queens to small queenless colonies,
399 then allowed the queens to produce workers for 1 month. Colonies were checked
400 weekly to eliminate the possibility of supersedure.

401

402 *Cohoused Worker Preparation and Testing*

403 To test the LI of foragers from each LI line, we placed frames of capped pupae
404 from 3 high and 3 low LI colonies into 34°C incubators for 18 hours. After 18 hours, we
405 used water based acrylic paint pens (Montana brand) to mark the abdomens of the
406 eclosed bees with a color indicating their natal colony. Half of the bees were then
407 returned to their natal colony and half were placed into an established control colony of
408 an open-mated queen. Fewer bees were recovered from the established colony as

409 many are recognized as non-nestmates and rejected. After 2 weeks, colonies were
410 monitored every day until marked bees began to forage, ~21 days after emergence.
411 Returning nectar foragers were collected and tested for LI.

412

413 *Field Colony Experimental Setup*

414 To explore the colony-level foraging behavior of the LI lines, we set up 4
415 treatment colonies for each of the colony types: a high LI colony, a low LI colony, a
416 50/50 mixed colony, and a control. We ran weekly field experiments for 6 weeks. For
417 ease of identification, we always marked individuals from high LI colonies red, orange,
418 and pink, and individuals from low LI colonies green, blue, yellow, and white. We
419 continued to mark emerging bees from the same frames until we had 650 bees to form
420 a colony, which took typically 2-3 days. To achieve relatively normal conditions for
421 typical honey bee behavior, we supplemented workers from an unselected colony
422 (control bees), who were not marked. For colony set up, see Supplementary Table 1.
423 Bees were then placed into 4 different treatment colonies consisting of ~1300 bees:
424 high plus controls, low plus controls, 50/50 mixed high/low plus controls, and only
425 control colony. Bees were provided a honeycomb and remained inside for 5 days before
426 being placed for field experimentation. We then placed nucleus colonies into outdoor
427 flight cages (3.05m x 12m) and replaced the honeycomb frame with an empty frame to
428 induce foraging the night before the experiment. Water was provided as needed. We
429 ran high, low, mixed, and control colonies concurrently in 4 different tents.

430 We used a familiar and novel feeder foraging assay to characterize colony level
431 foraging behavior(38) . We placed a feeder with 1M sucrose on Day 1, which remained
432 in the same location all week and became the 'familiar' feeder (Figure 2). We then
433 placed one novel feeder in different locations each day (Day 2 (X), Day 3 (Y), and Day 4
434 (Z)). Feeders had unique colors and unique odors and remained consistent throughout
435 the experiment (Supplementary Table 2).

436

437

438 *Mixed Colony Round Dance Preparation and Data Collection*

439 To evaluate round dance behavior of each of the selected lines, we created 6
440 50/50 mixed colonies as detailed above. To induce foraging behavior, we placed the
441 colonies in a climate controlled indoor room for 10 days to allow bees to age which
442 increases foraging behavior. After 10 days, we then placed all bees from each colony
443 into a two-frame observation hive with glass walls. All comb surfaces were visible. We
444 video recorded round dance behavior using a Panasonic HC-WXF991K, starting the
445 recording 15 minutes before feeders were placed in the flight cage. For distances from
446 the colony entrance, see figure 4A. We followed the same feeder placement pattern
447 across 4 days, from Monday to Thursday, in Figure 4A. Round dance data was then
448 extracted visually from watching videos. We recorded the LI line of the dancer according
449 to the color marking on her thorax color, the feeder she visited according to the color
450 mark on her abdomen (which also distinguished her as having visited a feeder),
451 duration of the round dance, the LI line of the round dance followers, and the number of
452 turns in a dance during the first 20 s of the dance, or less if the dance ended before 20 s
453 elapsed. As the feeders were less than 12 m away from the colony, bees performed
454 round dances which lack distinct 'runs' and often have incomplete turns. Video watchers
455 were blind to the thorax and abdomen color associations between LI line and feeder
456 visitation, respectively.

457

458 *Data Analysis Methods*

459 To test whether bees exhibited a similar LI score as their parents regardless of
460 where they were housed after emergence, we used a generalized linear model. We
461 used LI score as the response variable, which fit a log-linear distribution, so we used a
462 gaussian family with a log link. Our fixed predictor variables were the line from which the
463 bees originated (high or low) and the colony type that they were placed in after
464 emergence (either their natal colony or a control colony).

465 To evaluate the effect of colony composition on colony-level foraging behavior to
466 novel and familiar feeders, we performed a general linear model with a gaussian error
467 distribution on number of visits, with line and feeder as fixed predictor variables, as well
468 as the interaction between line and feeder. We performed a generalized linear model
469 with a binomial error distribution with a logit link function on percent revisitation, as it

470 was a proportion comparing the number of revisits divided by the total number of visits.
471 Line and feeder were fixed predictor variables, as well as the interaction between the
472 line and feeder.

473 To explore whether the selected LI line of a forager bee influenced which feeder
474 it visited while in the mixed colony, we used a general linear model with a gaussian
475 error distribution on number of visits, with year, selected line and feeder as a fixed
476 predictor variables, as well as the interactions between these three. We did find a
477 significant three-way interaction between year, selected line, and feeder, which we
478 present in Supplementary Table 6. Therefore, we treat years independently and
479 performed two different GLMs with selected line and feeder as our fixed predictor
480 variables, as the workers from the different years came from a new set of selected
481 queens and drones, colonies were in nucleus Langstroth hive boxes in 2017 but were
482 placed in observation colonies in 2018, as well as differences in weather.

483 To compare the round dance behavior among the selected lines, we examined
484 the effect of dancer selected line on the duration of the round dance, intensity of
485 dancing, number of turns by dancers, and number of followers of each dance using
486 generalized linear models. To analyze whether the duration of the round dance differed
487 across the learning lines, the duration of the round dance response variable fit a log-
488 normal distribution, so we used a generalized linear mixed model with a gaussian family
489 and a log link. The LI of the dancer was our fixed predictor variable. To evaluate which
490 lines attracted more dancers, we used a chi-square test to compare the proportion of
491 dances that attracted no followers across the lines. To evaluate whether there were
492 differences in the number of turns the dancers from each line performed, we used a
493 linear mixed model because the response variable - the number of turns per second,
494 was normally distributed. Finally, we used a negative binomial mixed regression model
495 using the package MASS(39) to understand how duration of a dance and the LI of the
496 dancer interacted to predict the number of followers. 159 dances out of 908 total dances
497 had no followers, requiring a zero-inflated model approach. We analyzed only bees that
498 had paint marks on their abdomens, ensuring that they had visited a feeder.

499 We used an Analysis of Deviance Wald chi-square test using the function Anova
500 in the MASS(39) package to further evaluate the overall effect of each fixed predictor

501 variable and interaction. We used the lme4 package(40) to perform these tests unless
502 otherwise noted. Post hoc tests were performed to determine the relationships between
503 the different levels of fixed predictor variables and their interactions using the package
504 emmeans(41). We use R(42) for analysis.

505

506 **Data Availability:** Data will be available on FigShare and code will be available on
507 Github upon publication. Data and code available upon request by reviewers.

508

509 **Ethical Compliance:** Honey bees (*Apis mellifera*) were used in this study. Queens
510 (reproductive females) and drones (males) were behaviorally selected using lab assays
511 to create selected lines of colonies. Worker honey bees (non-reproductive females)
512 were tested in the field. All colonies were kept with typical honey bee practices. There
513 was no ethics committee involved in approving the animal husbandry protocol.

514

515 **Acknowledgements:** We thank S. Ohrt, E Sezen, N Kulkarni, and A Phillips for help
516 with data collection. We thank C. Kwapich and D. Charbonneau for comments on drafts
517 of this manuscript. This grant was funded by NIH NIGMS R01GM113967 to BHS, JG, &
518 NPW, and NIH NIGMS F32GM126728 to CNC.

519

520 **Competing Interests:** The authors declare no competing financial interests

521

522

523

524

525

526

527

528

529

530

531

532 **REFERENCES**

533

- 534 1. D. J. Sumpter, *Collective animal behavior* (Princeton University Press, 2010).
- 535 2. S. Camazine, *et al.*, *Self-organization in biological systems* (Princeton university press, 2003).
- 536 3. I. D. Couzin, J. Krause, “Self-Organization and Collective Behavior in Vertebrates” in *Advances in*
537 *the Study of Behavior*, (Elsevier, 2003), pp. 1–75.
- 538 4. I. D. Couzin, Collective cognition in animal groups. *Trends Cogn. Sci.* **13**, 36–43 (2009).
- 539 5. M. del Mar Delgado, *et al.*, The importance of individual variation in the dynamics of animal
540 collective movements. *Philos. Trans. R. Soc. B Biol. Sci.* **373**, 20170008 (2018).
- 541 6. I. D. Couzin, *et al.*, Democratic Consensus in Animal Groups. *334*, 4 (2011).
- 542 7. A. Sih, M. Del Giudice, Linking behavioural syndromes and cognition: a behavioural ecology
543 perspective. *Philos. Trans. R. Soc. B Biol. Sci.* **367**, 2762–2772 (2012).
- 544 8. R. Dukas, *Cognitive ecology: the evolutionary ecology of information processing and decision*
545 *making* (University of Chicago Press, 1998).
- 546 9. C. Ten Cate, C. Rowe, Biases in signal evolution: learning makes a difference. *Trends Ecol. Evol.* **22**,
547 380–387 (2007).
- 548 10. R. Schachar, *et al.*, Restraint and Cancellation: Multiple Inhibition Deficits in Attention Deficit
549 Hyperactivity Disorder. *J. Abnorm. Child Psychol.* **35**, 229–238 (2007).
- 550 11. P. Dayan, S. Kakade, P. R. Montague, Learning and selective attention. *Nat. Neurosci.* **3**, 1218–1223
551 (2000).
- 552 12. C. J. Mitchell, M. E. Le Pelley, *Attention and associative learning: From brain to behaviour* (Oxford
553 University Press, USA, 2010).
- 554 13. K. Von Frisch, L. E. Chadwick, *The dance language and orientation of bees* (Belknap Press of
555 Harvard University Press Cambridge, MA, 1967).
- 556 14. T. D. Seeley, A. S. Mikheyev, G. J. Pagano, Dancing bees tune both duration and rate of waggle-run
557 production in relation to nectar-source profitability. *J. Comp. Physiol. A* **186**, 813–819 (2000).
- 558 15. J. C. Biesmeijer, T. D. Seeley, The use of waggle dance information by honey bees throughout their
559 foraging careers. *Behav. Ecol. Sociobiol.* **59**, 133–142 (2005).
- 560 16. C. I. Abramson, M. E. Bitterman, Latent inhibition in honeybees. *Anim. Learing Behav.* **14**, 184–189
561 (1986).
- 562 17. H. J. Ferguson, S. Cobey, B. H. Smith, Sensitivity to a change in reward is heritable in the honeybee,
563 *Apis mellifera*. *Anim. Behav.* **61**, 527–534 (2001).

564 18. M. D. Mitchell, M. I. McCormick, M. C. O. Ferrari, D. P. Chivers, Friend or foe? The role of latent
565 inhibition in predator and non-predator labelling by coral reef fishes. *Anim. Cogn.* **14**, 707–714
566 (2011).

567 19. M. C. O. Ferrari, D. P. Chivers, Latent inhibition of predator recognition by embryonic amphibians.
568 *Biol. Lett.* **5**, 160–162 (2009).

569 20. R. E. Lubow, Latent inhibition. *Psychol. Bull.* **79**, 398 (1973).

570 21. R. E. Lubow, Latent inhibition as a measure of learned inattention: some problems and solutions.
571 *Behav. Brain Res.* **88**, 75–83 (1997).

572 22. R. E. Lubow, Latent inhibition: Effects of frequency of nonreinforced pre-exposure of the CS. *J.*
573 *Comp. Physiol. Psychol.* **60**, 454–457 (1965).

574 23. S. B. C. Chandra, J. S. Hosler, B. H. Smith, Heritable variation for latent inhibition and its correlation
575 with reversal learning in honeybees (*Apis mellifera*). *J. Comp. Psychol.* **114**, 86–97 (2000).

576 24. C. N. Cook, *et al.*, Individual differences in learning and biogenic amine levels influence the
577 behavioural division between foraging honeybee scouts and recruits. *J. Anim. Ecol.* **88**, 236–246
578 (2018).

579 25. C. Brandes, R. Menzel, Common mechanisms in proboscis extension conditioning and visual
580 learning revealed by genetic selection in honeybees (*Apis mellifera*). *J. Comp. Physiol. A* **166**, 545–
581 552 (1990).

582 26. M. C. O. Ferrari, D. P. Chivers, Learning about non-predators and safe places: the forgotten elements
583 of risk assessment. *Anim. Cogn.* **14**, 309–316 (2011).

584 27. J. S. Latshaw, B. H. Smith, Heritable variation in learning performance affects foraging preferences
585 in the honey bee (*Apis mellifera*). *Behav. Ecol. Sociobiol.* **58**, 200–207 (2005).

586 28. K. D. Waddington, Honey bee foraging profitability and round dance correlates. *J. Comp. Physiol.*
587 **148**, 297–301 (1982).

588 29. P. I. Pavlov, Conditioned reflexes: an investigation of the physiological activity of the cerebral
589 cortex. *Ann. Neurosci.* **17**, 136 (1927).

590 30. R. E. Lubow, I. Weiner, P. Schnur, “Conditioned Attention Theory” in *The Psychology of Learning*
591 and *Motivation: Advances in Research and Theory.*, (Academic Press, 1981), pp. 1–49.

592 31. S. J. Gershman, D. M. Blei, Y. Niv, Context, learning, and extinction. *Psychol. Rev.* **117**, 197–209
593 (2010).

594 32. R. E. Lubow, *Latent inhibition and conditioned attention theory* (Cambridge University Press, 1989).

595 33. H. R. Mattila, K. M. Burke, T. D. Seeley, Genetic diversity within honeybee colonies increases signal
596 production by waggle-dancing foragers. *Proc. R. Soc. B Biol. Sci.* **275**, 809–816 (2008).

597 34. R. Dukas, Behavioural and ecological consequences of limited attention. *Philos. Trans. R. Soc. Lond.*
598 *B. Biol. Sci.* **357**, 1539–1547 (2002).

599 35. T. T. Hills, P. M. Todd, D. Lazer, A. D. Redish, I. D. Couzin, Exploration versus exploitation in
600 space, mind, and society. *Trends Cogn. Sci.* **19**, 46–54 (2015).

601 36. S. W. Cobey, D. R. Tarpy, J. Woyke, Standard methods for instrumental insemination of *Apis*
602 *mellifera* queens. *J. Apic. Res.* **52**, 1–18 (2013).

603 37. J. R. Harbo, “Propagation and instrumental insemination” in *Bee Breeding and Genetics*, Rinderer
604 T.E., (Academic Press, Inc, 1986), pp. 361–389.

605 38. Z. S. Liang, *et al.*, Molecular Determinants of Scouting Behavior in Honey Bees. *Science* **335**, 1225–
606 1228 (2012).

607 39. B. Ripley, *et al.*, Package ‘mass.’ *Cran R* (2013).

608 40. D. Bates, M. Maechler, B. Bolker, S. Walker, lme4: Linear mixed-effects models using Eigen and S4.
609 *R Package Version 1*, 1–23 (2014).

610 41. R. Lenth, M. R. Lenth, Package ‘lsmeans.’ *Am. Stat.* **34**, 216–221 (2018).

611 42. R. C. Team, R: A language and environment for statistical computing (2018).

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631 **SUPPMEMTARY MATERIALS - Individual Learning Phenotypes Drive Collective**

632 **Cognition**

633 Chelsea N. Cook^{1*}, Natalie J. Lemanski², Thiago Mosqueiro², Jürgen Gadau³, Cahit Ozturk¹,
634 Noa Pinter-Wollman^{2†}, Brian H. Smith^{1†}

635

636 **Affiliations**

637 ¹ School of Life Sciences, Arizona State University, Tempe, USA

638 ² Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los
639 Angeles, USA

640 ³ Institute for Evolution and Biodiversity, University of Münster, Münster, Germany

641 [†]Co-Senior Authors

642 *Corresponding Author, cncook1@asu.edu

643

644

645

646

647

648

649

650

651

652

653

654

655

656

Learning Line	Colony Type			
	High	Low	Mix	Control
High LI	650	0	325	0
Low LI	0	650	325	0
Control	650	650	650	1300
Totals	1300	1300	1300	1300

657 Table S1: The number of honey bees in each experimental colony by genetic line. Each of

658 the 4 created colonies were set up in this way each week. We counted and marked the thorax

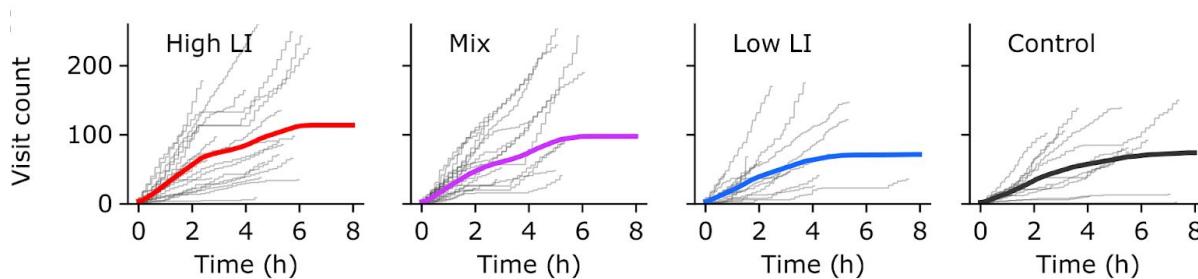
659 each bee from the learning lines, and counted but did not mark supplemental control bees.

660

Day	Feeder Treatment	Odor Added to Feeder	Color of Feeder
Day 1	Familiar	Hexanol	Red
Day 2	Familiar + X	Hexanol + Octanone	Red + Blue
Day 3	Familiar + Y	Hexanol + Geraniol	Red + Pink

Day 4	Familiar + Z	Hexanol + Citranol	Red + Orange
-------	--------------	-----------------------	--------------

661


662 **Table S2: The weekly routine of feeder characteristics and placement.** Each feeder had 1M
663 sucrose solution. Color, odor, and location respectively varied by feeder. The treatment
664 sequence was the same each week.

665

666

667

668

669

670

671 **Figure S1: The cumulative visitation to all feeders over time, averaged across days.** The
672 thick colored line is the average, and the gray stepwise lines are visitation on a single day by a
673 single colony. Colored lines are the same data shown in Figure 2B.

674

675

676

contrast	estimate	SE	df	z.ratio	p.value
control - high	0.082	0.084	Inf	0.969	0.767

control - low	-0.065	0.099	Inf	-0.659	0.912
control - mix	0.293	0.088	Inf	3.336	0.005
high - low	-0.147	0.082	Inf	-1.798	0.274
high - mix	0.212	0.068	Inf	3.103	0.010
low - mix	0.358	0.085	Inf	4.198	0.000

677

678 Table S3: A table of the pairwise post hoc tests of how LI line predicts percent revisititation to all
679 feeders, referenced in figure 2C.

680

681

contrast	estimate	SE	df	z.ratio	p.value
constant,control - novel,control	0.163	0.080	Inf	2.031	0.461
constant,control - constant,high	-1.363	0.061	Inf	-22.431	0.000
constant,control - novel,high	-0.249	0.072	Inf	-3.437	0.014
constant,control - constant,low	-0.214	0.073	Inf	-2.931	0.067
constant,control - novel,low	-0.298	0.072	Inf	-4.162	0.001
constant,control - constant,mix	-1.467	0.060	Inf	-24.393	0.000
constant,control - novel,mix	0.219	0.081	Inf	2.701	0.122
novel,control - constant,high	-1.526	0.065	Inf	-23.508	0.000
novel,control - novel,high	-0.411	0.076	Inf	-5.421	0.000
novel,control - constant,low	-0.376	0.076	Inf	-4.925	0.000

novel,control - novel,low	-0.460	0.075	Inf	-6.129	0.000
novel,control - constant,mix	-1.630	0.064	Inf	-25.338	0.000
novel,control - novel,mix	0.057	0.084	Inf	0.675	0.998
constant,high - novel,high	1.115	0.055	Inf	20.194	0.000
constant,high - constant,low	1.150	0.056	Inf	20.555	0.000
constant,high - novel,low	1.065	0.054	Inf	19.661	0.000
constant,high - constant,mix	-0.104	0.038	Inf	-2.756	0.106
constant,high - novel,mix	1.583	0.066	Inf	23.818	0.000
novel,high - constant,low	0.035	0.068	Inf	0.512	1.000
novel,high - novel,low	-0.049	0.067	Inf	-0.736	0.996
novel,high - constant,mix	-1.219	0.055	Inf	-22.358	0.000
novel,high - novel,mix	0.468	0.077	Inf	6.066	0.000
constant,low - novel,low	-0.084	0.068	Inf	-1.248	0.918
constant,low - constant,mix	-1.254	0.055	Inf	-22.690	0.000
constant,low - novel,mix	0.433	0.078	Inf	5.574	0.000
novel,low - constant,mix	-1.170	0.053	Inf	-21.864	0.000
novel,low - novel,mix	0.517	0.076	Inf	6.767	0.000
constant,mix - novel,mix	1.687	0.066	Inf	25.604	0.000

682 Table S4: A table of the pairwise post hoc tests of how the Line*Feeder interaction predicts
683 number of visits, which corresponds to letters in figure 2D.

684

contrast	estimate	SE	df	z.ratio	p.value
control,constant - high,constant	0.251	0.127	Inf	1.975	0.499
control,constant - low,constant	-0.150	0.151	Inf	-0.996	0.975
control,constant - mix,constant	0.523	0.132	Inf	3.958	0.002
control,constant - control,novel	-0.972	0.147	Inf	-6.635	0.000
control,constant - high,novel	-1.256	0.127	Inf	-9.913	0.000
control,constant - low,novel	-0.881	0.141	Inf	-6.231	0.000
control,constant - mix,novel	-1.394	0.135	Inf	-10.311	0.000
high,constant - low,constant	-0.402	0.125	Inf	-3.208	0.029
high,constant - mix,constant	0.272	0.102	Inf	2.669	0.132
high,constant - control,novel	-1.223	0.120	Inf	-10.209	0.000
high,constant - high,novel	-1.507	0.095	Inf	-15.937	0.000
high,constant - low,novel	-1.133	0.114	Inf	-9.972	0.000
high,constant - mix,novel	-1.645	0.106	Inf	-15.566	0.000
low,constant - mix,constant	0.673	0.130	Inf	5.174	0.000
low,constant - control,novel	-0.822	0.145	Inf	-5.679	0.000
low,constant - high,novel	-1.105	0.125	Inf	-8.873	0.000
low,constant - low,novel	-0.731	0.140	Inf	-5.238	0.000
low,constant - mix,novel	-1.244	0.133	Inf	-9.335	0.000

mix,constant - control,novel	-1.495	0.125	Inf	-11.964	0.000
mix,constant - high,novel	-1.778	0.101	Inf	-17.615	0.000
mix,constant - low,novel	-1.404	0.119	Inf	-11.803	0.000
mix,constant - mix,novel	-1.917	0.111	Inf	-17.197	0.000
control,novel - high,novel	-0.284	0.119	Inf	-2.380	0.251
control,novel - low,novel	0.091	0.135	Inf	0.673	0.998
control,novel - mix,novel	-0.422	0.128	Inf	-3.291	0.022
high,novel - low,novel	0.374	0.113	Inf	3.316	0.021
high,novel - mix,novel	-0.138	0.105	Inf	-1.317	0.893
low,novel - mix,novel	-0.513	0.122	Inf	-4.189	0.001

686 Table S5: A table of the pairwise post hoc tests of how the Line*Feeder interaction predicts
687 percent revisit, which corresponds to letters in figure 2E.

688

689

690

	LR Chisq	Df	Pr(>Chisq)
BeeType	100.073	2.000	0.000
Feeder	2196.156	1.000	0.000
Year	479.995	1.000	0.000
BeeType:Feeder	47.718	2.000	0.000
BeeType:Year	498.209	2.000	0.000
Feeder:Year	61.341	1.000	0.000
BeeType:Feeder:Year	31.492	2.000	0.000

691

692 Table S6: **Individual visitation by bee type differed across two experimental years.** GLM
693 results showing the three-way interaction between year and the type of bee visiting a feeder
694 (Figure 3). There is likely a difference in year because of several reasons, including 1) Colonies
695 were selected from different queens from different breeders in 2017 and 2018 and climactic
696 conditions were different in 2017 compared to 2018 even though experiments were done in the
697 same time frame (June-July in 2017, June in 2018).

698

699

contrast	estimate	SE	df	z.ratio	p.value
control,familiar - high,familiar	-0.220	0.054	Inf	-4.102	0.001
control,familiar - low,familiar	0.624	0.068	Inf	9.210	0.000
control,familiar - control,novel	1.387	0.076	Inf	18.320	0.000
control,familiar - high,novel	1.425	0.077	Inf	18.564	0.000
control,familiar - low,novel	1.986	0.095	Inf	20.794	0.000
high,familiar - low,familiar	0.844	0.065	Inf	12.916	0.000
high,familiar - control,novel	1.607	0.074	Inf	21.841	0.000
high,familiar - high,novel	1.645	0.075	Inf	22.033	0.000
high,familiar - low,novel	2.206	0.094	Inf	23.512	0.000
low,familiar - control,novel	0.763	0.084	Inf	9.049	0.000
low,familiar - high,novel	0.801	0.085	Inf	9.394	0.000

low,familiar - low,novel	1.362	0.102	Inf	13.290	0.000
control,novel - high,novel	0.038	0.092	Inf	0.413	0.998
control,novel - low,novel	0.599	0.108	Inf	5.546	0.000
high,novel - low,novel	0.561	0.109	Inf	5.159	0.000

700 Table S7: A table of the pairwise GLM contrasts of how the Line*Feeder interaction predicts
701 number of visits by each line in the mixed colonies in 2017, which corresponds to letters in
702 figure 3A.

703

704

705

706

contrast	estimate	SE	df	z.ratio	p.value
control,familiar - high,familiar	0.389	0.043	Inf	8.949	0.000
control,familiar - low,familiar	-0.227	0.037	Inf	-6.117	0.000
control,familiar - control,novel	0.567	0.041	Inf	13.904	0.000
control,familiar - high,novel	1.451	0.054	Inf	26.775	0.000
control,familiar - low,novel	0.827	0.044	Inf	18.827	0.000
high,familiar - low,familiar	-0.616	0.042	Inf	-14.779	0.000
high,familiar - control,novel	0.178	0.045	Inf	3.947	0.001
high,familiar - high,novel	1.062	0.057	Inf	18.485	0.000

high,familiar - low,novel	0.438	0.048	Inf	9.140	0.000
low,familiar - control,novel	0.793	0.039	Inf	20.441	0.000
low,familiar - high,novel	1.678	0.053	Inf	31.807	0.000
low,familiar - low,novel	1.053	0.042	Inf	25.015	0.000
control,novel - high,novel	0.884	0.055	Inf	15.959	0.000
control,novel - low,novel	0.260	0.045	Inf	5.725	0.000
high,novel - low,novel	-0.625	0.058	Inf	-10.810	0.000

707 Table S8: A table of the pairwise GLM contrasts of how the Line*Feeder interaction predicts

708 number of visits by each line in the mixed colonies in 2018, which corresponds to letters in

709 figure 3B.

710