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14  Abstract

15  Summary: Microbial metabolism mediates fundamental transformations of chemistry
16  and energy that drive biogeochemical cycles on our planet. Increasingly, we can read
17 genomic blueprints of microorganisms, decipher their functional capacities and
18  activities, and reconstruct their roles in biogeochemical processes using omic-based
19  techniques such as metagenomics. Currently available tools for analyses of genomic
20 data can annotate and depict metabolic functions to some extent, but they are not
21 comprehensive. No standardized approaches are currently available for bioinformatic
22 validation of metabolic predictions and identifying contributions of microorganisms
23  and genes to biogeochemical cycles. Here we present METABOLIC
24 (METabolic And BiogeOchemistry anallyses In miCrobes), a scalable metabolic and
25  biogeochemical functional trait profiler to comprehensively study microbial
26  metabolism using genome data. METABOLIC uses metagenome-assembled (MAQG),
27 single-cell (SAQG), or isolate genomes as input, annotates and processes genomes for
28 identification and characterization of metabolism markers using KEGG and curated
29  custom protein HMM databases, and applies motif confirmation of biochemically
30 validated conserved residues in proteins. The output report includes functionally
31  important HMM hit tables, protein collections for downstream analysis, tables (KEGG
32 modules) and diagrams representing metabolic pathways for individual genomes, and
33 a summary figure representing selected biogeochemical cycling processes on a
34  community scale. We expect that METABOLIC will facilitate the study of genome-
35 informed microbial metabolism and biogeochemistry and transform our understanding
36  of environmental microbiomes.

37

38  Availability and implementation: METABOLIC is available on github:
39  https://github.com/AnantharamanLab/METABOLIC.

40
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43 1. Introduction

44  Microbially-mediated biogeochemical processes serve as important driving forces for
45  transformation and cycling of elements, energy, and matter among the lithosphere,
46  atmosphere, hydrosphere and biosphere (Madsen, 2011). Metagenomics and single-cell
47  genomics have transformed the field of microbial ecology by revealing a rich diversity
48  of microorganisms from diverse settings, including terrestrial and marine environments
49  and human body (Anantharaman, et al., 2016; Dombrowski, et al., 2018; Parks, et al.,
50 2017; Pasolli, et al., 2019). These approaches can provide an unbiased and insightful
51  view into microorganisms mediating and contributing to the biogeochemical activities
52 at a number of scales ranging from individual organisms to communities
53  (Anantharaman, et al., 2016; Bowers, et al., 2017; Hug, et al., 2016; Parks, et al., 2017).
54  Prediction of microbial metabolism relies on annotation of protein function for
55  microorganisms using a number of established databases, e.g., KEGG (Kanehisa and
56  Goto, 2000), MetaCyc (Caspi, et al., 2006), Pfam (Finn, et al., 2014), TIGRfam
57  (Selengut, et al., 2007), SEED (Overbeek, et al., 2013), and eggNOG (Huerta-Cepas,
58 et al., 2016). However, these results are often highly detailed. Obtaining a functional
59  profile and identifying metabolic pathways in a microbial genome can involve manual
60  inspection of thousands of genes. Interpreting, organizing and visualizing such datasets
61 remains a challenge and is often untenable, and there is a critical need for a tool to
62 identify and validate the presence of metabolic pathways and genes of biogeochemical
63  function in a user-friendly manner. Such a tool would also allow standardization and
64  easy integration of genome-informed metabolism into biogeochemical models which
65  currently rely primarily on physico-chemical data and treats microorganisms as black
66  boxes.

67

68 Here we present the software METABOLIC, a tool to profile metabolic and
69  biogeochemical functional traits based on microbial genomes. It integrates annotation
70  of proteins using KEGG (Kanehisa and Goto, 2000), TIGRfam (Selengut, et al., 2007),

71 Pfam (Finn, et al., 2014), and custom HMM databases (Anantharaman, et al., 2016),
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72 incorporates a motif validation step to accurately identify proteins based on prior
73 biochemical validation, determines presence or absence of metabolic pathways based
74 on KEGG modules, and produces user-friendly outputs in the form of tables and figures
75 including a summary of biogeochemically-relevant pathways and their abundance for

76 individual genomes and at the community scale.

77

78 2. Methods

79  METABOLIC is written in Perl and R and is expected to run in Unix/Linux and MacOS.
80 The  prerequisites are described on  METABOLIC’s GitHub page
81  (https://github.com/AnantharamanLab/METABOLIC). The input folder requires
82  microbial genome sequences in FASTA format and an optional set of metagenomic
83 reads in which were used to reconstruct those genomes (Supplementary Figure S1).
84  Genomic sequences are annotated by Prodigal (Hyatt, et al., 2010), or a user can provide
85  self-annotated proteins (with extensions of “.faa”) in order to facilitate incorporation
86  into existing pipelines. Proteins will be queried against hidden Markov model (HMM)
87  databases using hmmsearch implemented within HMMER (Finn, et al., 2011) which
88 implements methods to detect remote homologs as sensitively and efficiently as
89  possible. The HMM databases include Kofam prokaryotic (KEGG) (Aramaki, et al.,
90  2019), TIGRfam (Selengut, et al., 2007), Pfam (Finn, et al., 2014) and custom metabolic
91 HMM files (Anantharaman, et al., 2016). The cutoff threshold values for HMM
92  databases were used as follows: Kofam - Kofam suggested values;
93  TIGRfam/Pfam/Custom databases - Manually curated by adjusting noise cutoffs (NC)
94  and trusted cutoffs (TC) to avoid potential false positive hits; detailed curation methods
95 are described previously (Anantharaman, et al., 2016).

96

97  To computationally validate protein hits and avoid false positives, we have introduced
98 a motif validation step that including comparison of protein motifs against a manually
99 curated set of highly conserved residues in important proteins. As an example, DsrC

100  (sulfite reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are
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101  similar proteins that are routinely misannotated. Both are assigned to the family
102  KO:K11179 in the KEGG database. To avoid assigning TusE as a sulfite reductase, we
103  identified a specific motif for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”
104  where “X” stands for any amino acid) (Venceslau, et al., 2014). We use these specific
105  motifs to filter for proteins which have high sequence similarity but functionally
106  divergent homologs.

107

108  The software output integrates the presence and absence of genes from the outputs of
109  individual HMM runs and relates them to microbial functional traits. Individual KEGG
110  annotations are inferred in the context of KEGG modules for better interpretation of
111 metabolic pathways. A KEGG module is a collection of manually defined functional
112 units. A module is comprised of multiple steps with each step representing a distinct
113 metabolic function. Since genomes can often have incomplete metabolic pathways, we
114  determine the completeness of specific metabolic pathways by parsing KEGG module
115  IDs. A user-defined cutoff is used to estimate the completeness of a given module (the
116  default value is 75%), which is then used to produce KEGG module presence/absence
117  table. All modules exceeding the cutoff are determined to be complete in the given
118  genome. Outputs consist of four different results that are reported in an Excel
119  spreadsheet (Supplementary Figure S2). These contain details of HMM hits
120  (Supplementary Figure S2A), presence/absence of functional traits (Supplementary
121 Figure S2B), presence/absence of KEGG modules (Supplementary Figure S2C), and
122 presence/absence of KEGG module steps (Supplementary Figure S2D). Each collection
123 of HMM hits can be extracted from input genomes for the downstream phylogenetic
124  analysis. A detailed workflow of METABOLIC is available in Supplementary Figure
125  Sl.

126

127 To visualize pathways of biogeochemical importance, the software draws schematic
128  profiles for nitrogen, carbon, sulfur and other element cycles for each genome. A
129  summary schematic diagram at the scale of a microbial community integrates results
130  from all genomes from a given dataset (Figure 1) and includes computed abundances

5
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131 for each step in a biogeochemical cycle if the metagenomic reads datasets are provided.
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132 3. Results

133 METABOLIC has been successfully applied on a metagenomic dataset which includes
134 98 MAGs from a deep-sea hydrothermal plume at Guaymas Basin in the Pacific Ocean,
135  and two sets of metagenomic reads (that are subsets of original reads with 10 million
136  read numbers for each pair comprising ~10% of the total reads). The total run time was
137  ~8 hours using 25 CPU threads in a Linux version 4.15.0-48-generic server (Ubuntu
138  v5.4.0). The resulting summary scheme on various biogeochemical cycling processes
139  reflects the pattern on a community scale (Figure 1) (Supplementary Data S1 contains
140  tables and figures from the METABOLIC output).

141

142 In order to test the accuracy of the results predicted by METABOLIC, we picked 15
143 bacterial and archaeal genomes from Chloroflexi, Thaumarchaeota, and Crenarchaeota
144  which are reported to have 3 Hydroxypropionate cycle (3HP) or 3-
145  hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB) for carbon fixation.
146 METABOLIC predicts results in line with KEGG genome database annotations and can
147  also be visualized with the KEGG Mapper (Supplementary Table S1). Our predictions
148  are also in accord with biochemical evidence of the existence of corresponding carbon
149  fixation pathways in each microbial group: only organisms from the phylum
150  Chloroflexi are known to possess the 3HP pathway and 3HP/4HB pathway could only
151  be detected in Crenarchaeota and Thaumarchaeota (Supplementary Table S1 and
152 references therein). These results suggest that METABOLIC can provide accurate
153  annotations and genomic profiles of metabolism and serve as a good functional

154  predictor for microbial genomes at the individual and community scales.
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165

166  Figure 1. The summary scheme of biogeochemical cycling processes on a
167 community scale. Above each arrow (which represent each step within a cycle) there
168 are three lines. The first one indicates the step name and the reaction, the second one
169 indicates the number of genomes that acquire these reactions, the third one indicates
170  the percentage of metagenomic coverage on each step.
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