

1 METABOLIC: A scalable high-throughput metabolic and

2 biogeochemical functional trait profiler based on microbial

3 genomes

4

5 Zhichao Zhou¹, Patricia Tran¹, Yang Liu², Kristopher Kieft¹, Karthik Anantharaman^{1,*}

6

7

⁸ ¹ Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706,
⁹ USA,

10 ²Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province,
11 518060, China

12

13 *To whom correspondence should be addressed.

14 **Abstract**

15 **Summary:** Microbial metabolism mediates fundamental transformations of chemistry
16 and energy that drive biogeochemical cycles on our planet. Increasingly, we can read
17 genomic blueprints of microorganisms, decipher their functional capacities and
18 activities, and reconstruct their roles in biogeochemical processes using omic-based
19 techniques such as metagenomics. Currently available tools for analyses of genomic
20 data can annotate and depict metabolic functions to some extent, but they are not
21 comprehensive. No standardized approaches are currently available for bioinformatic
22 validation of metabolic predictions and identifying contributions of microorganisms
23 and genes to biogeochemical cycles. Here we present METABOLIC
24 (METabolic And BiogeOchemistry anaLyses In miCobes), a scalable metabolic and
25 biogeochemical functional trait profiler to comprehensively study microbial
26 metabolism using genome data. METABOLIC uses metagenome-assembled (MAG),
27 single-cell (SAG), or isolate genomes as input, annotates and processes genomes for
28 identification and characterization of metabolism markers using KEGG and curated
29 custom protein HMM databases, and applies motif confirmation of biochemically
30 validated conserved residues in proteins. The output report includes functionally
31 important HMM hit tables, protein collections for downstream analysis, tables (KEGG
32 modules) and diagrams representing metabolic pathways for individual genomes, and
33 a summary figure representing selected biogeochemical cycling processes on a
34 community scale. We expect that METABOLIC will facilitate the study of genome-
35 informed microbial metabolism and biogeochemistry and transform our understanding
36 of environmental microbiomes.

37

38 **Availability and implementation:** METABOLIC is available on github:
39 <https://github.com/AnantharamanLab/METABOLIC>.

40

41 **Contact:** karthik@bact.wisc.edu

42

43 **1. Introduction**

44 Microbially-mediated biogeochemical processes serve as important driving forces for
45 transformation and cycling of elements, energy, and matter among the lithosphere,
46 atmosphere, hydrosphere and biosphere (Madsen, 2011). Metagenomics and single-cell
47 genomics have transformed the field of microbial ecology by revealing a rich diversity
48 of microorganisms from diverse settings, including terrestrial and marine environments
49 and human body (Anantharaman, et al., 2016; Dombrowski, et al., 2018; Parks, et al.,
50 2017; Pasolli, et al., 2019). These approaches can provide an unbiased and insightful
51 view into microorganisms mediating and contributing to the biogeochemical activities
52 at a number of scales ranging from individual organisms to communities
53 (Anantharaman, et al., 2016; Bowers, et al., 2017; Hug, et al., 2016; Parks, et al., 2017).
54 Prediction of microbial metabolism relies on annotation of protein function for
55 microorganisms using a number of established databases, e.g., KEGG (Kanehisa and
56 Goto, 2000), MetaCyc (Caspi, et al., 2006), Pfam (Finn, et al., 2014), TIGRfam
57 (Selengut, et al., 2007), SEED (Overbeek, et al., 2013), and eggNOG (Huerta-Cepas,
58 et al., 2016). However, these results are often highly detailed. Obtaining a functional
59 profile and identifying metabolic pathways in a microbial genome can involve manual
60 inspection of thousands of genes. Interpreting, organizing and visualizing such datasets
61 remains a challenge and is often untenable, and there is a critical need for a tool to
62 identify and validate the presence of metabolic pathways and genes of biogeochemical
63 function in a user-friendly manner. Such a tool would also allow standardization and
64 easy integration of genome-informed metabolism into biogeochemical models which
65 currently rely primarily on physico-chemical data and treats microorganisms as black
66 boxes.

67

68 Here we present the software METABOLIC, a tool to profile metabolic and
69 biogeochemical functional traits based on microbial genomes. It integrates annotation
70 of proteins using KEGG (Kanehisa and Goto, 2000), TIGRfam (Selengut, et al., 2007),
71 Pfam (Finn, et al., 2014), and custom HMM databases (Anantharaman, et al., 2016),

72 incorporates a motif validation step to accurately identify proteins based on prior
73 biochemical validation, determines presence or absence of metabolic pathways based
74 on KEGG modules, and produces user-friendly outputs in the form of tables and figures
75 including a summary of biogeochemically-relevant pathways and their abundance for
76 individual genomes and at the community scale.

77

78 **2. Methods**

79 METABOLIC is written in Perl and R and is expected to run in Unix/Linux and MacOS.
80 The prerequisites are described on METABOLIC’s GitHub page
81 (<https://github.com/AnantharamanLab/METABOLIC>). The input folder requires
82 microbial genome sequences in FASTA format and an optional set of metagenomic
83 reads in which were used to reconstruct those genomes ([Supplementary Figure S1](#)).
84 Genomic sequences are annotated by Prodigal (Hyatt, et al., 2010), or a user can provide
85 self-annotated proteins (with extensions of “.faa”) in order to facilitate incorporation
86 into existing pipelines. Proteins will be queried against hidden Markov model (HMM)
87 databases using hmmsearch implemented within HMMER (Finn, et al., 2011) which
88 implements methods to detect remote homologs as sensitively and efficiently as
89 possible. The HMM databases include Kofam prokaryotic (KEGG) (Aramaki, et al.,
90 2019), TIGRfam (Selengut, et al., 2007), Pfam (Finn, et al., 2014) and custom metabolic
91 HMM files (Anantharaman, et al., 2016). The cutoff threshold values for HMM
92 databases were used as follows: Kofam - Kofam suggested values;
93 TIGRfam/Pfam/Custom databases - Manually curated by adjusting noise cutoffs (NC)
94 and trusted cutoffs (TC) to avoid potential false positive hits; detailed curation methods
95 are described previously (Anantharaman, et al., 2016).

96

97 To computationally validate protein hits and avoid false positives, we have introduced
98 a motif validation step that including comparison of protein motifs against a manually
99 curated set of highly conserved residues in important proteins. As an example, DsrC
100 (sulfite reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are

101 similar proteins that are routinely misannotated. Both are assigned to the family
102 KO:K11179 in the KEGG database. To avoid assigning TusE as a sulfite reductase, we
103 identified a specific motif for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”
104 where “X” stands for any amino acid) (Venceslau, et al., 2014). We use these specific
105 motifs to filter for proteins which have high sequence similarity but functionally
106 divergent homologs.

107

108 The software output integrates the presence and absence of genes from the outputs of
109 individual HMM runs and relates them to microbial functional traits. Individual KEGG
110 annotations are inferred in the context of KEGG modules for better interpretation of
111 metabolic pathways. A KEGG module is a collection of manually defined functional
112 units. A module is comprised of multiple steps with each step representing a distinct
113 metabolic function. Since genomes can often have incomplete metabolic pathways, we
114 determine the completeness of specific metabolic pathways by parsing KEGG module
115 IDs. A user-defined cutoff is used to estimate the completeness of a given module (the
116 default value is 75%), which is then used to produce KEGG module presence/absence
117 table. All modules exceeding the cutoff are determined to be complete in the given
118 genome. Outputs consist of four different results that are reported in an Excel
119 spreadsheet ([Supplementary Figure S2](#)). These contain details of HMM hits
120 ([Supplementary Figure S2A](#)), presence/absence of functional traits ([Supplementary](#)
121 [Figure S2B](#)), presence/absence of KEGG modules ([Supplementary Figure S2C](#)), and
122 presence/absence of KEGG module steps ([Supplementary Figure S2D](#)). Each collection
123 of HMM hits can be extracted from input genomes for the downstream phylogenetic
124 analysis. A detailed workflow of METABOLIC is available in [Supplementary Figure](#)
125 [S1](#).

126

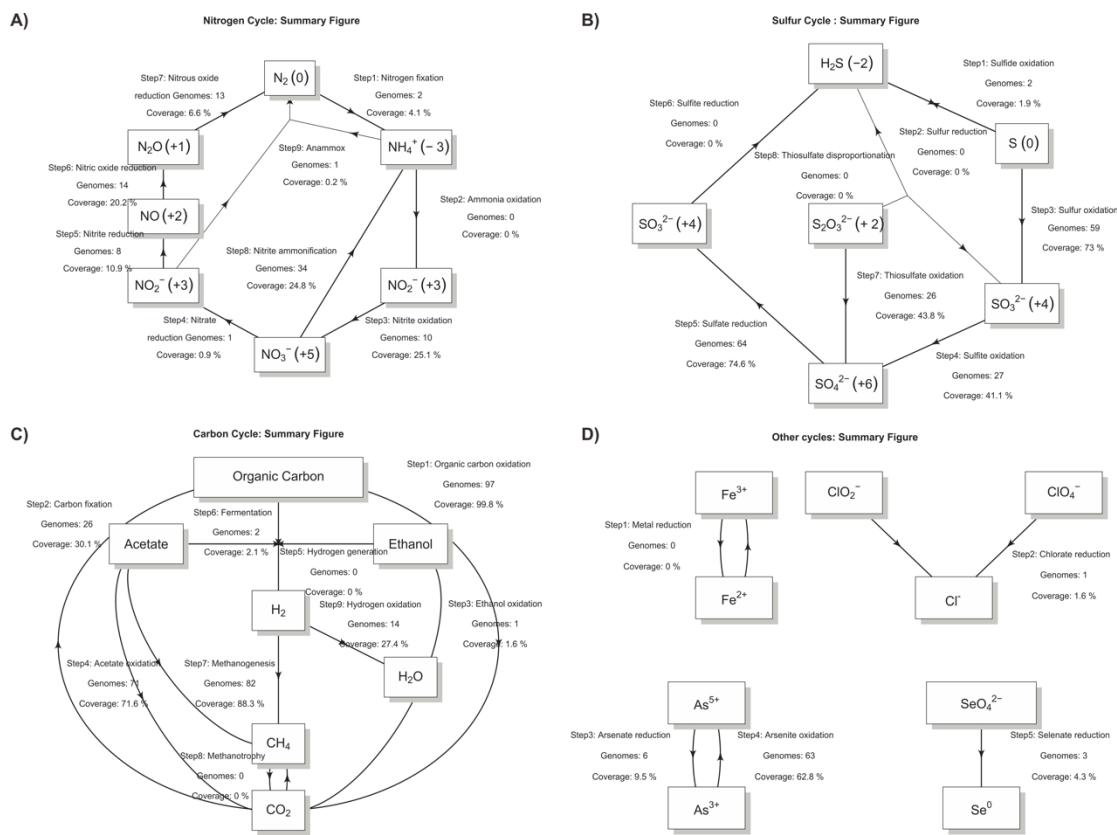
127 To visualize pathways of biogeochemical importance, the software draws schematic
128 profiles for nitrogen, carbon, sulfur and other element cycles for each genome. A
129 summary schematic diagram at the scale of a microbial community integrates results
130 from all genomes from a given dataset ([Figure 1](#)) and includes computed abundances

131 for each step in a biogeochemical cycle if the metagenomic reads datasets are provided.

132 **3. Results**

133 METABOLIC has been successfully applied on a metagenomic dataset which includes
134 98 MAGs from a deep-sea hydrothermal plume at Guaymas Basin in the Pacific Ocean,
135 and two sets of metagenomic reads (that are subsets of original reads with 10 million
136 read numbers for each pair comprising ~10% of the total reads). The total run time was
137 ~8 hours using 25 CPU threads in a Linux version 4.15.0-48-generic server (Ubuntu
138 v5.4.0). The resulting summary scheme on various biogeochemical cycling processes
139 reflects the pattern on a community scale (Figure 1) ([Supplementary Data S1](#) contains
140 tables and figures from the METABOLIC output).

141


142 In order to test the accuracy of the results predicted by METABOLIC, we picked 15
143 bacterial and archaeal genomes from *Chloroflexi*, *Thaumarchaeota*, and *Crenarchaeota*
144 which are reported to have 3-Hydroxypropionate cycle (3HP) or 3-
145 hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB) for carbon fixation.
146 METABOLIC predicts results in line with KEGG genome database annotations and can
147 also be visualized with the KEGG Mapper ([Supplementary Table S1](#)). Our predictions
148 are also in accord with biochemical evidence of the existence of corresponding carbon
149 fixation pathways in each microbial group: only organisms from the phylum
150 *Chloroflexi* are known to possess the 3HP pathway and 3HP/4HB pathway could only
151 be detected in *Crenarchaeota* and *Thaumarchaeota* ([Supplementary Table S1](#) and
152 references therein). These results suggest that METABOLIC can provide accurate
153 annotations and genomic profiles of metabolism and serve as a good functional
154 predictor for microbial genomes at the individual and community scales.

155

156 **Funding**

157 We thank the University of Wisconsin - Office of the Vice Chancellor for Research and
158 Graduate Education, University of Wisconsin – Department of Bacteriology, Wisconsin
159 Alumni Research Foundation, and University of Wisconsin – College of Agriculture
160 and Life Sciences for their support.

161 *Conflict of interest:* none declared.

162

163

164

165

166 **Figure 1. The summary scheme of biogeochemical cycling processes on a**
 167 **community scale.** Above each arrow (which represent each step within a cycle) there
 168 are three lines. The first one indicates the step name and the reaction, the second one
 169 indicates the number of genomes that acquire these reactions, the third one indicates
 170 the percentage of metagenomic coverage on each step.

171

172

References

Anantharaman, K., *et al.* (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system, *Nat. Commun.*, **7**, 13219.

Aramaki, T., *et al.* (2019) KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold, *bioRxiv*, 602110.

Bowers, R.M., *et al.* (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea, *Nat. Biotechnol.*, **35**, 725.

Caspi, R., *et al.* (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes, *Nucleic Acids Res.*, **34**, D511-516.

Dombrowski, N., Teske, A.P. and Baker, B.J. (2018) Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments, *Nat. Commun.*, **9**, 4999.

Finn, R.D., *et al.* (2014) Pfam: the protein families database, *Nucleic Acids Res.*, **42**, D222-230.

Finn, R.D., Clements, J. and Eddy, S.R. (2011) HMMER web server: interactive sequence similarity searching, *Nucleic Acids Res.*, **39**, W29-37.

Huerta-Cepas, J., *et al.* (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, *Nucleic Acids Res.*, **44**, D286-D293.

Hug, L.A., *et al.* (2016) A new view of the tree of life, *Nat. Microbiol.*, **1**, 16048.

Hyatt, D., *et al.* (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification, *BMC Bioinformatics*, **11**, 119.

Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes, *Nucleic Acids Res.*, **28**, 27-30.

Madsen, E.L. (2011) Microorganisms and their roles in fundamental biogeochemical cycles, *Curr. Opin. Biotechnol.*, **22**, 456-464.

Overbeek, R., *et al.* (2013) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), *Nucleic Acids Res.*, **42**, D206-D214.

Parks, D.H., *et al.* (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, *Nat. Microbiol.*, **2**, 1533-1542.

Pasolli, E., *et al.* (2019) Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle, *Cell*, **176**, 649-662 e620.

Selengut, J.D., *et al.* (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes, *Nucleic Acids Res.*, **35**, D260-264.

Venceslau, S.S., *et al.* (2014) The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism, *Biochim. Biophys. Acta*, **1837**, 1148-1164.