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Abstract

Understanding how higher order cognitive function emerges from the underlying
brain structure depends on quantifying how the behaviour of discrete regions
are integrated within the broader cortical landscape. Recent work has estab-
lished that this macroscale brain organization and function can be quantified in
a compact manner through the use of multivariate machine learning approaches
that identify manifolds often described as cortical gradients. By quantifying
topographic principles of macroscale organization, cortical gradients lend an an-
alytical framework to study structural and functional brain organization across
species, throughout development and aging, and its perturbations in disease.
More generally, its macroscale perspective on brain organization offers novel
possibilities to investigate the complex relationships between brain structure,
function, and cognition in a quantified manner. Here, we present a compact
workflow and open-access toolbox that allows for (i) the identification of gra-
dients (from structural or functional imaging data), (ii) their alignment (across
subjects or modalities), and (iii) their visualization (in embedding or corti-
cal space). Our toolbox also allows for controlled association studies between
gradients with other brain-level features, adjusted with respect to several null
models that account for spatial autocorrelation. The toolbox is implemented
in both Python and Matlab, programming languages widely used by the neu-
roimaging and network neuroscience communities. Several use-case examples
and validation experiments demonstrate the usage and consistency of our tools
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for the analysis of functional and microstructural gradients across different spa-
tial scales.

Keywords: gradients, manifolds, toolbox, repository, open science

1. Introduction

Over the last century, neuroanatomical studies in humans and non-human an-
imals have highlighted two complementary features of neural organization. On
the one hand, studies have demarcated structurally homogeneous areas with
s specific connectivity profiles, and ultimately distinct functional roles (e.g., Brod-
mann, 1909; von Economo and Koskinas, 1925; Palomero-Gallagher and Zilles,
2017; Flechsig, 1920; Glasser et al., 2016). In parallel, neuroanatomists have
established that cortical organization may also be characterized in the form of
smooth transitions at the system level, for example in terms of their histolog-
1 ical properties and connectivity patterns (Von Bonin and Bailey, 1947; Bailey
and Von Bonin, 1951; Goulas et al., 2019; Bailey and Von Bonin, 1951; Pandya
et al., 2015). In a seminal attempt to synthesize an integrated view of the
functions of the mammalian cortical landscape, Marsel Mesulam postulated a
hierarchical sensory-fugal axis of cortical microstructural organization and con-
15 nectivity (Mesulam, 1998). In this model, neural function is hypothesised to
emerge not simply from modular neural systems, but through the complex in-
teractions between regions. For example, peripheral neural systems such as
primary sensory and motor regions, support functional interactions with the
external world in a reasonably direct manner, while transmodal cortices, that
2 take as input signals from regions towards the periphery, support increasingly
abstract, and perceptually decoupled, cognitive operations (Mesulam, 1998).

Although much of the more recent work linking measures of neural process-
ing (for example from functional magnetic resonance imaging, MRI) to cogni-
»s  tion has focused on identifying discrete regions and modules and their specific
functional roles (Eickhoff et al., 2018), recent conceptual and methodological
developments have provided both the data and methods that allow macroscale
brain features mapped to low dimensional manifold representations, also de-
scribed as gradients (Margulies et al., 2016). Gradient analyses operating on
s connectivity data were applied to diffusion MRI tractography data in spefific
brain regions (Cerliani et al., 2012; Bajada et al., 2017) as well as resting-state
functional MRI connectivity maps (Margulies et al., 2016; Vos de Wael et al.,
2018; Lariviere et al., 2019; Tian and Zalesky, 2018; Marquand et al., 2017;
Haak et al., 2018; Przezdzik et al., 2019). Similar techniques have also been
s used to describe myelin-sensitive tissue measures and other morphological char-
acteristics (Huntenburg et al., 2017; Paquola et al., 2019; Wagstyl et al., 2015).
Other studies have used a similar approach to describe task based neural pat-
terns either using meta-analytical co-activation mapping (Vos de Wael et al.,
2018) or large-scale functional MRI task data sets (Shine et al., 2019). Gradients
2 have been also successfully derived from non-imaging data that were registered
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Figure 1: A typical gradient identification workflow. Starting from an input matrix (here,
functional connectivity), we use a kernel function to build the affinity matrix (here capturing
the connectivity of each seed region). This matrix is decomposed, often via linear rotations
or non-linear manifold learning techniques into a set of principal eigenvectors describing axes
of largest variance. The scores of each seed onto the first two axes are shown in the scatter
plot, with colors denoting position in this 2D space. These colors may be projected back to
the cortical surface and the scores can be used to sort the input connectome.

cossim(V1,V2) = 0.5

to stereotaxic space, including hippocampal post mortem gene expression in-

formation (Vogel et al., 2019) and 3D histology data (Paquola et al., 2019), to

explore cellular and molecular signatures of neuroimaging and connectome mea-

sures. Core to these techniques is the computation of an affinity matrix that

s captures inter-area similarity of a given feature followed by the application of

dimensionality reduction techniques to identify a gradual ordering of the input
matrix in a lower dimensional manifold space (Figure 1).

The ability to describe the brain wide neural activity in a single manifold of-

fers the possibility to understand how the integrated nature of neural processing

so gives rise to function and dysfunction. Adopting a macroscale perspective on

cortical organization has already provided important insights into how cortex-

wide patterns relate to cortical dynamics (Wang et al., 2019) and high level

cognition (Sormaz et al., 2018; Murphy et al., 2018, 2019; Shine et al., 2019).

Furthermore, several studies have leveraged gradients as an analytical frame-

ss  work to describe atypical macroscale organization across clinical conditions,

for example, by showing perturbations in functional connectome gradients in

autism (Hong et al., 2019) and schizophrenia (Tian et al., 2019). Finally, com-

parisons of gradients across different imaging modalities have highlighted the ex-

tent to which structure directly constrains functional measures (Paquola et al.,

oo 2019), while consideration of gradients across species has highlighted how evo-

lution has shaped more integrative features of the cortical landscape (Goulas

et al.,; 2019; Buckner and Krienen, 2013; Huntenburg et al., 2018; Xu et al.,
2019; Buckner and Margulies, 2019; Fulcher et al., 2019).

es The growth in our capacity to map whole brain cortical gradients, coupled with
the promise of a better understanding of how structure gives rise to function,
highlights the need for a set of tools that support the analysis of neural manifolds
in a compact and reproducible manner. The goal of this paper is to present an
open-access set of easy-to-use tools that allow the identification, visualization,
7 and analysis of macroscale gradients of brain organization. We hope this will
provide a method for calculating cortical manifolds that facilitates their use in
future empirical work, allows comparison between studies, and allows for result
replicability. To offer flexibility in implementation, we provide our toolbox in
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both Python and Matlab, two languages widely used in the neuroimaging and
7 network neuroscience communities. Associated functions are freely available for

download and complemented with an expandable online documentation. We an-

ticipate that our toolbox will help researchers interested in studying gradients of

cortical organization, and propel further work that establishes the overarching

principles through which structural and functional organization of human and
s mnon-human brains gives rise to key aspects of human cognition.

2. Methodology

2.1. Data and code availability statement

Our toolbox is openly available at: http://github.com/MICA-MNI/BrainSpace.
The toolbox contains a parallel python and matlab implementation with closely-

ss  matched functionality. Along with the code, the toolbox contains several surface
models, parcellations across multiple scales, and example data to reproduce the
evaluations presented in this tutorial. Additionally, documentation of the pro-
posed toolbox is available for both python and matlab implementations via
http://brainspace.readthedocs.io.

w 2.2. Input data description

Our toolbox requires a real input matrix. Let X € R™*P be a matrix aggregating
features of several seed regions. In other words, each seed is represented by a p-
dimensional vector, x;, built based on the features of the i-th seed region, where
X (i,7) = x! denotes the j-th feature of the i-th seed. In many neuroimaging ap-

s plications, X may represent a connectivity metric (e.g., resting-state functional
MRI connectivity or diffusion MRI tractography derived structural connectiv-
ity) between different seed and target brain regions. When seed and target
regions are identical, the input matrix X is square. Furthermore, if the connec-
tivity measure used to build the matrix is non-directional, X is also symmetric.

wo If seeds and targets are different, for example when assessing connectivity pat-
terns of a given region with the rest of the brain (Vos de Wael et al., 2018;
Haak et al., 2018), we may have that n # p, resulting in a non-square matrix.
The dimensions and symmetry properties of the input matrix X may interact
with the dimensionality reduction procedures presented in section 2.4. A simple

s strategy to make matrices symmetric and squared is to use kernel functions,
which will be covered in the following section.

2.8. Affinities and kernel functions

Since we are interested in studying the relationships between the seed regions
in terms of their features (e.g., connectivity with target regions), our toolbox
no  provides several kernel functions to compute the relationship between every
pair of seed regions and derive a non-negative square symmetric affinity matrix
A € R™™™ where A(i,j) = A(j,1) denotes the similarity or affinity between
seeds i and j. Moreover, a square symmetric matrix is a requirement for the
next step in our framework (i.e., dimensionality reduction). Note that when the
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us  input matrix X is already square and symmetric (e.g., seed and target regions
are the same), there may be no need to derive the affinity matrix and X can
be used directly to perform dimensionality reduction. Accordingly, BrainSpace
provides the option of skipping this step and using the input matrix as the affin-
ity.

120
There are numerous approaches to build affinity matrices. Our toolbox cur-
rently implements the following kernels: Gaussian, cosine similarity, normalized
angle similarity, Pearson’s correlation coefficient, and Spearman rank order cor-
relations. For simplicity, let x = x; and y = x;, these kernels can be expressed

s as follows:

1. Gaussian kernel:
A(i, ) = e~ Ol=1%),

where v is the inverse kernel width and || - || denotes the l3-norm.

2. Cosine similarity:
T
.. . Xy
A(i, §) = cossim(x,y) = ——,
[yl

where cossim(-,-) is the cosine similarity function and T stands for trans-

pose.
3. Normalized angle similarity:

—1 .
Al ) =1— cos (cosszm(x,y)).

™

4. Pearson correlation:
A(i, j) = p(x,y) = cossim(x — X,y — ¥),

where p is the Pearson correlation coefficient, and X and y denote the
130 means of x and y, respectively.
5. Spearman rank order correlation:

A(Zvj) = p(rma ry),
where r; and r, denote the ranks of x and y, respectively.

While not being exhaustive, the first version of BrainSpace thus includes
commonly used kernels in the gradient literature and additional ones for experi-
mentation. To our knowledge, no gradient paper has used Pearson or Spearman

s correlation. Note that if X is already row-wise demeaned, Pearson correlation
amounts to cosine similarity. The Gaussian kernel is widely used in the ma-
chine learning community (for example in the context of Laplacian eigenmaps
and support vector machines), which provides a simple approach to convert
Euclidean distances between our seeds into similarities. Cosine similarity, [ex-

uw ample application (Margulies et al., 2016)], computes the angle between our
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feature vectors to describe their similarity. It is important to note that cosine
similarity ranges between -1 and 1, with negative correlations to be transformed
to non-negative values. This motivated the inclusion of the normalized angle
kernel, [example application: (Vos de Wael et al., 2018)], as it was developed to
us circumvent negative similarities by transforming the similarities to [O, 1], with
1 denoting identical angles, and 0 opposing angles. Still, cosine similarity and
Pearson and Spearman correlation coefficients may produce negative values (i.e.,
[—1, 1}) if the feature vectors are negatively correlated. A simple approach to
deal with this issue is to set negative values to zero. Additionally, BrainSpace
150 provides an option for column-wise thresholding of the input matrix as done pre-
viously (Margulies et al., 2016; Vos de Wael et al., 2018; Paquola et al., 2019;
Hong et al., 2019). Each vector of the input matrix is thresholded at a given
sparsity (e.g., by keeping the weights of the top 10% entries for each region).
This procedure ensures that only strong, and potentially less noisy, connections
155 contribute to the gradient.
In addition to the aforementioned kernels, BrainSpace provides the option
of skipping this step and using the input matrix as an affinity matrix as well as
the option to provide a custom kernel.

2.4. Dimensionality reduction

1o Recall that in the input matrix, each seed x; is defined by a p-dimensional feature
vector, where p may denote hundreds of parcels or thousands of vertices/voxels.
The aim of dimensionality reduction techniques is to find a meaningful under-
lying low-dimensional representation, G € R™*™ with m < p, hidden in the
high-dimensional ambient space. These methods can be grouped into linear

165 and non-linear techniques. The former use a linear transformation to unravel
the latent representation, while techniques in the second category use non-linear
transformations. BrainSpace provides three of the most widely used dimension-
ality reduction techniques for macroscale gradient mapping: principal compo-
nent analysis (PCA) for linear embedding, and laplacian eigenmaps (LE) and

o diffusion mapping (DM) for non-linear dimensionality reduction.

1. PCA is a linear approach that transforms the data to a low-dimensional
space represented by a set of orthogonal components that explain maximal
data variance. Given a column-wise demeaned version of the input matrix
X4, the low-dimensional representation is computed as follows:

Gpoa =UST, (1)

175 where U are the left singular vectors and S a diagonal matrix of singu-
lar values obtained after factorizing the input matrix using singular value
decomposition (SVD), X4 = USVT. Note that, although here we present
the SVD version, PCA can also be performed based on the eigendecom-
position of the covariance matrix of X, for example.
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180 2. LE is a non-linear dimensionality reduction technique that uses the graph
Laplacian of the affinity matrix A to perform the embedding:

L=D— A, (2)

where the degree matrix D is a diagonal matrix defined as D(i,i) =

> ; A(i,j) and L is the graph Laplacian matrix. Note that we can also

work with its normalized version instead Ly = D~Y/2LD~'/2 (Ng et al.,
185 2001). LE then proceeds to solve the generalized eigenvalue problem:

Lg = \Dg, (3)

where the eigenvectors gy corresponding to the m smallest eigenvalues Ax
(excluding the first eigenvalue) are used to build the new low-dimensional

representation:
gLE = [gla g2, .- ag’m]' (4)
3. DM also seeks a non-linear mapping of the data based on the diffusion
190 operator P,, which is defined as follows:
Py = D'Wa, (5)

where a € [O, 1] is the anisotropic diffusion parameter used by the dif-
fusion operator, W, = D~/*AD~1/% is built by normalizing the affinity
matrix according to the diffusion parameter and D,, is the degree matrix
derived from W,. When « = 0, the diffusion amounts to normalized graph

105 Laplacian on isotropic weights, for o = 1, it approximates the Laplace-
Beltrami operator and for the case where o = 0.5 it approximates the
Fokker-Planck diffusion (Coifman and Lafon, 2006). It controls the influ-
ence of the density of sampling points on the manifold (o = 0, maximal
influence; o = 1, no influence). In the gradient literature, the anisotropic

200 diffusion hyper-parameter is commonly set to o = 0.5 (Margulies et al.,
2016; Vos de Wael et al., 2018; Lariviere et al., 2019), a choice that retains
the global relations between data points in the embedded space.
Similarly to LE, DM computes the eigenvalues and eigenvectors of the
diffusion operator. However, in this case, the new representation is con-

205 structed with the scaled eigenvectors corresponding to the largest eigen-
values, after omitting the eigenvector with the largest eigenvalue:

Goum = [Nig1, Asga, .., AL gl (6)

where t is the time parameter that represent the scale.

2.5. Alignment of gradients

Gradients computed separately for two or more datasets (e.g., patients vs con-
20 trols, left vs right hippocampi) may not be directly comparable due to different

eigenvector orderings in case of eigenvalue multiplicity (i.e., eigenvalues with
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the same value) and sign ambiguity of the eigenvectors (Lombaert et al., 2013).
Aligning gradients improves comparability and correspondence. However, we
recommend always visually inspecting the output of gradient alignments; if the

25 manifold spaces are substantially different then alignments may not provide
sensible output. In the first version of the BrainSpace toolbox, gradients can
be aligned using Procrustes analysis (Langs et al., 2015) or implicitly by joint
embedding.

Procrustes analysis

20 Briefly, given a source G, and a target G; representations, Procrustes analysis
seeks an orthogonal linear transformation 1 to align the source representation
to the target, such that ¥(Gs) and G; are superimposed. Translation and scal-
ing can also be performed by initially centering and normalizing the data prior
to finding the transformation. For multiple datasets, a generalized Procrustes

»s analysis is employed. Let Gi, k = 1,2,..., N be the low-dimensional representa-
tions of N different datasets (i.e., input matrices X). The procedure proceeds
iteratively by aligning all representations Gj to a reference and updating the
reference Ggp = % > x ¥(Gk) by averaging the aligned representations. In the
first iteration, the reference can be chosen from the available representations,

2 or an out-of-sample template can be provided (e.g., from a hold-out group).

Joint embedding
Joint embedding is a dimensionality reduction technique that finds a common
underlying representation of multiple datasets by using a simultaneous embed-
ding (Xu et al., 2019). The main challenge of this technique is to find a mean-
25 ingful approach to establish correspondences between the original datasets (i.e.,
X). In the current version of BrainSpace, joint alignment is implemented based
on spectral embedding and it is available for LE and DM. The only difference
with these methods is that the embedding, rather than using the affinity matri-
ces individually, is based on the joint affinity matrix J, which is built as:

Ay A - Ay
AT, Ay - Aoy
Aly Ay - Ax

20 where Ay, is the intra-dataset affinity of input matrix X, and A;; is the inter-
dataset affinity between X; and X;. As of the current version, both sets of
affinities are built using the same kernel. It is important to note, therefore,
that joint embedding can only be used if the input matrices have the same fea-
tures (e.g., identical target regions). After the embedding, the resulting shared

25 representation Gy = [G1,Go, .. .7QN]T will be composed of N individual low-
dimensional representations, such that for the k-th input matrix X € R™"+*P
the corresponding representation is G, € R™*™_ where n is the number of
seeds (i.e., rows) of Xj.
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2.6. Null models

0 Many researchers may use gradients to compare axes of the brain to other con-
tinuous brain markers such as cortical thickness measures or estimates of myeli-
nation. Given the spatial autocorrelation present in many modalities, a linear
regression or similar methods may provide biased test statistics. To circumvent
this issue, we recommend comparing the observed test statistic to those of a set

»5  of distributions with similar spatial autocorrelation. To this end we provide two
methods: spin permutations (Alexander-Bloch et al., 2018) and Moran spectral
randomization (MSR) (Wagner and Dray, 2015; Dray, 2011). In cases where the
input data lies on a surface and most of the sphere is used, we recommend using
spin permutation otherwise we recommend MSR. When performing a statistical

x0  test with multiple gradients as either predictor or response variable, we recom-
mend randomizing the non-gradient variable as these randomizations need not
maintain statistical independence across different eigenvectors.

Spin permutations.

Spin permutation analysis leverages the spherical representations of the cerebral
cortex, such as those derived from FreeSurfer (Fischl, 2012) or CIVET (Kim
et al., 2005), to address the problem of spatial autocorrelation in statistical
inference. In short, spin permutations estimate the null distribution by ran-
domly rotating the spherical projections of the cortical surface while preserving
the spatial relationships within the data (Alexander-Bloch et al., 2018). Let
V € RY3 be the matrix of vertex coordinates in the sphere, where [ is the
number of vertices, and R € R3*3 a matrix representing a rotation along the
three axes uniformly sampled from all possible rotations (Blaser and Fryzlewicz,
2016). The rotated sphere V,. is computed as follows:

V, = VR. 8)

Samples of the null distribution are then created by assigning each vertex
s on V. the data of its nearest neighbor on V.

Moran spectral randomization.
Borrowed from the ecology literature, MSR can also be used to generate random
variables with identical or similar spatial autocorrelation (in terms of Moran’s I
correlation coefficient (Cliff and Ord, 1973)). This approach requires building a
a0 spatial weight matrix defining the relationships between the different locations.
For our particular case, given a surface mesh with [ vertices (i.e., locations),
its topological information is used to build the spatial weight matrix L € R/,
such that L(i,j) > 0 if vertices ¢ and j are neighbors, and L(, ) = 0 otherwise.
In BrainSpace, L is built using the inverse distance between each vertex and
a5 the vertices in its immediate neighborhood, although other neighborhoods and
weighting schemes (e.g., binary or Gaussian weights) could be used. Then, L
is doubly centered and eigendecomposed into its whole spectrum, with the re-
sulting eigenvectors M € R (=1) being the so-called Moran eigenvector maps.
Note that the eigenvector with 0 eigenvalue is dropped. The advantage of MSR,
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20 is that we can work with the original cortical surfaces, and thus skip the poten-
tial distortions introduced by the spherical mesh parameterization.

In order to generate the null distributions, let u € R! be an input feature
vector defined on each vertex of our surface (e.g., cortical thickness), and r €
R~ the correlation coefficients of u with each spatial eigenvector in M. MSR
aims to find a randomized feature vector z that respects the autocorrelation
observed in u as follows:

z=1+0,V]—1MaT, (9)

where 1 and o, stand for mean and standard deviation of u respectively, and

a € R'1 is a vector of random coefficients. Three different methods exist for

generating vector a: singleton, pair, and triplet procedures. Currently, only the

s singleton and pair procedures are supported in BrainSpace. Let v = Mr”, in

the singleton procedure, a is computed by randomizing the sign of each element

in v (i.e,, a; = +v;). In the pair procedure, the elements of v are randomly

changed in pairs. Let (v;,Vv;) be a pair of elements randomly chosen, then a is

updated such that a; = g;; cos(¢) and a; = g;; sin(¢), with ¢;; = |/v? + v7 and

20 ¢ ~ U(0,2m) randomly drawn from a uniform distribution. If the number of

elements of v is odd, the singleton procedure is used for the remaining element.

As opposed to the singleton procedure, the null data generated by the pair

procedure does not fully preserve the observed spatial autocorrelation. We

therefore recommend the singleton procedure, unless the number of required

s randomizations exceeds 2!~1, which is the maximum number of unique random-
izations that can be produced using the singleton procedure.

3. Examples and evaluations

In this section, we demonstrate the usage of our toolbox through several exam-
ples on gradient mapping and null model generation. Evaluations are based on
30 a subset of the Human Connectome Project (HCP) dataset (Van Essen et al.,
2013), as in prior work (Vos de Wael et al., 2018). Matlab code is presented in
the main version of the paper. The python version is available in Appendix A.

3.1. Generating gradients

To first illustrate the basic functionality of the toolbox, we computed gradi-

ws ents derived from resting-state functional MRI functional connectivity (FC). In
short, the input matrix was made sparse (to 10% sparsity) and a cosine similarity
matrix was computed. Next, we applied the three different manifold algorithms
(i.e., PCA, LE, DM) and plot their first and second gradients on the cortical
surface (Sample Code 1). Resulting gradients (Figure 2) derived from all dimen-

a0 sionality reduction techniques resemble those published previously (Margulies
et al., 2016), although for PCA the somatomotor to visual gradient explains
more variance than the default mode to sensory gradient.

10
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Figure 2: Gradient construction with different dimensionality reduction techniques. Gradient
1 (G1) and 2 (G2) of FC were computed using a cosine similarity affinity computation, followed
by either PCA, LE, or DM. Gradients were z-scored before plotting.

Sample Code 1: A minimal Matlab example for plotting the first gradient of an input data ma-
trix on the cortical surface. Equivalent Python code is provided in sample code 5 in Appendix
A.

/% Create a GradientMaps object
G = GradientMaps('kernel', 'cosine', 'approach','dm');

%4 Apply GradientMaps to the data
G = G.fit(data_matrix);

% Load surfaces
left_surface = read_surface('left_surface_file.obj');
right_surface = read_surface('right_surface_file.obj');

% Plot first gradient on the cortical surface
plot_hemispheres(G.gradients{1}(:,1), {left_surface,right_surface})
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3.2. Aligning gradients
as a) Gradient alignment across modalities
Based on subjects present in both the FC dataset as well as those used in the
validation group of (Paquola et al., 2019), we assessed the correspondence be-
tween gradients computed from different modalities and evaluated increases in
correspondence when gradient alignment was used. The two modalities that
20 were evaluated are FC and microstructural profile covariance (MPC). Here we
compare gradients of the two modalities in an unaligned form, as well as after
Procrustes alignment and joint embedding (Sample Code 2, Figure 3). Gradient
correspondence increases following Procrustes alignment and a marked increase
following joint embedding. Beyond maximizing correspondence, the use of Pro-
w5 crustes vs joint embedding can also depend on the specific applications. Pro-
crustes alignment preserves the overall shape of the different gradients and can
thus be a preferable approach to compare different gradients. Joint embedding,
on the other hand, identifies a joint solution that maximizes their similarity, so
the resulting gradient may be more of a "hybrid’ of the input manifolds. Joint
;0 embedding is thus a technique to identify correspondence and map from one
space to another, and is conceptually related to widely used multivariate asso-
ciative techniques such as canonical correlation analysis or partial least squares
which seek to maximize the linear associations between two multidimensional
datasets (Mcintosh and Misic, 2013). Note that the computational cost of joint
135  embedding is substantially higher, so Procrustes analysis may be the preferred
option when computational resources are a limiting factor.
Sample Code 2: A minimal Matlab example for creating and plotting gradients from different
modalities, with different alignments. Equivalent Python code is provided in sample code 6

in Appendix A.

/4 Create two GradientMaps objects with different alignments

Gp = GradientMaps('kernel', 'cosine', 'approach','dm',
'alignment', 'procrustes');
Gj = GradientMaps('kernel','cosine', 'approach','dm',

'alignment','joint');

% Apply GradientMaps to the data
Gp = Gp.fit({mpc,fc});
Gj = Gj.fit({mpc,fc}});

% Load surfaces
left_surface = read_surface('left_surface_file.obj');

right_surface = read_surface('right_surface_file.obj');

% Plot first MPC gradient of Procrustes altgnment
plot_hemispheres(Gp.aligned{1}(:,1), {left_surface,right_surfacel});

/4 Plot first FC gradient of joint embedding
plot_hemispheres(Gj.aligned{2}(:,1), {left_surface,right_surfacel});

12


https://doi.org/10.1101/761460
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/761460; this version posted September 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MPC-G1

9 59 0

Unaligned
FC-G1

b
14

FC-G1

2b 20 PO

P9 o0

FC-G1

MPC-G1

Joint
FC-G1

p=0.77

od Hd

FC-G1

MPC-G1

Figure 3: Comparison of alignment methods across modalities. Unaligned gradients 1 (top) of
MPC and FC were derived using cosine similarity and diffusion embedding. Alignments using
Procrustes analyses (middle) and joint embedding (bottom) are also shown. Smoothed scatter
plots show a moderate increase in Spearman correlation after joint embedding. Gradients were
z-scored before plotting.

b) Gradient alignment across individuals
Researchers may also be interested in comparing gradient values between indi-
s viduals (Hong et al., 2019), for example to assess perturbations in FC gradients
as a measure of brain network hierarchy. One possible approach could be to
first build a group-level gradient template, to which both diagnostic groups are
aligned using Procrustes rotation. After that, the two groups can be compared
statistically and at each vertex, for example using the SurfStat toolbox (Worsley
us et al., 2009) or alternative tools. In the example below, we present the steps to
derive, align, and compare the principal functional gradient between a cohort of
individuals. We computed a template gradient from an out-of-sample dataset of
134 subjects from the HCP dataset (the validation cohort used by (Vos de Wael
et al., 2018)). Next, we used Procrustes analysis to align individual’s gradients
30 of each subject to the group level template (Sample Code 3, Figure 4).

Sample Code 3: A minimal Matlab example for aligning the gradients of two individuals to a
template gradient. Equivalent Python code is provided in sample code 7 in Appendix A.

/4 Create a GradientMaps object for the template
Gt = GradientMaps('kernel', 'cosine', 'approach','dm');

13
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Figure 4: Alignment of subjects to a template. Gradients 1 of single subjects computed with
the cosine similarity kernel and diffusion embedding manifold (left) were aligned to an out-
of-sample template (middle) using Procrustes Analysis, creating the aligned gradients (right).
Box-plot shows the Spearman correlations of each subjects’ gradient 1 to the template gradient
1 both before, and after Procrustes alignment

% Apply GradientMaps to template data
Gt = Gt.fit(template_data);

/4 Create a GradientMaps object for the individuals
Gs = GradientMaps('kernel', 'cosine', 'approach','dm',
'alignment', 'procrustes');

% Compute gradients of all subjects and align to template
Gs = Gs.fit({subjectl_data,subject2_datal,
'reference',Gt.gradients{1});

% Load surfaces
left_surface = read_surface('left_surface_file.obj');
right_surface = read_surface('right_surface_file.obj');

/4 Plot the first aligned gradient for subject 2
plot_hemispheres(Gs.aligned{2}(:,1), {left_surface,right_surfacel});

3.8. Gradients across different spatial scales

The gradients presented so far were all derived at a vertex-wise level, which
requires considerable computational resources. To minimize time and space re-
5 quirements and to make results comparable to other parcellation-based studies,
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some users may be interested in deriving gradients using parcellated data. To
illustrate the effect of using different parcellations, we repeated the gradient
identification analysis across different spatial scales for both a structural and
a functional parcellation. Specifically, we subdivided the conte69 surface into

w0 400, 300, 200, and 100 parcels based on both a clustering of a well-established
anatomical atlas (Desikan et al., 2006), as well as a recently published local-
global functional clustering (Schaefer et al., 2017) and built FC gradients from
these representations (Figure 5). These parcellations and subsampling schemes
are provided in the shared folder of the BrainSpace toolbox.

365 Overall, with increasing spatial resolution the FC gradients become more
pronounced and gradients derived from functional and structural parcellations
were more similar. At a scale of 200 nodes or lower, putative functional bound-
aries may not be as reliably captured when using anatomically-informed parcel-
lations, resulting in more marked alterations in the overall shape of the gradi-

0 ents.

For further evaluation, we related the above gradients across multiple scales
relative to Mesulam’s classic scheme of laminar differentiation and hierarchy (Paquola
et al., 2019). It shows clear correspondence between the first gradient and the
Mesulam hierarchy for high resolution data of 300 nodes and more, regardless of

a5 the parcellation scheme. While high correspondence was still seen for functional
parcellations at lower granularity, it was markedly reduced for structural. For
researchers interested in using Mesulam’s parcellation, it has been provided on
Conte69 surfaces in the shared folder of the BrainSpace toolbox. We also provide
the evaluated FC and MPC gradients across these different spatial scales. Such

0 gradients can be used to, for example stratify other imaging measures, including
functional activation and connectivity patters (Hong et al., 2019; Murphy et al.,
2018), meta-analytical syntheses (Murphy et al., 2019; Margulies et al., 2016),
cortical thickness measures or Amyloid-beta PET uptake data (Lowe et al.,
2019).

s 3.4. Null models

Here we present an example to assess the significance of correlations be-
tween FC gradients and data from other modalities (cortical thickness and
T1lw/T2w image intensity in this example). We present code to generate pre-
viously proposed spin tests (Alexander-Bloch et al., 2018), which preserve the

w0 auto-correlation of the permuted feature(s) by rotating the feature data on the
sphere. In our example (Figure 6), one can clearly see that correlations between
FC gradients and T1w/T2w stay highly significant even when comparing the
correlation to 1000 null models whereas correlations between FC gradients and
cortical thickness appear non-significant.

Sample Code 4: A minimal Matlab example for building null models based on spin tests.
355 Equivalent Python code is provided in sample code 8 in Appendix A.

% Load spheres
left_sphere = read_surface('left_sphere_file.obj');

15
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Figure 5: Functional gradients across spatial scales. The cortex was subdivided into 100 (first
row), 200 (second row), 300 (third row), and 400 (fourth row) regions of interest based on an
anatomical (left) and functional (right) parcellation. Displayed are gradients 1 (G1), and 2
(G2), each for one hemisphere only. Line plots show the average gradient score within each
Mesulam class for the functional (dark gray) and structural (light gray).
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Figure 6: Spin tests of cortical thickness and t1w/t2w intensity. Data were rotated on the
sphere 1000 times and the Spearman correlation between FC gradient 1 and the rotated data
were computed. Distribution of correlations are shown in the histograms with the dashed
lines denoting the true correlation.

right_sphere = read_surface('right_sphere_file.obj');

% Generate 1000 spin permutations

n_perm = 1000;

features_spin = spin_permutations({left_features,right_featuresl},
{left_sphere,right_sphere},n_perm);

4. Discussion

While tools for unsupervised manifold identification and their alignment are
widely available and extensively used in data science across multiple research
domains?, and while some prior studies made their workflow openly accessi-

w  ble (see (Margulies et al., 2016; Haak et al., 2018; Guell et al., 2019)34°) we
currently lack a unified software package that incorporates the major steps of
gradient construction and evaluation for neuroimaging and connectome analysis
datasets. We aimed to fill this gap with BrainSpace, a compact toolbox for the
identification and analysis of low-dimensional gradients for any given regional or

w5 connectome-level feature. As such, the toolbox provides a simple entry point for
researchers interested in studying gradients as windows into brain organization
and function. Tools are available in Python and Matlab, two widely used pro-
gramming languages in the neuroimaging and connectomics communities, and
openly shared via Github at http://github.com/MICA-MNI/BrainSpace. In
a0 addition to the theoretical and practical guidelines provided here, an expandable
documentation has been published at http://brainspace.readthedocs.io,
providing further guidance and use-case examples. BrainSpace is a simple and

2https://github.com/scikit-learn /scikit-learn
3https://github.com/satra/mapalign
4https://xaviergp.github.io/littlebrain/
Shttps://github.com/koenhaak/congrads
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modular package accessible to beginners, yet expandable for advanced program-
mers. Core to the toolbox is a simple object-oriented model allowing for flexible

a5 computation of different i) affinity matrices, ii) dimensionality reduction tech-
niques, iii) alignment functions, and iv) null models. As a side, we supplied
precomputed gradients, a novel subparcellation of the Desikan Killani atlas,
and a literature-based atlas of cortical laminar differentiation that we used in a
recent study (Paquola et al., 2019; Mesulam, 1998).

20 As the main purpose of this report was to provide an accessible introduction
of the toolboxs basic functionality, we focused on tutorial examples and several
selected assessments that demonstrate more general aspects of gradient analyses
First, we observed relatively consistent FC gradients were produced by multiple
different dimensionality reduction techniques supplied (i.e., PCA, LE, DME),

25 we observed relatively consistent gradients, at least when cosine similarity was
chosen for affinity matrix computations. Potential interaction between input
modality, affinity matrix formulation, and dimensionality reduction techniques
may nevertheless occur and be worthwhile to further explore, as this might also
help to understand potential differences in results. Second, while we could show

a0 a relative consistency of FC gradients across spatial scales in the case of vertex-
wise analyses and when parcellations with 300 nodes or more were used, we ob-
served an interaction between the type of input data and parcellation-substrate
at lower spatial scales. In fact, lower resolution structural parcellations might
not capture fine-grained functional boundaries, specifically in heteromodal and

ss  paralimbic association cortices which may be less constrained by underlying
structural features (Paquola et al., 2019). It will be informative for future work
to clarify how input modality (e.g. FC, MPCor diffusion MRI), the choice of
parcellation, and the spatial scale impact on the spatial features identified by
gradient analyses.

440 There are two broad ways through which the gradient method, as well as
the Brainspace toolbox, may improve our understanding of neural organization
and its associated functions. One avenue is the identification of similarities
and differences in gradients derived from different brain measures. To address
associations between cortical microstructure and macroscale function, a pre-

ws  vious study (Paquola et al., 2019) demonstrated that gradients derived from
3D histology and myelin-sensitive MRI measures show both similarities and
differences from those derived from resting state-state functional connectivity
analysis (Margulies et al., 2016). This raises the possibility that the gradient
method may help quantify common and distinct influences on functional and

w0 structural macroscale organization and shed light on the neural basis of more
flexible (i.e., less structurally constrained) aspects of human cognition (Paquola
et al., 2019).Another way that gradients can inform our understanding of how
functions emerge from the cortex is through the analysis of how macroscale pat-
terns of organization change in disease. One recent study (Hong et al., 2019),

s for example, demonstrated differences in the principal functional gradient, iden-
tified by Margulies et al. (2016), between individuals with autism spectrum dis-
order and typically developing controls. In this way, manifold-derived gradient
analyses hold the possibility to characterize how macroscale functional orga-
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nization may become dysfunctional in atypical neurodevelopment. To achieve
w0 both of these goals, it is important to consider gradient alignment of different
gradients, and this can be achieved by a number of methods we supplied in the
toolbox, such as Procrustes rotation. This allows researchers to both compare
gradients from different modalities and to homogenize measures across subjects,
while minimizing the changes to individual manifolds. Our across-subjects eval-
w5 uations highlighted an increase in correspondence between individual subjects
and the template manifold when Procrustes alignment was used compared to
unaligned approaches, mainly driven by reasonably trivial changes in gradient,
such as a change in the sign of specific gradients in a subgroup of subjects. As an
alternative to the Procrustes alignment, it is also possible to align gradients by
wo  applying joint manifold alignments, often referred to as joint-embeddings (Xu
et al., 2019).The rotations provided by embedding alignments can augment both
cross-subject (Nenning et al., 2017) as well as cross-species analyses (Xu et al.,
2019). Of note, this joint embedding technique generates a new manifold from
the mapping between different gradients, which may result in new solutions that
a5 do not fully correspond to the initial gradients in important, and in a potentially
important way.

When assessing the significance of correlations between gradients and other
features of brain organization, there is an increasing awareness to ideally also
evaluate correlations against null models with a similar spatial autocorrelations

w0 as the the original features. In our toolbox, we present two different approaches
for building such null models, including a spin permutation test that is an
adaptation of a previously released approach (Alexander-Bloch et al., 2018)
and Moran’s spectral randomization used in prior ecological studies (Cliff and
Ord, 1973). Gradients can also be used as a coordinate system, and stratify

a5 cortical features that are not per se gradient-based. Examples include surface-
based geodesic distance measures from sensory-motor regions to other regions
of cortex (Margulies et al., 2016), task-based functional activation patterns and
meta-analytical data (Murphy et al., 2018, 2019; Margulies et al., 2016), as
well as MRI-based cortical thickness and PET-derived amyloid beta uptake

w0 measures (Lowe et al., 2019). As such, using manifolds as a new coordinate
system (Huntenburg et al., 2018) may complement widely used parcellation
approaches (Schaefer et al., 2017; Yeo et al., 2011; Glasser et al., 2016) and be
can be useful for dimensionality reduction of findings and for the interpretation
and communication of results.
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Appendix A. Python code samples

In this appendix we show the Python code analogous to the Matlab code
samples provided in the main body of the paper.

Sample Code 5: Python version for Matlab code sample 1. A minimal example for plotting
the first gradient of an input data matrix on the cortical surface.

from brainspace.gradient import GradientMaps
from brainspace.plotting import plot_hemispheres
from brainspace.mesh import mesh_io as mio

# Create a GradientMaps object
G = GradientMaps(kernel='cosine', approach='dm')

# Apply GradientMaps to the data
G.fit(data_matrix)

# Load surfaces
left_surface = mio.load_surface('left_surface_file.obj')
right_surface = mio.load_surface('right_surface_file.obj")

# Plot first gradient on the cortical surface
plot_hemispheres(left_surface, right_surface, G.gradients_[:,0])

Sample Code 6: Python version for Matlab code sample 2. A minimal example for creating
and plotting gradients from different modalities, with different alignments.

from brainspace.gradient import GradientMaps
from brainspace.plotting import plot_hemispheres
from brainspace.mesh import mesh_io as mio

# Create two GradientMaps objects with different alignments

Gp = GradientMaps(kernel='cosine', approach='dm',
alignment='procrustes')

Gj = GradientMaps(kernel='cosine', approach='dm',
alignment="'joint')

# Apply GradientMaps to the data

Gp.fit([mpc, fcl)

Gj.fit([mpc, fcl)

# Load surfaces

left_surface = mio.load_surface('left_surface_file.obj')

right_surface = mio.load_surface('right_surface_file.obj")

# Plot first MPC gradient of Procrustes alignment
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plot_hemispheres(left_surface, right_surface, Gp.aligned_[0][:,0])

# Plot first FC gradient of joint embedding
plot_hemispheres(left_surface, right_surface, Gj.aligned_[1][:,0])

Sample Code 7: Python version for Matlab code sample 3. A minimal example for aligning
the gradients of two individuals to a template gradient.

from brainspace.gradient import GradientMaps
from brainspace.plotting import plot_hemispheres
from brainspace.mesh import mesh_io as mio

# Create a GradientMaps object for the template
Gt = GradientMaps(kernel='cosine', approach='dm')

# Apply to template data
Gt.fit(template_data)

# Create a GradientMaps object for the individuals
Gs = GradientMaps(approach='dm', kernel='cosine',
alignment="'procrustes')

# Compute gradients for all subjects and align to template
Gs.fit([subjectl_data, subject2_datal], reference=Gt.gradients_)

# Load surfaces
left_surface = mio.load_surface('left_surface_file.obj')
right_surface = mio.load_surface('right_surface_file.obj')

# Plot the first aligned gradient for subject 2
plot_hemispheres(left_surface, right_surface, Gs.aligned_[1][:, 0])

Sample Code 8: Python version for Matlab code sample 4. A minimal Python example for
building null models based on spin tests.

from brainspace.null_models import SpinPermutations
from brainspace.mesh import mesh_io as mio

# Load spheres
left_sphere = mio.load_surface('left_sphere_file.obj')
right_sphere = mio.load_surface('right_sphere_file.obj')

# Generate 1000 spin permutations

n_perm = 1000

sp = SpinPermutations(n_rep=n_perm)

sp.fit(left_sphere, points_rh=right_sphere)

features_spin = sp.randomize(left_features, x_rh=right_features)
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