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Abstract

Proprioceptive development relies on a variety of sensory inputs, among which vision is
hugely dominant. Focusing on the developmental trajectory underpinning the
integration of vision and proprioception, the present research explores how this

integration is involved in interactions with Immersive Virtual Reality (IVR) by

examining how proprioceptive accuracy is affected by age, perception, and environment.

Individuals from 4 to 43 years old completed a self-turning task which asked them to
manually return to a previous location with different sensory modalities available in
both IVR and reality. Results were interpreted from an exploratory perspective using
Bayesian model comparison analysis, which allows the phenomena to be described using
probabilistic statements rather than simplified reject/not-reject decisions. The most
plausible model showed that 4-8-year-old children can generally be expected to make
more proprioceptive errors than older children and adults. Across age groups,
proprioceptive accuracy is higher when vision is available, and is disrupted in the visual
environment provided by the IVR headset. We can conclude that proprioceptive
accuracy mostly develops during the first eight years of life and that it relies largely on
vision. Moreover, our findings indicate that this proprioceptive accuracy can be

disrupted by the use of an IVR headset.

Introduction

From the intrauterine life, our physical, psychological, and social development
progresses thanks to the interaction between our genetic profile and the environment.
Sensory information from the both external world (exteroception) and the self

(interoception) is detected by our emerging sensory functions. We talk about

exteroception when the sensory information comes from the environment around us (e.g.

sight, hearing, touch), while interoception is the perception of our body and includes
“temperature, pain, itch, tickle, sensual touch, muscular and visceral sensations,
vasomotor flush, hunger, thirst” (p. 655 [1]). This information, which comes from
different complementary sensory modalities, has to be integrated so that we can interact

with and learn from the environment. The multisensory integration that follows takes
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time to develop and emerges in a heterochronous pattern: we rely on the various
sensory modalities to different degrees at different points in the human developmental
trajectory, during which the sensory modalities interact in different ways [2]. In general,
our sensory development is driven by crossmodal calibration: one accurate sensory
modality can improve performance based on information delivered by another, less

accurate, sensory modality [3-5].

Proprioception: an emergent perception arising from a

multisensory process

Both exteroception and interoception drive our discovery of the external world and the
self. One important physical dimension of the concept of self is proprioception, whose
definition is particularly complex and debated in the extant literature. Proprioception
belongs to the somatosensory system [6] and has traditionally been defined as the
“awareness of the spatial and mechanical status of the musculoskeletal framework”
which includes the senses of position, movement, and balance (p. 667 [7]). From this

perspective, proprioception is the awareness of the position and movement of our body

in space and results from the processing of information from muscle and skin receptors.

It arises from static (position) and dynamic (movement) information, and is crucial to
the production of coordinated movements [8]. In general, researchers are now bypassing
the concept of different unimodal sensory processing to conceive of perception as
essentially multimodal, leading to multisensory interpretations of proprioception. In
blind conditions, humans rely on somatosensory information to achieve proprioception,
although proprioception can also emerge from vision alone. This is evidenced by studies
of mirror therapy for phantom limb pain [9] that demonstrate that vision can induce
proprioceptive sensations, perception of movement, touch, and body ownership, even
when somatosensory input is completely absent. Similarly, as demonstrated by the
rubber-hand illusion [10], visual-proprioceptive information calibrates
somatosensory-proprioceptive information to create proprioception. This is why we can
perceive an illusionist proprioception (of our perceived hand position) going beyond our
somatosensory-proprioceptive input (of our actual hand position). Synchronous

multisensory stimulation creates proprioception, while vision alone is not sufficient to
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induce the rubber-hand illusion when the visual input is asynchronous to the
somatosensory information arising from the real hand.

These studies highlight that proprioception is not a sense like vision or touch.
Rather, proprioception is a complex body consciousness which flexibly emerges from
different interdependent sensory inputs, modalities, and receptors. Proprioceptive
information is combined with information from the vestibular system, which detects
movement of the head in space, and the visual system to give us a sense of motion and
allow us to make estimates about our movements [11]. As such, it plays a vital role in
everyday tasks such as self-motion.

As regards the development of proprioception, children up to two years of age tend
to make significant proprioceptive errors [12]. While several studies have shown that
proprioceptive competence is stably developed by eight years of age [13,14], others
support the finding of a longer developmental trajectory for proprioception, observing
that 8- to 10-year-old children are less accurate than 16- to 18-year-old adolescents
when making proprioceptively guided movements [15]. Moreover, some studies find
improvements in proprioceptive accuracy continuing up to 24 years of age [16].

This proprioceptive development seems to be strictly dependent on
visuo-proprioceptive calibration. In general, sensory organization is qualitatively
different across development and across different tasks. In infancy and early childhood,
vision appears dominant over somatosensory and vestibular information [17]. Between
five and seven years of age, visual influence on proprioception shows non-linear
developmental differences [18], although this has not yet been widely studied in a
broader age ranges [17]. The developmental trajectory of proprioception may be
affected by the fact that across childhood, the sections of the body change in terms of
size, shape, relative location, and dynamic. Indeed, the early importance of vision over
somatosensory information could be a result of the lack of reliability of somatosensory

input, which is highly unstable during these childhood physical changes [2].

IVR as a method of studying proprioception

The degree to which vision influences proprioception at different ages is an intriguing

topic which can be effectively investigated in the emerging field of Immersive Virtual
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Reality (IVR). This tool manipulates vision and makes the user actively interact with
the virtual environment, requiring actions based on proprioception. Through IVR, we
can manipulate individual sources of sensory information, be they visual, vestibular, or
proprioceptive, which are physiologically bound together. This makes it possible to
study the contribution of these individual sensory inputs and of multisensory
integration to self-perception and motor control [19]. Furthermore, it allows us to see
how these individual senses contribute to proprioceptive accuracy at different
developmental stages.

In IVR, “the simultaneous experience of both virtual environment and real
environment often leads to new or confounded perceptual experiences” (p.71 [20]). For
example, users can see themselves standing in the empty space between two mountains
but, instead of falling, perceive the floor under their feet. Even with a virtual body
representation (e.g. visual perception of an avatar) or without the possibility to see
one’s own body, IVR can alter a user’s body schema [21]. The available literature
provides some examples of how IVR affects the user’s motor activity, which relies
largely on proprioception. IVR users are found to decrease their speed and take smaller
steps [22] and experience greater difficulties orienting themselves in a virtual
environment (VE) [23]. To orient and move in space in different environments and tasks,
people can switch between reference frames related to the body (proprioception) or to
the external world (e.g. vision). It has been suggested that IVR provides unexpected
incongruent stimuli and induces a sensory conflict between vision and proprioception
which differently affects users (e.g. sometimes causing motion sickness) depending on
their dominant reliance on one of these two reference frames [24].

One of the central ways to investigate visuo-proprioceptive integration in IVR is
through the study of self-motion [25]. In the area of simulated self-motion, Riecke and
colleagues [26] have shown that IVR disrupts adults’ ability to perform simulated
upright rotations and their judgements of these rotations. Participants’ accuracy in
these rotations was markedly impaired when wearing a head-mounted display (HMD)

showing them an immersive virtual environment (IVE), compared to a curved or flat

screen. Despite their inaccuracy, participants subjectively rated the task as rather easy.

It appears that the use of IVR or of HMDs specifically may affect proprioceptive

accuracy beneath the level of awareness of the user.
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Moving beyond passive self-motion, a further body of studies have examined active
movements. Active self-motion involves IVEs where free movements are possible: the
IVR scene changes consistently with the user’s active movement. For example, the user
sees themselves walking in the virtual environment while they are physically walking in
reality [27]. The ability to make active movements during the interaction with an IVR
environment, even without visual landmarks, improves the perception of
self-motion [28,29]. However, despite the importance of the body senses, the physical
feedback (derived, for example, from the possibility to actively walk during the virtual
immersion) is not sufficient to eliminate errors in self-motion and spatial orientation
while wearing an HMD [27]. These findings, taken together, show that IVR, and
HMD-delivered IVR in particular, can disrupt proprioception in adults.

The studies described above primarily tested adult populations. However, there is a
lack of research regarding how IVR affects proprioception, visuo-proprioceptive
integration, and self-motion during development. A recent experimental study with
children (8-12 years old) and adolescents (15-18 years old) provides evidence about
children’s use of vision and proprioception during self-motion in IVR [30]. The authors
intentionally created a mismatch between visual (visual flow) and proprioceptive
feedback (active motion) during two different motor tasks: walking and throwing. They
measured children’s ability to recalibrate (to adapt their motor actions to the provided
abnormal visual input) and re-adapt to the normal characteristics of the real
environment. As with adults in previous studies [31,32], children and adolescents
showed the ability to recalibrate in a few minutes. The authors found just one
age-related difference, in regard to the rate of re-adaptation. In the throwing task,
children re-adapted to reality significantly more slowly than adolescents, demonstrating
more pronounced post-exposure effects. The mismatch between visual and
proprioceptive information appeared to have a more enduring effect on children.
Although this finding must be interpreted with caution, it could be a first indication of
age-related differences in motor learning in IVR. These findings indicate that the motor
performance of children, more so than adolescents, could be modified by interaction
with IVR environments. This could have meaningful implications for fields such as IVR
rehabilitation, therapy, and education, suggesting that IVR interventions could be more

effective early in life.

August 16, 2019

6,/38

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135


https://doi.org/10.1101/760553
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/760553; this version posted September 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

With concern to multisensory integration, a recent study used IVR to decouple
visual information from self-motion and investigate whether adults and 10- and
11-year-old children can optimally integrate visual and self-motion proprioceptive
cues [33]. A HMD was used to make participants learn a two-legged path either in
darkness (“only proprioception”), in a virtual room (“vision + proprioception”), or
staying stationary while viewing a pre-recorded video of walking the path in the virtual
room (“only vision”). Participants then reproduced this path in darkness. In contrast
to what was expected, the authors found that adults failed to optimally integrate visual
and proprioceptive cues to improve path reproduction. However, children did integrate
these cues to improve their performance. This study demonstrates that HMD training
that includes vision and proprioception can be effective at calibrating self-motion for
children even if it is not for adults. The authors suggest that this may be because
children cannot help but rely on visual cues in spatial tasks even when the nature of the
task does not require it. The authors do not explain the results with respect to the use
of IVR, or specifically by considering IVR as a tool which requires a particular form of
sensory processing. We previously discussed findings demonstrating that HMDs disrupt
proprioception, which adults and children rely on in different ways. It may be the case
that IVR imparts different effects on adults’ and children’s performance. We could
speculate that, if IVR causes some sort of conflict between vision and proprioception,
adults’ lack of multisensory integration in these environments could be due to their
reliance on proprioception and ability to ignore visual cues. Visual cues would be
perceived as irrelevant for motor tasks, because they would be in conflict with
proprioceptive information. Since this ability to ignore irrelevant visual cues seems not
to be mature in children [34], they could benefit from IVR motor training because they
would still be using vision to calibrate their less accurate proprioception. It is only

recently that the field of IVR research is beginning to focus on the developing child to

study developmental differences in relation to their interaction with IVR environments.

Thus far, IVR technology has been primarily used with children for educational, pain
distraction, and assessment purposes [35]. Further research is needed to investigate how
the sensory-motor interaction with an IVR environment changes depending on age.
Given that children and adults differ in their sensory-motor functioning, research should

investigate how IVR interacts with and affects the childhood developmental trajectory
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with respect to use of vision, proprioception, and other sensory cues in the ability to

accurately execute self-motion.

Statistical approach for exploratory investigations: Bayesian

model comparison

Given the lack of evidence concerning the complex interaction between developmental
stages, visuo-proprioceptive integration, and IVR environments, exploratory studies are
needed and can benefit from assuming a model comparison approach. Model
comparison allows for the selection of the most plausible model given data and a set of
candidate models [36]. Firstly, the different research hypotheses are formalized as
statistical models. Subsequently, the obtained models are compared in terms of
statistical evidence (i.e. support by the obtained data), using information criteria [37].
Information criteria enables the evaluation of models considering the trade-off between
parsimony and goodness-of-fit [38]: as the complexity of the model increases (i.e. more
parameters), the fit to the data increases as well, but generalizability (i.e. ability to
predict new data) decreases. The researchers’ aim is to find the right balance between
fit and generalizability in order to describe, with a statistical model, the important
features of the studied phenomenon, but not the random noise of the observed data.
A Bayesian approach is a valid alternative to the traditional frequentist
approach [39,40], allowing researchers to accurately estimate complex models that
otherwise would fail to converge (i.e. unreliable results) in a traditional frequentist
approach [41,42]. Without going into philosophical reasons, which are beyond the scope
of the present paper (if interested, consider [43]), Bayesian inference has some unique
elements that make the meaning and interpretation of the results different from the
classical frequentist approach [44]. In particular, in the Bayesian approach, parameters
are estimated using probability distributions (i.e. a range of possible values) and not a
single point estimate (i.e. a single value). Bayesian inference has three main
ingredients [45]: (1) Priors, the probability distributions of possible parameter values
considering the information available before conducting the experiment; (2) Likelihood,
the information given by the observed data about the probability distributions of

possible parameter values; (3) Posteriors, the resulting probability distributions of
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)

possible parameter values, obtained by combining Priors and Likelihood through Bayes
Theorem. As a result, a Bayesian approach assesses the variability (i.e. uncertainty) of
parameter estimates and provides associated inferences via 95% Bayesian Credible
Intervals (BCIs), the range of most credible parameter values given the prior
distribution and the observed data. Thus, a Bayesian approach allows researchers to
describe the phenomenon of interest through probabilistic statements, rather than a
series of simplified reject/do-not-reject dichotomous decisions typically used in the null

hypothesis significance testing approach [36].

Research goals and hypotheses

The aim of the present study is to investigate the extent to which the reliability of
visual information aids proprioceptive-based self-motion accuracy across the human
developmental trajectory. We also aim to explore whether HMD-delivered IVR
environments, compared to equivalent real environments, affect proprioceptive accuracy.
Given that findings in the area of multisensory interaction with IVR across development
are still conflicting and unexplained with respect to the use of HMDs, the current study
seeks to clarify how using an HMD affects children’s and adults’ self-motion
performance, and how these effects could be related to the reliability of the provided
visual and proprioceptive information. Research has broadly considered the computer
side of IVR features affecting human-computer interaction, but there is a lack of
research investigating how individual characteristics of users interact with IVR
environments. To compare performances in reality and IVR, all sensory conditions
being equal, would clarify the role of both sensory manipulation and IVR. How might
different users, with different levels of multisensory functioning, interact with IVR? The
present study explores this question, examining how IVR differs from reality in affecting
visuo-proprioceptive integration in adults and children at different developmental stages.
Furthermore, the study aims to open new avenues of analysis in this area of research by
using a model comparison approach to analyze each hypothesis.

Based on the extant literature described in the introductory section of this work, we
hypothesized that children’s proprioceptive accuracy would be globally lower than that

of adults, but that children would be less impaired than adults by the disruption of
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proprioception. We further hypothesized that IVR would disrupt proprioception and

impact proprioceptive accuracy more in adults than children.

Materials and Methos

Participants

In order to capture a range of developmental stages, we included primary and secondary
school-aged children and adults. We collected data from young children aged from 4 to
8 years old, and older children aged from 9 to 15 years old. This distinction was made
to clarify contradictory findings about how long it takes to develop stable proprioceptive
accuracy (as described in section 2.2). With regard to the adult group, we included
participants within the age range of 18 to 45 years. We excluded older participants
based on literature reporting deterioration of proprioceptive accuracy with advancing
age. This deterioration effect has been found from middle age, with studies indicating
changes beginning from the age of 40 to 60 [46,47]. For this study, we collected data
from 55 participants. In line with our a priori exclusion criteria, we excluded six
subjects who reported that they had received a diagnosis for any kind of
neuropsychological, sensory, or learning disorder from the final analysis. The final

sample included 49 participants, distributed across age groups as follows:

e 13 young children between the ages of 4 and 8 years (Mgge = 7.1, SD = 1.2 years)

e 13 older children between the ages of 9 and 15 years (Mg = 11.3, SD = 2.0

years)

e 23 adults between the ages of 20 and 43 years (Myg4e = 32.4, SD = 6.6 years)

In a within-subjects design, all participants were exposed to all conditions in a

randomized order.

Materials and set-up

We designed and built a testing room in which different sensory stimulations could be
provided and the availability of visual and proprioceptive information could be

manipulated while completely excluding unwanted external stimuli (Fig 1). In the
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centre of the room, we fixed a customized swivel chair on a round platform to the floor.

The round platform did not provide any proprioceptive or visual cues about the degree
of rotation the participant made on the chair (Fig 2A). A 360° protractor under the seat
was visible via a dedicated camera which allowed the measurement of the degree of each
rotation. One 50 cm white LED strip (12V DC, 24 Watt per meter) allowed sufficient
illumination for a clear and realistic visual experience of the room. One UV lamp (E27
26W) was used to obscure other visual stimuli such that the white clouds on the walls
were the only visual cues available. With the UV light on, participants were asked to
wear a black poncho which covered their bodies, making them not visible (Fig 2B). One
infrared LED spotlight (BIG BARGAIN BW103) enabled clear video recordings of the
inside of the room even when it was completely in darkness. This light system was
anchored to the ceiling, over participants’ heads, and was covered by a black panel

which prevented participants from directly seeing the lights.

Fig 1. Experimental room. The room measured 2 x 2 meters and was soundproof,

with black interior walls and equal numbers of white clouds randomly fixed on each wall.

The external walls were painted with a child-friendly landscape which has been designed
to encourage children to enter the room.

Fig 2. Experimental room, interior. A: The swivel chair in a visuo-proprioceptive
real environment. B: A participant wearing the black poncho in a vision-only real
environment (B).

We provided the IVR simulation through a VR headset (Head Mounted Display
[HMD]). We used Oculus Gear VR 2016, 101° FOV, 345 g weight, interfaced with a
Samsung Galaxy S7 (ANDROID 8.0.0 operating system).

A NIKON camera KeyMission 360 was used to create 360° images of the room and
to build the IVR environments. The room was monitored via one USB 2.0 DirectShow
webcam, and one USB 2.0 DirectShow webcam with integrated infrared LED.

To monitor the video recordings and VR simulations, we used a SATELLITE Z30-B,
Windows 10, 64bit, Intel Core i5-5200U CPU @ 2.20 Ghz,8,0 GB RAM, Intel HD

Graphics 5500. The communication between people inside and outside the room was

enabled via a system of USB speaker, microphone, headphones, and one USB soundcard.

The VR server application developed for this experiment is an Android application with

VR environments, developed in Unity. A remote interface, also developed in Unity for
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Windows or Android OS, allowed experimenters to control the VR server application. A
software for audio-video recording and real-time communication was developed in

TouchDesigner.

Procedure

Adult participants were welcomed into the lab and asked to sign a consent form.
Parents of children were asked to sign the form on their child’s behalf. The study was
approved by the Ethics Committee of Psychology Research, University of Padua. At
least two experimenters conducted the experiment. On commencing the experiment,
participants were asked to sit on the swivel chair which was fixed in the middle of the
recording area inside the room. The first experimenter would close the door and stay
inside near the participant for the duration of the experiment. The second experimenter
managed the experiment: he/she switched the lights on and off, changed the visual
stimuli which were presented through the HMD, and controlled the video recording of
the experiment. He/she was outside the room, monitoring the video feed, and giving
verbal instructions to the first experimenter and to the participants. The room is
soundproof but the second experimenter could communicate with the people inside
through a microphone. The participant and experimenter inside the room could hear
the second experimenter through a system of speakers set up under the swivel chair.
During the experimental task (described below in the following paragraph), the first
experimenter managed the passive rotation and remained silent behind the participant,
providing no visual or auditory cues. The second experimenter followed previously

established verbal instructions which were consistent across participants.

Experimental task

We adopted a self-turn paradigm in which the experimenter rotates the chair a certain
degree (passive rotation) from a start position to an end position. After each passive
rotation, participants were asked to rotate back to the start position (active rotation).
The position at which the participant stopped their active rotation is recorded as the
return position. All participants performed 12 trials across 6 conditions. For each

condition, the passive rotation was done once to the right (clockwise) and once to the
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left (counterclockwise). For each condition, one passive rotation was approximately 180
degrees and the other was approximately 90 degrees. During the passive rotation,
participants kept their feet on a footrest which rotated with the chair. In this way, they
could not make steps while being rotated, and could not simply count the number of
steps to make active rotations. To perform the active rotations, participants could use
their feet on the still platform under the chair to move themselves. Some authors
suggest that vestibular information is primarily involved when perceiving the amount of
passive rotation, and proprioceptive information is primarily involved when performing
an active rotation [48]. In our task, during the encoding phase (passive rotation),
vestibular information is always available, while proprioception is not. During the recall
phase (active rotation), both vestibular and proprioceptive information are available. In
each experimental condition, the same vestibular and visual information can be used to
both encode and recall the start position. Proprioception has to be used only during the
recall phase, emerging from the other sensory information. Proprioception is considered
as the accuracy measure in our task in line with procedures aimed at assessing

proprioception in the extant literature [49-51].

Measures of task performance

The proprioceptive accuracy of self-turn performances was calculated in terms of error
as the absolute difference between the start position (from which the experimenter
started the passive rotation) and the return position (in which the participant stopped
the active rotation). In this way, greater values indicated a less accurate performance,
where a value of 0 would indicate that the participant actively rotated back to the exact
start position, and a value of 100 would indicate that the participant actively rotated
back to a position that was 100 degrees away from the start position.

Proprioceptive accuracy was manually measured during an offline coding of the
video recording. The video shows two matched recordings of both the entire room (with
the participant and the first experimenter in frame) and the protractor positioned under
the seat of the swivel chair. A vertical green line was superimposed on the protractor
image to facilitate detection of the specific degree of each rotation. Two independent

evaluators coded the videos and entered the start and return positions in the dataset.
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Values which were divergent for more than two degrees were a priori considered
disagreement values. A third coder examined the video records of the disagreement
values to make the final decision. In case of a disagreement value, the third coder’s
value was used instead of the value that differed most from the third coder’s value. We
obtained a dataset with two codings for each data. We evaluated the intercoder

agreement by conducting an intra-class correlation (ICC), which is one of the most

commonly used statistics for assessing inter-rater reliability (IRR) for ratio variables [52].

From the dataset which combines the two codings, we obtained a final dataset with the

average of the two values. We carried out the data analysis on this final dataset.

Conditions

The order of conditions was randomized. Participants performed blocks of two trials per
condition. There were three conditions in a real environment (R) and three conditions
in an immersive virtual reality (IVR) environment. In each of these two blocks, one
blind condition removed all visual information such that only proprioceptive
information could be used (P), one condition limited the access to visual landmarks
(removing visual information about the body and corners of the room while retaining
the use of vision) in order to disrupt proprioception (V), and one condition allowed the
participant to access reliable visual and proprioceptive information (VP). Several
studies have explored the extent to which people benefit from visual landmarks to
calibrate and aid proprioceptive tasks while self-turning and it seems that different
kinds of visual landmarks could be more or less useful for proprioception in different
environments and tasks. In a real environment, after being disorientated by a passive
rotation, people could still detect the position of global landmarks (the room’s corners),
while making huge errors locating surrounding objects [53]. In a HMD-delivered virtual
environment, users’ self-motion did not benefit so much from global landmarks [54]. We
aimed to control whether the rotation direction and amplitude would affect
performance. For this purpose, each condition was performed twice: the passive
rotation was made in both directions (clockwise and counterclockwise), and with two
angle amplitudes (90 and 180 degrees). As the passive rotation was manually performed

by the experimenter, perfect accuracy in reaching 90 and 180 degrees was not possible.
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Given the variability in the actual passive rotations, we considered Amplitude as a 369
continuous variable. We labelled the direction conditions “R” (right) for the clockwise s
condition and “L” (left) for the counterclockwise condition. We counterbalanced 371
within-subjects the possible interaction effect of Direction Learning, beginning 50% of s
conditions with “R” and the other 50% with “L”. We labelled the amplitude conditions s
“A” for the 180-degree condition and “B” for the 90-degree condition. Fifty percent of  sn
each direction condition had a 180-degree amplitude and the other 50% had a 90-degree s
amplitude. The direction order is RLLRRLLRRLLR; and the amplitude order is 376
ABABABABABAB. We labelled the conditions by number from one to six. As such, we s
had, for example, sequences labelled: 1RA-1LB-2LA-2RB, and so on. We 378

counterbalanced the amplitude order between subjects. We tested the ABAB sequence 319

in 50% of subjects and the BABA sequence in 50% of subjects. 380
The experimental conditions are as follows: 381
e R_P (Reality; only proprioception, no visual information available) 38

e R_V (Reality; only vision: low external visual landmarks with no first-person view s

of the body or room corners in order to disrupt proprioception). 384
e R_VP (Reality; vision and proprioception are available; first-person view of the 385
body, room corners, and clouds are visually available) 386
e IVR_P (Immersive Virtual Reality; only proprioception, no visual information 387
available) 388
e IVR_V (Immersive Virtual Reality; only vision: low external visual landmarks 389
with no first-person view of the body or room corners in order to disrupt 300
proprioception) 301

e IVR_VP (Immersive Virtual Reality; vision and proprioception are available; room  3e
corners and clouds are visually available, although first-person view of the body is s

not) 394

Statistical approach 305

In order to explore how age, sensory conditions, and environmental conditions interact s

to affect proprioceptive accuracy, a model comparison approach was used. Firstly, each 3o
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research hypothesis was formalized as a statistical model. Subsequently, the obtained
models were compared in terms of statistical evidence (i.e. support by the data) using
information criteria [37].

Given the complex structure of the data, Bayesian generalized mixed-effects models
were used [39,55]. Specifically, data were characterized by: (1) a continuous
non-normally distributed dependent variable (i.e. rotation error); (2) a between-subject
factor (i.e. Age); (3) within-subject factors (i.e. Perception condition and Environment
condition); (4) a quantitative independent variable (i.e. rotation Amplitude).
Mixed-effects models allow us to take into account the repeated measures design of the
experiment (i.e. observations nested within subjects). Thus, participants were treated
as random effects, with random intercepts that account for interpersonal variability,
while the other variables are considered as fixed effects. Gamma distribution, with
logarithmic link function, was specified as the family distribution of the generalized
mixed-models. Gamma distribution is advised in the case of positively skewed,
non-negative data, when the variances are expected to be proportional to the square of
the means [56]. These conditions are respected by our dependent variable: we only have
positive values, with a positive skewed distribution, and we expect a greater variability
of the possible results as the model predicted mean increases (i.e. a greater dispersion of
subjects’ scores when greater mean values are predicted by the model).

Analyses were conducted with the R software version 3.5.1 [57]. Models were
estimated using the R package ‘brms’ [58] which is based on STAN programming
language [59,60] and employs the No-U-Turn Sampler (NUTS; [61]), an extension of
Hamiltonian Monte Carlo [62]. All our models used default prior specification of the R
package ‘brms’ [58]. Detailed prior specifications are reported in the supplemental
online material. These priors are considered non-informative since they leave the
posterior distributions to be mostly influenced by the observed data rather than by prior
information. Each model was estimated using 6 independent chains of 8,000 iterations
with a “warm-up” period of 2,000 iterations, resulting in 36,000 usable samples.

Convergence was evaluated via visual inspection of the trace plots (i.e. sampling
chains) and R-hat diagnostic criteria [63]. All tested models showed satisfactory
convergence with all R-hat < 1.0008, where values close to 1 indicate convergence, and

none exceeding the 1.100 proposed threshold for convergence [39]. All R-hat values and
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trace plots are reported in the supplemental online material.

The Watanabe-Akaike Information Criterion (WAIC; [64,65]) was used as
information criteria to select the most plausible model among the tested models, given
the data. WAIC is the corresponding Bayesian version of the commonly used Akaike
information criterion (AIC; [66]). WAIC-weights were computed to present the
probability of each model of making the best predictions on new data, conditional on
the set of models considered [36]. This allows for the comparison of models with a
continuous informative measure of evidence. Finally, the most plausible model was
interpreted considering the estimated posterior parameter distributions. Main effects
and interaction effects were evaluated using planned comparison and graphical

representations of the predicted values by model.

Results

Descriptives

Proprioceptive accuracy was manually measured during an offline coding of the video
recording. Independent raters coded for the degree values indicating start, end, and
return positions of each rotation. Based on these values, we calculated the amplitude of
passive rotations and proprioceptive errors of active rotations. On these start, end, and
return position values, the intra-class correlation index (ICC) has been calculated to
evaluate the inter-coder reliability. The analysis estimates an ICC = .99. This nearly
perfect inter-coder agreement derives from the small mean difference between the two
coders’ values, within the huge range of possible values (0/360). In fact, the mean
difference between coder A and coder B is minimal (Means_p < .16).

Out of the 49 participants, 43 subjects completed the task in all 12 conditions, 4
subjects completed 11 conditions, 1 subject completed 10 conditions, and 1 subject
completed 8 conditions. This failure to complete all conditions with some participants
was due to technical problems which occurred with the experimental apparatus. Thus,
the final data consist of 578 observations nested in 49 subjects. The number of
observations in each condition is reported in Table 3 in S1 Supplemental Materials.

We considered Amplitude of the passive rotations as a continuous variable whose
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distribution is shown in Fig 3. To obtain interpretable results in the analyses, the

Amplitude variable was standardized.

Fig 3. Estimated distribution of the actual Amplitude in the passive
rotation. (nsubjects = 49; Nopservations = 578)

The mean self-turn error in the present sample was 17.1 degrees (SD = 8.0). The
frequency of the observed values is reported in Fig 4. Considering how we computed the
self-turn error, only positive values are possible and from visual inspection, the

dependent variable has an evident positive skewed distribution.

Fig 4. Frequencies of the observed self-turn errors. (nsupjects = 49;
Nobservations — 578)

The means and standard deviations of the self-turn error for the three age groups in
the six different experimental conditions are reported in Table 1 and the distributions of
the observed data are presented in Fig 5. For the sake of interpretability, descriptive
statistics were marginalized over the variable Amplitude (integrating out this more
imprecise variable) which will be considered later on in the analysis. Considering the
marginal effect of Age, adults (M = 12.8, SD = 4.4) made less self-turn errors than
older children (M = 16.4, SD = 7.5) and young children (M = 25.3, SD = 7.7). Looking
at the marginal effect of Environment, subjects made less errors and were thusly more
accurate in the reality condition (M = 13.9, SD = 8.0) than in the immersive virtual
reality condition (M = 20.2, SD=10.3). Finally, for the marginal effect of Perception,
subjects made less self-turn errors when they could rely on both vision and
proprioception (M = 13.9, SD= 11.3) than when they could use only vision (M = 14.5,

SD= 9.3) or proprioception (M = 22.8, SD= 14.1).

Fig 5. Estimated distributions of the observed self-turn errors in the
different conditions according to age. (nNsupjects = 49; Nobservations = H78)

Model comparison

Seven different Bayesian generalized mixed-effects models were performed to analyze
the data (see Table 5 in S1 Supplemental Materials). In each model the dependent

variable was the error in the self-turn task. The first model (m.0) was a baseline model
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Table 1. Descriptive statistics. Means and standard deviations of self-turn error according to age and the experimental

conditions.
Perception
Proprioception Vision Vision + Proprioception Total
Mean |  SD Mean | SD | Mean | SD Mean | SD
Reality
Adults 16.2 8.6 9.8 12.6 6.1 4.1 10.7 6.0
Older Children 19.6 10.5 14.0 18.2 6.7 3.6 13.5 7.3
Young Children 30.6 224 8.2 5.2 20.7 20.5 19.8 9.0
Total 20.9 15.0 10.5 12.9 10.1 12.5 13.9 8.0
Virtual Reality
Adults 17.6 10.6 13.5 7.6 13.7 9.1 14.9 6.3
Older Children | 23.6 19.1 17.5 10.1 16.9 18.6 19.3 9.5
Young Children | 37.8 16.2 28.5 16.5 25.1 16.5 30.3 9.9
Total 24.7 16.8 18.5 12.6 17.4 14.6 20.2 10.3
Total
Adults 17.1 6.4 11.8 8.0 9.9 4.8 12.8 4.4
Older Children | 21.6 13.7 15.7 11.8 11.7 9.4 16.4 7.5
Young Children | 34.2 18.0 18.2 7.9 23.4 15.8 25.3 7.7
Total | 22.8 14.1 14.5 9.3 13.9 11.3 17.1 8.0

Note: Nsupjects = 49; Nobservations = D78. Values are marginalized over the variable Amplitude.

considering the random effect of subjects (i.e. the random intercept that accounts for
interpersonal variability) and the fixed effects of Direction (i.e. right or left rotation)
and of Amplitude (i.e. amplitude of the rotation in degrees, reflecting the difficulty of
the task). This baseline model, which includes the effects of possible confounding
variables, was used as a reference point to then evaluate the models that considered the
effects of Age, Perception, and Environment conditions. In the additive model (m.1) the
additive effects of Age, Perception, and Environment were added to the baseline model.
Single 2-way interactions were evaluated in models m.2, m.3, and m.4. These models
respectively added to the additive model (m.1) the interaction effect between Perception
and Environment conditions (m.2), Age and Environment conditions (m.3), and
between Age and Perception (m.4). In the model m.5 all the possible 2-way interactions
between Age, Perception, and Environment conditions were considered, together with
the effects of the additive model (m.1). Finally, in the last model (m.6), the 3-way
interaction between Age, Perception, and Environment conditions was added to the
previous model (m.5).

WAIC results indicated that m.2 was the most plausible model for the observed data,
having the lower WAIC value (WAIC = 4345.6) and a probability of being the best of

.65. Compared with the second-most plausible model (m.6 with a probability of .15),
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m.2 is 4.4 times more probable. WAIC values and relative WAIC weights or all models

are reported in Table 2.

Table 2. WAIC model comparison.

Model | WAIC | SE | WAIC weight

Baseline m.0 | 4409.9 | 54.6 0.00

Additive m.1l | 4349.8 | 61.9 0.08

2-way m.2 | 4345.6 | 63.2 0.65

Interactions m.3 | 4354.0 | 62.4 0.01

m.4 | 4351.6 | 61.4 0.03

All 2-way m.5 | 4349.7 | 62.8 0.08
Interactions

3-way m.6 | 43485 | 60.8 0.15
Interactions

Note: Nsubjects = 497 Nobservations = 918

Model interpretation

In order to interpret the effects of model m.2, 95% Bayesian Credible Intervals (BClIs)

of the parameters posterior distribution were evaluated (Table 3). Ninety-five percent

BCIs represent the range of the 95% most credible parameters values given the prior

distribution and the observed data. Thus, an effect is considered to be present if the

value zero is not included in the 95%BCI, whereas if the value zero is included in the

95%BCI, it is interpreted as no-effect.

Table 3. Estimated parameters of model m.2.

Parameters

95 % BCI

Name | Estimate | Est.Error

Lower | Upper

Random Effects

SD | Subject ID [ 029 [ 0.05 [ 019 [ 0.0
Fixed Effects
Intercept 2.79 0.12 2.57 3.02
Amplitude 0.22 0.04 0.15 0.29
Direction (left) 0.10 0.07 -0.04 0.24
Environment (Virtual Reality) 0.08 0.12 -0.16 0.32
Age Older Children 0.18 0.13 -0.09 0.44
Young Children 0.62 0.13 0.36 0.89
Perception _ . Vis%on -0.64 0.12 -0.89 -0.40
Vision + Proprioception -0.77 0.12 -1.01 -0.53
Vision X Virtual Reality 0.36 0.17 0.02 0.70
Interaction Vision + Proprioception X 0.48 0.17 0.14 0.82

Virtual Reality

Note:

Baseline category for Direction was “Right”. Baseline category for Age was
“Adult”. Baseline category for Perception was “Proprioception”. Baseline category for Envi-
ronment was “Reality”. nsupjects = 49; Nobservations = 978
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Self-turn error was moderated by Amplitude, by Age, and by the interaction between
Perception an Environment conditions. On the contrary, the direction of rotations
seems to have no effect of the subjects’ performance (5 = .10; 95% BCI = -.04 ; .24).

To evaluate the model fit (i.e. the model ability to explain the data) we used a
Bayesian definition of R-squared [67] to estimate the proportion of variance explained.
The estimated value of Bayesian R-squared for the model m.2 is .26 (95% BCI = .19;

.34), that is the model explains 26% of the variability of the data.

Rotation amplitude

Self-turn error was moderated by Amplitude (8 = .22; 95% BCI = .15 ; .29), for which

increasing rotation amplitude is associated with a worse performance (Fig 6).

Fig 6. Predicted mean of self-turn error according to Amplitude
(Nsubjects = 49; Nobservations = 578). The line represents the mean value. The shaded
area the 95% BCI values.

Group age

To evaluate the role of Age, the distributions of predicted mean values for the three
groups were considered (Fig 7). The predicted mean error for adults was 12.8 degrees
(95% BCI = 10.6;15.1), for older children 15.5 degrees (95% BCI = 12.0 ; 19.1) and for
young children was 24.8 degrees (95% BCI = 19.3 ; 30.7). Bayesian pairwise comparisons
(i.e. predicted score differences between groups) are reported in Table 4. Results showed
that overall, young children are expected to make more self-turn errors than adults
(95% BCI = 6.1 ; 18.0) and also more than older children (95% BCI = 2.8 ; 15.9).
However, we cannot state that older children are expected to make more self-turn error

because the 95% BCI of the difference includes the value zero (95% BCI = -1.4 ; 6.8).

Fig 7. Distributions of the predicted means of self-turn error according to
Age- (nsubjects = 497 Nobservations — 578.

Perception and environment

To interpret the interaction between the Perception and Environment conditions, the

distributions of predicted mean values for all six conditions were considered (Fig 8). In
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Table 4. Predicted means and differences of Self-turn error according to
Age.

Mean 95% BCI
| Estimate Lower | Upper
Groups
Adults 12.8 10.6 15.1
Older Children 15.5 12.0 19.1
Young Children 24.8 19.3 30.7
Comparisons
Young Children - Adult 12.0 6.1 18.0
Young - Older Children 9.3 2.8 15.9
Older Children - Adult 2.7 -14 6.8
Note: Nsubjects = 49a Nobservations — 578

the Reality environment condition, the predicted mean error for proprioception was 22.4
degrees (95% BCI = 18.1 ; 27.2), for vision was 11.3 degrees (95% BCI = 8.9 ; 13.9) and
for vision + proprioception was 9.8 degrees (95% BCI = 7.8 ; 12.0). In the Immersive
Virtual Reality environment condition, the predicted mean error for proprioception was
24.2 degrees (95% BCI = 19.4 ; 29.2), for vision was 18.0 degrees (95% BCI = 14.4 ;
21.7) and for vision + proprioception was 17.8 degrees (95% BCI = 14.3 ; 21.7).
Bayesian pairwise comparisons (i.e predicted error differences between conditions) are
reported in Table 5. Results showed that in both Reality and Immersive Virtual Reality,
subjects are expected to make more self-turn errors when they rely only on
proprioception than when they can use only vision (Reality: 95% BCI = 6.6 ; 15.8;
Immersive Virtual Reality: 95% BCI = 0.9 ; 11.7) or vision + proprioception (Reality:
95% BCI = 8.2 ; 17.3; Immersive Virtual Reality: 95% BCI = 1.0 ; 11.9). In addition,
in both environments there is no difference between the use of vision and vision +
proprioception (Reality: 95% BCI = -1.4 ; 4.5; Immersive Virtual Reality: 95% BCI =
-4.3 ; 4.8). Moreover, comparing Immersive Virtual Reality to Reality conditions, results
show that while wearing the HMD the self-turn errors increase when subjects rely only
on vision (95% BCI = 2.8 ; 10.7) or on vision + proprioception (95% BCI = 4.3 ; 11.9),
but subjects are not expected to make more errors than in Reality when they rely only

on proprioception (95% BCI = -3.8 ; 7.9).

Fig 8. Distributions of the predicted means of self-turn error according to
the different conditions. (nsypjects = 49; Nobservations = D78)
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Table 5. Predicted means and differences of Self-turn error according experimental conditions.

Mean 95 % BCI
| Estimate Lower | Upper
Conditions
Proprioception 224 18.1 27.2
Reality Vision 11.3 8.9 13.9
Vision + Proprioception 9.8 7.8 12.0
Proprioception 24.2 194 29.2
Virtual Reality Vision 18.0 14.4 21.7
Vision + Proprioception 17.8 14.3 21.7
Comparisons
Proprioception - 11.1 6.6 15.8
Vision
. Proprioception - 12.6 8.2 17.3
. Vision + Proprioception
Reality Vision -
Vision + Proprioception 15 -4 45
PI‘OpI‘lOCGpt}O.D A 6.2 0.9 11.7
Vision
Virtual Reality P Visrion -
Vision + Proprioception 0.2 43 4.8
Proprioception 1.8 -3.8 7.9
Virtual Reality - Reality Vision 6.7 2.8 10.7
Vision + Proprioception 8.0 4.3 11.9

Note:

Nsubjects — 49; Nopservations = D78

Effect size

To quantify the differences between the various age groups and conditions, we expressed
the effects as the ratio between the two scores of the comparison of interest (see Table 17
in S1 Supplemental Materials). Thus, for example, young children are expected to make
88% more errors than adults and 58% more errors than older children. Considering the
Reality environment conditions, when using only proprioception subjects are expected
to make 92% more errors than when they rely only on vision and 118% more errors
than when using vision + proprioception. Considering the Immersive Virtual Reality
environment conditions, when using only proprioception subjects are expected to make
34% more errors than when they rely only on vision and 35% more errors than when
using vision + proprioception. Moreover, comparing Immersive Virtual Reality to
Reality environmental condition, in IVR subjects are expected to make 56% more errors

when using only vision and 75% when using vision + proprioception.
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Discussion

This experiment explored the extent to which visual information aids
proprioceptive-based self-motion accuracy across the lifespan, and specifically in three
developmental groups: 4-8-year-old children, 9-15-year-old children, and adults.
Moreover, the experiment assessed whether HMD-delivered IVR environments affect
accuracy.

As expected, we found a main developmental trend in the improvement of
proprioception across conditions. In particular, as hypothesized, we found differences
between the young child group (4-8 years old) and the older child and adult groups
(9-15 and 20-43 years old), with this youngest group showing lower proprioceptive
accuracy than the two older groups. This indicates that proprioceptive development
predominantly takes place in the first eight years of life, such that adolescent and
pre-adolescent children make more accurate proprioceptive judgements than younger
children.

In line with our hypotheses, we also found an interaction effect between Perception
and Environment condition. Our findings indicate that proprioceptive accuracy was
markedly impaired when participants could rely only on proprioceptive input, regardless
of the environment. In the conditions which forced participants to rely solely on
proprioception by removing all visual information, all groups were less accurate than in
conditions where visual information was provided, regardless of the salience of this
visual information. This finding is consistent with the assertion that visual and
vestibular information combine with proprioceptive information to allow accurate
self-motion [11]. Moreover, it indicates that typically developing child and adult
populations rely specifically on vision to calibrate proprioception in order to accurately
judge their movements. Regarding the role of different visual landmarks, no differences
were found between vision + proprioception and vision only conditions, that is,
conditions in which participants could view all aspects of the real or virtual room versus
conditions in which participants received visual input of randomly placed clouds but
were unable to see visual landmarks such as the corners of the room or their body.
Moreover, IVR, compared to Reality, disrupted proprioception only when visual input

was provided (vision + proprioception and vision only conditions). There were no
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differences between IVR vs Reality in only proprioception (blind) conditions. This
allows us to exclude the possibility that wearing the HMD alone, and the corresponding
weight and head restriction, might have disrupted proprioception. We did find that
performance worsened in IVR, conditions where visual information was available relative
to corresponding reality conditions. The way in which the HMD delivers visual
information has a complex (and essentially unknown) effect on self-motion perception
and the kinematics of movement [68]. Factors such as display type, field of view, visual
content (peripheral cues, high-low visual contrast, etc.), temporal lag between the user’s
action and the HMD'’s reaction, and so on could be the means by which IVR disrupts
proprioception through vision. This is an important finding, given that few IVR
experiments have considered that performance may be affected simply due to the use of
IVR or HMD-delivered IVR. Many previous IVR experiments seem to implicitly assume
that performance in IVR constitutes an appropriate corollary for real-world
performance, but our findings indicate that this may not be the case. Despite this HMD
effect, our results provides evidence that IVR may be a useful means of studying
multisensory integration and accuracy. Indeed, the same general Perception trend in
self-motion accuracy (proprioception onlyjvision only vision + proprioception) was
found both in IVR and R environments.

In contrast to our expectations, we failed to find any Age x Condition interaction
effect. We expected that adults would be more affected by disrupted proprioception
than children, but this was not the case. Various aspects of the experimental design
should be taken into account to discuss this result. Firstly, our manipulation of the
multisensory input in different conditions could have been insufficient to uncover the
expected differences. We found the expected general trend of reduced proprioceptive
accuracy in vision conditions relative to vision + proprioception conditions. However,
this difference failed to reach meaningful magnitude. As previous studies highlight,
relative dominance of visual and proprioceptive input and visuo-proprioceptive
integration are task-dependent [2,30]. For example, proprioception was reported to be
more precise in the radial (near-far) direction and vision in the azimuthal (left-right)
direction [69-71]. It could be suggested that our azimuthal proprioceptive task was too
dependent on vision to allow the detection of differences that were due to the disruption

of proprioception. In fact, our vision conditions were designed to disrupt proprioception
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by removing visually-driven proprioceptive information (the room corners and
participant’s body), while still providing non-proprioceptive visual landmarks
(surrounding clouds). It could be the case that non-proprioceptively salient visual
landmarks are sufficient to allow accurate performance in our task. In addition, other
similar studies used a standing self-turn paradigm [53,72]. We utilized a seated self-turn
paradigm so that we could use the chair position as a measurement point of reference,
independently from the participants’ individual postures which may vary. The sitting
self-turn paradigm keeps the subject’s position in the center of the room, allowing us to
make the task and measurement consistent across participants. However, this seated
task could be less challenging than a standing one, resulting in a ceiling effect,
particularly for older children and adult groups.

We also found a main effect of rotation amplitude, with proprioceptive accuracy
consistently decreasing as rotation amplitude increased across conditions and groups.
Despite the fact that studying the effect of rotation amplitude was not a primary goal of
this work, it is interesting to speculate whether this effect may be specifically due to
working memory constraints in larger rotations. Body position-matching tasks similar
to the one used in the present study imply the need for executive skills. Indeed, current
tests for the assessment of proprioception evaluate the reproduction of body positions or
movements by relying on active rehearsal in working memory [49,50]. In our
experiment, accuracy largely depends on the ability of participants to actively maintain
the start position in memory, and it may be the case that differences in working
memory capacity across age groups could have affected results. Indeed, working
memory limitations have been found up to pre-adolescence [73] and age-related lower
visuo-spatial working memory capacity can be associated with lower proprioceptive
accuracy in body position-matching tasks [74].

The present study opens intriguing perspectives for future research, despite having
some limitations. Firstly, the experimenter manually rotated the participant, so
although experimenters were trained to keep a similar speed and method of rotating,
the rotation velocity was not perfectly consistent across trials and participants,
potentially influencing participants’ performance as in previous works [72]. Another
limitation concerned the manipulation of visual conditions distinguishing between “only

vision” and “vision + proprioception”. As we found no meaningful differences between
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these two Perception conditions, the “only vision” condition could have been insufficient
to isolate vision and disrupt proprioception as we aimed to. It would be interesting to
see how similar but more effective manipulations of visual information aimed at
disrupting proprioception would affect performance compared to conditions where
instead only optic flow is available (i.e. no movement). As previously mentioned, it is
also possible that self-motion differences in these two conditions were too small to be

detected with our task, and might be elicited with a more difficult one. Moreover, the

age groups could be too broad to clearly show early developmental trends and changes.

Further research could focus specifically on children younger than eight years old to
explore the early development of visuo-proprioceptive integration. Furthermore, future
studies could utilize our paradigm to explore age-related visuo-spatial working memory
abilities associated with proprioception. A more in-depth look is also necessary to
investigate potential implications of a proprioceptive sensory register and its influence
on performance in multisensory motor tasks, as individual sensory registers have been
shown to affect working memory in multisensory environments (for a review, see [75]).
One of the most intriguing yet unexplored perspectives that led to this work
concerns the possibility of intentionally disrupting proprioception through
HMD-delivered IVRs. This method could be employed to study the degree to which
different developmental populations rely on proprioception, vision, and
visuo-proprioceptive integration. From an applied perspective, disrupting proprioception
could comprise an innovative intervention for use with clinical populations which
demonstrate an atypical reliance on specific senses and atypical integration of vision
(exteroception) and proprioception. For example, people with Autism Spectrum
Disorder (ASD) seem to show an over-reliance on proprioception and hypo-reliance on
exteroception [76-78]. This perceptual strategy might not only lead to impaired motor
skills in ASD (e.g. dyspraxia and repetitive behaviors), but also seems to be related to
core features of impaired social and communicative development. Interventions could be
aimed at increasing the reliance on vision in children with ASD by disrupting
proprioception. In this respect a possible speculation is that IVR interventions could

constitute a useful training method to achieve a therapeutic purpose.
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Conclusion

In sum, the present study offers useful insights regarding the use of IVR in research on
multisensory integration and sensorimotor functioning. When visual information is
provided, proprioceptive accuracy in IVR seems to be impaired relative to performance
in reality. As proprioception is fundamental to performance in any motor task, this has
to be taken into account when interpreting the results of IVR studies which involve
proprioceptive abilities. However, IVR could still be a useful tool for detecting
multisensory trends. In fact, we found the same condition-specific trend in IVR as in
reality. Both in reality and IVR, the conditions which allowed a reliance solely on
proprioception led to the lowest proprioceptive accuracy, and minimal differences
emerged between vision only and vision + proprioception conditions. The exploratory
nature of the present study could contribute to the undertaking of more confirmatory
future studies, which would benefit from the estimated effect sizes provided here, to

develop and test further hypotheses.
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