

Proprioceptive accuracy in immersive virtual reality: A developmental perspective

Irene Valori¹, Phoebe E. McKenna-Plumley¹, Rena Bayramova², Claudio Zandonella Callegher¹, Gianmarco Altoè¹, Teresa Farroni^{1*},

1 Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy

2 Department of General Psychology, University of Padova, Padova, Italy

* teresa.farroni@unipd.it

Abstract

Proprioceptive development relies on a variety of sensory inputs, among which vision is hugely dominant. Focusing on the developmental trajectory underpinning the integration of vision and proprioception, the present research explores how this integration is involved in interactions with Immersive Virtual Reality (IVR) by examining how proprioceptive accuracy is affected by *age*, *perception*, and *environment*. Individuals from 4 to 43 years old completed a self-turning task which asked them to manually return to a previous location with different sensory modalities available in both IVR and reality. Results were interpreted from an exploratory perspective using Bayesian model comparison analysis, which allows the phenomena to be described using probabilistic statements rather than simplified reject/not-reject decisions. The most plausible model showed that 4–8-year-old children can generally be expected to make more proprioceptive errors than older children and adults. Across age groups, proprioceptive accuracy is higher when vision is available, and is disrupted in the visual environment provided by the IVR headset. We can conclude that proprioceptive accuracy mostly develops during the first eight years of life and that it relies largely on vision. Moreover, our findings indicate that this proprioceptive accuracy can be disrupted by the use of an IVR headset.

Introduction

From the intrauterine life, our physical, psychological, and social development progresses thanks to the interaction between our genetic profile and the environment. Sensory information from the both external world (*exteroception*) and the self (*interoception*) is detected by our emerging sensory functions. We talk about exteroception when the sensory information comes from the environment around us (e.g. sight, hearing, touch), while interoception is the perception of our body and includes “temperature, pain, itch, tickle, sensual touch, muscular and visceral sensations, vasomotor flush, hunger, thirst” (p. 655 [1]). This information, which comes from different complementary sensory modalities, has to be integrated so that we can interact with and learn from the environment. The multisensory integration that follows takes

time to develop and emerges in a heterochronous pattern: we rely on the various
12 sensory modalities to different degrees at different points in the human developmental
13 trajectory, during which the sensory modalities interact in different ways [2]. In general,
14 our sensory development is driven by crossmodal calibration: one accurate sensory
15 modality can improve performance based on information delivered by another, less
16 accurate, sensory modality [3–5].
17

Proprioception: an emergent perception arising from a 18 multisensory process 19

Both exteroception and interoception drive our discovery of the external world and the
20 self. One important physical dimension of the concept of self is *proprioception*, whose
21 definition is particularly complex and debated in the extant literature. Proprioception
22 belongs to the somatosensory system [6] and has traditionally been defined as the
23 “awareness of the spatial and mechanical status of the musculoskeletal framework”
24 which includes the senses of position, movement, and balance (p. 667 [7]). From this
25 perspective, proprioception is the awareness of the position and movement of our body
26 in space and results from the processing of information from muscle and skin receptors.
27 It arises from static (position) and dynamic (movement) information, and is crucial to
28 the production of coordinated movements [8]. In general, researchers are now bypassing
29 the concept of different unimodal sensory processing to conceive of perception as
30 essentially multimodal, leading to multisensory interpretations of proprioception. In
31 blind conditions, humans rely on somatosensory information to achieve proprioception,
32 although proprioception can also emerge from vision alone. This is evidenced by studies
33 of mirror therapy for phantom limb pain [9] that demonstrate that vision can induce
34 proprioceptive sensations, perception of movement, touch, and body ownership, even
35 when somatosensory input is completely absent. Similarly, as demonstrated by the
36 rubber-hand illusion [10], visual-proprioceptive information calibrates
37 somatosensory-proprioceptive information to create proprioception. This is why we can
38 perceive an illusionist proprioception (of our perceived hand position) going beyond our
39 somatosensory-proprioceptive input (of our actual hand position). Synchronous
40 multisensory stimulation creates proprioception, while vision alone is not sufficient to
41

42 induce the rubber-hand illusion when the visual input is asynchronous to the
43 somatosensory information arising from the real hand.

44 These studies highlight that proprioception is not a sense like vision or touch.
45 Rather, proprioception is a complex body consciousness which flexibly emerges from
46 different interdependent sensory inputs, modalities, and receptors. Proprioceptive
47 information is combined with information from the vestibular system, which detects
48 movement of the head in space, and the visual system to give us a sense of motion and
49 allow us to make estimates about our movements [11]. As such, it plays a vital role in
50 everyday tasks such as self-motion.

51 As regards the development of proprioception, children up to two years of age tend
52 to make significant proprioceptive errors [12]. While several studies have shown that
53 proprioceptive competence is stably developed by eight years of age [13, 14], others
54 support the finding of a longer developmental trajectory for proprioception, observing
55 that 8- to 10-year-old children are less accurate than 16- to 18-year-old adolescents
56 when making proprioceptively guided movements [15]. Moreover, some studies find
57 improvements in proprioceptive accuracy continuing up to 24 years of age [16].

58 This proprioceptive development seems to be strictly dependent on
59 visuo-proprioceptive calibration. In general, sensory organization is qualitatively
60 different across development and across different tasks. In infancy and early childhood,
61 vision appears dominant over somatosensory and vestibular information [17]. Between
62 five and seven years of age, visual influence on proprioception shows non-linear
63 developmental differences [18], although this has not yet been widely studied in a
64 broader age ranges [17]. The developmental trajectory of proprioception may be
65 affected by the fact that across childhood, the sections of the body change in terms of
66 size, shape, relative location, and dynamic. Indeed, the early importance of vision over
67 somatosensory information could be a result of the lack of reliability of somatosensory
68 input, which is highly unstable during these childhood physical changes [2].

69 IVR as a method of studying proprioception

70 The degree to which vision influences proprioception at different ages is an intriguing
71 topic which can be effectively investigated in the emerging field of Immersive Virtual

Reality (IVR). This tool manipulates vision and makes the user actively interact with the virtual environment, requiring actions based on proprioception. Through IVR, we can manipulate individual sources of sensory information, be they visual, vestibular, or proprioceptive, which are physiologically bound together. This makes it possible to study the contribution of these individual sensory inputs and of multisensory integration to self-perception and motor control [19]. Furthermore, it allows us to see how these individual senses contribute to proprioceptive accuracy at different developmental stages.

In IVR, “the simultaneous experience of both virtual environment and real environment often leads to new or confounded perceptual experiences” (p.71 [20]). For example, users can see themselves standing in the empty space between two mountains but, instead of falling, perceive the floor under their feet. Even with a virtual body representation (e.g. visual perception of an avatar) or without the possibility to see one’s own body, IVR can alter a user’s body schema [21]. The available literature provides some examples of how IVR affects the user’s motor activity, which relies largely on proprioception. IVR users are found to decrease their speed and take smaller steps [22] and experience greater difficulties orienting themselves in a virtual environment (VE) [23]. To orient and move in space in different environments and tasks, people can switch between reference frames related to the body (proprioception) or to the external world (e.g. vision). It has been suggested that IVR provides unexpected incongruent stimuli and induces a sensory conflict between vision and proprioception which differently affects users (e.g. sometimes causing motion sickness) depending on their dominant reliance on one of these two reference frames [24].

One of the central ways to investigate visuo-proprioceptive integration in IVR is through the study of self-motion [25]. In the area of simulated self-motion, Riecke and colleagues [26] have shown that IVR disrupts adults’ ability to perform simulated upright rotations and their judgements of these rotations. Participants’ accuracy in these rotations was markedly impaired when wearing a head-mounted display (HMD) showing them an immersive virtual environment (IVE), compared to a curved or flat screen. Despite their inaccuracy, participants subjectively rated the task as rather easy. It appears that the use of IVR or of HMDs specifically may affect proprioceptive accuracy beneath the level of awareness of the user.

Moving beyond passive self-motion, a further body of studies have examined active 104 movements. Active self-motion involves IVEs where free movements are possible: the 105 IVR scene changes consistently with the user's active movement. For example, the user 106 sees themselves walking in the virtual environment while they are physically walking in 107 reality [27]. The ability to make active movements during the interaction with an IVR 108 environment, even without visual landmarks, improves the perception of 109 self-motion [28, 29]. However, despite the importance of the body senses, the physical 110 feedback (derived, for example, from the possibility to actively walk during the virtual 111 immersion) is not sufficient to eliminate errors in self-motion and spatial orientation 112 while wearing an HMD [27]. These findings, taken together, show that IVR, and 113 HMD-delivered IVR in particular, can disrupt proprioception in adults. 114

The studies described above primarily tested adult populations. However, there is a 115 lack of research regarding how IVR affects proprioception, visuo-proprioceptive 116 integration, and self-motion during development. A recent experimental study with 117 children (8–12 years old) and adolescents (15–18 years old) provides evidence about 118 children's use of vision and proprioception during self-motion in IVR [30]. The authors 119 intentionally created a mismatch between visual (visual flow) and proprioceptive 120 feedback (active motion) during two different motor tasks: walking and throwing. They 121 measured children's ability to *recalibrate* (to adapt their motor actions to the provided 122 abnormal visual input) and *re-adapt* to the normal characteristics of the real 123 environment. As with adults in previous studies [31, 32], children and adolescents 124 showed the ability to recalibrate in a few minutes. The authors found just one 125 age-related difference, in regard to the rate of re-adaptation. In the throwing task, 126 children re-adapted to reality significantly more slowly than adolescents, demonstrating 127 more pronounced post-exposure effects. The mismatch between visual and 128 proprioceptive information appeared to have a more enduring effect on children. 129 Although this finding must be interpreted with caution, it could be a first indication of 130 age-related differences in motor learning in IVR. These findings indicate that the motor 131 performance of children, more so than adolescents, could be modified by interaction 132 with IVR environments. This could have meaningful implications for fields such as IVR 133 rehabilitation, therapy, and education, suggesting that IVR interventions could be more 134 effective early in life. 135

With concern to multisensory integration, a recent study used IVR to decouple visual information from self-motion and investigate whether adults and 10- and 136 11-year-old children can optimally integrate visual and self-motion proprioceptive 137 cues [33]. A HMD was used to make participants learn a two-legged path either in 138 darkness (“only proprioception”), in a virtual room (“vision + proprioception”), or 139 staying stationary while viewing a pre-recorded video of walking the path in the virtual 140 room (“only vision”). Participants then reproduced this path in darkness. In contrast 141 to what was expected, the authors found that adults failed to optimally integrate visual 142 and proprioceptive cues to improve path reproduction. However, children did integrate 143 these cues to improve their performance. This study demonstrates that HMD training 144 that includes vision and proprioception can be effective at calibrating self-motion for 145 children even if it is not for adults. The authors suggest that this may be because 146 children cannot help but rely on visual cues in spatial tasks even when the nature of the 147 task does not require it. The authors do not explain the results with respect to the use 148 of IVR, or specifically by considering IVR as a tool which requires a particular form of 149 sensory processing. We previously discussed findings demonstrating that HMDs disrupt 150 proprioception, which adults and children rely on in different ways. It may be the case 151 that IVR imparts different effects on adults’ and children’s performance. We could 152 speculate that, if IVR causes some sort of conflict between vision and proprioception, 153 adults’ lack of multisensory integration in these environments could be due to their 154 reliance on proprioception and ability to ignore visual cues. Visual cues would be 155 perceived as irrelevant for motor tasks, because they would be in conflict with 156 proprioceptive information. Since this ability to ignore irrelevant visual cues seems not 157 to be mature in children [34], they could benefit from IVR motor training because they 158 would still be using vision to calibrate their less accurate proprioception. It is only 159 recently that the field of IVR research is beginning to focus on the developing child to 160 study developmental differences in relation to their interaction with IVR environments. 161 Thus far, IVR technology has been primarily used with children for educational, pain 162 distraction, and assessment purposes [35]. Further research is needed to investigate how 163 the sensory-motor interaction with an IVR environment changes depending on age. 164 Given that children and adults differ in their sensory-motor functioning, research should 165 investigate how IVR interacts with and affects the childhood developmental trajectory 166 167

with respect to use of vision, proprioception, and other sensory cues in the ability to
168
accurately execute self-motion.
169

Statistical approach for exploratory investigations: Bayesian 170 model comparison 171

Given the lack of evidence concerning the complex interaction between developmental
172
stages, visuo-proprioceptive integration, and IVR environments, exploratory studies are
173
needed and can benefit from assuming a model comparison approach. Model
174
comparison allows for the selection of the most plausible model given data and a set of
175
candidate models [36]. Firstly, the different research hypotheses are formalized as
176
statistical models. Subsequently, the obtained models are compared in terms of
177
statistical evidence (i.e. support by the obtained data), using information criteria [37].
178
Information criteria enables the evaluation of models considering the trade-off between
179
parsimony and goodness-of-fit [38]: as the complexity of the model increases (i.e. more
180
parameters), the fit to the data increases as well, but generalizability (i.e. ability to
181
predict new data) decreases. The researchers' aim is to find the right balance between
182
fit and generalizability in order to describe, with a statistical model, the important
183
features of the studied phenomenon, but not the random noise of the observed data.
184

A Bayesian approach is a valid alternative to the traditional frequentist
185
approach [39, 40], allowing researchers to accurately estimate complex models that
186
otherwise would fail to converge (i.e. unreliable results) in a traditional frequentist
187
approach [41, 42]. Without going into philosophical reasons, which are beyond the scope
188
of the present paper (if interested, consider [43]), Bayesian inference has some unique
189
elements that make the meaning and interpretation of the results different from the
190
classical frequentist approach [44]. In particular, in the Bayesian approach, parameters
191
are estimated using probability distributions (i.e. a range of possible values) and not a
192
single point estimate (i.e. a single value). Bayesian inference has three main
193
ingredients [45]: (1) *Priors*, the probability distributions of possible parameter values
194
considering the information available before conducting the experiment; (2) *Likelihood*,
195
the information given by the observed data about the probability distributions of
196
possible parameter values; (3) *Posteriori*, the resulting probability distributions of
197

possible parameter values, obtained by combining Priors and Likelihood through Bayes' Theorem. As a result, a Bayesian approach assesses the variability (i.e. uncertainty) of parameter estimates and provides associated inferences via 95% Bayesian Credible Intervals (BCIs), the range of most credible parameter values given the prior distribution and the observed data. Thus, a Bayesian approach allows researchers to describe the phenomenon of interest through probabilistic statements, rather than a series of simplified reject/do-not-reject dichotomous decisions typically used in the null hypothesis significance testing approach [36].

Research goals and hypotheses

The aim of the present study is to investigate the extent to which the reliability of visual information aids proprioceptive-based self-motion accuracy across the human developmental trajectory. We also aim to explore whether HMD-delivered IVR environments, compared to equivalent real environments, affect proprioceptive accuracy. Given that findings in the area of multisensory interaction with IVR across development are still conflicting and unexplained with respect to the use of HMDs, the current study seeks to clarify how using an HMD affects children's and adults' self-motion performance, and how these effects could be related to the reliability of the provided visual and proprioceptive information. Research has broadly considered the computer side of IVR features affecting human-computer interaction, but there is a lack of research investigating how individual characteristics of users interact with IVR environments. To compare performances in reality and IVR, all sensory conditions being equal, would clarify the role of both sensory manipulation and IVR. How might different users, with different levels of multisensory functioning, interact with IVR? The present study explores this question, examining how IVR differs from reality in affecting visuo-proprioceptive integration in adults and children at different developmental stages. Furthermore, the study aims to open new avenues of analysis in this area of research by using a model comparison approach to analyze each hypothesis.

Based on the extant literature described in the introductory section of this work, we hypothesized that children's proprioceptive accuracy would be globally lower than that of adults, but that children would be less impaired than adults by the disruption of

proprioception. We further hypothesized that IVR would disrupt proprioception and
228
impact proprioceptive accuracy more in adults than children.
229

Materials and Methos

230

Participants

231

In order to capture a range of developmental stages, we included primary and secondary
232
school-aged children and adults. We collected data from young children aged from 4 to
233
8 years old, and older children aged from 9 to 15 years old. This distinction was made
234
to clarify contradictory findings about how long it takes to develop stable proprioceptive
235
accuracy (as described in section 2.2). With regard to the adult group, we included
236
participants within the age range of 18 to 45 years. We excluded older participants
237
based on literature reporting deterioration of proprioceptive accuracy with advancing
238
age. This deterioration effect has been found from middle age, with studies indicating
239
changes beginning from the age of 40 to 60 [46, 47]. For this study, we collected data
240
from 55 participants. In line with our a priori exclusion criteria, we excluded six
241
subjects who reported that they had received a diagnosis for any kind of
242
neuropsychological, sensory, or learning disorder from the final analysis. The final
243
sample included 49 participants, distributed across age groups as follows:
244

- 13 young children between the ages of 4 and 8 years ($M_{age} = 7.1$, $SD = 1.2$ years)
245
- 13 older children between the ages of 9 and 15 years ($M_{age} = 11.3$, $SD = 2.0$
246
years)
247
- 23 adults between the ages of 20 and 43 years ($M_{age} = 32.4$, $SD = 6.6$ years)
248

In a within-subjects design, all participants were exposed to all conditions in a
249
randomized order.
250

Materials and set-up

251

We designed and built a testing room in which different sensory stimulations could be
252
provided and the availability of visual and proprioceptive information could be
253
manipulated while completely excluding unwanted external stimuli (Fig 1). In the
254

centre of the room, we fixed a customized swivel chair on a round platform to the floor. 255
The round platform did not provide any proprioceptive or visual cues about the degree 256
of rotation the participant made on the chair (Fig 2A). A 360° protractor under the seat 257
was visible via a dedicated camera which allowed the measurement of the degree of each 258
rotation. One 50 cm white LED strip (12V DC, 24 Watt per meter) allowed sufficient 259
illumination for a clear and realistic visual experience of the room. One UV lamp (E27 260
26W) was used to obscure other visual stimuli such that the white clouds on the walls 261
were the only visual cues available. With the UV light on, participants were asked to 262
wear a black poncho which covered their bodies, making them not visible (Fig 2B). One 263
infrared LED spotlight (BIG BARGAIN BW103) enabled clear video recordings of the 264
inside of the room even when it was completely in darkness. This light system was 265
anchored to the ceiling, over participants' heads, and was covered by a black panel 266
which prevented participants from directly seeing the lights. 267

Fig 1. Experimental room. The room measured 2 x 2 meters and was soundproof, with black interior walls and equal numbers of white clouds randomly fixed on each wall. The external walls were painted with a child-friendly landscape which has been designed to encourage children to enter the room.

Fig 2. Experimental room, interior. A: The swivel chair in a visuo-proprioceptive real environment. B: A participant wearing the black poncho in a vision-only real environment (B).

We provided the IVR simulation through a VR headset (Head Mounted Display 268
[HMD]). We used Oculus Gear VR 2016, 101° FOV, 345 g weight, interfaced with a 269
Samsung Galaxy S7 (ANDROID 8.0.0 operating system). 270

A NIKON camera KeyMission 360 was used to create 360° images of the room and 271
to build the IVR environments. The room was monitored via one USB 2.0 DirectShow 272
webcam, and one USB 2.0 DirectShow webcam with integrated infrared LED. 273

To monitor the video recordings and VR simulations, we used a SATELLITE Z30-B, 274
Windows 10, 64bit, Intel Core i5-5200U CPU @ 2.20 Ghz, 8,0 GB RAM, Intel HD 275
Graphics 5500. The communication between people inside and outside the room was 276
enabled via a system of USB speaker, microphone, headphones, and one USB soundcard. 277
The VR server application developed for this experiment is an Android application with 278
VR environments, developed in Unity. A remote interface, also developed in Unity for 279

Windows or Android OS, allowed experimenters to control the VR server application. A
280
software for audio-video recording and real-time communication was developed in
281
TouchDesigner.
282

Procedure

Adult participants were welcomed into the lab and asked to sign a consent form.
284
Parents of children were asked to sign the form on their child's behalf. The study was
285
approved by the Ethics Committee of Psychology Research, University of Padua. At
286
least two experimenters conducted the experiment. On commencing the experiment,
287
participants were asked to sit on the swivel chair which was fixed in the middle of the
288
recording area inside the room. The first experimenter would close the door and stay
289
inside near the participant for the duration of the experiment. The second experimenter
290
managed the experiment: he/she switched the lights on and off, changed the visual
291
stimuli which were presented through the HMD, and controlled the video recording of
292
the experiment. He/she was outside the room, monitoring the video feed, and giving
293
verbal instructions to the first experimenter and to the participants. The room is
294
soundproof but the second experimenter could communicate with the people inside
295
through a microphone. The participant and experimenter inside the room could hear
296
the second experimenter through a system of speakers set up under the swivel chair.
297
During the experimental task (described below in the following paragraph), the first
298
experimenter managed the passive rotation and remained silent behind the participant,
299
providing no visual or auditory cues. The second experimenter followed previously
300
established verbal instructions which were consistent across participants.
301

Experimental task

We adopted a self-turn paradigm in which the experimenter rotates the chair a certain
303
degree (passive rotation) from a *start position* to an *end position*. After each passive
304
rotation, participants were asked to rotate back to the start position (active rotation).
305
The position at which the participant stopped their active rotation is recorded as the
306
return position. All participants performed 12 trials across 6 conditions. For each
307
condition, the passive rotation was done once to the right (clockwise) and once to the
308

left (counterclockwise). For each condition, one passive rotation was approximately 180
309 degrees and the other was approximately 90 degrees. During the passive rotation,
310 participants kept their feet on a footrest which rotated with the chair. In this way, they
311 could not make steps while being rotated, and could not simply count the number of
312 steps to make active rotations. To perform the active rotations, participants could use
313 their feet on the still platform under the chair to move themselves. Some authors
314 suggest that vestibular information is primarily involved when perceiving the amount of
315 *passive rotation*, and proprioceptive information is primarily involved when performing
316 an *active rotation* [48]. In our task, during the encoding phase (passive rotation),
317 vestibular information is always available, while proprioception is not. During the recall
318 phase (active rotation), both vestibular and proprioceptive information are available. In
319 each experimental condition, the same vestibular and visual information can be used to
320 both encode and recall the *start position*. Proprioception has to be used only during the
321 recall phase, emerging from the other sensory information. Proprioception is considered
322 as the accuracy measure in our task in line with procedures aimed at assessing
323 proprioception in the extant literature [49–51].
324

Measures of task performance

325

The proprioceptive accuracy of self-turn performances was calculated in terms of error
326 as the absolute difference between the *start position* (from which the experimenter
327 started the passive rotation) and the *return position* (in which the participant stopped
328 the active rotation). In this way, greater values indicated a less accurate performance,
329 where a value of 0 would indicate that the participant actively rotated back to the exact
330 start position, and a value of 100 would indicate that the participant actively rotated
331 back to a position that was 100 degrees away from the start position.
332

Proprioceptive accuracy was manually measured during an offline coding of the
333 video recording. The video shows two matched recordings of both the entire room (with
334 the participant and the first experimenter in frame) and the protractor positioned under
335 the seat of the swivel chair. A vertical green line was superimposed on the protractor
336 image to facilitate detection of the specific degree of each rotation. Two independent
337 evaluators coded the videos and entered the start and return positions in the dataset.
338

Values which were divergent for more than two degrees were a priori considered 339
disagreement values. A third coder examined the video records of the disagreement 340
values to make the final decision. In case of a disagreement value, the third coder's 341
value was used instead of the value that differed most from the third coder's value. We 342
obtained a dataset with two codings for each data. We evaluated the intercoder 343
agreement by conducting an intra-class correlation (ICC), which is one of the most 344
commonly used statistics for assessing inter-rater reliability (IRR) for ratio variables [52]. 345
From the dataset which combines the two codings, we obtained a final dataset with the 346
average of the two values. We carried out the data analysis on this final dataset. 347

Conditions 348

The order of conditions was randomized. Participants performed blocks of two trials per 349
condition. There were three conditions in a real environment (R) and three conditions 350
in an immersive virtual reality (IVR) environment. In each of these two blocks, one 351
blind condition removed all visual information such that only proprioceptive 352
information could be used (P), one condition limited the access to visual landmarks 353
(removing visual information about the body and corners of the room while retaining 354
the use of vision) in order to disrupt proprioception (V), and one condition allowed the 355
participant to access reliable visual and proprioceptive information (VP). Several 356
studies have explored the extent to which people benefit from visual landmarks to 357
calibrate and aid proprioceptive tasks while self-turning and it seems that different 358
kinds of visual landmarks could be more or less useful for proprioception in different 359
environments and tasks. In a real environment, after being disorientated by a passive 360
rotation, people could still detect the position of global landmarks (the room's corners), 361
while making huge errors locating surrounding objects [53]. In a HMD-delivered virtual 362
environment, users' self-motion did not benefit so much from global landmarks [54]. We 363
aimed to control whether the rotation direction and amplitude would affect 364
performance. For this purpose, each condition was performed twice: the passive 365
rotation was made in both directions (clockwise and counterclockwise), and with two 366
angle amplitudes (90 and 180 degrees). As the passive rotation was manually performed 367
by the experimenter, perfect accuracy in reaching 90 and 180 degrees was not possible. 368

Given the variability in the actual passive rotations, we considered Amplitude as a
369 continuous variable. We labelled the direction conditions “R” (right) for the clockwise
370 condition and “L” (left) for the counterclockwise condition. We counterbalanced
371 within-subjects the possible interaction effect of Direction Learning, beginning 50% of
372 conditions with “R” and the other 50% with “L”. We labelled the amplitude conditions
373 “A” for the 180-degree condition and “B” for the 90-degree condition. Fifty percent of
374 each direction condition had a 180-degree amplitude and the other 50% had a 90-degree
375 amplitude. The direction order is RLLRRLLRLLR; and the amplitude order is
376 ABABABABABAB. We labelled the conditions by number from one to six. As such, we
377 had, for example, sequences labelled: 1RA-1LB-2LA-2RB, and so on. We
378 counterbalanced the amplitude order between subjects. We tested the ABAB sequence
379 in 50% of subjects and the BABA sequence in 50% of subjects.
380

The experimental conditions are as follows:
381

- R_P (Reality; only proprioception, no visual information available)
382
- R_V (Reality; only vision: low external visual landmarks with no first-person view
383 of the body or room corners in order to disrupt proprioception).
384
- R_VP (Reality; vision and proprioception are available; first-person view of the
385 body, room corners, and clouds are visually available)
386
- IVR_P (Immersive Virtual Reality; only proprioception, no visual information
387 available)
388
- IVR_V (Immersive Virtual Reality; only vision: low external visual landmarks
389 with no first-person view of the body or room corners in order to disrupt
390 proprioception)
391
- IVR_VP (Immersive Virtual Reality; vision and proprioception are available; room
392 corners and clouds are visually available, although first-person view of the body is
393 not)
394

Statistical approach 395

In order to explore how age, sensory conditions, and environmental conditions interact
396 to affect proprioceptive accuracy, a model comparison approach was used. Firstly, each
397

research hypothesis was formalized as a statistical model. Subsequently, the obtained
398
models were compared in terms of statistical evidence (i.e. support by the data) using
399
information criteria [37].
400

Given the complex structure of the data, Bayesian generalized mixed-effects models
401
were used [39, 55]. Specifically, data were characterized by: (1) a continuous
402
non-normally distributed dependent variable (i.e. rotation error); (2) a between-subject
403
factor (i.e. Age); (3) within-subject factors (i.e. Perception condition and Environment
404
condition); (4) a quantitative independent variable (i.e. rotation Amplitude).
405

Mixed-effects models allow us to take into account the repeated measures design of the
406
experiment (i.e. observations nested within subjects). Thus, participants were treated
407
as random effects, with random intercepts that account for interpersonal variability,
408
while the other variables are considered as fixed effects. Gamma distribution, with
409
logarithmic link function, was specified as the family distribution of the generalized
410
mixed-models. Gamma distribution is advised in the case of positively skewed,
411
non-negative data, when the variances are expected to be proportional to the square of
412
the means [56]. These conditions are respected by our dependent variable: we only have
413
positive values, with a positive skewed distribution, and we expect a greater variability
414
of the possible results as the model predicted mean increases (i.e. a greater dispersion of
415
subjects' scores when greater mean values are predicted by the model).
416

Analyses were conducted with the R software version 3.5.1 [57]. Models were
417
estimated using the R package '*brms*' [58] which is based on STAN programming
418
language [59, 60] and employs the No-U-Turn Sampler (NUTS; [61]), an extension of
419
Hamiltonian Monte Carlo [62]. All our models used default prior specification of the R
420
package '*brms*' [58]. Detailed prior specifications are reported in the supplemental
421
online material. These priors are considered non-informative since they leave the
422
posterior distributions to be mostly influenced by the observed data rather than by prior
423
information. Each model was estimated using 6 independent chains of 8,000 iterations
424
with a "warm-up" period of 2,000 iterations, resulting in 36,000 usable samples.
425

Convergence was evaluated via visual inspection of the trace plots (i.e. sampling
426
chains) and R-hat diagnostic criteria [63]. All tested models showed satisfactory
427
convergence with all R-hat ≤ 1.0008 , where values close to 1 indicate convergence, and
428
none exceeding the 1.100 proposed threshold for convergence [39]. All R-hat values and
429

trace plots are reported in the supplemental online material. 430

The Watanabe-Akaike Information Criterion (WAIC; [64,65]) was used as 431
information criteria to select the most plausible model among the tested models, given 432
the data. WAIC is the corresponding Bayesian version of the commonly used Akaike 433
information criterion (AIC; [66]). WAIC-weights were computed to present the 434
probability of each model of making the best predictions on new data, conditional on 435
the set of models considered [36]. This allows for the comparison of models with a 436
continuous informative measure of evidence. Finally, the most plausible model was 437
interpreted considering the estimated posterior parameter distributions. Main effects 438
and interaction effects were evaluated using planned comparison and graphical 439
representations of the predicted values by model. 440

Results 441

Descriptives 442

Proprioceptive accuracy was manually measured during an offline coding of the video 443
recording. Independent raters coded for the degree values indicating start, end, and 444
return positions of each rotation. Based on these values, we calculated the amplitude of 445
passive rotations and proprioceptive errors of active rotations. On these start, end, and 446
return position values, the intra-class correlation index (ICC) has been calculated to 447
evaluate the inter-coder reliability. The analysis estimates an $ICC = .99$. This nearly 448
perfect inter-coder agreement derives from the small mean difference between the two 449
coders' values, within the huge range of possible values (0/360). In fact, the mean 450
difference between coder A and coder B is minimal ($Mean_{A-B} < .16$). 451

Out of the 49 participants, 43 subjects completed the task in all 12 conditions, 4 452
subjects completed 11 conditions, 1 subject completed 10 conditions, and 1 subject 453
completed 8 conditions. This failure to complete all conditions with some participants 454
was due to technical problems which occurred with the experimental apparatus. Thus, 455
the final data consist of 578 observations nested in 49 subjects. The number of 456
observations in each condition is reported in Table 3 in S1 Supplemental Materials. 457

We considered Amplitude of the passive rotations as a continuous variable whose 458

distribution is shown in Fig 3. To obtain interpretable results in the analyses, the
459
Amplitude variable was standardized.
460

**Fig 3. Estimated distribution of the actual Amplitude in the passive
461
rotation. ($n_{subjects} = 49$; $n_{observations} = 578$)**

The mean self-turn error in the present sample was 17.1 degrees (SD = 8.0). The
462
frequency of the observed values is reported in Fig 4. Considering how we computed the
463
self-turn error, only positive values are possible and from visual inspection, the
464
dependent variable has an evident positive skewed distribution.

**Fig 4. Frequencies of the observed self-turn errors. ($n_{subjects} = 49$;
465
 $n_{observations} = 578$)**

The means and standard deviations of the self-turn error for the three age groups in
466
the six different experimental conditions are reported in Table 1 and the distributions of
467
the observed data are presented in Fig 5. For the sake of interpretability, descriptive
468
statistics were marginalized over the variable Amplitude (integrating out this more
469
imprecise variable) which will be considered later on in the analysis. Considering the
470
marginal effect of Age, adults (M = 12.8, SD = 4.4) made less self-turn errors than
471
older children (M = 16.4, SD = 7.5) and young children (M = 25.3, SD = 7.7). Looking
472
at the marginal effect of Environment, subjects made less errors and were thusly more
473
accurate in the reality condition (M = 13.9, SD = 8.0) than in the immersive virtual
474
reality condition (M = 20.2, SD=10.3). Finally, for the marginal effect of Perception,
475
subjects made less self-turn errors when they could rely on both vision and
476
proprioception (M = 13.9, SD= 11.3) than when they could use only vision (M = 14.5,
477
SD= 9.3) or proprioception (M = 22.8, SD= 14.1).

**Fig 5. Estimated distributions of the observed self-turn errors in the
478
different conditions according to age. ($n_{subjects} = 49$; $n_{observations} = 578$)**

Model comparison

Seven different Bayesian generalized mixed-effects models were performed to analyze
479
the data (see Table 5 in S1 Supplemental Materials). In each model the dependent
480
variable was the error in the self-turn task. The first model (m.0) was a baseline model
481

Table 1. Descriptive statistics. Means and standard deviations of self-turn error according to age and the experimental conditions.

	Perception						Total	
	Proprioception		Vision		Vision + Proprioception			
	Mean	SD	Mean	SD	Mean	SD		
Reality								
Adults	16.2	8.6	9.8	12.6	6.1	4.1	10.7	6.0
Older Children	19.6	10.5	14.0	18.2	6.7	3.6	13.5	7.3
Young Children	30.6	22.4	8.2	5.2	20.7	20.5	19.8	9.0
Total	20.9	15.0	10.5	12.9	10.1	12.5	13.9	8.0
Virtual Reality								
Adults	17.6	10.6	13.5	7.6	13.7	9.1	14.9	6.3
Older Children	23.6	19.1	17.5	10.1	16.9	18.6	19.3	9.5
Young Children	37.8	16.2	28.5	16.5	25.1	16.5	30.3	9.9
Total	24.7	16.8	18.5	12.6	17.4	14.6	20.2	10.3
Total								
Adults	17.1	6.4	11.8	8.0	9.9	4.8	12.8	4.4
Older Children	21.6	13.7	15.7	11.8	11.7	9.4	16.4	7.5
Young Children	34.2	18.0	18.2	7.9	23.4	15.8	25.3	7.7
Total	22.8	14.1	14.5	9.3	13.9	11.3	17.1	8.0

Note: $n_{subjects} = 49$; $n_{observations} = 578$. Values are marginalized over the variable Amplitude.

considering the random effect of subjects (i.e. the random intercept that accounts for interpersonal variability) and the fixed effects of Direction (i.e. right or left rotation) and of Amplitude (i.e. amplitude of the rotation in degrees, reflecting the difficulty of the task). This baseline model, which includes the effects of possible confounding variables, was used as a reference point to then evaluate the models that considered the effects of Age, Perception, and Environment conditions. In the additive model (m.1) the additive effects of Age, Perception, and Environment were added to the baseline model. Single 2-way interactions were evaluated in models m.2, m.3, and m.4. These models respectively added to the additive model (m.1) the interaction effect between Perception and Environment conditions (m.2), Age and Environment conditions (m.3), and between Age and Perception (m.4). In the model m.5 all the possible 2-way interactions between Age, Perception, and Environment conditions were considered, together with the effects of the additive model (m.1). Finally, in the last model (m.6), the 3-way interaction between Age, Perception, and Environment conditions was added to the previous model (m.5).

WAIC results indicated that m.2 was the most plausible model for the observed data, having the lower WAIC value (WAIC = 4345.6) and a probability of being the best of .65. Compared with the second-most plausible model (m.6 with a probability of .15),

m.2 is 4.4 times more probable. WAIC values and relative WAIC weights of all models are reported in Table 2. 500

501

Table 2. WAIC model comparison.

	Model	WAIC	SE	WAIC weight
Baseline	m.0	4409.9	54.6	0.00
Additive	m.1	4349.8	61.9	0.08
2-way Interactions	m.2	4345.6	63.2	0.65
	m.3	4354.0	62.4	0.01
	m.4	4351.6	61.4	0.03
All 2-way Interactions	m.5	4349.7	62.8	0.08
3-way Interactions	m.6	4348.5	60.8	0.15

Note: $n_{subjects} = 49$; $n_{observations} = 578$

Model interpretation

502
503
504
505
506
507
508

In order to interpret the effects of model m.2, 95% Bayesian Credible Intervals (BCIs) of the parameters posterior distribution were evaluated (Table 3). Ninety-five percent BCIs represent the range of the 95% most credible parameters values given the prior distribution and the observed data. Thus, an effect is considered to be present if the value zero is not included in the 95%BCI, whereas if the value zero is included in the 95%BCI, it is interpreted as no-effect.

Table 3. Estimated parameters of model m.2.

	Parameters			95 % BCI	
	Name	Estimate	Est.Error	Lower	Upper
Random Effects					
SD	Subject ID	0.29	0.05	0.19	0.40
Fixed Effects					
	Intercept	2.79	0.12	2.57	3.02
	Amplitude	0.22	0.04	0.15	0.29
	Direction (left)	0.10	0.07	-0.04	0.24
	Environment (Virtual Reality)	0.08	0.12	-0.16	0.32
Age	Older Children	0.18	0.13	-0.09	0.44
	Young Children	0.62	0.13	0.36	0.89
Perception	Vision	-0.64	0.12	-0.89	-0.40
	Vision + Proprioception	-0.77	0.12	-1.01	-0.53
Interaction	Vision X Virtual Reality	0.36	0.17	0.02	0.70
	Vision + Proprioception X Virtual Reality	0.48	0.17	0.14	0.82

Note: Baseline category for Direction was “Right”. Baseline category for Age was “Adult”. Baseline category for Perception was “Proprioception”. Baseline category for Environment was “Reality”. $n_{subjects} = 49$; $n_{observations} = 578$

Self-turn error was moderated by Amplitude, by Age, and by the interaction between 509
Perception an Environment conditions. On the contrary, the direction of rotations 510
seems to have no effect of the subjects' performance ($\beta = .10$; 95% BCI = -.04 ; .24). 511

To evaluate the model fit (i.e. the model ability to explain the data) we used a 512
Bayesian definition of R-squared [67] to estimate the proportion of variance explained. 513
The estimated value of Bayesian R-squared for the model m.2 is .26 (95% BCI = .19; 514
.34), that is the model explains 26% of the variability of the data. 515

Rotation amplitude

Self-turn error was moderated by Amplitude ($\beta = .22$; 95% BCI = .15 ; .29), for which 517
increasing rotation amplitude is associated with a worse performance (Fig 6). 518

Fig 6. Predicted mean of self-turn error according to Amplitude
($n_{subjects} = 49$; $n_{observations} = 578$). The line represents the mean value. The shaded 519
area the 95% BCI values.

Group age

To evaluate the role of Age, the distributions of predicted mean values for the three 520
groups were considered (Fig 7). The predicted mean error for adults was 12.8 degrees 521
(95% BCI = 10.6;15.1), for older children 15.5 degrees (95% BCI = 12.0 ; 19.1) and for 522
young children was 24.8 degrees (95% BCI = 19.3 ; 30.7). Bayesian pairwise comparisons 523
(i.e. predicted score differences between groups) are reported in Table 4. Results showed 524
that overall, young children are expected to make more self-turn errors than adults 525
(95% BCI = 6.1 ; 18.0) and also more than older children (95% BCI = 2.8 ; 15.9). 526
However, we cannot state that older children are expected to make more self-turn error 527
because the 95% BCI of the difference includes the value zero (95% BCI = -1.4 ; 6.8). 528

**Fig 7. Distributions of the predicted means of self-turn error according to 529
Age.** ($n_{subjects} = 49$; $n_{observations} = 578$).

Perception and environment

To interpret the interaction between the Perception and Environment conditions, the 530
distributions of predicted mean values for all six conditions were considered (Fig 8). In 531

Table 4. Predicted means and differences of Self-turn error according to Age.

	Mean		95% BCI	
	Estimate	Lower	Upper	
Groups				
Adults	12.8	10.6	15.1	
Older Children	15.5	12.0	19.1	
Young Children	24.8	19.3	30.7	
Comparisons				
Young Children - Adult	12.0	6.1	18.0	
Young - Older Children	9.3	2.8	15.9	
Older Children - Adult	2.7	-1.4	6.8	

Note: $n_{subjects} = 49$; $n_{observations} = 578$

the Reality environment condition, the predicted mean error for proprioception was 22.4 degrees (95% BCI = 18.1 ; 27.2), for vision was 11.3 degrees (95% BCI = 8.9 ; 13.9) and for vision + proprioception was 9.8 degrees (95% BCI = 7.8 ; 12.0). In the Immersive Virtual Reality environment condition, the predicted mean error for proprioception was 24.2 degrees (95% BCI = 19.4 ; 29.2), for vision was 18.0 degrees (95% BCI = 14.4 ; 21.7) and for vision + proprioception was 17.8 degrees (95% BCI = 14.3 ; 21.7). Bayesian pairwise comparisons (i.e predicted error differences between conditions) are reported in Table 5. Results showed that in both Reality and Immersive Virtual Reality, subjects are expected to make more self-turn errors when they rely only on proprioception than when they can use only vision (Reality: 95% BCI = 6.6 ; 15.8; Immersive Virtual Reality: 95% BCI = 0.9 ; 11.7) or vision + proprioception (Reality: 95% BCI = 8.2 ; 17.3; Immersive Virtual Reality: 95% BCI = 1.0 ; 11.9). In addition, in both environments there is no difference between the use of vision and vision + proprioception (Reality: 95% BCI = -1.4 ; 4.5; Immersive Virtual Reality: 95% BCI = -4.3 ; 4.8). Moreover, comparing Immersive Virtual Reality to Reality conditions, results show that while wearing the HMD the self-turn errors increase when subjects rely only on vision (95% BCI = 2.8 ; 10.7) or on vision + proprioception (95% BCI = 4.3 ; 11.9), but subjects are not expected to make more errors than in Reality when they rely only on proprioception (95% BCI = -3.8 ; 7.9).

Fig 8. Distributions of the predicted means of self-turn error according to the different conditions. ($n_{subjects} = 49$; $n_{observations} = 578$)

Table 5. Predicted means and differences of Self-turn error according experimental conditions.

		Mean	95 % BCI	
		Estimate	Lower	Upper
Conditions				
Reality	Proprioception	22.4	18.1	27.2
	Vision	11.3	8.9	13.9
	Vision + Proprioception	9.8	7.8	12.0
Virtual Reality	Proprioception	24.2	19.4	29.2
	Vision	18.0	14.4	21.7
	Vision + Proprioception	17.8	14.3	21.7
Comparisons				
Reality	Proprioception - Vision	11.1	6.6	15.8
	Proprioception - Vision + Proprioception	12.6	8.2	17.3
	Vision - Vision + Proprioception	1.5	-1.4	4.5
Virtual Reality	Proprioception - Vision	6.2	0.9	11.7
	Proprioception - Vision + Proprioception	6.4	1.0	11.9
	Vision - Vision + Proprioception	0.2	-4.3	4.8
Virtual Reality - Reality	Proprioception	1.8	-3.8	7.9
	Vision	6.7	2.8	10.7
	Vision + Proprioception	8.0	4.3	11.9

Note: $n_{subjects} = 49$; $n_{observations} = 578$

Effect size

To quantify the differences between the various age groups and conditions, we expressed the effects as the ratio between the two scores of the comparison of interest (see Table 17 in S1 Supplemental Materials). Thus, for example, young children are expected to make 88% more errors than adults and 58% more errors than older children. Considering the Reality environment conditions, when using only proprioception subjects are expected to make 92% more errors than when they rely only on vision and 118% more errors than when using vision + proprioception. Considering the Immersive Virtual Reality environment conditions, when using only proprioception subjects are expected to make 34% more errors than when they rely only on vision and 35% more errors than when using vision + proprioception. Moreover, comparing Immersive Virtual Reality to Reality environmental condition, in IVR subjects are expected to make 56% more errors when using only vision and 75% when using vision + proprioception.

Discussion

564

This experiment explored the extent to which visual information aids 565
proprioceptive-based self-motion accuracy across the lifespan, and specifically in three 566
developmental groups: 4–8-year-old children, 9–15-year-old children, and adults. 567
Moreover, the experiment assessed whether HMD-delivered IVR environments affect 568
accuracy. 569

569

As expected, we found a main developmental trend in the improvement of 570
proprioception across conditions. In particular, as hypothesized, we found differences 571
between the young child group (4–8 years old) and the older child and adult groups 572
(9–15 and 20–43 years old), with this youngest group showing lower proprioceptive 573
accuracy than the two older groups. This indicates that proprioceptive development 574
predominantly takes place in the first eight years of life, such that adolescent and 575
pre-adolescent children make more accurate proprioceptive judgements than younger 576
children. 577

577

In line with our hypotheses, we also found an interaction effect between Perception 578
and Environment condition. Our findings indicate that proprioceptive accuracy was 579
markedly impaired when participants could rely only on proprioceptive input, regardless 580
of the environment. In the conditions which forced participants to rely solely on 581
proprioception by removing all visual information, all groups were less accurate than in 582
conditions where visual information was provided, regardless of the salience of this 583
visual information. This finding is consistent with the assertion that visual and 584
vestibular information combine with proprioceptive information to allow accurate 585
self-motion [11]. Moreover, it indicates that typically developing child and adult 586
populations rely specifically on vision to calibrate proprioception in order to accurately 587
judge their movements. Regarding the role of different visual landmarks, no differences 588
were found between vision + proprioception and vision only conditions, that is, 589
conditions in which participants could view all aspects of the real or virtual room versus 590
conditions in which participants received visual input of randomly placed clouds but 591
were unable to see visual landmarks such as the corners of the room or their body. 592
Moreover, IVR, compared to Reality, disrupted proprioception only when visual input 593
was provided (vision + proprioception and vision only conditions). There were no 594

differences between IVR vs Reality in only proprioception (blind) conditions. This 595
allows us to exclude the possibility that wearing the HMD alone, and the corresponding 596
weight and head restriction, might have disrupted proprioception. We did find that 597
performance worsened in IVR conditions where visual information was available relative 598
to corresponding reality conditions. The way in which the HMD delivers visual 599
information has a complex (and essentially unknown) effect on self-motion perception 600
and the kinematics of movement [68]. Factors such as display type, field of view, visual 601
content (peripheral cues, high-low visual contrast, etc.), temporal lag between the user's 602
action and the HMD's reaction, and so on could be the means by which IVR disrupts 603
proprioception through vision. This is an important finding, given that few IVR 604
experiments have considered that performance may be affected simply due to the use of 605
IVR or HMD-delivered IVR. Many previous IVR experiments seem to implicitly assume 606
that performance in IVR constitutes an appropriate corollary for real-world 607
performance, but our findings indicate that this may not be the case. Despite this HMD 608
effect, our results provides evidence that IVR may be a useful means of studying 609
multisensory integration and accuracy. Indeed, the same general Perception trend in 610
self-motion accuracy (proprioception only|vision only|vision + proprioception) was 611
found both in IVR and R environments. 612

In contrast to our expectations, we failed to find any Age x Condition interaction 613
effect. We expected that adults would be more affected by disrupted proprioception 614
than children, but this was not the case. Various aspects of the experimental design 615
should be taken into account to discuss this result. Firstly, our manipulation of the 616
multisensory input in different conditions could have been insufficient to uncover the 617
expected differences. We found the expected general trend of reduced proprioceptive 618
accuracy in vision conditions relative to vision + proprioception conditions. However, 619
this difference failed to reach meaningful magnitude. As previous studies highlight, 620
relative dominance of visual and proprioceptive input and visuo-proprioceptive 621
integration are task-dependent [2,30]. For example, proprioception was reported to be 622
more precise in the radial (near-far) direction and vision in the azimuthal (left-right) 623
direction [69–71]. It could be suggested that our azimuthal proprioceptive task was too 624
dependent on vision to allow the detection of differences that were due to the disruption 625
of proprioception. In fact, our vision conditions were designed to disrupt proprioception 626

by removing visually-driven proprioceptive information (the room corners and 627 participant's body), while still providing non-proprioceptive visual landmarks 628 (surrounding clouds). It could be the case that non-proprioceptively salient visual 629 landmarks are sufficient to allow accurate performance in our task. In addition, other 630 similar studies used a standing self-turn paradigm [53, 72]. We utilized a seated self-turn 631 paradigm so that we could use the chair position as a measurement point of reference, 632 independently from the participants' individual postures which may vary. The sitting 633 self-turn paradigm keeps the subject's position in the center of the room, allowing us to 634 make the task and measurement consistent across participants. However, this seated 635 task could be less challenging than a standing one, resulting in a ceiling effect, 636 particularly for older children and adult groups. 637

We also found a main effect of rotation amplitude, with proprioceptive accuracy 638 consistently decreasing as rotation amplitude increased across conditions and groups. 639 Despite the fact that studying the effect of rotation amplitude was not a primary goal of 640 this work, it is interesting to speculate whether this effect may be specifically due to 641 working memory constraints in larger rotations. Body position-matching tasks similar 642 to the one used in the present study imply the need for executive skills. Indeed, current 643 tests for the assessment of proprioception evaluate the reproduction of body positions or 644 movements by relying on active rehearsal in working memory [49, 50]. In our 645 experiment, accuracy largely depends on the ability of participants to actively maintain 646 the start position in memory, and it may be the case that differences in working 647 memory capacity across age groups could have affected results. Indeed, working 648 memory limitations have been found up to pre-adolescence [73] and age-related lower 649 visuo-spatial working memory capacity can be associated with lower proprioceptive 650 accuracy in body position-matching tasks [74]. 651

The present study opens intriguing perspectives for future research, despite having 652 some limitations. Firstly, the experimenter manually rotated the participant, so 653 although experimenters were trained to keep a similar speed and method of rotating, 654 the rotation velocity was not perfectly consistent across trials and participants, 655 potentially influencing participants' performance as in previous works [72]. Another 656 limitation concerned the manipulation of visual conditions distinguishing between "only 657 vision" and "vision + proprioception". As we found no meaningful differences between 658

these two Perception conditions, the “only vision” condition could have been insufficient 659 to isolate vision and disrupt proprioception as we aimed to. It would be interesting to 660 see how similar but more effective manipulations of visual information aimed at 661 disrupting proprioception would affect performance compared to conditions where 662 instead only optic flow is available (i.e. no movement). As previously mentioned, it is 663 also possible that self-motion differences in these two conditions were too small to be 664 detected with our task, and might be elicited with a more difficult one. Moreover, the 665 age groups could be too broad to clearly show early developmental trends and changes. 666 Further research could focus specifically on children younger than eight years old to 667 explore the early development of visuo-proprioceptive integration. Furthermore, future 668 studies could utilize our paradigm to explore age-related visuo-spatial working memory 669 abilities associated with proprioception. A more in-depth look is also necessary to 670 investigate potential implications of a proprioceptive sensory register and its influence 671 on performance in multisensory motor tasks, as individual sensory registers have been 672 shown to affect working memory in multisensory environments (for a review, see [75]). 673

One of the most intriguing yet unexplored perspectives that led to this work 674 concerns the possibility of intentionally disrupting proprioception through 675 HMD-delivered IVRs. This method could be employed to study the degree to which 676 different developmental populations rely on proprioception, vision, and 677 visuo-proprioceptive integration. From an applied perspective, disrupting proprioception 678 could comprise an innovative intervention for use with clinical populations which 679 demonstrate an atypical reliance on specific senses and atypical integration of vision 680 (*exteroception*) and proprioception. For example, people with Autism Spectrum 681 Disorder (ASD) seem to show an over-reliance on proprioception and hypo-reliance on 682 exteroception [76–78]. This perceptual strategy might not only lead to impaired motor 683 skills in ASD (e.g. dyspraxia and repetitive behaviors), but also seems to be related to 684 core features of impaired social and communicative development. Interventions could be 685 aimed at increasing the reliance on vision in children with ASD by disrupting 686 proprioception. In this respect a possible speculation is that IVR interventions could 687 constitute a useful training method to achieve a therapeutic purpose. 688

Conclusion

In sum, the present study offers useful insights regarding the use of IVR in research on multisensory integration and sensorimotor functioning. When visual information is provided, proprioceptive accuracy in IVR seems to be impaired relative to performance in reality. As proprioception is fundamental to performance in any motor task, this has to be taken into account when interpreting the results of IVR studies which involve proprioceptive abilities. However, IVR could still be a useful tool for detecting multisensory trends. In fact, we found the same condition-specific trend in IVR as in reality. Both in reality and IVR, the conditions which allowed a reliance solely on proprioception led to the lowest proprioceptive accuracy, and minimal differences emerged between vision only and vision + proprioception conditions. The exploratory nature of the present study could contribute to the undertaking of more confirmatory future studies, which would benefit from the estimated effect sizes provided here, to develop and test further hypotheses.

Acknowledgments

Our gratitude to the multimedia designers Marco Godeas and Carlo Marzaroli. They did a great job in building the IVR environment and setting up the laboratory. This research was helped immensely by their experience with IVR technologies and children with Autism Spectrum Disorder. This experiment would not have been possible without their ideas and technical support.

Thanks to F.lli Budai S.r.l. for building the experimental room: a generous gift for which we are very grateful.

Thanks to Beneficentia Stiftung Foundation for supporting our research.

Sincere thanks to Associazione Pro Musica Ruda – Scuola Comunale di Musica and the Comune di Ruda (Udine, Italy) for hosting our laboratory and supporting our work.

Author Contributions

Conceptualization: Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova, Teresa Farroni.

Data Curation: Claudio Zandonella Callegher, Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova.	717
Formal Analysis: Claudio Zandonella Callegher, Gianmarco Altoè, Irene Valori.	719
Funding Acquisition: Teresa Farroni.	720
Investigation: Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova, Teresa Farroni.	721
Methodology: Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova, Teresa Farroni.	723
Project Administration: Irene Valori, Teresa Farroni.	725
Resources: Teresa Farroni.	726
Supervision: Teresa Farroni.	727
Visualization: Claudio Zandonella Callegher, Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova, Gianmarco Altoè.	728
Writing – Original Draft Preparation: Irene Valori, Phoebe McKenna-Plumley, Rena Bayramova, Claudio Zandonella Callegher, Teresa Farroni.	730
Writing – Review & Editing: Phoebe McKenna-Plumley, Irene Valori, Rena Bayramova, Claudio Zandonella Callegher, Gianmarco Altoè, Teresa Farroni.	732

References

1. Craig AD. How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body. *Nature Reviews Neuroscience*. 2002;3(8):655–666. doi:10.1038/nrn894.
2. Bremner AJ, Lewkowicz DJ, Spence C. The Multisensory Approach to Development. In: Bremner AJ, Lewkowicz DJ, Spence C, editors. *Multisensory Development*. Oxford: United Kingdom: Oxford University Press; 2012. p. 1–26.
3. Knudsen EI. Instructed Learning in the Auditory Localization Pathway of the Barn Owl. *Nature*. 2002;417(6886):322–328. doi:10.1038/417322a.
4. Scarfe P, Hibbard PB. Statistically Optimal Integration of Biased Sensory Estimates. *Journal of Vision*. 2011;11(7):12. doi:10.1167/11.7.12.

5. Spence C. Explaining the Colavita Visual Dominance Effect. *Progress in Brain Research*. 2009;176:245–258. doi:10.1016/S0079-6123(09)17615-X.
6. Nelson RJ. The Somatosensory System: Deciphering the Brain's Own Body Image. 1st ed. Boca Raton, Florida: CRC Press; 2001.
7. Stillman BC. Making Sense of Proprioception: The Meaning of Proprioception, Kinaesthesia and Related Terms. *Physiotherapy*. 2002;88(11):667–676. doi:10.1016/S0031-9406(05)60109-5.
8. Pereira EM, Rueda FM, Diego IA, De La Cuerda RC, De Mauro A, Page JM. Use of Virtual Reality Systems as Proprioception Method in Cerebral Palsy: Clinical Practice Guideline. *Neurología (English Edition)*. 2014;29(9):550–559. doi:10.1016/j.nrleng.2011.12.011.
9. Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in Phantom Limbs Induced with Mirrors. *Proceedings of the Royal Society B*. 1996;263(1369):377–386. doi:10.1098/rspb.1996.0058.
10. Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR. Neural Signatures of Body Ownership: A Sensory Network for Bodily Self-Consciousness. *Cerebral Cortex*. 2006;17(10):2235–2244. doi:10.1093/cercor/bhl131.
11. Cullen KE. The Vestibular System: Multimodal Integration and Encoding of Self-Motion for Motor Control. *Trends in Neurosciences*. 2012;35(3):185–196.
12. Bremner AJ, Holmes NP, Spence C. The Development of Multisensory Representations of the Body and of the Space around the Body. In: Bremner AJ, Lewkowicz DJ, Spence C, editors. *Multisensory Development*. Oxford: United Kingdom: Oxford University Press; 2012. p. 113–136.
13. Sigmundsson H, Whiting HTA, Loftesnes JM. Development of Proprioceptive Sensitivity. *Experimental Brain Research*. 2000;135(3):348–352. doi:10.1007/s002210000531.
14. von Hofsten C, Rösblad B. The Integration of Sensory Information in the Development of Precise Manual Pointing. *Neuropsychologia*. 1988;26(6):805–821. doi:10.1016/0028-3932(88)90051-6.

15. Goble DJ, Lewis CA, Hurvitz EA, Brown SH. Development of Upper Limb Proprioceptive Accuracy in Children and Adolescents. *Human Movement Science*. 2005;24(2):155–170. doi:10.1016/j.humov.2005.05.004.
16. Hearn M, Crowe A, Keessen W. Influence of Age on Proprioceptive Accuracy in Two Dimensions. *Perceptual and Motor Skills*. 1989;69(3–1):811–818. doi:10.1177/00315125890693-118.
17. Nardini M, Cowie D. The Development of Multisensory Balance, Locomotion, Orientation and Navigation. In: Bremner AJ, Lewkowicz DJ, Spence C, editors. *Multisensory Development*. Oxford: United Kingdom: Oxford University Press; 2012. p. 137–158.
18. Bremner AJ, Hill EL, Pratt M, Rigato S, Spence C. Bodily Illusions in Young Children: Developmental Change in Visual and Proprioceptive Contributions to Perceived Hand Position. *PLoS ONE*. 2013;8(1):51887. doi:10.1371/journal.pone.0051887.
19. Sanchez-Vives MV, Slater M. From Presence to Consciousness through Virtual Reality. *Nature Reviews Neuroscience*. 2005;6(4):332–339. doi:10.1038/nrn1651.
20. Gromala D, Shaw C, Song M. Chronic Pain and the Modulation of Self in Immersive Virtual Reality. In: Chair AVS, editor. *Biologically Inspired Cognitive Architectures, Papers from the 2009 AAAI Fall Symposium*, Arlington, Virginia, USA, November 5–7, 2009. *Symposium Conducted at the 2009 AAAI Fall Symposium Series*, Arlington, VA.; 2009. p. 71.
21. Murray CD, Sixsmith J. The Corporeal Body in Virtual Reality. *Ethos*. 1999;27(3):315–343. doi:10.1525/eth.1999.27.3.315.
22. Mohler BJ, Campos JL, Weyel M, Bülthoff HH. Gait Parameters While Walking in a Head-Mounted Display Virtual Environment and the Real World. In: Fröhlich B, Blach R, van Liere R, editors. *13th Eurographics Symposium on Virtual Environments and 10th Immersive Projection Technology Workshop (IPT-EGVE 2007)*. Weimar, Germany: Eurographics Association; 2007. p. 1–4.

23. Riecke BE, Wiener JM. Can People Not Tell Left from Right in VR? Point-to-Origin Studies Revealed Qualitative Errors in Visual Path Integration. In: 2007 IEEE Virtual Reality Conference, Charlotte, NC. Piscataway, NJ: IEEE; 2007. p. 3–10.
24. Prothero JD, Parker DE. A Unified Approach to Presence and Motion Sickness. In: Hettinger L, and MH, editors. *Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues*. Mahwah, NJ: Lawrence Erlbaum Associates Publishers; 2003. p. 47–66.
25. Campos JL, H BH. Multimodal Integration during Self-Motion in Virtual Reality. In: Murray MM, Wallace MT, editors. *The Neural Bases of Multisensory Processes*. Boca Raton, Florida: CRC Press/Taylor & Francis; 2012. p. 603–628.
26. Riecke BE, Schulte-Pelkum J, Buelthoff HH. Perceiving Simulated Ego-Motions in Virtual Reality: Comparing Large Screen Displays with HMDs. In: SPIE 2005; 2005. p. 344–356.
27. Kearns MJ, Warren WH, Duchon AP, Tarr MJ. Path Integration from Optic Flow and Body Senses in a Homing Task. *Perception*. 2002;31(3):349–374. doi:10.1068/p3311.
28. Bakker NH, Werkhoven PJ, Passenier PO. The Effects of Proprioceptive and Visual Feedback on Geographical Orientation in Virtual Environments. *Presence: Teleoperators & Virtual Environments*. 1999;8(1):36–53. doi:10.1162/105474699566035.
29. Lathrop WB, Kaiser MK. Perceived Orientation in Physical and Virtual Environments: Changes in Perceived Orientation as a Function of Idiothetic Information Available. *Presence: Teleoperators & Virtual Environments*. 2002;11(1):19–32. doi:10.1162/105474602317343631.
30. Adams H, Narasimham G, Rieser J, Creem-Regehr S, Stefanucci J, Bodenheimer B. Locomotive Recalibration and Prism Adaptation of Children and Teens in Immersive Virtual Environments. *IEEE Transactions on Visualization & Computer Graphics*. 2018;24(4):1408–1417. doi:10.1109/TVCG.2018.2794072.

31. Bodenheimer B, Creem-Regehr S, Stefanucci J, Shemetova E, Thompson WB. Prism Aftereffects for Throwing with a Self-Avatar in an Immersive Virtual Environment. In: Rosenberg ES, editor. 2017 IEEE Virtual Reality (VR) Proceedings: March 18-22, 2017, Los Angeles, CA, USA. Piscataway, NJ: IEEE; 2017. p. 141–147.
32. Mohler BJ, Thompson WB, Creem-Regehr SH, Willemsen P, Pick Jr HL, Rieser JJ. Calibration of Locomotion Resulting from Visual Motion in a Treadmill-Based Virtual Environment. *ACM Transactions on Applied Perception (TAP)*. 2007;4(1):1–15. doi:10.1145/1227134.1227138.
33. Petrini K, Caradonna A, Foster C, Burgess N, Nardini M. How Vision and Self-Motion Combine or Compete during Path Reproduction Changes with Age. *Scientific Reports*. 2016;6:29163. doi:10.1038/srep29163.
34. Petrini K, Jones PR, Smith L, Nardini M. Hearing Where the Eyes See: Children Use an Irrelevant Visual Cue When Localizing Sounds. *Child Development*. 2015;86:1449–1457. doi:10.1111/cdev.12397.
35. Bailey JO, Bailenson JN. Immersive Virtual Reality and the Developing Child. In: Blumberg FC, Brooks PJ, editors. *Cognitive Development in Digital Contexts*. Amsterdam, Netherlands: Elsevier; 2017. p. 181–200.
36. McElreath R. *Statistical Rethinking: A Bayesian Course with Examples in R*. New York, NY: Chapman and Hall/CRC; 2015.
37. Wagenmakers EJ, Farrell S. AIC Model Selection Using Akaike Weights. *Psychonomic Bulletin & Review*. 2004;11(1):192–196. doi:10.3758/BF03206482.
38. Vandekerckhove J, Matzke D, Wagenmakers EJ. Model Comparison and the Principle of Parsimony. In: Busemeyer JR, Wang Z, Townsend JT, Eidels A, editors. *The Oxford handbook of computational and mathematical psychology*. New York, NY: Oxford University Press; 2015. p. 300–319.
39. Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB. *Bayesian Data Analysis*. New York, NY: Chapman and Hall/CRC; 2013.

40. Kruschke JK, Liddell TM. The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective. *Psychonomic Bulletin & Review*. 2018;25(1):178–206. doi:10.3758/s13423-016-1221-4.
41. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. *Trends in Ecology & Evolution*. 2009;24(3):127–135. doi:10.1016/j.tree.2008.10.008.
42. Fong Y, Rue H, Wakefield J. Bayesian Inference for Generalized Linear Mixed Models. *Biostatistics*. 2010;11(3):397–412. doi:10.1093/biostatistics/kxp053.
43. Romeijn JW, van de Schoot R. A Philosopher’s View on Bayesian Evaluation of Informative Hypotheses. In: Hoijtink H, Klugkist I, Boelen PA, editors. *Bayesian Evaluation of Informative Hypotheses*. New York, NY: Springer; 2008. p. 329–357.
44. Etz A, Vandekerckhove J. Introduction to Bayesian Inference for Psychology. *Psychonomic Bulletin & Review*. 2018;25(1):5–34. doi:10.3758/s13423-017-1262-3.
45. van de Schoot R, Kaplan D, Denissen J, Asendorpf JB, Neyer FJ, van Aken MAG. A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research. *Child Development*. 2014;85(3):842–860. doi:10.1111/cdev.12169.
46. Hurley MV, Rees J, Newham DJ. Quadriceps Function, Proprioceptive Acuity and Functional Performance in Healthy Young, Middle-Aged and Elderly Subjects. *Age and Ageing*. 1998;27(1):55–62. doi:10.1093/ageing/27.1.55.
47. Wingert JR, Welder C, Foo P. Age-Related Hip Proprioception Declines: Effects on Postural Sway and Dynamic Balance. *Archives of Physical Medicine and Rehabilitation*. 2014;95(2):253–261. doi:10.1016/j.apmr.2013.08.012.
48. Jürgens R, Boss T, Becker W. Estimation of Self-Turning in the Dark: Comparison between Active and Passive Rotation. *Experimental Brain Research*. 1999;128(4):491–504. doi:10.1007/s002210050872.

49. Waddington G, Adams R. Discrimination of Active Plantarflexion and Inversion Movements after Ankle Injury. *Journal of Physiotherapy*. 1999;45(1):7–13. doi:10.1016/S0004-9514(14)60335-4.
50. Weerakkody NS, Blouin JS, Taylor JL, Gandevia SC. Local Subcutaneous and Muscle Pain Impairs Detection of Passive Movements at the Human Thumb. *The Journal of Physiology*. 2008;586(13):3183–3193. doi:10.1113/jphysiol.2008.152942.
51. Chen X, Treleaven J. The Effect of Neck Torsion on Joint Position Error in Subjects with Chronic Neck Pain. *Manual Therapy*. 2013;18(6):562–567. doi:10.1016/j.math.2013.05.015.
52. Hallgren KA. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. *Tutorials in Quantitative Methods For Psychology*. 2012;8(1):23. doi:10.20982/tqmp.08.1.p023.
53. Wang RF, Spelke ES. Updating egocentric representations in human navigation. *Cognition*. 2000;77(3):215–250. doi:10.1016/S0010-0277(00)00105-0.
54. Meilinger T, Schulte-Pelkum J, Frankenstein J, Berger DR, Bülthoff HH. Global Landmarks Do Not Necessarily Improve Spatial Performance in Addition to Bodily Self-Movement Cues When Learning a Large-Scale Virtual Environment. In: Imura M, Figueroa P, Mohler B, editors. 25th International Conference on Artificial Reality and Telexistence and the 20th Eurographics Symposium on Virtual Environments, (ICAT-EGVE 2015), Kyoto, Japan. Aire-la-Ville, Switzerland: Eurographics Association; 2015. p. 25–28.
55. Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. New York, NY: Springer-Verlag; 2006.
56. Ng VKY, Cribbie RA. Using the Gamma Generalized Linear Model for Modeling Continuous, Skewed and Heteroscedastic Outcomes in Psychology. *Current Psychology*. 2017;36(2):225–235. doi:10.1007/s12144-015-9404-0.
57. R Core Team. R: A Language and Environment for Statistical Computing.; 2018. R Foundation for Statistical Computing.

58. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software*. 2017;80(1):1–28. doi:10.18637/jss.v080.i01.
59. Stan Development Team. Stan: A C++ Library for Probability and Sampling.; 2017.
60. Stan Development Team. Stan Modeling Language: User's Guide and Reference Manual; 2017.
61. Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research*. 2014;15:1593–1623.
62. Neal RM. MCMC Using Hamiltonian Dynamics. In: Brooks S, Gelman A, Jones GL, Meng XL, editors. *Handbook of Markov Chain Monte Carlo*. New York, NY: Chapman; 2012. p. 113–162.
63. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. *Statistical Science*. 1992;7(4):457–472. doi:10.1214/ss/1177011136.
64. Gelman A, Hwang J, Vehtari A. Understanding Predictive Information Criteria for Bayesian Models. *Statistics and Computing*. 2014;24(6):997–1016. doi:10.1007/s11222-013-9416-2.
65. Vehtari A, Gelman A, Gabry J. Practical Bayesian Model Evaluation Using Leave-One-out Cross-Validation And. *WAIC Statistics and Computing*. 2017;27(5):1413–1432. doi:10.1007/s11222-016-9696-4.
66. Akaike H. Information Theory and an Extension of the Maximum Likelihood Principle. In: Petrov BN, Csaki F, editors. *Proceedings of the Second International Symposium on Information Theory*. Budapest Akademiai Kiado; 1973. p. 267–281.
67. Gelman A, Goodrich B, Gabry J, Vehtari A. R-Squared for Bayesian Regression Models. *The American Statistician*. 2018;1(6):10–1080. doi:10.1080/00031305.2018.1549100.

68. Powell WA, Stevens B. The Influence of Virtual Reality Systems on Walking Behaviour: A Toolset to Support Application Design. In: 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA. Piscataway, NJ: IEEE; 2013. p. 270–276.
69. Snijders HJ, Holmes NP, Spence C. Direction-Dependent Integration of Vision and Proprioception in Reaching under the Influence of the Mirror Illusion. *Neuropsychologia*. 2007;45(3):496–505. doi:10.1016/j.neuropsychologia.2006.01.003.
70. van Beers RJ, Sittig AC, van der Gon DJJ. Integration of proprioceptive and visual position-information: An experimentally supported model. *Journal of Neurophysiology*. 1999;81(3):1355–1364. doi:10.1152/jn.1999.81.3.1355.
71. van Beers RJ, Wolpert DM, Haggard P. When Feeling Is More Important than Seeing in Sensorimotor Adaptation. *Current Biology*. 2002;12(10):834–837. doi:10.1016/S0960-9822(02)00836-9.
72. Jürgens R, Becker W. Perception of Angular Displacement without Landmarks: Evidence for Bayesian Fusion of Vestibular, Optokinetic, Podokinesthetic, and Cognitive Information. *Experimental Brain Research*. 2006;174(3):528–543. doi:10.1007/s00221-006-0486-7.
73. Pickering SJ. The Development of Visuo-Spatial Working Memory. *Memory*. 2001;9(4–6):423–432. doi:10.1080/713755973.
74. Goble DJ, Mousigian MA, Brown SH. Compromised Encoding of Proprioceptively Determined Joint Angles in Older Adults: The Role of Working Memory and Attentional Load. *Experimental Brain Research*. 2012;216(1):35–40. doi:10.1007/s00221-011-2904-8.
75. Quak M, London RE, Talsma D. A Multisensory Perspective of Working Memory. *Frontiers in Human Neuroscience*. 2015;9:197. doi:10.3389/fnhum.2015.00197.
76. Morris SL, Foster CJ, Parsons R, Falkmer M, Falkmer T, Rosalie SM. Differences in the Use of Vision and Proprioception for Postural Control in Autism Spectrum Disorder. *Neuroscience*. 2015;307:273–280. doi:10.1016/j.neuroscience.2015.08.040.

77. Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor Learning Relies on Integrated Sensory Inputs in ADHD, but Over-selectively on Proprioception in Autism Spectrum Conditions. *Autism Research*. 2012;5(2):124–136. doi:10.1002/aur.1222.
78. Haswell CC, Izawa J, Dowell LR, Mostofsky SH, Shadmehr R. Representation of Internal Models of Action in the Autistic Brain. *Nature Neuroscience*. 2009;12(8):970–972. doi:10.1038/nn.2356.

Figure 1

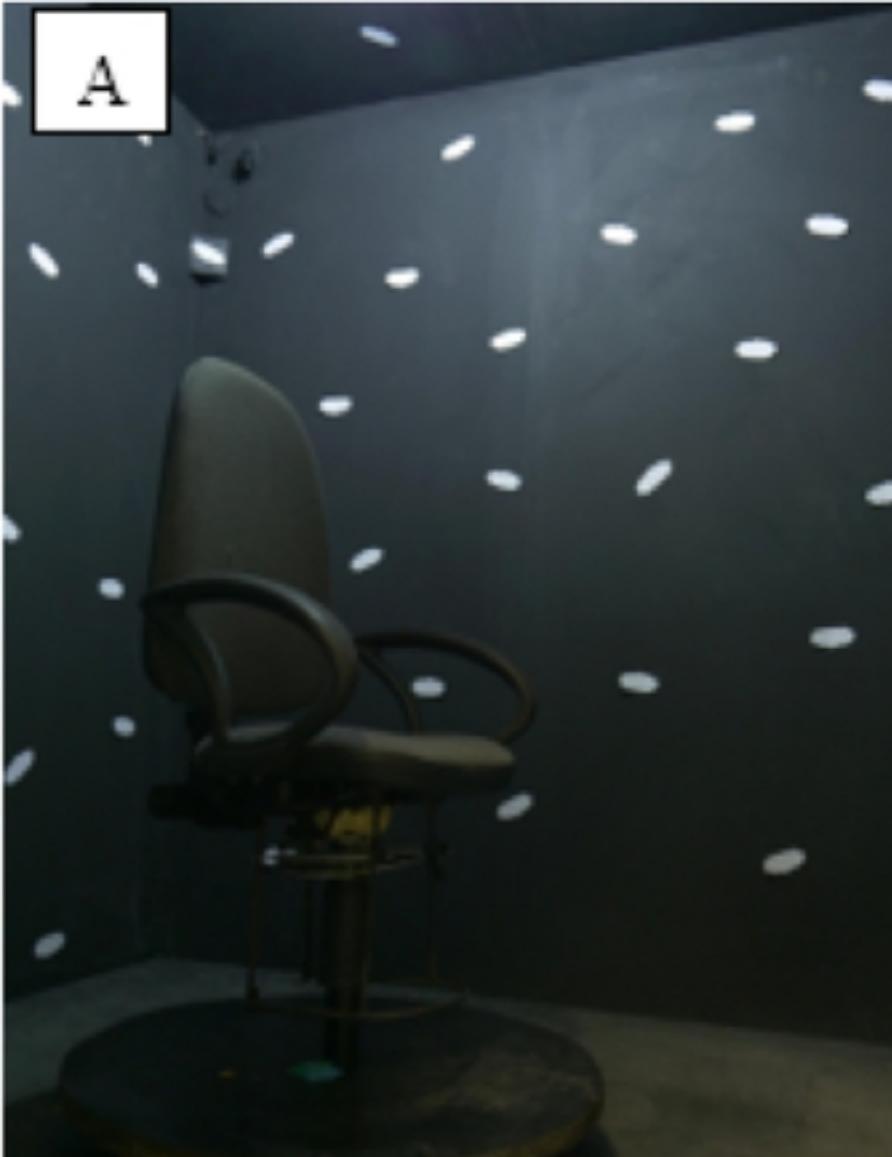


Figure 2

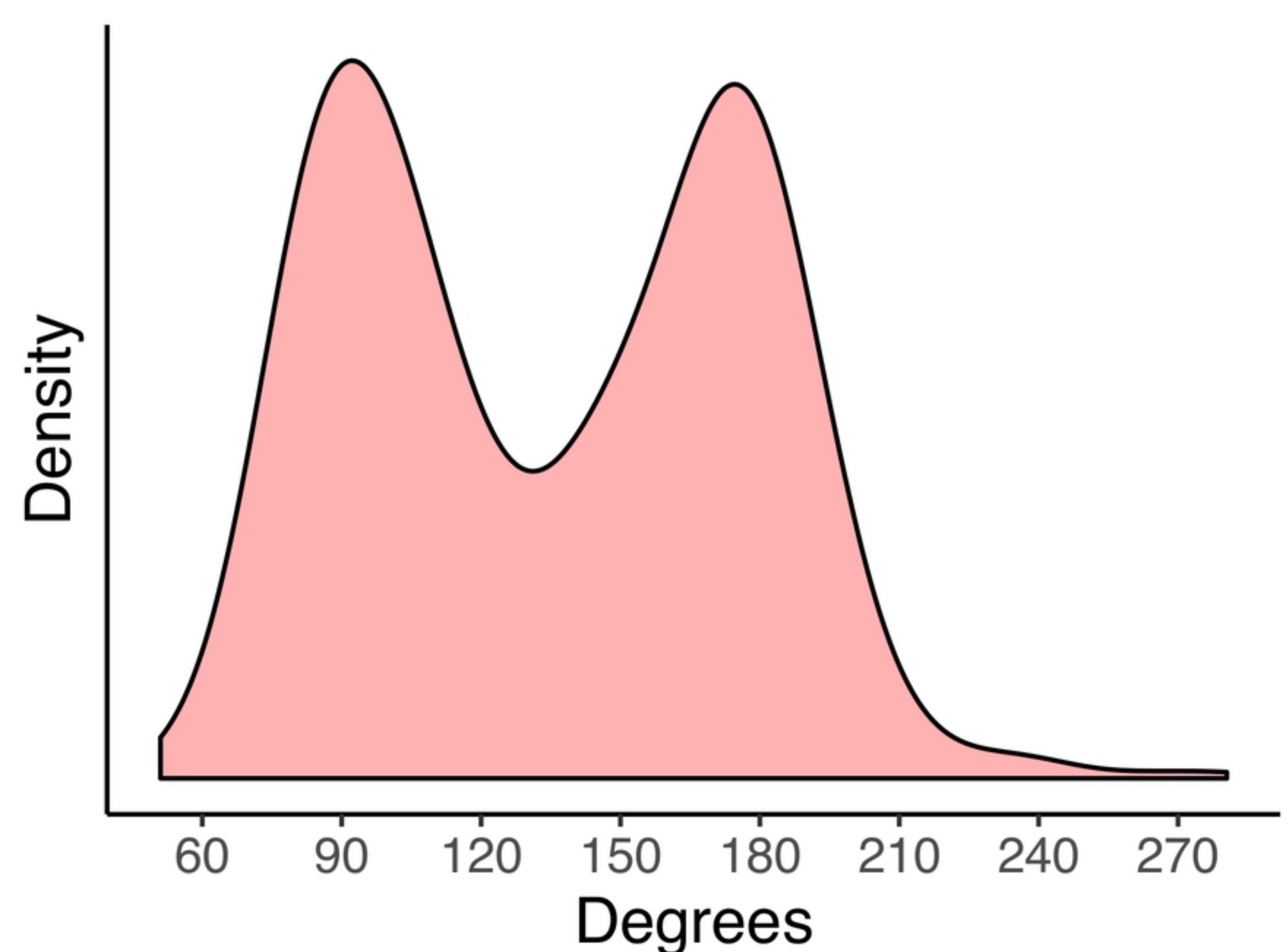


Figure 3

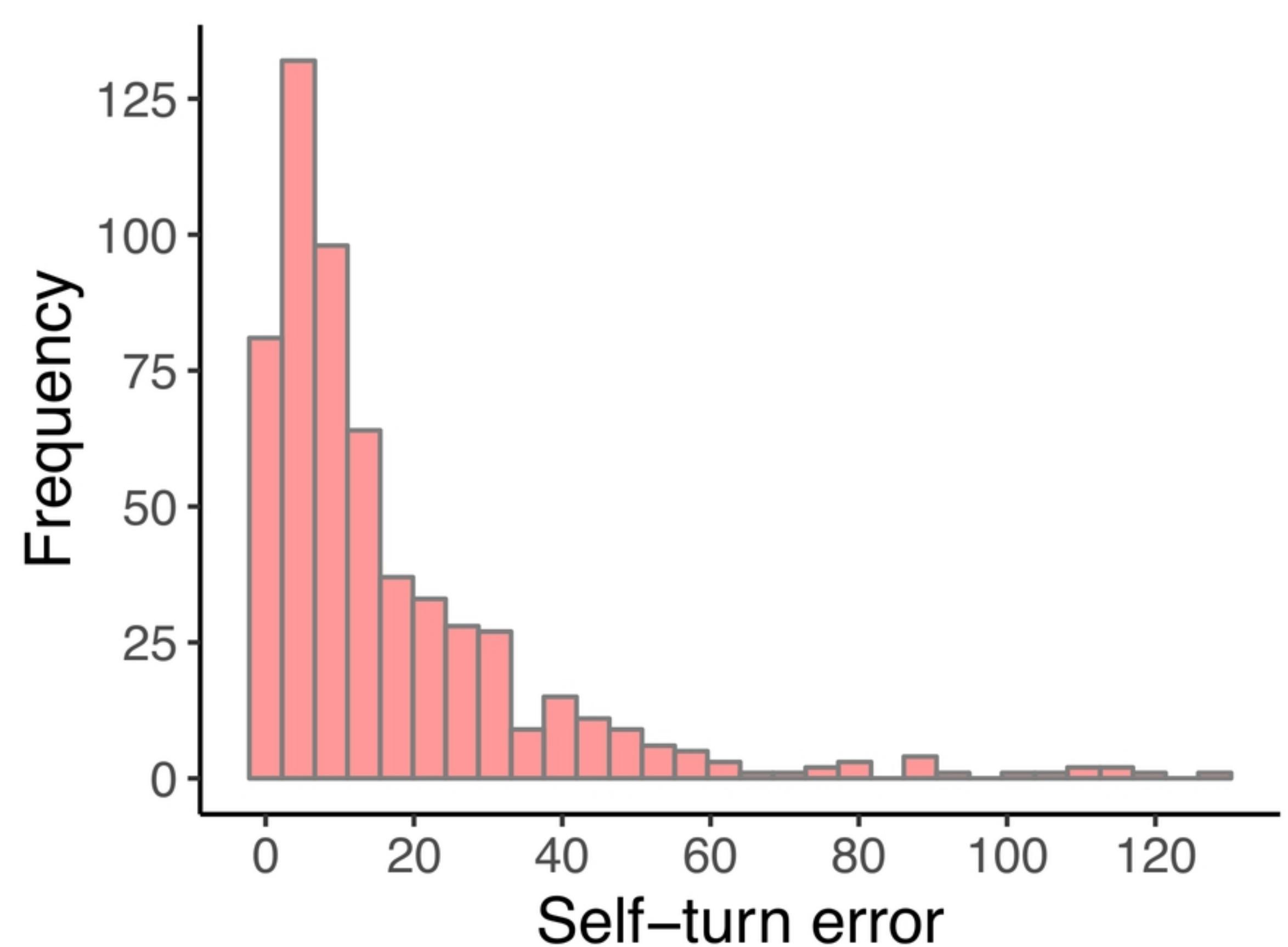


Figure 4

Reality

Virtual Reality

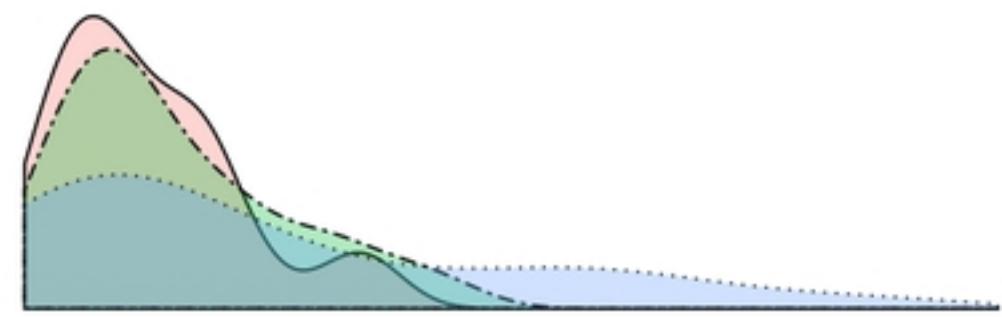
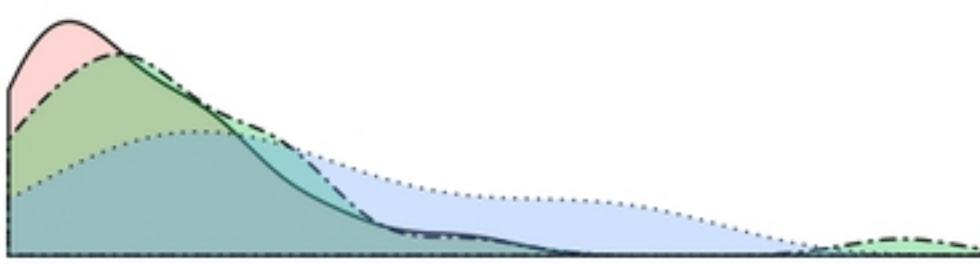
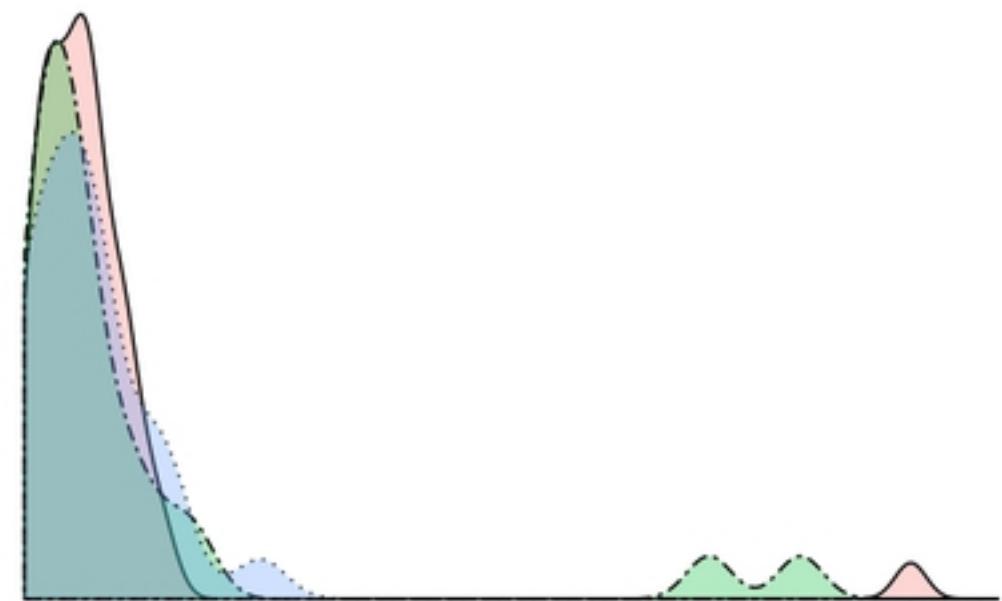
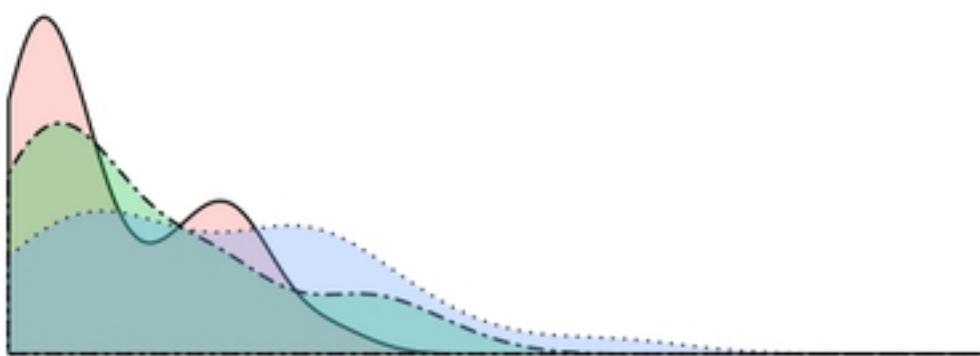
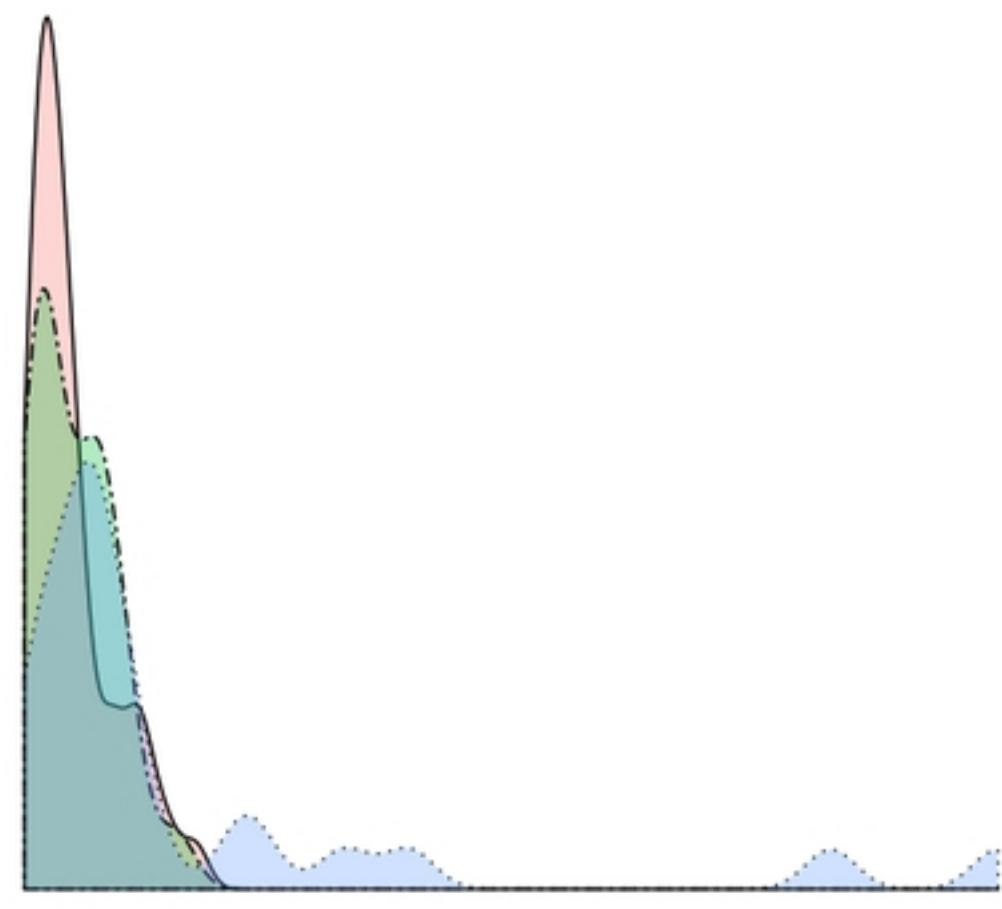
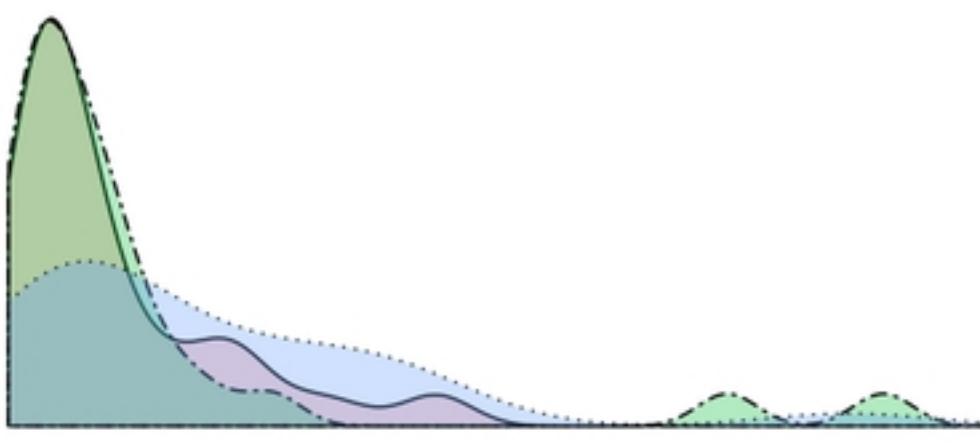
Proprioception

Perception

Vision+Proprioception

Age Adults Older Children Younger Children

Density



0 20 40 60 80 100 120

Self-turn error

Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/760553>; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

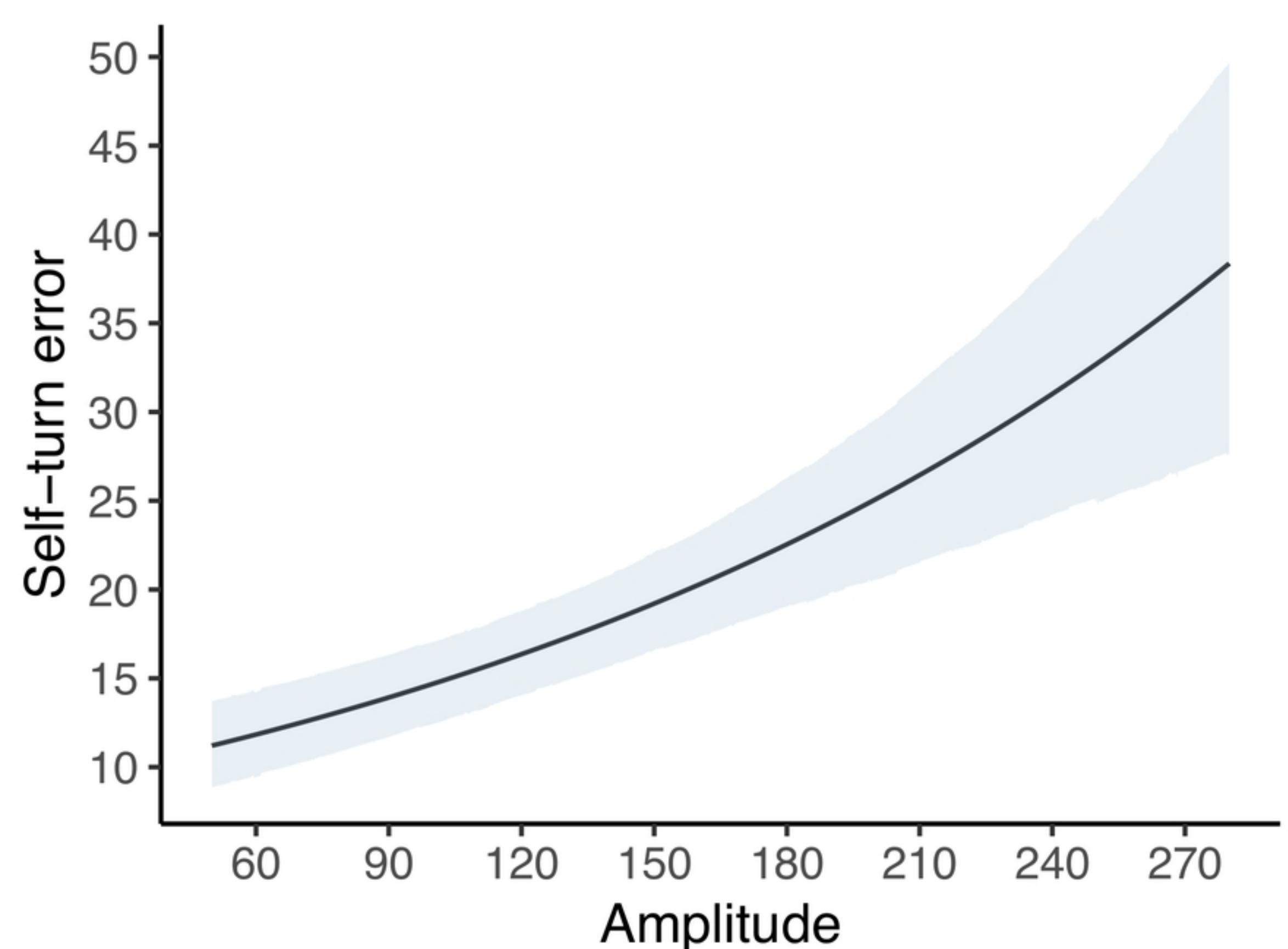


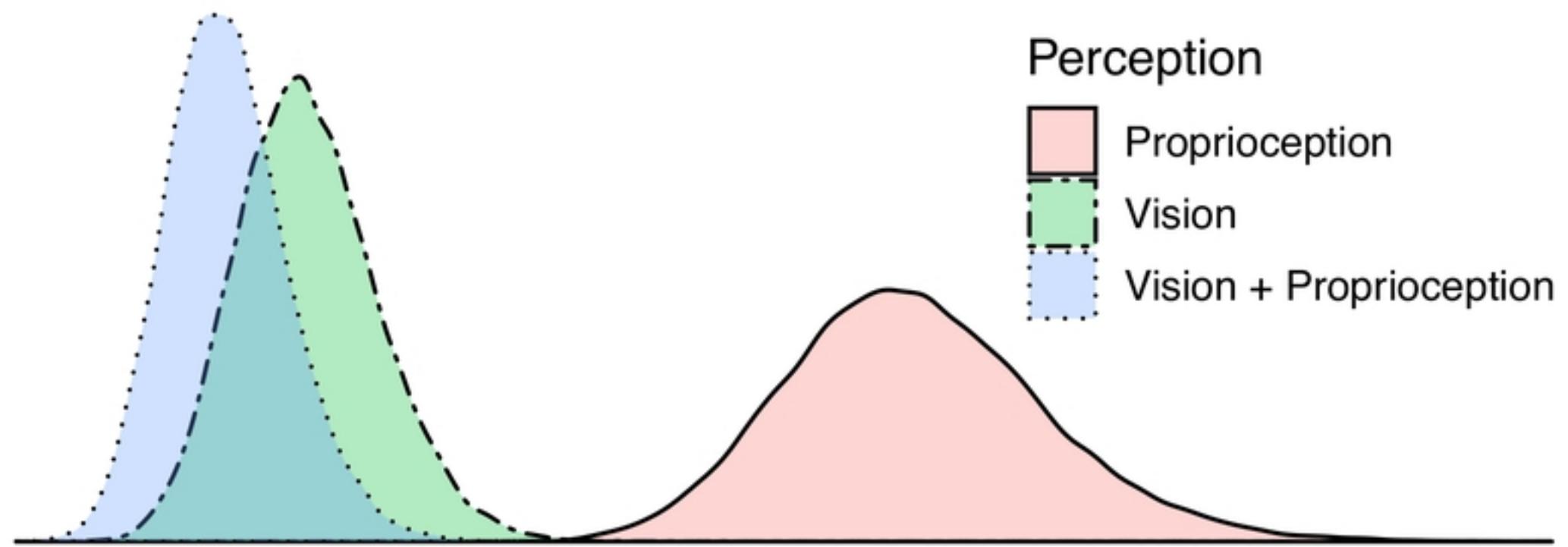
Figure 6

Reality

Density

Perception

- Proprioception
- Vision
- Vision + Proprioception



Virtual Reality

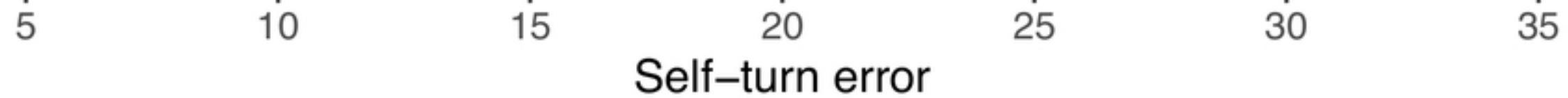


Figure 8

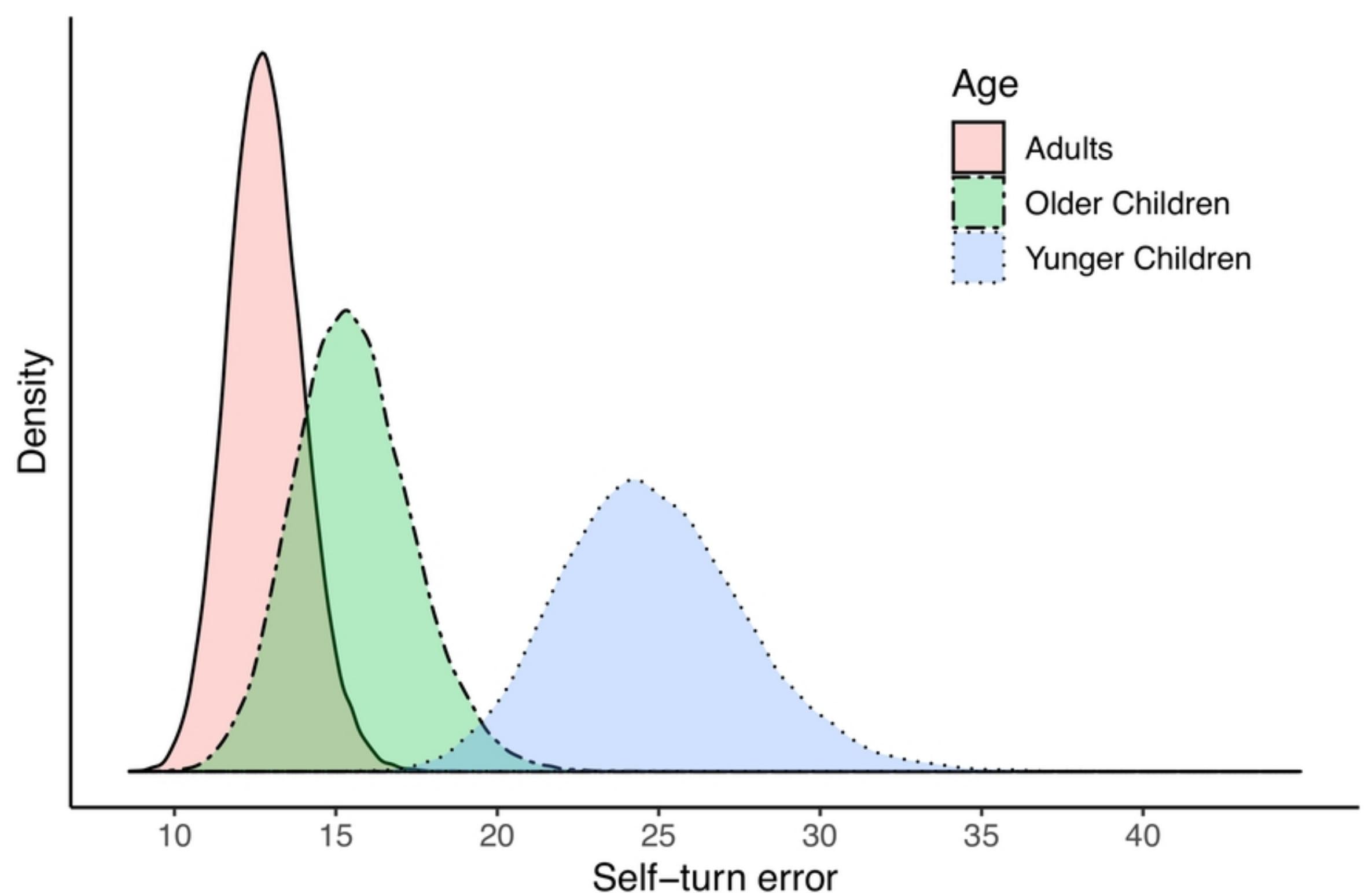


Figure 7