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Abstract

Diffusion MRI of the brain enables to quantify white matter fiber orientations noninvasively.
Several approaches have been proposed to estimate such characteristics from diffusion MRI
data with spherical deconvolution being one of the most widely used methods. Constrained
spherical deconvolution requires to define — or derive from the data — a response function,
which is used to compute the fiber orientation distribution (FOD). This definition or derivation
is not unequivocal and can thus result in different characteristics of the response function which
are expected to affect the FOD computation and the subsequent fiber tracking. In this work,
we explored the effects of inaccuracies in the shape and scaling factors of the response
function on the FOD characteristics. With simulations, we show that underestimation of the
shape factor in the response functions has a larger effect on the FOD peaks than
overestimation of the shape factor, whereas the latter will cause more spurious peaks.
Moreover, crossing fiber populations with a smaller separation angle were more sensitive to
the response function inaccuracy than fiber populations with more orthogonal separation
angles. Furthermore, the FOD characteristics show deviations as a result of modified shape
and scaling factors of the response function. Results with the in vivo data demonstrate that the
deviations of the FODs and spurious peaks can further deviate the termination of propagation
in fiber tracking. This work highlights the importance of proper definition of the response

function and how specific calibration factors can affect the FOD and fiber tractography results.
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24 1. Introduction
25

26 Diffusion MRI allows to characterize tissue microstructure in vivo and noninvasively by
27  measuring the anisotropic diffusion of water molecules [1,2]. Diffusion tensor imaging (DTI) [3]
28 is the most widely used model in clinical studies to relate the diffusion MRI signals to the
29  diffusion characteristics of the underlying tissue. However, DTl is inadequate to estimate the
30 directional information in voxels containing crossing fibers [4,5]. A commonly used approach
31 to resolve more complex fiber configurations in the brain is spherical deconvolution (SD) [6—
32 8]. SD also allows for the extraction of fiber population specific microstructural measures
33  derived from the magnitudes of the fiber orientation distribution (FOD) functions, such as
34  apparent fiber density (AFD) [9] and hindrance modulated orientational anisotropy (HMOA)
35 [10].

36 SD requires an appropriate response function as input to estimate the FOD [7]. The
37 response function, representing the diffusion signal for a single fiber population, is ideally
38 calibrated from the acquired diffusion MRI data [11,12]. In brief, for each subject, the voxels
39 containing only single fiber populations are localized, and an average of the diffusivity
40 characteristics within those voxels is used to represent the subject specific response function.
41  Aninadequately chosen response function can affect the quantification of FOD characteristics
42 like AFD and HMOA, as well as the fiber tractography.

43 In order to compare inter-subject AFD, Raffelt and colleagues [9] chose a response
44  function common to all subjects to minimize the differences between subjects for voxel-wise
45  AFD comparison. However, this may potentially result in a bias in the estimated FOD.
46  Specifically, the use of such a common response function for group-wise analysis may cause
47 biases in the FOD peak orientations for individual subjects. Therefore, whereas a common
48  response function is optimal for the comparison of AFD and HMOA in group studies [9], it is
49 unclear whether this is also optimal for group-wise tractography studies because of the
50 potentially inaccurate FOD peak orientations and concomitant spurious FOD peaks. Intuitively,

51 the difference in response function characteristics across healthy subjects are not expected to
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be large, as response functions are generally averaged from more than hundreds of voxels
that are supposed to contain single fiber populations [6,7,12]. This was partly demonstrated by
Jeurissen and colleagues [13], who studied the inter-subject response functions of 100 healthy
subjects from the Human Connectome Project (HCP) [14] and observed only subtle
differences. Accordingly, it seems justified not to be too concerned about inter-subject
response function variability in healthy subjects, since either using averaged response
functions or individual response functions is not likely to affect the FOD profiles in the HCP
dataset. However, although the differences in the response functions of healthy subjects may
be small [13], this is likely not the case for subjects with some form of pathology. The inter-
subject signal deviations do raise concern for aging and diseased groups.

White matter degeneration, whether caused by aging or by a disease process, may
substantially alter the response function. Hence, studying subjects of different ages with a
common response function might introduce errors due to discrepancies in white matter
characteristics. Therefore as the focus of this work, it is useful to investigate such differences
in response functions and the resulting variations of the FOD. A thorough numerical evaluation
focusing on the angular characteristics of FOD is needed to shed more light on this issue.

Previous studies have discussed the effect of improperly calibrated response functions
on the FOD characteristics and fiber tracking. Tournier [7] and Dell’Acqua [8] reasoned from a
mathematical point of view that a wrongly chosen response function would affect the
magnitudes of FOD peaks, thus also AFD and HMOA, but would leave their orientations
unaffected. Dell’Acqua and colleagues [8,10] investigated with simulations and in vivo data the
effects of various response function changes on the FOD profiles, including variations in the
response function shape and scaling factor, as well as in axonal radius and in angle of crossing
pathways for the damped Richardson-Lucy (dRL) method. Their paper focused on the effect
of the response function on FOD amplitudes and the sensitivity of HMOA to diffusivity changes
per fiber population, as compared to traditional metrics as fractional anisotropy (FA) and mean
diffusivity (MD). Parker [15] studied the FOD peak orientations and the existence of spurious
peaks in simulations as a function of the response function miscalibration for CSD and dRL.

5
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The results of that study demonstrate that sharper response functions resulted in more
spurious peaks in the FOD profiles, and that the mismatch of the calibrated-targeted response
functions introduced uncertainty on the main FOD peak orientations. However, in previous
work[15], the authors used the FA value as a metric to characterize the response functions, a
strategy which is unable to describe the true axial and radial diffusivities in crossing fibers [16].
Changes in FA entangle changes in the axial and radial diffusivities, so that the effects on
these two diffusivities could not be studied straightforwardly. Here we seek to disentangle
these effects and, complementing earlier studies [15,17], also aim to quantify both the effect
on peak magnitude and angular deviation.

In this manuscript we studied how variations in the response function affect voxel-wise
FOD characteristics and fiber tracking. Changes in pathology are likely reflected in changes in
either the axial or the radial diffusivity, which in our study, is represented by the shape and
scale factor of the response function. Simulations were designed to explore the effects of the
response function shape and scaling factor on the FOD properties, such as the number of FOD
peaks, their orientation (for tractography) and magnitude, and the AFD. Additionally, in vivo
data from the Human Connectome Project (HCP) were used to illustrate how the choice of the

response function in CSD can affect the FOD quantification and fiber tracking.
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98 2. Methods
99

100 In Sections 2.1 and 2.2, we give a brief background on (constrained) spherical
101  deconvolution methods to reconstruct the FOD. In Section 2.3 we outline the simulation
102  experiments and introduce the shape and scaling factor that characterize the response
103  function. Section 2.4 presents the parameter settings used in these simulations. In Section 2.5,
104  the in vivo data experiments are described.

105

106 2.1 Constrained Spherical Deconvolution
107

108 Recent studies showed that crossing fibers account for over 90% of white matter voxels
109 [4]. The DTI representation cannot resolve crossing fibers by design and thus provides non-
110  specific metrics in such voxels. Spherical deconvolution approaches [6—-8,18,19] overcome this
111  limitation and allow for estimating the FOD for more complex fiber configurations, while
112  retaining reasonable computation and acquisition time compared with other methods [20-23].
113 CSD assumes that the diffusion MRI signals can be expressed as the spherical
114  convolution of a fiber response function with the FODs in the spherical harmonics basis, thus
115 also assuming the validity of the response function in all voxels. The response function
116  represents the diffusion-weighted signal of a single fiber population. Spherical harmonics form
117 a complete basis on the sphere. However, to fully reconstruct a signal on the sphere, the
118  spherical harmonics should have infinite order, which is not possible in practice. In clinical
119  studies, signals with up to 60 gradient directions are generally acquired, limiting the order of
120 the spherical harmonics to 8, which we also adopted in this work.

121 The FODs are used to infer information on the orientation of the fiber pathways under
122 the assumption that the FOD peak orientations coincide with the underlying fiber directions.
123 Toreconstruct the FOD, truncation of the spherical harmonics is needed, causing the so-called
124  “ringing” effect on the FOD profiles, which introduces implausible negative values. In order to

125  suppress the ringing effect and the sensitivity to noise, the regularization of FOD was proposed
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126  [7,19,24] to improve the conditioning of the deconvolution problem, which is further referred to
127  as constrained SD (i.e., CSD). In addition to directional information, the magnitudes of the FOD
128 are used to compute additional metrics, such as AFD [9] and HMOA [10]. The accurate
129  estimation of FOD peak directions and magnitudes is therefore essential for subsequent
130  analysis.

131

132 2.2 Shape and scaling of response functions
133

134 The response function used in the CSD process can be either simulated or derived
135  directly from the data. Following the latter approach, which is more common, voxels that have
136  ahigh chance of containing single fiber populations are used to calibrate the response function.
137 A straightforward approach to numerically implement the concept of a single fiber population
138 is to threshold, for instance, the fractional anisotropy (FA), above a pre-defined value.
139  However, the choice of FA threshold is not trivial and can cause inaccuracies in the response
140  function estimation [12]. A data-driven method using a recursive calibration framework was
141  proposed to estimate the response function from the subject data in an unbiased way [12].
142  This method estimates which voxels contain single fiber populations by iteratively excluding
143 voxels which do not have a single dominant orientation and updating the estimated response
144  function.

145 The choice of the fiber response function has an impact on the peak directions and
146  magnitudes of the FODs [10,15,19]. Theoretically, changes in the response function are
147  directly reflected in the FOD estimation, but should affect only peak magnitudes while leaving
148  their orientations untouched [6,10]. However, in practice, due to the low SNR level in diffusion-
149  weighted MRI data, the ill-posedness of inverse problems, and the regularization process, the
150 effects of the choice of response function on the FODs become less obvious.

151 Parker et al. [15] investigated alterations of response function by changing its FA value.
152  Here, we acknowledge that changing the FA affects both the scale and the shape of the

153  response function. It is thus not straightforward to disentangle an FOD change into scale and
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154  shape effects. To this end, we decompose general changes in the response function into
155  specific changes in shape and scale [8] and analyze their individual effects on the FOD
156  characteristics (i.e., magnitude, the number of peaks, and peak orientations). The following
157  sections describe how we can achieve such changes in shape and scale of the response
158  functions in the simulated and in vivo diffusion MRI data experiments.

159

160 2.3 Simulation experiments
161

162  2.3.1 Modeling of single fiber populations and response functions
163

164 If the diffusivity D associated with the underlying fiber population is expressed by an
165 axially symmetric diffusion tensor, whose first eigenvector is in parallel with the z-axis in the

166  reference coordinate frame, then D(6,¢) can be written as (Anderson 2005)

B 0 0
080
00 2

sin Bcos @
sin Osin ¢

Do) = [sinBcos ¢ sinBsin¢@ cos O]
' cos 6

' (1)

167 where A and f are the axial and the radial diffusivity of the single fiber population, (6,¢) is the
168 polar angle set between the fiber orientation and the applied gradient. Given the axial
169  symmetry property of the diffusion tensor, Eq. (1) can be simplified as

D@y= 2 cos®0 + f sin’f = a cos?6 + B, (2)
170  where a = 1 - S is the absolute difference between the axial and radial diffusivity. For simplicity,
171 if we assume that the signal S(6,¢) from each fiber population is a function of D(6,¢), then the

172  diffusion-weighted signal S can then be rewritten as [3]
Sop = Soe 7O, (3)
173  where S is the non-diffusion-weighted signal and b is the b-value that represents the strength

174  of diffusion weighting. Combining Eq. (1) — Eq. (3), the diffusion-weighted signals can be

175  expressed as [18]

s(6) = SOe—b(acosze+ﬁ) — SOKe—bacoszﬁ’ (4)
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176  where K = e " Eq. (4) highlights the dependency of S on the shape factor a« and the scaling
177  factor K, following the definition in previous studies [8]. In this equation, the scaling factor K
178  depends only on the radial diffusivity of the fiber response, representing the isotropic diffusion
179  within the fiber population, whereas the shape factor @ depends on the difference between the
180  axial and radial diffusivities, representing the anisotropic diffusion within the fiber population.

181

182  2.3.2 Modifying the shape and scaling factor of the response functions
183

184 Since the response function R is intrinsically based on the shape and scaling of the
185 fiber population diffusivities, R can be written in the same form as the signal of a fiber population
186  imposed by the gradient at an elevation angle 6 with the fiber orientation, which is identical to
187 Eq. (4),i.e.,
R(8) = SyKe ™ bacos’®, (5)

188  According to Eq. (5), we can modify (i) the shape factor a of the response function, by varying
189  only the axial diffusivity with a fixed radial diffusivity, to keep K constant; and (ii) the scaling
190 factor K of the response function, by changing simultaneously the axial and radial diffusivity,
191  to not alter the shape factor . We can then study the effects of R on FOD characteristics, by
192  selectively introducing a discrepancy into the shape or the scale of a simulated single fiber
193  signal with respect to the response function.

194

195  2.3.3 Modeling of multi-fiber populations
196

197 We model the diffusion-weighted signal within a voxel as the sum of multiple
198 compartments measured from each fiber population. Each compartment is assumed to share
199 an identical response function, so the diffusion-weighted signals are depending only on the
200 orientations of the fiber populations in the voxel and on data noise. We further assume that

201  there is no exchange of water molecules between fiber populations, and that each single fiber

10
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202  population can be represented by a signal S;g) (where i denotes the i*" fiber population). The
203  signal Spy generated by a crossing fiber configuration can then be described by

Spw =21 _ fiSio)» (6)
204  where f; is the volume fraction of each fiber population, n is the total number of fiber
205  populations intercrossing the voxel, and i(9) is the angle between the applied gradient and the
206  i*" fiber population. In our work, we focus on configurations of two crossing fiber populations,
207  but the equations of generating the diffusion-weighted signals can also be extended to analyze

208 the FOD characteristics for more than two fiber populations.

209

210  2.3.4 Data analysis
211

212 Amongst the SD frameworks, the CSD approach is implemented in several software
213 packages, such as MRIrix [25], Dipy [26] and ExploreDTI [27]. In this work, the FODs were
214  estimated with CSD as implemented in ExploreDTI. The FOD peak orientations, which are
215  assumed to reflect the underlying fiber orientations [6], and the magnitudes of the FOD peaks,
216  were extracted using a Newton-Raphson gradient descent method [28]. All FOD peaks that
217  were smaller than an absolute threshold of 0.1 were regarded as contributions from noise and
218  thus discarded to reduce false positives [29]. All peaks were clustered to the nearest simulated
219  peak directions, by using an angular threshold of 45° to determine whether or not two peaks
220  were belonging to the same fiber population. In case of simulating multiple fiber populations,
221  only the estimated FOD peaks closest to the simulated fiber populations were considered. For
222 each simulation, the mean and standard deviation of the following FOD metrics were
223  evaluated:

224  a. the average difference between the estimated and simulated number of FOD peaks;

225 b. theangular deviations between the estimated FOD peak orientation and the simulated fiber
226 orientation;

227 c. the estimated separation angles in case of multiple fiber populations;

228 d. the FOD peak magnitudes in case of single fiber populations;

11
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229 e. the percentage difference of the estimated AFD with respect to the AFD with the reference
230 response function.

231 The AFD computation was performed as the integral of the FOD magnitudes assigned
232 to each peak, which in the literature is commonly referred to as “lobe”. The calculation of the
233  AFD is similar to what was used in a previous study [30], except that we use the gradients
234  generated by the electromagnetic model [31] to segment the FODs for each fiber population
235 instead of using gradients generated by an icosahedron model.

236

237 2.4 Parameter settings
238

239 We simulated different fiber configurations with a predefined b-value equal to 3000 s/
240 mm?, a set of 60 gradient directions [31], and S, = 1. Rician noise (1000 noise instances) was
241  added to the diffusion weighted signals to simulate SNR (with respect to Sy) levels of [50 40
242 30 20 15 10]. In the first simulation, a single-fiber configuration was generated with the main
243  diffusion direction along the z-axis, setting a = 1.2 x 10 3 mm?/s and K = 0.4 (i.e. 8 ~ (0.3 x
244  10~3mm?/s)). In the second simulation, a second fiber population was rotated around the y-
245  axis and combined with the single-fiber population generated in the first simulation to achieve
246  a separation angle w. Here we simulated crossing fiber populations with separation angles o
247 =90, 75, 607, 55, 50°, 45°, 40°].

248 For both simulations, two sets of response functions were tested to achieve (a) different
249  shape but the same scaling factors, by increasing a from 0.6 x 10~ 3mm?/s to 1.8 x 103
250 mm?/s with steps of 0.1 x 10~ 3 mm?/s, while keeping K constant (Fig. 1a); and (b) the same
251  shape but different scaling factors, by decreasing K from 0.7 to 0.3 with steps of 0.1, while
252  keeping a constant (Fig. 1b).

253

254  Fig. 1. The 2D projection of response functions obtained by changing (a) the shape

255  factor a and (b) the scaling factor K. The shape factors are defined from 0.6 x 10 =3 mm?/s

12
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256 t01.8 x 103 mm?/s in steps of 0.1 x 10~3 mm?/s. The scaling factors are varied from 0.7 to
257 0.3 in steps of 0.05.

258

259 2.5 Peak clustering and angular threshold
260

261 We clustered the peak directions to make sure that we are always comparing the
262  angular deviations between the simulated fiber orientation and the FOD peak orientation most
263  closely aligned to that orientation. Like in other studies [16,32,33] that compare axial and radial
264  diffusion characteristics, we also included an angular threshold (e.g., cos (6) > 0.7, which
265 means approximately 6 < 45°) to make sure the correct peaks were being extracted for further
266  evaluations.

267

268 2.6 In vivo data experiments
269

270 Diffusion-weighted MRI data of a single HCP subject was further used to illustrate the
271  effects of ill-defined response functions on voxel-wise FOD characteristics and brain
272 tractography. In summary, diffusion-weighted images were acquired along 90 diffusion

273 gradient directions with a b-value of 3000 s/mm?

in addition to 18 non-diffusion-weighted
274  images, and with an isotropic spatial resolution of 1.25 x 1.25 x 1.25 mm3. We performed CSD
275  based tractography in ExploreDTI with a step size of 1 mm, an FOD threshold of 0.1, an
276  angular threshold of 30°, and seeding points per 2mm x 2mm x 2mm across the whole brain.

277  All the tracts were constructed with deterministic fiber tracking to facilitate data interpretation.

278

279  2.6.1 Modeling the response function
280

281 The reference response function for the in vivo dataset was represented by the diffusion
282  tensor fit to the response function, as estimated with the recursive calibration approach [12].
283  Similar to the method described in Section 2.3.2, the diffusion tensor was used to model the

284  changes in the shape and the scaling factor of the response functions. The shape factor a of

13
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285  the response function was modified by +/- [0.1 - 0.3 x 10~ 3 mm?/s], while the scaling factor K
286  was modified by +/- [0.1 - 0.2].

287

288  2.6.2 Evaluation of in-vivo data
289

290 In analogy with the simulations, we computed the voxel-wise difference in number of
291 estimated FOD peaks, the angular deviations of the main orientation, and the percentage
292  difference in AFD of the dominant fiber orientation, for all the estimated FODs. The
293  comparisons of number of FOD peaks were computed for the whole brain, whereas the
294  comparisons of angular deviation and AFD were only computed for voxels with FA > 0.2.

295 Individual white matter fiber bundles were extracted by using the regions of interest
296 (ROIs) as suggested by Wakana [34]. The segmented fiber pathways include parts of the
297  splenium of corpus callosum (sCC), the genu of corpus callosum (gCC), the cingulum (Cg),
298 the uncinate fasciculus (UF), the corticospinal tract (CST), and the temporal part of the superior
299 longitudinal fasciculus (tSLF). The average FOD characteristics for each fiber bundle were
300 calculated. In addition, FOD characteristics of the response function were computed from (1)
301 the region with a single fiber population as identified during the recursive calibration step
302 (referred to as “SFP-mask”); and (2) the region with voxels for which FA > 0.2 (referred to as

303  “FA-mask”).

304 3. Results
305

306 3.1 FOD characteristics of single fiber populations
307

308 Fig. 2 shows the effect of changing the shape factor and the scaling factor of the
309 response function on the FOD characteristics in a single fiber population. At SNR < 20, the
310 average number of spurious peaks increases when the shape factor increases, but only slightly
311 increases when the scaling factor decreases (Fig. 2A). The angular deviation depends mainly

312  onthe SNR andis far less affected by changes in shape or scale factor of the response function

14
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313  (Fig. 2B). By contrast, changes in peak magnitude (Fig. 2C) and the AFD (Fig. 2D) as a function
314 of shape and scaling factor of the response function are more pronounced than due to
315 differences in SNR level alone. Notice that the effect of changing the scaling factor (up to
316  ~60%) is roughly three times larger compared to changing the shape factor (up to ~20%).

317

318  Fig. 2. Effect of simulating changes in the response function on FOD characteristics for
319 a single fiber configuration at different SNR levels. Shape factor « and the scaling factor
320 K of the response function (RF) are varied at different SNR levels to investigate (A) the
321 introduction of spurious peaks, i.e., the average difference between the estimated and
322  predefined number of FOD peaks; (B) the confidence interval (average * standard error) of the
323  angular deviation of the primary FOD peak; (C) the percentage difference between the
324  amplitudes of the estimated FOD peak and the ground-truth FOD peak; and (D) the percentage
325 difference between the estimated AFD of the primary fiber population and the ground-truth
326  AFD. The dashed vertical lines represent the ground-truth values.

327

328 3.2 Occurrence of spurious peaks
329

330 Fig. 3 shows the average difference between the number of estimated and simulated
331 FOD peaks in relation to the shape (left) and the scaling (right) factor of the response functions
332 for different SNR levels. Overall, performing spherical deconvolution with sharper response
333  functions (i.e., higher values of the shape factor) generally introduces more spurious peaks.
334  On the other hand, CSD fails to extract all the simulated peaks from the estimated FODs when
335 the response function shape factor has smaller values, in particular for separation angles
336  below 55°. With higher noise levels, more spurious peaks are introduced, especially for higher
337  values of the shape factor. Furthermore, adjusting the scaling factor has no significant effect
338 on the estimated number of spurious peaks. While there are hardly any spurious peaks
339 introduced at the lower noise levels (SNR = 30 and 50), additional incorrect peaks can be

340 observed at the higher noise level (SNR = 10).
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341

342 Fig. 3. The average difference between the number of estimated and simulated FOD
343  peaks as a function of shape (left) and scaling (right) factor of the response function
344  (RF) at three SNR levels (different SNR for each row). Brighter yellow areas show a higher
345  probability of introducing spurious peaks, whereas darker blue areas show a higher probability
346  of merging the two simulated peaks into one peak. The dashed vertical lines indicate that the
347  settings of the response function are identical to those used for generating the underlying

348  signals. Notice that different scaling of the colorbars were used for better contrast.

349

350 3.3 Angular deviation
351

352  3.3.1 The effect of the shape factor
353

354 Fig. 4 shows the results of investigating the effect of the response function’s shape
355  factor on the angular characteristics of FOD peaks at SNR = 50, 30 and 10 for crossing fiber
356  configurations with different separation angles. At lower noise levels (SNR = 30 and 50), lower
357 values of the shape factor generally cause an underestimation of the separation angles, except
358  when the two simulated fiber populations are orthogonal to each other (i.e., 90°) (Fig. 4A). At
359 the higher noise level (i.e., SNR = 10), the bias in the estimated separation angle due to
360 changes in the shape factor is swamped by the noise itself, especially for lower separation
361 angles. From the observed angular deviations in Fig. 4B (the first peak) and Fig. 4C (the
362 second peak) we can observe, in general, that for smaller simulated separation angles, the
363  adverse effects of changing the shape factor of the response function on the estimated FOD
364  angular characteristics are more pronounced.

365

366  Fig. 4. Results of exploring the impact of response functions with different shape factor
367 «a on the FOD peaks for crossing fiber configurations simulated with separation angles

368 ranging from 90° to 40°. Fig. 4A shows the estimated separation angles between the two

16


https://doi.org/10.1101/760546
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/760546; this version posted September 6, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

369 primary peaks. Dashed horizontal lines indicate the simulated separation angles. Fig. 4B and
370  Fig. 4C show the angular deviations between the estimated first (p1) and second (p2) FOD
371 peaks and their corresponding simulated fiber orientations. Solid line interruptions occurred
372 when one of the two peaks was not detected. The means of the estimated values are plotted
373  with the standard error as the shaded areas. Dashed vertical lines are defined as in Fig. 3.

374

375  3.3.2 The effect of the scaling factor
376

377 Fig. 5 shows the angular deviations between the orientation of the estimated FOD
378 peaks and the simulated fiber orientations as a function of the scaling factor. Overall, crossing
379 fibers with separation angles smaller than 45° show larger angular deviations than those with
380 more orthogonal separation angles. In Fig. 5A, the estimated separation angles do not change
381  significantly as a function of the scaling factor of the response function. Nevertheless, smaller
382  simulated separation angles result in a larger bias of the estimated separation angles. Fig. 5B
383  and Fig. 5C present the angular deviations of the first and second FOD peak, respectively. The
384  angular deviations are not significantly affected by the scaling factor, but do depend on the
385 magnitude of the separation angles of the two fiber populations.

386

387 Fig. 5. The effect of varying the scaling factor (K) of the response function on the FOD
388 peaks for crossing fiber configurations simulated with separation angles ranging from
389 90 to 40°. Fig. 5A shows the estimated separation angles between the two primary peaks.
390 Dashed horizontal lines indicate the simulated separation angles. Fig. 5B and Fig. 5C show
391 the angular deviations between the estimated first (p1) and second (p2) FOD peaks and the
392  corresponding simulated fiber orientations. Solid line interruptions occurred when one of the
393  two peaks was not detected. The means of the estimated values are plotted with the standard
394  error as the shaded areas. Dashed vertical lines are defined as in Fig. 3.

395
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396 3.4 AFD per fixel
397

398 Fig. 6 shows the percentage difference of the AFD of the first and second fiber
399  population in relation to the response function shape factor (A, B) and scaling factor (C, D). In
400 Fig. 6A, at SNR 50 and 30, the AFD started at a very high value when the shape factor is
401  smaller than 0.8, 1.0 and 1.4 x 10-* mm?/s for the simulated separation angles of 55°, 50° and
402 45, respectively. The AFD values converge to the AFD of the other separation angles as the
403  shape factor increases. As shown in the angular characteristics results (Fig. 4), when the
404  response function becomes sharper, the drop points of AFD for small separation angles
405 indicate the boundaries at which CSD is just able to separate the two fiber populations. In case
406  of the 40 separation angle, only one FOD peak is obtained. The large difference in AFD for
407  small separation angles (45°-55°) with decreased shape factors can be a confounding factor in
408 inter-subject comparisons of AFD studies, which will be discussed further in Section 4.3. At
409 SNR 10, the AFD differences are more related to noise than to the shape of the response
410 function for smaller separation angles (below 60°). As for the second peak (Fig. 6B), the AFD
411  can change from -30% to 20% when the shape factor was modified from -50% to 50%,
412  respectively.

413

414  Fig. 6. The percentage difference of the estimated AFD of the first peak (p1) and the
415 second peak (p2) in relation to the response function shape factor a (A, B) and scaling
416 factor K (C, D) at different SNR levels. The quick drop of the AFD difference while increasing
417  the shape factor indicates when CSD was able to separate the two fiber populations. Dashed
418  vertical lines are defined as in Fig. 3.

419 Fig. 6C and Fig. 6D show the percentage difference of the AFD of the first and second
420 fiber population in relation to the scaling factor of the response function. In line with the
421  simulation results for single fiber populations (Fig. 2D), AFD can change up to 80% due to the
422  scaling factor changes for the second peak. For simulated separation angles of approximately

423 45, AFD of the first fiber population can be over-estimated up to as much as 150%. For the
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424  other simulated separation angles, the AFD of the primary peak can vary from -40% to 70% at
425 SNR =50 and SNR = 30, irrespective of the simulated separation angles. Notice that the AFD
426  changes are not linearly related with changes in the scaling factor.

427

428 3.5 In vivo HCP data set
429

430 3.5.1 FOD characteristics of white matter
431

432 In this section, we present the effect of changing the shape and scaling factors of the
433  response function on FOD characteristics for an axial slice of the HCP data set. The difference
434  in number of FOD peaks per voxel is shown in Fig. 7. Differences are typically seen in areas
435  with partial volume effects and with mostly a peak number difference value of one. When the
436  difference in shape factor, denoted by Aa, increases by 0.1 x 10-3mm?s to 0.3 x 103
437 mm?/s, one can see the increase in occurrence of peak number deviations, such as, for
438 instance, in mid-sagittal regions of the corpus callosum. With the increase of difference in
439  scaling factor, denoted by AK, regions containing CSF showed higher peak number differences
440  than regions with white and gray matter.

441

442  Fig. 7. The difference between the number of FOD peaks estimated with the tensor-
443  based response function and the number of FOD peaks computed with the response
444  function modified according to certain changes in scaling (AK) and shape (Aa) factors.
445  The background is an axial view of the FA map. The peak number difference mostly occurs in
446  grey matter and CSF areas, and crossing fiber regions for white matter, as indicated by the
447  colormap. In regions with single fiber populations (e.g., middle parts of the corpus callosum)

448  spurious peaks are hardly present.

449
450 Fig. 8 shows the angular difference between the primary FOD peak, computed with the

451  tensor-fit to the recursive calibrated response function, and the FOD peak obtained with the
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452  modified shape and scale factors of the response function. In general, regions containing
453  crossing fibers are affected most when modifying the shape of response functions, with angular
454  deviations of the main FOD peak of up to 3°. Notice that the angular deviation is mostly affected
455 by changing the shape factor, rather than the scaling factor. In addition, while changing AK did
456  not affect the angular deviation, increasing the magnitude of Aa resulted in larger angular
457  deviations in the same locations.

458

459  Fig. 8. The angular deviations between the FOD peaks estimated with the tensor-fit of
460 the response function and the FOD peaks estimated with the response function
461 modified according to certain changes in scaling (AK) and shape (Aa) factors. The
462  background is an axial view of the FA map and, for clarity, the angular deviations are shown
463  only in regions where FA > 0.2. Most angular differences are in the range of 0-3°. Similar to the
464  results of spurious peaks shown in Fig. 7, angular deviations are larger in regions with crossing
465  fiber populations than regions with single fiber populations, such as the middle part of the
466  corpus callosum. Notice that the angular deviations are much higher with regard to shape

467  factor changes than scaling factor changes.

468

469 Fig. 9 shows the voxel-wise AFD difference for the dominant fiber direction between
470 the FOD estimated using the tensor-fit to the recursive calibrated response function and the
471  FOD obtained with the modified shape and scale factors of the response function for the HCP
472  data set. The AFD shows a very different pattern in relation to the shape factor changes
473  compared to scaling factor changes. The AFD differences are homogenous throughout the
474 brain when the scaling factor varies, while the outliers indicate the voxels where there are
475  potential geometrical differences in the estimated AFD from the reference, such as merging or
476  spurious peaks. The AFD differences are up to 98% when the scaling factor K decreased by
477  0.2. When changing the shape factor with -0.3 x 10 =3 mm?2/s to 0.3 x 10~ 3 mm?/s, the highest

478  differences (around 6 to 8%) were observed in areas with a single-fiber population, such as
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479  the corpus callosum. Notice that bigger changes of the shape factor a makes the AFD
480  difference more heterogeneous across the brain.

481

482  Fig. 9. The percentage difference of the apparent fiber density (AFD) between the FOD
483 peaks estimated with the tensor-fit of the response function and the FOD peaks
484  estimated with the response function modified according to certain changes in scaling
485 (AK) and shape (Aa) factors. The background is an axial view of the FA map and, for clarity,
486  the AFD percentage differences are shown only in regions where FA > 0.2. Notice that the
487  AFD difference stays homogenous with respect to the scaling factor changes, whereas it is

488  heterogeneous when the shape factor changes.

489

490  3.5.2 Effect on fiber tractography
491

492 Fig. 10 shows the effect of changing the scaling and shape factors of the response
493  function on the reconstruction of the pathways of the tSLF. The reference trajectories (shown
494  in yellow) are computed with the recursive calibration method. While not much differences can
495  be observed for the main part of the reconstructed tracts, changing the response function
496 mainly affected the trajectories where the tSLF enters the frontal and temporal lobes (see
497  enlarged regions in Fig. 10).

498

499  Fig. 10. The temporal part of the superior longitudinal fasciculus (tSLF) reconstructed
500 with the FODs estimated using the tensor-fit to the recursively calibrated response
501 function (yellow), and the tSLF from the same ROls reconstructed with FODs estimated
502 using the modified response functions. The other fiber bundles (shown in red, blue, cyan,
503 magenta, and green) indicate the effect of changing the scaling (AK) and shape (Aa) factors
504  of the response function on the trajectory of the tSLF. Notice the subtle differences in how the
505 fiber trajectories terminate in the temporal lobe (zoomed areas; the “+” and “-” indicate increase

506 and decrease in the scaling and shape factors, respectively).
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507

508 Fig. 11 shows the FOD characteristics for the FA-mask, the SFP-mask, and the
509 extracted fiber bundles (gCC, sCC, CST, UF, Cg and tSLF). From all the three FOD
510 characteristics (i.e., spurious peaks, angular deviations, and AFD percentage differences), we
511  can spot a similar trend for all the bundles and the masks with respect to the changes in the
512  shape and scaling factors of the response function. Overall, the UF has the highest average
513  number of spurious peaks. The lowest average angular deviations of the first FOD peak can
514  be seen for the SFP-mask. Furthermore, the alterations of the shape factor of the response
515  function can cause angular deviations up to 6°, while the alterations of the scaling factor hardly
516  cause any angular differences in the masks or the selected fiber bundles (see the enlarged
517  plot). Finally, the differences in AFD are relatively homogenous across the extracted fiber
518  bundles and masks with as a function of changing the shape or the scaling factors.

519

520 Fig. 11. The average number of spurious peaks, the average angular deviations, and the
521 average percentage differences in AFD of the first fiber population for the FA-mask, the
522  SFP-mask, and the selected fiber bundles (shown on the right) when a modified
523  response function was used in comparison to the original tensor-fit to the recursive
524  calibrated response function. The effect of the changes in the scaling (AK) and shape (A«)
525  factors of the response function on the selected fiber bundles are reflected in the different color
526  encoding. sCC = splenium of corpus callosum; gCC = genu of corpus callosum; Cg = cingulum;
527 UF = uncinate fasciculus; CST = corticospinal tract; tSLF = temporal part of superior

528 longitudinal fasciculus.

529 4. Discussion
530

531 In this work we investigated the effect of changing response function properties on the
532 FOD characteristics using numerical simulations and in vivo HCP data. In particular, we show

533  how miscalibration of the response function, as defined by adjusting the scaling and shape
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534  factors, can introduce a bias in the orientation and magnitude of fiber population peaks. Our
535 findings demonstrate that CSD is prone to produce spurious FOD peaks in the presence of
536 miscalibrated response functions, especially in data with insufficient SNR levels. The
537 occurrence of such spurious peaks can also introduce inaccurate fiber pathway
538  reconstructions with fiber tractography. Overall, in agreement with former studies, spurious
539 peaks are introduced due to overestimating the shape factor of the response function, while
540 underestimating the shape factor will result in lower angular resolution of the FOD lobes
541  [10,15]. Proper tuning of the response function is therefore necessary to achieve an optimal
542  balance between increasing the angular resolution and minimizing the number of spurious
543  peaks, especially for smaller separation angles (i.e., below 60°) and at low SNR levels. Further,
544  AFD estimation can be influenced by the choice of response function, which will be discussed
545  in section 4.3.

546

547 4.1 Effect of shape and scaling factors with simulations
548

549 At SNR levels of 30 and 50, the FOD characteristics are consistently affected by the
550 choice of the response functions, while at SNR of 10, noise is the dominating factor that affects
551  the FOD properties (Fig. 3). In addition, more spurious peaks are observed at SNR of 10. At
552  relatively high SNR levels, the shape factor of the response function has a greater impact on
553  the results than the scaling factor. In particular, using a sharper response function for
554  separation angles below 50° can potentially increase the angular resolution of CSD and can,
555  therefore, improve the estimation of the number of peaks (Fig. 3). The shape of the response
556  function was reported to vary with axonal injury and brain maturation, whereas the scaling
557  factor was observed to change as result of demyelination, axonal diameters and axonal density
558 changes [10,35]. This implies that in brain regions affected by disease, applying CSD with a
559 response function determined by healthy white matter data can result in unreliable estimates
560 of FOD characteristics.

561
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562 4.2 Effect of the separation angle between crossing fiber populations
563

564 The extent to which the FODs will be affected by the response function depends largely
565 on the separation angle between crossing fiber populations (Fig. 4). More orthogonally
566  crossing fiber orientations are less sensitive to response function changes, as originally
567 suggested in the spherical deconvolution paper [6]. In voxels containing crossing fiber
568 configurations with smaller separation angles (e.g., below 60°), the average angular deviations
569 and their variance increase rapidly with lower shape factors of the response function. By
570 contrast, a higher shape factor of the response function results in a smaller bias in the
571  computation of the FOD peak orientations than the underestimation of the shape factor (Fig. 4
572  and Fig. 5).

573

574 4.3 Effect of shape factor on AFD
575

576 For fiber populations with separation angles below 55°, CSD fails to estimate the correct
577  number of peaks when response functions with a lower shape factor are employed, leading to
578 artificially higher AFD values (Fig. 6). As FOD peaks merge together when the shape factor is
579  further decreased, the AFD becomes close to the integral of the total FOD amplitudes within
580 the voxel. This is shown in Fig. 6 for simulated separation angles between 45" to 55°. For these
581 relatively small separation angles, the large AFD difference is caused by the limited angular
582  resolution of CSD with the simulated settings. Previous studies [36] reports AFD as a more
583  sensitive diffusion marker in traumatic brain injury than the traditional metrics. However, one
584  should be aware that these changes in AFD in the presence of pathology could result from
585 global response function differences between subjects, rather than local diffusivities
586  alterations.

587

588 4.4 Effect of FOD angular deviations on fiber tracking
589
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590 If the angular deviations of the FOD peaks are similar in the neighborhood voxels along
591 the white matter pathways, accumulating effects on reconstructed fibers will be significant. By
592  contrast, the heterogonous angular deviations of the FOD peaks may only change the voxel-
593  wise characteristics like AFD and number of fiber population peaks, the fiber pathways remains
594 if the angular deviations of FOD was not big enough to end in different voxels in the trajectory.
595  Generally, fiber tractography results will not be severely affected in the main part of the fiber
596  bundles, but may show subtle differences at the edges (Fig. 10). In addition, the termination of
597 fiber pathways passing through crossing regions can be affected [12]. With the in vivo HCP
598 data, only minor changes in the tSLF trajectories are detected when using the modified
599 response functions with different shape factors. Nevertheless, an inaccurate response function
600  will influence the FODs and subsequently fiber tractography results.

601

602 4.5 Limitations and future directions
603

604 The reference value of the shape and scaling factor of the simulated diffusion-weighted
605  signals match with the values in the corpus callosum as reported before. However, recent
606  studies [37—40] indicated that the diffusivities of fiber bundles in the brain are not always the
607 same. There is not a full map of diffusivity characteristics of each white matter structure yet.
608  Although our simulation study included the same configurations of crossing fiber bundles in a
609  voxel, in reality, the diffusivities of these crossing fibers may not be identical.

610 In this study, we showed tractography results of an HCP subject using the tensor-fit to
611  the recursively calibrated response function and modified response functions. In group studies
612  between healthy subjects and patients with neural degradation diseases (e.g., Alzheimer's
613  disease), it would be useful to compare the alterations of response functions. If there is a
614  group-wise alteration of the shape and the scaling factor of the response functions, we should
615  first exclude the deviations of the diffusivities of the diseased group from the healthy subjects,

616  to ensure that FOD characteristics and fiber tractography changes are not the effects of the
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response function alteration itself. Furthermore, we can separate the effects of disease on

white matter fiber tracking from the effects of response functions used in the FOD estimation.

5. Conclusion

This study demonstrates with numerical simulations and in vivo HCP data that
decreasing the shape factor of the response function can cause large angular deviations of the
FOD peak orientations in crossing fibers. Sharper response functions are responsible for
introducing spurious peaks, which can also confound subsequent tractography results.
Extremely low shape factors of the response function can cause significant angular deviations
and may complicate the interpretation in studies involving pathology. In addition, although
individual angular deviations of FOD peak orientations are small for single voxels at most
separation angles, the adverse effect can accumulate for brain tractography. Since smaller
separation angles are more sensitive to changes of response function shape factors, future
work of inter-subject AFD and pathological groups should be aware of this possible

confounding factor when investigating brain structures with crossing fiber configurations.
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