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Abstract. In this work, we developed multiple 2D and 3D segmentation models 

with multiresolution input to segment brain tumor components, and then 

ensembled them to obtain robust segmentation maps. This reduced overfitting  

and resulted in a more generalized model. Multiparametric MR images of 335 

subjects from BRATS 2019 challenge were used for training the models. Further, 

we tested a classical machine learning algorithm (xgboost) with features 

extracted from the segmentation maps to classify subject survival range. 

Preliminary results on the BRATS 2019 validation dataset demonstrasted this 

method can achieve excellent performance with DICE scores of 0.898, 0.784, 

0.779 for whole tumor, tumor core and enhancing tumor respectively and 

accuracy 34.5 % for survuval prediction.  
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1 Introduction: 
 

Brain Tumors account for 85% to 90% of all primary CNS tumors. The most com-

mon type of primary brain tumors are gliomas which can be further classified into High 

Grade Gliomas (HGG) and low grade Gliomas (LGG) based on their aggressive-

ness.  Magnetic Resonance Imaging (MRI) is a widely used technique in diagnosis and 

clinical treatment of gliomas. Despite being a standard imaging modality for delineat-

ing tumors and treatment planning, using MRI for segmenting brain tumors remains a 

challenging task due to the high variation of brain tumor shape, size, location, and par-

ticularly due to the subtle intensity changes of tumor regions relative to the surrounding 

normal tissue. Consequently, manual tumor contouring is both time-consuming, and 

subject to large inter- and intra-observer variability. Semi- or fully-automated brain tu-

mor segmentation methods could circumvent this variability for better patient manage-

ment (Zhuge, Krauze et al. 2017). As a result, developing automated, semi-automated 

and interactive segmentation methods for brain tumor has huge clinical implications, 

however, this remains highly challenging. Efficient deep learning algorithms to seg-

ment brain tumors into their subcomponents help in early clinical diagnosis, treatment 

and follow-up of individual patients (Saouli, Akil et al. 2018).  
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The multimodal Brain Tumor segmentation Benchmark (BRATS) dataset provided 

a general platform by outsourcing a unique brain tumor dataset with known ground 

truth segmentations, done manually by experts (Menze, Jakab et al. 2014). Several ad-

vanced deep learning algorithms were developed on this unique platform provided by 

BRATS and benchmarked against common datasets allowing general comparisons be-

tween them. CNN-based methods have shown advantages with respect to learning the 

hierarchy of complex features and have performed best in the recent BRATS chal-

lenges. U-net(Ronneberger, Fischer et al. 2015) based network architectures have 

beenused for segmenting complex brain tumor structures. Pereira et al. developed a 2D 

CNN method with two CNN architectures for High Grade and Low Grade Gliomas 

separately and combined the outputs in the post processing steps (Pereira, Pinto et al. 

2016). Havaei et al. developed a multiresolution cascaded CNN architecture with two 

pathways, each of which takes different 2D patch sizes with four MR sequences as 

channels (Havaei, Davy et al. 2017). The BRATS 2018 top performer developed a 3D 

decoder encoder style CNN architecture with inter-level skip connections to segment 

the tumor (Myronenko 2018). In addition to the decoder part, a Variation Autoencoder 

(VAE) was included to add reconstruction loss to the model.  

 

In this study we propose to ensemble output from Multiresolution and Multidimen-

sional models to obtain robust tumor segmentations. We utilized off the shelf model 

architectures (DensNET-169, SERESNEXT-101 and SENet-154) to perform 

segmentation using 2D inputs. We also implemented a two and three dimensional 

Residual Inception Densenet (RID) network to perform tumor segmentation with patch 

based inputs (64x64 and 64x64x64).  The outputs from the model trained on different 

resolutions and dimensions were combined to eliminate false positives and post-pro-

cessed using cluster analysis to obtain the final outputs.  

 

2 Materials and Methods: 
2.1 Data and Preprocessing 

The Brats 2019 dataset set included a total of 335 multi-institutional subjects(Menze, 

Jakab et al. 2014, Bakas, Akbari et al. 2017, Bakas, Akbari et al. 2017, Bakas, Akbari 

et al. 2017, Bakas, Akbari et al. 2017). It included 259 HGG subjects and 76 LGG 

subject. The standard preprocessing steps by the BRATS organizers on all MR images 

included co-registration to an anatomical template(Rohlfing, Zahr et al. 2010), 

resampling to isotropic resolution (1 mm3) and skull-stripping(Bakas, Reyes et al. 

2018). Additional preprocessing steps included N4 bias field correction(Tustison, Cook 

et al. 2014) for removing the RF inhomogeneity and normalizing the multi parametric 

MR images to zero mean and unit variance. 

 

The purpose of the survival prediction task is to predict the overall survival of the 

patient based on the multiparametric pre-operative MR imaging features in combination 

with the segmented tumor masks. Survival prediction based on only imaging based 

features (with age and resection status) is a difficult task based (. Additional information 

such as histopathological imaging, genomic information, radiotracer based imaging and 

other non imaging feature can be used to improve over all survival prediction. Pooya 
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et.. al. (Mobadersany, Yousefi et al. 2018) reported better accuracy by combining 

genomic information and histopatholical images together to form a genomic survival 

convolutional neural network architecture (GSCNN model). Several studies have 

reported predicting overall survival for cerebral gliomas using 11C-acetate, and 18F-

FDG in PET/CT scans (Tsuchida, Takeuchi et al. 2008, Yamamoto, Nishiyama et al. 

2008, Kim, Kim et al. 2018).  

Figure 1: A. Ensemble of Segmentation models (DenseNET-169, SERESNEXT-101 and SE-

Net-154). B. Ensemble methodology used to combine the outputs from Segmentation Models to 

produce output segmentation maps 

 

2.2 Network Architecture 

We trained several models to segment tumor components. All network architectures 

used for the segmentation task, except Residual Inception dense Network, were 

imported using Segmentation models, a python package(Yakubovskiy 2019). The 

models selected for the purpose of brain tumor segmentation had different backbones 

(DenseNet-169(Huang, Liu et al. 2017), SERESNEXT-101(Chen, Fan et al. 2018) and 

SENet-154(Hu, Shen et al. 2018) ). The DenseNet architecture has shown some 

promising results in medical data classification and segmentation tasks (Islam and 

Zhang 2017, Chen, Wu et al. 2018, Dolz, Gopinath et al. 2018). The DenseNet model 

has advantages in feature propagation from one dense block to the next and overcomes 

the problem of the vanishing gradient (Huang, Liu et al. 2017). The squeeze and 

excitation block was designed to improve the feature propagation by enhancing the 

interdependencies between features for the classification task. This helps in propagating 

more useful features to the next block and suppressing less informative features. This 

network architecture was the top performer at the ILSVC 2017 classification challenge. 

SENet-154 and SE-ResNeXt-101 haves more parametersandis computationally 

expensive but has shown good results on the ImageNet classification tasks(Hu, Shen et 

al. 2018). Three of the proposed models were ensembled to obtain the final results. All 

of these models from the Segmentation Models package were trained with a 2D Axial 

Slice size of 240x240 (Fig.1). 
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The Residual Inception Dense Network (RID) was first proposed and developed by 

Khened et al for cardiac segmentation. We incorporated our own implementation of the 

RID network in Keras with a Tensorflow backend (Figure.2). In the Densenet architec-

ture, the GPU memory footprint increases with the number of feature maps of larger 

spatial resolution. The skip connections from the down-sampling path to the up-sam-

pling path use element-wise addition in this model instead of the concatenation opera-

tion in Densenet, to mitigate feature map explosion in the up-sampling path. For the 

skip connections, a projection operation was done using BN-1 × 1-convolution-dropout 

to match the dimensions for element-wise addition (Figure.3). These additions to the 

Densenet architecture help in reducing the parameters and the GPU memory footprint 

without affecting the quality of segmentation output. In addition to performing dimen-

sion reduction, the projection operation helps in learning interactions of cross channel 

information (Lin, Chen et al. 2013) and faster convergence. Further, the initial layer of 

the RID networks includes parallel CNN branches similar to the inception module with 

multiple kernels of varying receptive fields, which help in capturing view-point de-

pendent object variability and learning relations between image structures at multiple-

scales. 

 

2.2.1 Model Training and Ensemble Methodology.  

All of the models from the Segmentation models package were trained with full res-

olution axial slices of size 240x240 as input to segment the tumor subcomponents sep-

arately. The outputs for each components from the models were combined followed by 

post processing. The post processing step includes removing clusters of smaller size to 

reduce false positives. Each tumor components were then combined to form the seg-

mentation map (Figure 1.B). 

 

The RID model was trained on 2D input patches of size 64x64. For each component 

of the brain tumor (e.g., hole Tumor (WT), Tumor Core (TC) and Enhancing Tumor 

(ET)), we trained a separate RID model with axial as well as sagittal slices as input. In 

addition to the six RID models, we also trained a RID with axial slices as input with 

patch size of 64x64 to segment TC and Edema simultaneously (TC-ED). A three di-

mensional RID network model was also trained to segment ET and a multiclass TC-ED 

(TC-ED-3D). All the models were trained with dice loss, and Adam optimizers with 

learning rate of 0.001 using NVIDA Tesla P40 GPU’s.  

 

2.2.2 Ensemble Methodology.  

 

The DenseNET-169, SERESNEXT-101 and SENet-154 model outputs were first 

combined to form segmentation maps as shown in Figure1.B, which we will refer to as 

the Segmentation model output. Then, for each component we combined output from 

the RID models and Segmentation models output as shown in Figure.3.  
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Fig. 2. Residual Inception Densnet Architecture 

 

 
Fig. 3. Building Blocks of Residual Inception Network. From left to right, dense block, con-

volution block, transition block and projection block 
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2.2.3 Survival Prediction.  

The tumor segmentation maps extracted from the above methodology was used to 

extract texture and wavelet based features using the PyRadiomics (Van Griethuysen, 

Fedorov et al. 2017) and Pywavelets (Lee, Gommers et al. 2019) packages from each 

tumor subcomponent for each contrast. In addition, we added volume and surface area 

features of each tumor component(Feng, Tustison et al. 2018) and age.  We performed 

feature selection based on SelectKBest features using the sklearn package(Pedregosa, 

Varoquaux et al. 2011, Buitinck, Louppe et al. 2013) which resulted in a reduced set of 

25 features. We trained an XGBoost (XGB) model (Chen and Guestrin 2016) to classify 

the subjects into low (less than 300 days), medium (between 300 to 450 days) and long 

survivors (greater than 450 days). After predicting the class (survival range) of the sub-

ject, survival days are assigned to the subject, 150 days for the low survivor, 375 days 

for the mid survivor and 500 days for the high survivor category.29 subjects from the 

validation dataset were used to validate the trained model. 

 

3 Results 
3.1 Segmentation 

The Ensemble of multiresolution 2D networks achieved 89.79%, 78.43% and 

77.97% dice for WT, TC and ET respectively in validation dataset of 125 subjects. 

 

3.2 Survival Prediction 

Accuracy and the mean square error for the overall survival prediction for the 29 

subjects using XGB was 34.5 and 122759.3 days respectively. 

Table 1. Survival evaluation results from the xgboost (XGB) network architecture. 

 

Task Network architecture Accuracy Mean square error 

Validation  XGB 34.5 122759.3 
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Fig. 4. Ensemble of multidimensional and multiresolution networks. Top to bottom, ensem-

ble for Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET) respectively. 

4 Discussion 
We ensemble several models with multiresolution inputs to segment brain tumors. 

The RID network was parameter and memory efficient, and was able to converge in (as 

few as three epochs. This allowed us to train several models for ensemble in a short 

amount of time. The proposed methodology of combining multidimensional models 

improved performance and achieved excellent segmentation results as shown in Ta-

ble.1. For survival prediction, we extracted numerous features based on texture, first 

order statistics and wavelets. Efficient model based feature selection allowed us to re-

duce the otherwise large feature set to 25 features per subject. We trained several clas-

sical machine learning models and then combined them to improve results on the vali-

dation dataset.  

 
Table 1. Segmentation Results from Multiresolution 2D models and multidimension and 

multiresolution models 
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5 Conclusion 
We demonstrate two dimensional multiresolution ensemble networks for brain tu-

mor segmentation to generate robust segmentation of tumor subcomponents. We pre-

dicted the overall survival based on the segmented mask using an xgboost model. 
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