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Abstract. In this work, we developed multiple 2D and 3D segmentation models
with multiresolution input to segment brain tumor components, and then
ensembled them to obtain robust segmentation maps. This reduced overfitting
and resulted in a more generalized model. Multiparametric MR images of 335
subjects from BRATS 2019 challenge were used for training the models. Further,
we tested a classical machine learning algorithm (xgboost) with features
extracted from the segmentation maps to classify subject survival range.
Preliminary results on the BRATS 2019 validation dataset demonstrasted this
method can achieve excellent performance with DICE scores of 0.898, 0.784,
0.779 for whole tumor, tumor core and enhancing tumor respectively and
accuracy 34.5 % for survuval prediction.
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1 Introduction:

Brain Tumors account for 85% to 90% of all primary CNS tumors. The most com-
mon type of primary brain tumors are gliomas which can be further classified into High
Grade Gliomas (HGG) and low grade Gliomas (LGG) based on their aggressive-
ness. Magnetic Resonance Imaging (MRI) is a widely used technique in diagnosis and
clinical treatment of gliomas. Despite being a standard imaging modality for delineat-
ing tumors and treatment planning, using MRI for segmenting brain tumors remains a
challenging task due to the high variation of brain tumor shape, size, location, and par-
ticularly due to the subtle intensity changes of tumor regions relative to the surrounding
normal tissue. Consequently, manual tumor contouring is both time-consuming, and
subject to large inter- and intra-observer variability. Semi- or fully-automated brain tu-
mor segmentation methods could circumvent this variability for better patient manage-
ment (Zhuge, Krauze et al. 2017). As a result, developing automated, semi-automated
and interactive segmentation methods for brain tumor has huge clinical implications,
however, this remains highly challenging. Efficient deep learning algorithms to seg-
ment brain tumors into their subcomponents help in early clinical diagnosis, treatment
and follow-up of individual patients (Saouli, Akil et al. 2018).
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The multimodal Brain Tumor segmentation Benchmark (BRATS) dataset provided
a general platform by outsourcing a unique brain tumor dataset with known ground
truth segmentations, done manually by experts (Menze, Jakab et al. 2014). Several ad-
vanced deep learning algorithms were developed on this unique platform provided by
BRATS and benchmarked against common datasets allowing general comparisons be-
tween them. CNN-based methods have shown advantages with respect to learning the
hierarchy of complex features and have performed best in the recent BRATS chal-
lenges. U-net(Ronneberger, Fischer et al. 2015) based network architectures have
beenused for segmenting complex brain tumor structures. Pereira et al. developed a 2D
CNN method with two CNN architectures for High Grade and Low Grade Gliomas
separately and combined the outputs in the post processing steps (Pereira, Pinto et al.
2016). Havaei et al. developed a multiresolution cascaded CNN architecture with two
pathways, each of which takes different 2D patch sizes with four MR sequences as
channels (Havaei, Davy et al. 2017). The BRATS 2018 top performer developed a 3D
decoder encoder style CNN architecture with inter-level skip connections to segment
the tumor (Myronenko 2018). In addition to the decoder part, a Variation Autoencoder
(VAE) was included to add reconstruction loss to the model.

In this study we propose to ensemble output from Multiresolution and Multidimen-
sional models to obtain robust tumor segmentations. We utilized off the shelf model
architectures (DensNET-169, SERESNEXT-101 and SENet-154) to perform
segmentation using 2D inputs. We also implemented a two and three dimensional
Residual Inception Densenet (RID) network to perform tumor segmentation with patch
based inputs (64x64 and 64x64x64). The outputs from the model trained on different
resolutions and dimensions were combined to eliminate false positives and post-pro-
cessed using cluster analysis to obtain the final outputs.

2 Materials and Methods:
2.1  Data and Preprocessing

The Brats 2019 dataset set included a total of 335 multi-institutional subjects(Menze,
Jakab et al. 2014, Bakas, Akbari et al. 2017, Bakas, Akbari et al. 2017, Bakas, Akbari
et al. 2017, Bakas, Akbari et al. 2017). It included 259 HGG subjects and 76 LGG
subject. The standard preprocessing steps by the BRATS organizers on all MR images
included co-registration to an anatomical template(Rohlfing, Zahr et al. 2010),
resampling to isotropic resolution (1 mma3) and skull-stripping(Bakas, Reyes et al.
2018). Additional preprocessing steps included N4 bias field correction(Tustison, Cook
et al. 2014) for removing the RF inhomogeneity and normalizing the multi parametric
MR images to zero mean and unit variance.

The purpose of the survival prediction task is to predict the overall survival of the
patient based on the multiparametric pre-operative MR imaging features in combination
with the segmented tumor masks. Survival prediction based on only imaging based
features (with age and resection status) is a difficult task based (. Additional information
such as histopathological imaging, genomic information, radiotracer based imaging and
other non imaging feature can be used to improve over all survival prediction. Pooya


https://doi.org/10.1101/760124
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/760124; this version posted September 10, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

et.. al. (Mobadersany, Yousefi et al. 2018) reported better accuracy by combining
genomic information and histopatholical images together to form a genomic survival
convolutional neural network architecture (GSCNN model). Several studies have
reported predicting overall survival for cerebral gliomas using ''C-acetate, and 8F-
FDG in PET/CT scans (Tsuchida, Takeuchi et al. 2008, Yamamoto, Nishiyama et al.
2008, Kim, Kim et al. 2018).
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Figure 1: A. Ensemble of Segmentation models (DenseNET-169, SERESNEXT-101 and SE-
Net-154). B. Ensemble methodology used to combine the outputs from Segmentation Models to
produce output segmentation maps

2.2 Network Architecture

We trained several models to segment tumor components. All network architectures
used for the segmentation task, except Residual Inception dense Network, were
imported using Segmentation models, a python package(Yakubovskiy 2019). The
models selected for the purpose of brain tumor segmentation had different backbones
(DenseNet-169(Huang, Liu et al. 2017), SERESNEXT-101(Chen, Fan et al. 2018) and
SENet-154(Hu, Shen et al. 2018) ). The DenseNet architecture has shown some
promising results in medical data classification and segmentation tasks (Islam and
Zhang 2017, Chen, Wu et al. 2018, Dolz, Gopinath et al. 2018). The DenseNet model
has advantages in feature propagation from one dense block to the next and overcomes
the problem of the vanishing gradient (Huang, Liu et al. 2017). The squeeze and
excitation block was designed to improve the feature propagation by enhancing the
interdependencies between features for the classification task. This helps in propagating
more useful features to the next block and suppressing less informative features. This
network architecture was the top performer at the ILSVC 2017 classification challenge.
SENet-154 and SE-ResNeXt-101 haves more parametersandis computationally
expensive but has shown good results on the ImageNet classification tasks(Hu, Shen et
al. 2018). Three of the proposed models were ensembled to obtain the final results. All
of these models from the Segmentation Models package were trained with a 2D Axial
Slice size of 240x240 (Fig.1).
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The Residual Inception Dense Network (RID) was first proposed and developed by
Khened et al for cardiac segmentation. We incorporated our own implementation of the
RID network in Keras with a Tensorflow backend (Figure.2). In the Densenet architec-
ture, the GPU memory footprint increases with the number of feature maps of larger
spatial resolution. The skip connections from the down-sampling path to the up-sam-
pling path use element-wise addition in this model instead of the concatenation opera-
tion in Densenet, to mitigate feature map explosion in the up-sampling path. For the
skip connections, a projection operation was done using BN-1 x 1-convolution-dropout
to match the dimensions for element-wise addition (Figure.3). These additions to the
Densenet architecture help in reducing the parameters and the GPU memory footprint
without affecting the quality of segmentation output. In addition to performing dimen-
sion reduction, the projection operation helps in learning interactions of cross channel
information (Lin, Chen et al. 2013) and faster convergence. Further, the initial layer of
the RID networks includes parallel CNN branches similar to the inception module with
multiple kernels of varying receptive fields, which help in capturing view-point de-
pendent object variability and learning relations between image structures at multiple-
scales.

221 Model Training and Ensemble Methodology.

All of the models from the Segmentation models package were trained with full res-
olution axial slices of size 240x240 as input to segment the tumor subcomponents sep-
arately. The outputs for each components from the models were combined followed by
post processing. The post processing step includes removing clusters of smaller size to
reduce false positives. Each tumor components were then combined to form the seg-
mentation map (Figure 1.B).

The RID model was trained on 2D input patches of size 64x64. For each component
of the brain tumor (e.g., hole Tumor (WT), Tumor Core (TC) and Enhancing Tumor
(ET)), we trained a separate RID model with axial as well as sagittal slices as input. In
addition to the six RID models, we also trained a RID with axial slices as input with
patch size of 64x64 to segment TC and Edema simultaneously (TC-ED). A three di-
mensional RID network model was also trained to segment ET and a multiclass TC-ED
(TC-ED-3D). All the models were trained with dice loss, and Adam optimizers with
learning rate of 0.001 using NVIDA Tesla P40 GPU’s.

2.2.2 Ensemble Methodology.

The DenseNET-169, SERESNEXT-101 and SENet-154 model outputs were first
combined to form segmentation maps as shown in Figurel.B, which we will refer to as
the Segmentation model output. Then, for each component we combined output from
the RID models and Segmentation models output as shown in Figure.3.


https://doi.org/10.1101/760124
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/760124; this version posted September 10, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 4
Inception Block Output
(sigmoid)
Conv Conv Conv 'y
3x3 5x5 X7

i
]
1.
e
g
g
Projection !
: 1
e
=
g
=3
______ Projection :g
!
1
g
=
2.
18
. - (-2
Projection =
________________________________________ 1
TTTTTTTTTS
e
=3
)
S
Projection }E'
e e e . [P
Transition Down Transition UP
:
1 > :
]
! Projection !

¢ Concatenation Element-wise Addition

Fig. 2. Residual Inception Densnet Architecture
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223 Survival Prediction.

The tumor segmentation maps extracted from the above methodology was used to
extract texture and wavelet based features using the PyRadiomics (Van Griethuysen,
Fedorov et al. 2017) and Pywavelets (Lee, Gommers et al. 2019) packages from each
tumor subcomponent for each contrast. In addition, we added volume and surface area
features of each tumor component(Feng, Tustison et al. 2018) and age. We performed
feature selection based on SelectKBest features using the sklearn package(Pedregosa,
Varoquaux et al. 2011, Buitinck, Louppe et al. 2013) which resulted in a reduced set of
25 features. We trained an XGBoost (XGB) model (Chen and Guestrin 2016) to classify
the subjects into low (less than 300 days), medium (between 300 to 450 days) and long
survivors (greater than 450 days). After predicting the class (survival range) of the sub-
ject, survival days are assigned to the subject, 150 days for the low survivor, 375 days
for the mid survivor and 500 days for the high survivor category.29 subjects from the
validation dataset were used to validate the trained model.

3 Results
3.1  Segmentation

The Ensemble of multiresolution 2D networks achieved 89.79%, 78.43% and
77.97% dice for WT, TC and ET respectively in validation dataset of 125 subjects.

3.2  Survival Prediction

Accuracy and the mean square error for the overall survival prediction for the 29
subjects using XGB was 34.5 and 122759.3 days respectively.

Table 1. Survival evaluation results from the xgboost (XGB) network architecture.

Task Network architecture Accuracy Mean square error
Validation XGB 34.5 122759.3
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Fig. 4. Ensemble of multidimensional and multiresolution networks. Top to bottom, ensem-
ble for Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET) respectively.
4 Discussion
We ensemble several models with multiresolution inputs to segment brain tumors.
The RID network was parameter and memory efficient, and was able to converge in (as
few as three epochs. This allowed us to train several models for ensemble in a short
amount of time. The proposed methodology of combining multidimensional models
improved performance and achieved excellent segmentation results as shown in Ta-
ble.1. For survival prediction, we extracted numerous features based on texture, first
order statistics and wavelets. Efficient model based feature selection allowed us to re-
duce the otherwise large feature set to 25 features per subject. We trained several clas-

sical machine learning models and then combined them to improve results on the vali-
dation dataset.

Table 1. Segmentation Results from Multiresolution 2D models and multidimension and
multiresolution models

oses ————————— wr i leor |
Multiresolution 2D Models 0.892 0.776 0.783

Multidimensional and 0.898 0.78 0.784
Multiresolution Models
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5 Conclusion

We demonstrate two dimensional multiresolution ensemble networks for brain tu-
mor segmentation to generate robust segmentation of tumor subcomponents. We pre-
dicted the overall survival based on the segmented mask using an xgboost model.
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