

1 **Original Article**

2 **Platelet proteolytic machinery assessment in**
3 **Alzheimer's Diseases**

4 **Roy G. Muriu¹, Jessica M. Sage¹, Abdulbaki Agbas¹**

5 ¹*Department of Basic Sciences, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106 , USA*
6

7 **Correspondence to:** Prof. Dr. Abdulbaki Agbas, Department of Basic Sciences, Kansas City University of Medicine
8 and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106 , USA, aagbas@kcumc.edu; ORCID: 0000-
9 0003-3854-7784

10 **Abstract**

11 **Aim:** Platelets provide substantial information about the proteolytic system profile in neurodegenerative
12 diseases. Assessment of autophagy and proteasome target proteins in platelets may reflect tissue proteolytic
13 machinery profile in central nervous system in Alzheimer's diseases (AD). We aimed to demonstrate the
14 optimum assay conditions and identify target proteins in platelet proteolytic machinery.

15 **Methods:** Platelet samples were obtained from clinically verified AD patients and age-matched non-
16 demented control subjects that were recruited by University of Kansas Alzheimer's disease Center.
17 Autophagosome participating proteins in platelets were identified by Western blotting analysis. Standard
18 gel electrophoresis and electro transfer apparatus were used for protein transfer onto the membrane.
19 Several antibodies were tested to identify the best working antibodies, and their concentrations were
20 optimized. An ELISA kit was used for platelet proteasome protein determination. Infrared imaging
21 technology was used for visualizing the proteins on the membrane.

22 **Results:** Autophagosome participating proteins showed elevated levels in AD patient platelet cytosol. Only
23 LC3-I autophagosome protein levels were significantly elevated. The concentrations of platelet lysate
24 proteasome were assessed. AD patient's proteasome levels were elevated but they were statistically not
25 important as compared to controls.

26 **Conclusions:** Platelets can be used for assessing whether proteolytic system is functional. Blood-based
27 sampling from human donors is less-invasive and analyzing platelet proteolytic system profile may help
28 to develop pharmaceutical intervention approaches for neurodegenerative diseases in general.

29

30 **Keywords:** Autophagy, Proteasome, platelets, Alzheimer's disease, protein aggregation, TDP-43,
31 neurodegeneration

32 **INTRODUCTION**

33 The purpose of this study is to demonstrate that human blood-derived platelets may provide critical
34 information about malfunctioned proteolytic machinery leading to diseased protein aggregation in the
35 neurodegenerative disease. Alzheimer's disease (AD) is mainly characterized by protein aggregations and
36 deposition that are toxic and lethal to cellular structures in the central nervous system^[1]. The proteolytic
37 system that includes autophagy and proteasome pathways, degrade and allow recyclization of targeted
38 molecules and organelles in all eukaryotic cells (Fig.1). The reason certain proteins are allowed to
39 aggregate is the inhibition of proteolysis and down regulation of effector proteins that stimulate the

40 pathogenesis of the degradation [2]. A dysfunctional proteolytic system, including autophagy and
41 proteasome, is implicated in the pathogenesis of AD. Autophagy is a lysosomal degradative process by
42 which cellular residents are inducted into homeostasis through quality control by clearance of pathogenic
43 proteins, recycling of macromolecules, and response to energy requirements [3]. In neurodegeneration, this
44 system has been proven dysfunctional and therefore associated with lack of proper protein disposal

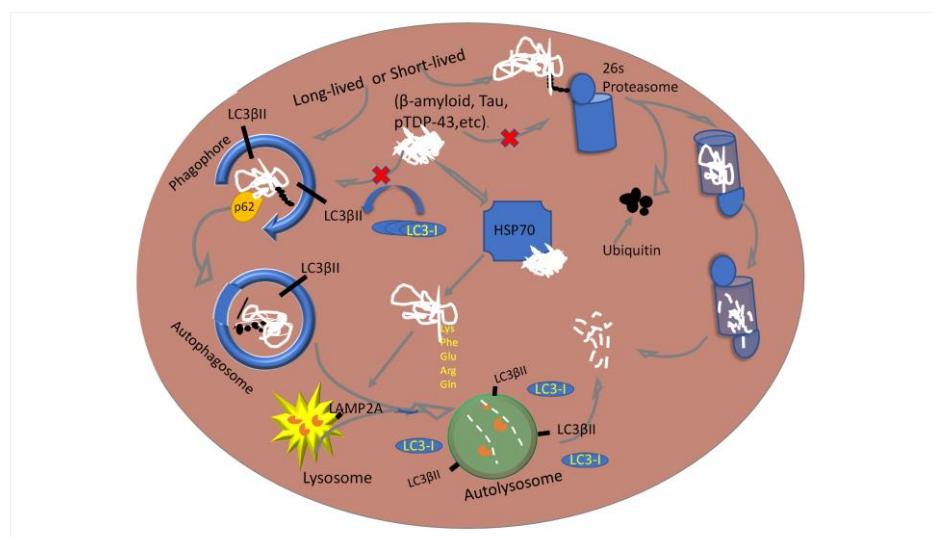


Figure-1 Schematic diagram of the proteolytic system in autophagic and proteasomal pathways.

62 and thereby aggregation [4]. A two-stage autophagy impairment (i.e., induction and lysosomal acidification)
63 leads to pathogenesis of AD [2]. During the induction process, autophagy requires the release and presence
64 of beclin-1 protein from endoplasmic reticulum and formation of a multimeric complex [2]. This is the site
65 of autophagy initiation through vesicle nucleation then formation of isolation membrane [5]. Beclin-1 is a
66 crucial regulator of autophagy. Its expression in the hippocampus is decreased at the RNA and protein level
67 in AD with advanced age. This protein is necessary for nucleation of a phagophore membrane before the
68 autophagosome vesicle is fully formed [6]. This concept produced comparative results against control
69 subjects that demonstrated an increase in protein aggregation [7].

70 Proteasomes are molecular machines that degrade aberrant proteins through polyubiquitination process
71 followed by recognition by regulatory particle, deubiquitylation by deubiquitinase (DUB), and finally
72 degradation of proteins into fragments [8]. In AD, the components that are linked to this pathology are
73 abnormal formation of ubiquitin and activity inhibition [9, 10]. For example, paired helical filaments of tau
74 (PHF-tau) bind to proteasomes and thereby reduce its activity [9], resulting less polyubiquitination. Without
75 this step, a protein without proper ubiquitination cannot be recognized by the regulatory particle of the
76 proteasomes [11]. Therefore, the autophagy and proteasome activities are a critical component and can be
77 measured in platelets. Although the functions of autophagy within platelets are largely unclear but thus far,
78 it is known that, its impairment leads to a lack of platelet aggregation and adhesion [12].

79 We have demonstrated that a TAR-DNA/RNA binding protein (TDP-43) and its phosphorylated
80 derivative (pTDP-43) levels were elevated in platelets obtained from AD patients as part of the blood-
81 based biomarker development studies [13]. In this pilot study, we assessed the profile of target proteins for
82 proteolytic machinery in platelet lysates obtained from AD patients and non-demented control subjects.

83 **METHODS**

84 1. *Human Platelets* : AD patients and age-matched non-demented control subject human platelets were
85 obtained from the biorepository of University of Kansas Alzheimer's Disease Center under the
86 approved IRB protocol (KUADC#11132). 5-6 days old platelets were obtained from a local
87 community blood center (CBC) for initial studies before analyzing AD patients and control human
88 platelet samples.

89 2. *Materials*:

90 2.1. *Antibodies*:

91 2.1.1. MBL antibodies (MBL International, 15A Constitution way, Woburn, MA 01801, USA):
92 Anti-LC3(pAb, PM036Y), Anti-LC3 (8E10, mAb, M186-3Y), Anti-LC3 (4E12, mAb,
93 M152-3Y), Anti-Beclin-1 (pAb, PD017Y), Anti-Atg16L (pAb, PM040Y), Anti-p62
94 (SQSTM1, pAb, PM045Y), Anti-Atg5 (pAb, PM050Y), Positive control for anti-LC3
95 (PM036-PNY).

96 2.1.2. Cell signaling antibodies (Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923,
97 USA): Anti-Beclin-1 (pAb, 3738S), LC3A (mAb, 4599S), LC3B (pAb, 2775S).

98 2.1.3. Abcam antibody (Abcam, Inc., 1 Kendall Square Suite, B2304, Cambridge, MA 02139-
99 1517, USA): p62 (SQSTM1, AB56416).

100 2.1.4. Sigma antibody (anti-p62/SQSTM1 antibody ; P0067)

101 2.1.5. Secondary antibodies (LI-COR Inc., 4308 Progressive Ave., Lincoln, Nebraska 68504,
102 USA): Goat anti-Mouse (green wavelength) antibody (Li-Cor, C40213-01), Goat anti-
103 Rabbit (green wavelength) antibody (Li-Cor, C30829-02)

104 2.2. *SDS/PAGE and Western Blotting reagents*

105 Butanol, 1.5M Tris-HCl (pH 8.8), 1.0M Tris-HCl (pH 6.8), 10% Sodium Dodecyl Sulfate (SDS),
106 N,N,N',N'-Tetra-methyl ethylenediamine (TEMED, Bio-Rad, 161-0801), 10% ammonium
107 persulfate (APS) (Bio-Rad # 161-0700), 30% acrylamide and bis-acrylamide solution 29:1 (Bio-
108 Rad, 1610156), urea (VWR, BDH4214-500G). Pre-Cast 4-20% gradient gel (Bio-Rad #456-
109 1096 PVDF membrane (Millipore, Immobilon-FL Transfer Membranes IPFL00010) Membrane
110 blocking agent, SeaBlock (ThermoFisher, # 37527); Total protein staining solution (REVERT
111 Total Protein Stain kit, LI-COR Inc., # 926-11010; Pyronin Y (Sigma-Aldrich # P9172)

112 2.3. Protein concentration determination : PierceTM bicinchoninic acid (BCA) protein assay kit
113 (Thermo Scientific) (UB276872),

114 2.4. ELISA commercial kit: For quantifying proteasome (Enzo 20S/26S Proteosome ELISA Kit,
115 Catalog # BML-PW0575-0001)

116 2.5. *Software*: Image Studio Lite (Ver.4.0) for image analyses. This software is part of Odyssey
117 (LI-COR) image analyzer. Online-based free statistics calculator was used for statistical
118 analysis (

119 (<https://www.danielsoper.com/statcalc/calculator.aspx?id=47>)

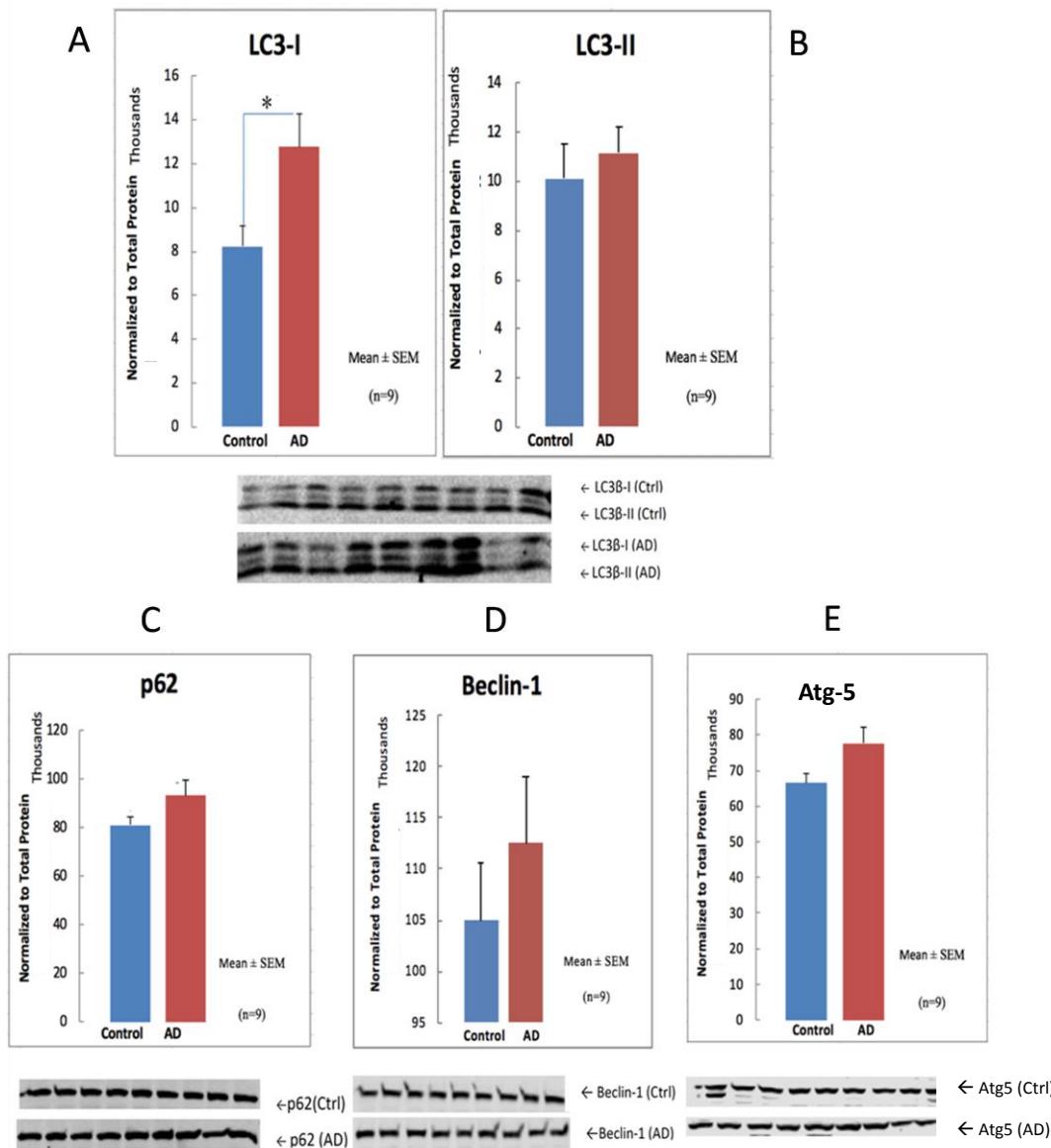
120 2.6. *Experimental apparatus*:

121 2.6.1. Sonic dismembrator (Fisher Scientific, Model: XL2000-350)

122 2.6.2. Table top centrifuge (Eppendorf, Model: 5418)

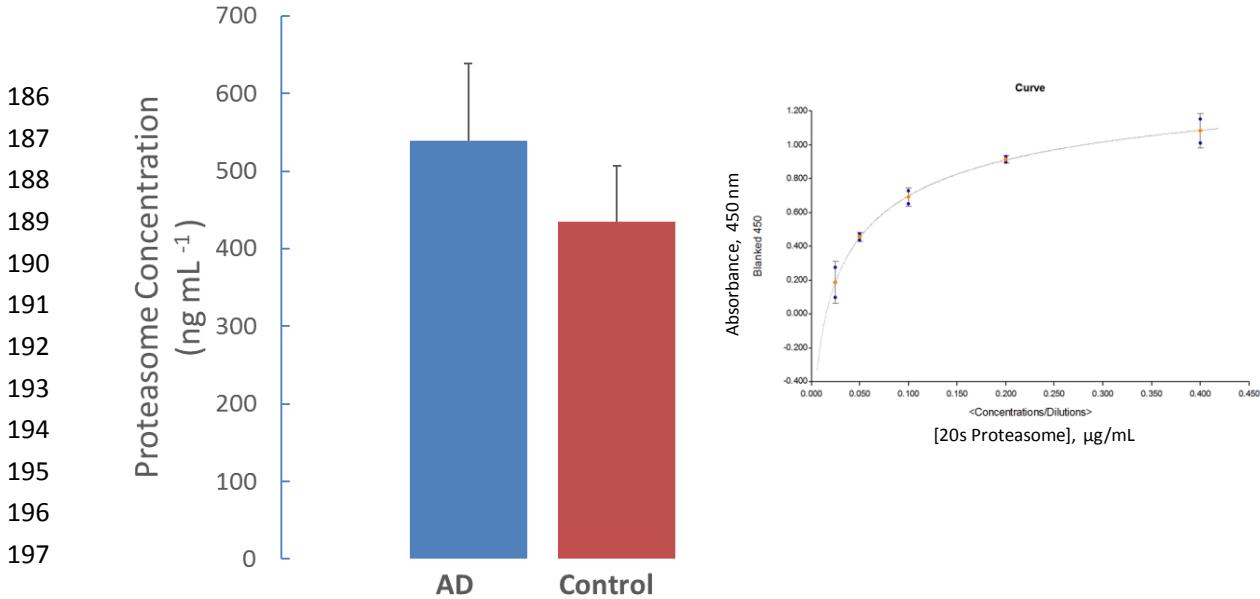
123 2.6.3. Odyssey Infrared Imager (Model : 9120, LI-COR Inc., 4308 Progressive Ave. Lincoln,
124 Nebraska 68504)

125 2.6.4. Mini Protean III Electrophoresis system (Bio-Rad 165-3301
126 2.6.5. Electro transfer system (Mini Trans-Blot Electrophoretic Transfer Cell Bio-Rad 170-3930
127 2.6.6. Multi-well plate reader (Bio-Tek Cytation 5 or Bio-Tek Synergy HT)
128 3. Procedures:
129 3.1. *SDS/PAGE and Western Blotting*: The cytosolic proteins of platelet lysates from AD patients
130 and control subjects were separated on a homemade 4-12% gradient gel with 1.5mm width 20
131 well, MINI Protean II casted gel, using sodium dodecyl sulfate polyacrylamide gel
132 electrophoresis (SDS-PAGE). The apparatus was filled with 1 X electrophoresis buffer. With
133 the gel inside the buffer-containing cell, each lane was loaded with pyronin Y lane marker and
134 30 µg total protein (1 mg/mL) Electrophoresis was performed at 75 volts for an average of 100
135 min. until front dye (Pyronin Y) was at the bottom of the gel. The gel was removed from the
136 sandwiched plates and processed for protein transferring to a methanol-activated
137 polyvinylidene difluoride (PVDF) membrane. Electro-transfer process was carried out at 75
138 volts for 30 minutes. Transfer buffer did not include methanol. The low-temperature of transfer
139 unit was maintained by either inserting an ice-block or placing the transfer unit in an ice-filled
140 container. The PVDF membrane was then stained for total protein visualization by total protein
141 staining kit (REVERT, Total Protein Stain Kit LI-COR Inc., 926-11010). Transferred proteins
142 were imaged by Odyssey (LI-COR) imaging system at the 700 nm set channel. The staining
143 step was optionally removed by incubating with REVERT reversal solution for a maximum of
144 10 minutes as per protocol provided by the manufacturer. Finally, the membrane rinsed twice
145 with nanopure water. The membrane was blocked in 2 mL of 1:1 SeaBlock /TBS buffer for 1
146 hour at room temperature (RT) on an orbital shaker. The membrane is directly transferred to a
147 container with 10 mL of 1:1 SeaBlock/TBST and primary antibody dilution in 1:500 or 1:1000
148 while incubating on an orbital shaker for overnight at 4°C. Next day, the membrane was
149 washed with 1X TBST for 20-minutes then incubated horseradish peroxidase conjugated
150 secondary antibody, goat anti-mouse (LC3) and goat anti-rabbit (P62, Beclin-1, and Atg5-12)
151 at 1:10,000 dilution for 1 hour at RT on an orbital shaker. Additional 20-minutes wash with 1x
152 TBST was performed to remove unbound antibodies prior to imaging was completed. The
153 membrane was scanned by Odyssey (LI-COR) imager and analyzed by densitometric
154 quantification using Image Studio Lite (Ver.4.0).
155 3.2. *26s/20s Proteasome analysis by ELISA method*: Initial proteasome assay conditions were
156 optimized in platelets obtained from Kansas City Community Blood Center (KCCBC).
157 Three sample fractions (i.e., whole platelet lysate, clear supernatant, and membranous
158 pellet) were analyzed by proteasome ELISA kit to identify which of the fraction better
159 represents the proteasome protein profile. 40 µg protein samples/ well were used in ELISA.
160 Assay procedure was performed according to the manufacturer provided protocol.
161 Absorbance was read at 450 nm wavelength using a multi-well plate reader (Bio-Tek,
162 Synergy HT). Standard curve was established and slope of the curve was used to determine
163 the concentration of unknown sample proteasome 26s/20s.
164 4. *Statistical analyses*: The quantitative analysis for Western blots were performed using Image Studio
165 Lite software program (V 4.0.) The quantitative value of autophagy protein markers represent arbitrary


166 units (a.u.) based on the intensity of the bands. Statistical analysis were performed by a two-tailed
167 unpaired student t-test and Mann-Whitney U test. This was coupled with calculating the value of
168 Cohen's d and the effect-size correlation, R, using the means and standard deviations of two groups
169 (AD and control). Error bars on all data represents standard error of the mean (\pm S.E.M)

170 **RESULTS**

171 We have tested a battery of antibodies for probing autophagy protein purchased from several vendors and
172 compared to each other for selecting the best working antibodies. Individual platelet lysate samples from
173 AD and control group (n=9) were analyzed by Western blotting technique using selected antibodies. The
174 results from three replicates averaged and independently tested as an interval type of data. We only found
175 an increase of LC3-I ($p \leq 0.02$) in AD when compared to Control (Fig.2). The select autophagosome target
176 proteins appeared to be elevated; however, there was no statistical difference between AD patients and
177 control group, except LC3-I


178

179

Figure-2. Autophagy target protein profiles in human AD and in non-demented (control) platelet cytosols. The LC3-I, LC3-II, and Atg 5 proteins were probed using antibodies from MBL vendor. The Beclin-1 was detected using Cell-Signaling antibody, and the p62 protein was detected using Sigma-Aldrich antibody. Each samples were analyzed three times and Mean \pm SEM was presented. The protein band intensities were normalized to total protein staining. Student t-test was employed and only LC3B-1 showed the significance (p \leq 0.02).

182 The proteasome concentrations of platelet lysates from AD and age-matched control subjects (n=12) were
183 assessed by ELISA method. Although AD patient platelet lysate proteasome levels were elevated, no
184 statistical difference between patient and control group was obtained (Fig.3)

Figure-3 Proteasome concentration measurements in whole platelet lysate. The bar graph represents the proteasome concentration in whole platelet lysate obtained from AD and control subjects (Mean±SEM; n=12). Although an increased proteasome protein profile observed in AD samples, no statistical importance was obtained. The inset figure shows a typical standard curve for quantifying proteasome 20s concentrations.

198 DISCUSSION

199 $\text{A}\beta_{1-42}$ is widely understood to accumulate in the early stages of the AD pathology. This malfunctioning
200 protein recruits and triggers microglial, astrocyte facilitated clearance, but soon $\text{A}\beta_{1-42}$ depositions
201 overwhelm the response leading to microglia-mediated neuroinflammation [14-16]. $\text{A}\beta_{1-42}$ also stimulates the
202 catalysis by NADPH oxidase. This enzyme activity increases reactive oxygen species production. The
203 presence of these harmful chemicals activates Atg4, which cleaves and lipidates LC3-I with
204 phosphoethanolamine (PE), as part of the induction of the autophagic pathway. Since AD is a multi-faceted
205 disease, somehow the proteolytic system is suppressed due to downregulation [2, 6], allowing for the
206 characteristic extracellular amyloid plaques and neurofibrillary tangles to develop.

207 Some reports also recently discovered that platelets contain a proteolytic system by which hemostasis and
208 thrombosis is acquired [17, 18]. Since we have shown that an elevation of pathological pTDP43 within the
209 platelet cytosol is correlated to hippocampal cortex of AD patients [13], it was imperative that we analyze
210 these platelet proteolytic systems. We attempted to establish any change of the protein concentrations of
211 proteolytic system, since platelet proteasome concentrations have not been reported prior to our studies.
212 We were unable to assess matching brain tissue proteasome profile from the subjects due to impracticality
213 of obtaining brain biopsy tissue from alive patient and control cohort. In a follow-up study, we consider to
214 include post-mortem brain tissues and matching platelet samples from the same individuals. This approach
215 will provide better connection between brain and platelet proteasome profile. Nevertheless, it was initially
216 believed, hypothesized, based on aforementioned reports, the proteolytic system is somehow altered, and
217 that we would expect to observe some degree of variations in proteasome concentrations.

218 We employed certain autophagy marker antibodies (i.e. Beclin-1, Atg5, p62, and LC3) to assess the
219 autophagy target proteins in platelets. This was in reference to previous autophagy activity measurements
220 by Gupta et. al, [17]. The antibodies from multiple manufacturers have different affinities for a given sample.
221 A series of antibody dilutions and platelet sample concentrations were optimized in order to match the best
222 antibody /protein combination to be used in the assays. Those results suggested 30 µg whole platelet lysate

223 proteins paired with a primary antibody dilution of 1:1000 was ideal for future analysis.

224 We evaluated only LC3A and LC3B antibodies in Western blotting. We found that anti-LC3B antibody did
225 not detect a target protein in human platelet lysate samples. Other researchers have stated that out of the
226 three possible isoforms (LC3A, LC3B, and LC3C), LC3A and LC3B autophagosome components exhibit
227 distinct expression patterns in different human tissues [19]. After the final measurement of three replicates,
228 the only notable results found were the proteins levels of LC3-I (a cleaved form of LC3). LC3-II (lipidated
229 LC3-I) is a conjugated protein marker for platelet autophagy system [20]. Since there was no change in
230 levels of LC3-II, the difference in LC3-I between the groups ($p \leq 0.021$) could be a result of autophagic
231 pathway being blocked in its initial steps in AD [21]. The overarching implication we believe is that in AD,
232 probably to alleviate aggregate stress, platelet allocated autophagy may be functionally upregulated and
233 induced but inhibited in early or late steps of the pathway [20]. Our results seem to be inconclusive at this
234 stage based on exclusively LC3 immunoblotting results. The immunoreactivity of LC3-I and LC3-II are
235 different. LC3-II tends to be more sensitive to antibodies [21]. A stimulated autophagic pathway is
236 represented by reduction of autophagy marker LC3II. So, when we analyzed that there was no change in
237 LC3-II, its more indicative of no detection of flux than the changes of LC3-I. Therefore, an autophagy
238 activity analysis assessment should be performed in freshly isolated intact platelets in a serious of follow-
239 up study.

240 We assessed the proteasome concentration in platelet lysates. Poteasome 20S protein levels were measured
241 by enzyme-linked immunosorbent assay (ELISA) techniques in cell lysates, supernatants, and pellets in
242 KCCBC obtained healthy samples in initial phase of these studies. We relied on supernatant isolations of
243 platelet lysates to measure AD profiled proteasome concentrations. We found no statistical difference ($p=$
244 0.373) between AD patients and age-matched control subjects in these platelet samples based on a two-
245 tailed, student t-test and Mann-Whitney U test.

246 For effectively assessing the relationship of platelet proteolytic machinery protein levels in AD rather than
247 the use of only “p” values, we incorporated effect sizes in our data analysis [22, 23]. In addition to selecting
248 a student t-test (interval, parametric), we also employed the Mann-Whitney (ordinal, non-parametric) level
249 of measurement. This was justified by the expression of a large variation in protein concentrations between
250 individual samples within each group. This means our sample did not meet the parametric assumption of
251 equal variances. This adjustment ascribed the data into ranked categories before comparing the median
252 values between the groups.

253 Despite the statistical insignificance between the two group’s means of Atg5, p62, Beclin-1, a measure of
254 strength of an effect points may be more meaningful. A moderate to large standard deviations ($d = 0.41 -$
255 1.0) and correlations ($R = 0.36 - 0.44$) between AD and control were detected, denoting a probability that
256 there is a difference in autophagic pathway protein levels. Our sample size was not large enough to produce
257 statistical significance. On the other hand, the insignificance found between AD and control regarding
258 LC3-II protein bands was coincided with a small magnitude of effect between groups. ($d = 0.27$, $R = 0.13$,
259 $p = 0.58$) (Fig.1B) In proteasome concentration profile assay, we have observed a statistically
260 insignificance with a small group effects ($p=0.373$, $d = 0.34$, $R = 0.17$).

261 In this study, there are some caveats and setbacks, rendering our results with a low difference. First, our
262 continuous and averaged data comparison was statistically insignificant for all except one based on our
263 sample cohort ($n=9$ for autophagosome and $n=12$ proteasome analyses). As mentioned before, human
264 biological samples do have a substantial variation in concentration and effect between each sample and
265 group measurements. Especially with a small effect size for the main autophagy monitor, LC3-II,
266 increasing the n value to ~ 220 per group ($n=220$) should produce a significant t-test at a probability level
267 of 0.05 for all samples [24]. Secondly, as it has been reported that LC3-I is unstable and sensitive to freezing-
268 thawing cycles or SDS buffered cocktail [25]. Future samples should be freshly assessed and not exposed
269 to a repeated freeze-thaw cycle. Thirdly, immunoblotting has its limitation of determining autophagic

270 fluctuations. As we understand that LC3-II is the go-to marker, an increase in concentration could be due
271 to correlate with autophagosome accumulation but autophagic flux is not guaranteed [26]. In more relevance
272 to AD neuropathology, beclin-1 is downregulated in this disease; however, LC3-II can still form without a
273 phagophore on ectopic membrane fragments [21, 25]. Beclin-1, an adaptor protein via its partner proteins,
274 can either stimulate or suppress the onset of autophagy [27]. In this study, we observed that beclin-1 levels
275 were elevated in AD patient's platelet. We are unable to offer an explanation on beclin-1 behavior, because
276 we don't know the autophagy activity profile at this stage.

277 It is known that a neurodegenerative condition such as AD effects the periphery by increase in thrombin
278 and von Willebrand factor (vWF) protein. Thrombin and vWF are platelet activators [18]. In AD, the
279 patients are known to express an increased amount of vWF, which is partially used to convert quiescent
280 platelets into activated platelets [28]. Hence, activated platelets of these patients produce and release more
281 A β into circulation compared to the controls [29]. A β usually interacts with fibrin thereby promoting
282 coagulation and fibrin aggregation. Therefore, an increase of A β could mean an increase in platelet
283 aggregation that implies an alternate flux in hemostasis. We did not analyze A β peptide levels in platelet
284 lysates of AD patients and age-matched control subjects in this study; however, we plan to include the
285 platelet lysate A β ₁₋₄₂ measurements in a follow-up study.

286 Since our results are supposed to be a testament of basal autophagy in quiescent platelets, AD derived
287 samples might have already been activated when obtained from the patients. Activated platelets have
288 increased autophagic pathway activity [18]. Therefore, the significant measurements might be due to that
289 previous condition. One of the way to normalize this variable would be to activate the control platelets
290 before any protein concentration measurements. An alternative approach would be to inhibit the platelet
291 activation factor by including an inhibitor (PGI₂) during the platelet isolation from whole blood. Platelet
292 proteolytic system analysis has allowed us to differentiate probable proteostasis between AD and control
293 in cross-sectional fashion. One of the possibilities that can be discerned from our study is that there may
294 be elevated induction of autophagy, beyond basal amount.

295 In light of this information, platelet autophagic profile may be similar to neurons of this disease profile.
296 This study was meant to extrapolate the extent to which AD can influence the state of these systems during
297 an elevated presence of disease-related proteins. Autophagy flux and proteasome assessment in intact
298 platelet are necessary for obtaining more evidences that are conclusive. A similar cross-sectional study
299 with a few adjustments should be considered before testing other neurodegenerative disease group in a
300 similar fashion.

301 DECLARATIONS

302 Authors' contributions

303 Muriu, RG made substantial contributions to conception and design of the study and performed data
304 analysis and interpretation
305 Sage, JM performed data acquisition, as well as provided administrative, technical, and material support
306 Agbas, A conceptualized the study, analyzed the data, and wrote the manuscript

307 Availability of data and materials

308 Not applicable

309 Financial support and sponsorship

310 Research reported in this publication was supported by several pilot project funds from QS85523J,
311 University of Kansas Medical Center Research Institute, Inc.(QS85523J), FONTIERS-Trail Blazer Award
312 (01-2429-001) and KCU intramural grants. The authors have no other relevant affiliations or financial
313 involvement with any organization or entity with a financial interest in or financial conflict with the subject

314 matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was
315 utilized in the production of this manuscript.

316 **Conflicts of interest**

317 All authors declared that there are no conflicts of interest

318 **Ethical approval and consent to participate**

319 The authors state that they have obtained appropriate institutional review board approval (KUADC#11132)
320 or have followed the principles outlined in the Declaration of Helsinki for all human or animal
321 experimental investigations. In addition, for investigations involving human subjects, informed consent
322 has been obtained from the participants involved.

323 **Consent for publication**

324 Not applicable

325 **Copyright**

326 © The Author(s) 2019

327

328 **REFERENCES**

329

- 330 1. Tuite, M.F. and R. Melki, *Protein misfolding and aggregation in ageing and disease: molecular processes and therapeutic perspectives*. Prion, 2007. **1**(2): p. 116-20.
- 331 2. Ghavami, S., et al., *Autophagy and apoptosis dysfunction in neurodegenerative disorders*. Prog Neurobiol, 2014. **112**: p. 24-49.
- 332 3. Klionsky, D.J., *Autophagy: from phenomenology to molecular understanding in less than a decade*. Nat Rev Mol Cell Biol, 2007. **8**(11): p. 931-7.
- 333 4. Meijer, A.J. and P. Codogno, *Autophagy: regulation and role in disease*. Crit Rev Clin Lab Sci, 2009. **46**(4): p. 210-40.
- 334 5. Virgin, H.W. and B. Levine, *Autophagy genes in immunity*. Nat Immunol, 2009. **10**(5): p. 461-70.
- 335 6. Pickford, F., et al., *The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice*. J Clin Invest, 2008. **118**(6): p. 2190-9.
- 336 7. He, C., et al., *Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis*. Nature, 2012. **481**(7382): p. 511-5.
- 337 8. Gadhav, K., et al., *The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease*. J Cell Mol Med, 2016. **20**(7): p. 1392-407.
- 338 9. Keck, S., et al., *Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease*. J Neurochem, 2003. **85**(1): p. 115-22.
- 339 10. van Leeuwen, F.W., et al., *Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients*. Science, 1998. **279**(5348): p. 242-7.
- 340 11. Chen, X. and D. Petranovic, *Role of frameshift ubiquitin B protein in Alzheimer's disease*. Wiley Interdiscip Rev Syst Biol Med, 2016. **8**(4): p. 300-13.
- 341 12. Feng, W., et al., *Dissection of autophagy in human platelets*. Autophagy, 2014. **10**(4): p. 642-51.

355 13. Wilhite, R., et al., *Platelet phosphorylated TDP-43: an exploratory study for a peripheral*
356 *surrogate biomarker development for Alzheimer's disease*. Future Sci OA, 2017. **3**(4): p.
357 FSO238.

358 14. Kinney, J.W., et al., *Inflammation as a central mechanism in Alzheimer's disease*.
359 Alzheimers Dement (N Y), 2018. **4**: p. 575-590.

360 15. Hickman, S.E., E.K. Allison, and J. El Khoury, *Microglial dysfunction and defective beta-*
361 *amyloid clearance pathways in aging Alzheimer's disease mice*. J Neurosci, 2008. **28**(33):
362 p. 8354-60.

363 16. Rothhammer, V. and F.J. Quintana, *Control of autoimmune CNS inflammation by*
364 *astrocytes*. Semin Immunopathol, 2015. **37**(6): p. 625-38.

365 17. Gupta, N., et al., *Proteasome proteolysis supports stimulated platelet function and*
366 *thrombosis*. Arterioscler Thromb Vasc Biol, 2014. **34**(1): p. 160-8.

367 18. Ouseph, M.M., et al., *Autophagy is induced upon platelet activation and is essential for*
368 *hemostasis and thrombosis*. Blood, 2015. **126**(10): p. 1224-33.

369 19. He, H., et al., *Post-translational modifications of three members of the human MAP1LC3*
370 *family and detection of a novel type of modification for MAP1LC3B*. J Biol Chem, 2003.
371 **278**(31): p. 29278-87.

372 20. Zhang, X.J., et al., *Why should autophagic flux be assessed?* Acta Pharmacol Sin, 2013.
373 **34**(5): p. 595-9.

374 21. Mizushima, N. and T. Yoshimori, *How to interpret LC3 immunoblotting*. Autophagy,
375 2007. **3**(6): p. 542-5.

376 22. Lakens, D., *Calculating and reporting effect sizes to facilitate cumulative science: a*
377 *practical primer for t-tests and ANOVAs*. Front Psychol, 2013. **4**: p. 863.

378 23. Nakagawa, S. and I.C. Cuthill, *Effect size, confidence interval and statistical significance:*
379 *a practical guide for biologists*. Biol Rev Camb Philos Soc, 2007. **82**(4): p. 591-605.

380 24. Sullivan, G.M. and R. Feinn, *Using Effect Size-or Why the P Value Is Not Enough*. J Grad
381 Med Educ, 2012. **4**(3): p. 279-82.

382 25. Klionsky, D.J., et al., *Guidelines for the use and interpretation of assays for monitoring*
383 *autophagy in higher eukaryotes*. Autophagy, 2008. **4**(2): p. 151-75.

384 26. Gimenez-Xavier, P., et al., *LC3-I conversion to LC3-II does not necessarily result in*
385 *complete autophagy*. Int J Mol Med, 2008. **22**(6): p. 781-5.

386 27. Guan, Z.F., et al., *Beclin-1-mediated autophagy may be involved in the elderly cognitive*
387 *and affective disorders in streptozotocin-induced diabetic mice*. Transl Neurodegener,
388 2016. **5**: p. 22.

389 28. Peyvandi, F., I. Garagiola, and L. Baronciani, *Role of von Willebrand factor in the*
390 *haemostasis*. Blood Transfus, 2011. **9 Suppl 2**: p. s3-8.

391 29. Tang, K., et al., *Platelet amyloid precursor protein processing: a bio-marker for*
392 *Alzheimer's disease*. J Neurol Sci, 2006. **240**(1-2): p. 53-8.