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Abstract5

Population density affects fitness through various processes, such as mate finding and

competition. The fitness of individuals in a population can in turn affect its density,

making population density a key quantity linking ecological and evolutionary processes.

Density effects are, however, rarely homogeneous. Different life-history processes can be

affected by density over different spatial scales. In birds, for example, competition for

food may depend on the number of birds nesting in the direct vicinity, while competition

for nesting sites may occur over larger areas. Here we investigate how the effects of

local density and of density in nearby patches can jointly affect the emergence of spatial

variation in abundance as well as phenotypic diversification. We study a two-patch model

that is described by coupled ordinary differential equations. The patches have no intrinsic

differences: they both have the same fitness function that describes how an individual’s

fitness depends on density in its own patch as well as the density in the other patch.

We use a phase-space analysis, combined with a mathematical stability analysis to study

the long-term behaviour of the system. Our results reveal that the mutual effect that

the patches have on each other can lead to the emergence and long-term maintenance

of a low and a high density patch. We then add traits and mutations to the model and

show that different selection pressures in the high and low density patch can lead to

diversification between these patches. Via eco-evolutionary feedbacks, this diversification

can in turn lead to changes in the long-term population densities: under some parameter

settings, both patches reach the same equilibrium density when mutations are absent,

but different equilibrium densities when mutations are allowed. We thus show how, even

in the absence of differences between patches, interactions between them can lead to
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differences in long-term population density, and potentially to trait diversification.

Keywords: eco-evolutionary dynamics, population density, diversity, Allee effect,6

density-dependent selection7

1. Introduction8

Population density affects many aspects of an individual’s life, such as resource competi-9

tion (Nicholson, 1957), parasite prevalence (Patterson and Ruckstuhl, 2013) and various10

aspects of the mating system, such as mate finding or competition for mating partners11

(Gascoigne et al., 2009; Kokko and Rankin, 2006). These processes can in turn affect12

lifetime reproductive success. For an individual it is thus advantageous to be adapted to13

the density it experiences. For example, at high density, investing in resource competition14

may pay off, whereas such an investment is futile when density is low. At low density,15

it may instead pay off more to invest in mate finding (Berec et al., 2018; Gascoigne16

et al., 2009). Such scenarios where the relative fitness of traits changes with density17

are referred to as density-dependent selection, a concept that has a long history (see18

MacArthur and Wilson, 1967). Although density-dependent selection is challenging to19

demonstrate (Travis et al., 2013), there are several clear examples. In a field population20

of great tits, fast exploratory behavior appears to be favored at low density and slow ex-21

ploratory behavior at high density (Nicolaus et al., 2016). In experiments on Drosophila22

(Mueller, 1997; Mueller et al., 1991), populations were exposed to different densities, to23

which they adapted, most likely through evolution. Adaptation to density has also been24

demonstrated in moths (Plodia interpunctella), where males in an experiment adapted25

their reproductive strategy to the density experienced as larvae (Gage, 1995). Adapta-26

tion to density is also supported by observed patterns, such as the observed higher male27

aggressiveness in fig wasp species that tend to occur at smaller densities where killing28

another male yields the largest relative benefits (Reinhold, 2003).29

An individual’s fitness can be affected by population density at more than one spatial30

scale, a phenomenon we call multi-scale density dependence. Multi-scale density depen-31
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dence should arise naturally if fitness is the result of multiple processes, e.g. occurring at32

different points in the life cycle. For example, birds may compete for high-quality nesting33

sites on a larger scale at the beginning of the breeding season, and then after settling34

on a nesting site compete for food more locally within their neighborhood (Rodenhouse35

et al., 2003). The effect of density may even be inverted depending on the spatial scale36

(Courchamp et al., 2008, box 2.7). For example, in arid vegetation, there is long-range37

competition for water, but also short-range faciliation because existing vegetation helps38

to retain water (Rietkerk, 2004). Similarly, mussels compete for food but may also bene-39

fit from a high local density, probably because it protects from waves (Gascoigne et al.,40

2005). In dogwood trees, when a focal patch is exposed to cicadas, the per capita number41

of attacks decreases with the tree density in that patch. However, whether cicadas decide42

to attack that patch, also depends on whether larger, more preferable, patches of trees43

are nearby (Cook et al., 2001). Individuals may thus be exposed to density effects at44

different scales simultaneously.45

Here, we study how multi-scale density dependence affects spatial patterns of popula-46

tion density and variation in traits under density-dependent selection. We explore the47

possibility of obtaining a stable state with high-density patches that are being inhabited48

mostly by individuals that have a high density niche and low-density patches inhabited49

mostly by individuals adapted to low density. It has formerly been shown that spatial50

variation in density can emerge in homogeneous deterministic models, for example due51

to Allee effects (Gyllenberg and Hemminki, 1999), or due to the interplay of long-range52

competition either with small-scale facilitation (van de Koppel et al., 2005) or disper-53

sal (Bolker and Pacala, 1997; Bolker, 2003; Sasaki, 1997). While these previous models54

have focused on ecological dynamics, we also include evolution of a trait under density-55

dependent selection.56

The potential for adaptation to density is nontrivial because of the eco-evolutionary57

feedback loop (sometimes also referred to as eco-genetic feedback, Kokko and López-58

Sepulcre, 2007) that it is embedded in: while density may affect lifetime reproductive59

success, simultaneously changes in lifetime reproductive success also affect population60

density. The study of adaptation to spatial variation in density thus requires taking into61

account evolutionary and ecological processes simultaneously. So far, however, spatial62
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models concerning these feedback loops have mainly focused on dispersal (Govaert et al.,63

2019). In our study, instead, we focus on the direct effect that patches can have on each64

other’s fitness.65

We evaluate the capacity of multi-scale density dependent fitness to generate and main-66

tain long-term differences in abundances between patches. Specifically, the fitness of an67

individual in our model is affected not only by the local density, but also by the density68

in a nearby patch. Such effects may emerge for example when a nearby patch attracts69

predators, that then spill over to the focal patch. Our model also includes the possibility70

of positive density dependence, which may occur for example when the nearby patch is71

attracting pollinators. By including traits into the model, we then study how subpopula-72

tions can adapt to their local density. For a plant population, for example, the investment73

into defenses against predators relative to the investment into attracting pollinators may74

be subject to density-dependent selection. However, simultaneously, the trait affects the75

density, thereby allowing for eco-evolutionary dynamics. We explore the conditions under76

which such a model can lead to diversification. Here we focus on allopatric diversification,77

that is, the evolution of different trait values in each patch.78

2. Methods & Results79

2.1. Model overview80

We consider a population living in a habitat with two patches (Fig. 1). The patches may81

differ in the population density and in the trait distribution of the inhabiting individuals,82

but are otherwise identical. In particular, we assume for simplicity that they have the83

same area such that we can use density and population size or abundance interchangeably,84

but note that the results do not depend on this assumption. We first consider an ecological85

model where all individuals have the same trait value and there is no migration. We86

assume multi-scale density dependence in the sense that fitness in a patch depends not87

only on population density the patch itself, but also on the density in the other patch.88

Next, we consider an eco-evolutionary model where individuals differ in a trait under89

density-dependent selection and eco-evolutionary feedbacks between population density90
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Figure 1: Overview of the ecological and evolutionary processes in our model. Absolute fitness differs

between trait values and depends on density in the patch itself as well as on density in the other patch.

Because of this density-dependent selection, the relationship between traits and fitness differs between

patch 1 and 2. Absolute fitness then feeds back on population density but it also influences the evolution

of the trait distribution (eco-evolutionary feedback).

and trait distribution emerge. Finally, we evaluate whether the outcomes are robust to91

the inclusion of migration, stochasticity, and multi-locus genetics.92

2.2. Ecological model93

The population dynamics in the two patches are described by two coupled differential94

equations:95

dN1

dt
= f(N1, N2) ·N1, (1)

dN2

dt
= f(N2, N1) ·N2, (2)

with Ni the density in patch i and f the per-capita growth rate or fitness function. Fitness96

depends on the abundances in both patches and a set of coefficients cα (α ∈ [0, 1, 2, 3, 4]):97

98

f(N1, N2) = c0 + c1N1 + c2N2 + c3N
2
1 + c4N

2
2 . (3)
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The coefficient c0 represents the intrinsic growth rate in an empty habitat. The linear99

coefficients c1 and c2 characterize the response to increasing density in the own and100

other patch, respectively, while these densities are still low. The quadratic coefficients101

c3 and c4 for response to the own and the other patch become increasingly important102

as densities increase and thus determine the high-density behaviour of the system. In-103

dividuals in this model experience density effects at two spatial scales. Density of their104

respective own patch influences fitness via the second and fourth term, and density in105

the respective other patch influences fitness via the third and fifth term. Both patches106

behave equally and exchanging their labels would not affect the results. Note that our107

model is mathematically speaking a special case of the model developed by Gerla and108

Mooij (2014) for the interaction between competing species in a single patch. With this109

different interpretation, their results are in line with parts of our results for the ecological110

model, as discussed below in more detail.111

By choosing the parameters cα, our model can represent various scenarios. Here, we focus112

mainly on negative values for c3 and c4 to prevent populations from growing to infinity.113

When only considering the effect of the ‘own’ density on fitness, e.g. in patch 1, and114

keeping the density of the other patch fixed, ∂f1
∂N1

= 0 when N1 = − c1
2c3

. Since ∂2f1
∂N2

1
= 2c3,115

this point is a maximum if c3 < 0. If c1 is negative, the maximum is below zero and fitness116

decreases with N1 everywhere. If c1 is positive, the fitness maximum will be at a positive117

value of N1. Below the abundance at the extremum, per-capita fitness increases with in-118

creasing abundance. Hence, the system exhibits an Allee effect (Courchamp et al., 2008).119

At high densities, above the density at the extremum, the relation is inverted and per-120

capita fitness decreases with increasing abundance, representing for example increasing121

resource competition or aggression. Depending also on the other parameters, the Allee122

effect with positive c1 might be strong with a negative per-capita growth rate at small123

densities or weak with a reduced but still positive per-capita growth rate at small den-124

sities (Courchamp et al., 2008). Similarly, when fixing the local density, fitness increases125

with the density in the other patch below − c2
2c4

and decreases with density in the other126

patch above this value. Thus we can get either negative density dependence with respect127

to density in the other patch, or an analogue of a weak or strong Allee effect with respect128

to the density in the other patch. Of course all combinations of density-dependence sce-129
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narios with respect to the own and other patch are possible, thus accommodating many130

different biological situations.131

2.2.1. Equilibria132

To determine the long-term spatial density patterns expected under this model, we com-133

pute the equilibria of the system (1) and (2) and assess their stability. From equation 1134

it follows that the density in patch 1 is at equilibrium when N1 = 0 or f(N1, N2) = 0135

or both, and analogously for patch 2. The overall system is at equilibrium when in each136

patch at least one of the conditions is met. Here, we focus on the cases where both patches137

have nonzero density. Hence they must both have a fitness equal to 0 and thus both of138

the following conditions need to be fulfilled:139

c0 + c1N1 + c2N2 + c3N
2
1 + c4N

2
2 = 0, (4)

c0 + c1N2 + c2N1 + c3N
2
2 + c4N

2
1 = 0. (5)

In the (N1,N2) phase plane, each of these equations corresponds to a conical section.140

Under our standard assumption that c3 and c4 are negative such that populations cannot141

grow to infinity, the isoclines are ellipses. The ellipse corresponding to the isocline of patch142

1 is depicted in Fig. 2, including the equations for its center and its axes. Growth rates143

are positive in the interior of the ellipse and negative outside the ellipse.144

− c1
2c3

− c2
2c4

√
− c0c3 +

c21
4c23

+
c22

4c4c3

√ −
c
0

c
4
+

c
2 2

4
c
2 4
+

c
2 1

4
c
3
c
4

N2

N1

Figure 2: Geometric representation of the isocline. Isocline properties depend on ratios between coeffi-

cients only. Due to the isoclines containing no multiplication of N1 and N2, the axes of the ellipse are

parallel to the N1- and N2-axis.
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In general, two ellipses can have at most 4 intersections (Richter-Gebert, 2011), each of145

which is a possible equilibrium of the system (Fig. 3). Because the population dynamics in146

both patches are described by the same fitness function, the two corresponding isoclines147

are each other’s mirror image through the line N1 = N2. Hence, if the ellipses do not148

cross the diagonal line N1 = N2, they will not intersect and hence, there will be no149

overall equilibrium, except for the one in which both patches are empty (Fig. 3 a). If one150

ellipse crosses the line N1 = N2 in two points, due to the symmetry of the system, the151

other ellipse will also intersect the diagonal and thereby the first ellipse at these points152

(Fig. 3 b). On the diagonal there are thus either 0 or 2 intersections. However, whether153

these intersections are meaningful depends on whether they lie in the positive quadrant,154

since negative values for abundance are not biologically relevant. Hence, in addition to155

the origin where both patches are empty, there can be 0, 1 or 2 biologically meaningful156

equilibria on the diagonal. These equilibria are all of the type where both patches have157

the same abundance. If the ellipses cross the diagonal, they can additionally intersect in158

two, and only two, additional points away from the diagonal. Due to the symmetry of the159

system, if a single intersection away from the diagonal exists, so must its mirror image160

through the line N1 = N2. These cases, with 4 intersections, allow for the system to be161

in an equilibrium with both patches having different abundances, even though they are162

being governed by the same fitness function (Fig. 3 c).163

(a)
N2

N1

(b)
N2

N1

(c)
N2

N1

Figure 3: Possible number of intersections for two mirroring ellipses. This figure only illustrates the

isoclines where fi = 0, the isoclines for Ni = 0 correspond to the x and y-axes and the ellipses can also

intersect these.

The values of the equilibria can be obtained by solving equations 4 and 5 simultaneously.164
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First, we subtract the two equations from each other and obtain:165

(c1 − c2)N1 + (c2 − c1)N2 + (c3 − c4)N2
1 + (c4 − c3)N2

2 = 0, (6)

which can be rewritten as:166

(c1 − c2)(N1 −N2) + (c3 − c4)(N1 +N2)(N1 −N2) = 0. (7)

This can be factorized into a term depending on the difference between the abundances167

and a term depending on the total abundance:168

(N1 −N2) ((c1 − c2) + (c3 − c4)(N1 +N2)) = 0. (8)

This condition is fulfilled when either of the two factors is zero, that is if N1 = N2 or169

N1 +N2 = −c1 − c2
c3 − c4

. (9)

In the special case when c3 = c4, the second equilibrium does not exist. Here, we are most170

interested in the second solution because it allows for equilibria where the two patches171

contain a different density. We can now use this solution to eliminate N2 from equations172

4 by setting N2 = −N1 − c1−c2
c3−c4 and regrouping:173

c0 − c2
c1 − c2
c3 − c4

+ c4

(
c1 − c2
c3 − c4

)2

+

(
c1 − c2 + 2c4

c1 − c2
c3 − c4

)
N1 + (c3 + c4)N

2
1 = 0. (10)

We will solve this equation using the quadratic formula. Before we do so, we can slightly174

simplify the higher order terms in the above equation by multiplying all terms with c3−c4
c3+c4

:175

176

c0
c3 − c4
c3 + c4

− c2
c1 − c2
c3 + c4

+ c4
(c1 − c2)2

(c3 − c4)(c3 + c4)
+ (c1 − c2)N1 + (c3 − c4)N2

1 = 0. (11)

This can now be solved using the quadratic equation:177

N± =
−(c1 − c2)±

√
(c1 − c2)2 − 4(c3 − c4)(c0 c3−c4c3+c4

− c2 c1−c2c3+c4
+ c4

(c1−c2)2
(c3−c4)(c3+c4) )

2(c3 − c4)
,

(12)

which can be written as:178

N± =
−(c1 − c2)±

√
c21 + c22 − 2c1c2 − 4c0

(c3−c4)2
c3+c4

+ 4c2
(c1−c2)(c3−c4)

c3+c4
− 4c4

(c1−c2)2
(c3+c4)

)

2(c3 − c4)
.

(13)
9
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Some rearrangement of these terms allows this expression to be written as:179

N± =
−(c1 − c2)±

√
1

(c3+c4)
(−4c0(c3 − c4)2 + c21(c3 − 3c4) + 2c1c2(c3 + c4) + c22(c4 − 3c3))

2(c3 − c4)
.

(14)

Since N+ and N− represent densities, they should both be positive. A necessary condition180

to achieve this is for − c1−c2c3−c4 to be positive. This means that either c1 > c2 and c3 < c4181

or c1 < c2 and c3 > c4. In most systems, c3 and c4 will be negative, to prevent explosive182

population growth. For these systems, this necessary condition can be written as c1 > c2183

and |c3| > |c4| or c1 < c2 and |c3| < |c4|. If c1 and c2 are both positive, the two equilibria184

can thus only be meaningful when the stronger linear response in the fitness function is185

coupled to the stronger quadratic response; that is, the positive density dependence at186

low density and the negative density dependence at high density should both be stronger187

for the own patch or both be stronger for the other patch.188

Note that the equilibria are constant under scaling: when all coefficients are multiplied189

with the same positive constant, the equilibria are unaltered. This is in agreement with190

the fact that the ellipses only depend on ratios between coefficients and not on their191

absolute values (see Fig. 2).192

2.2.2. Stability analysis193

The stability of the equilibria can be obtained through the Jacobian matrix194

J =

∂f(N1,N2)N1

∂N1

∂f(N1,N2)N1

∂N2

∂f(N2,N1)N2

∂N1

∂f(N2,N1)N2

∂N2

 , (15)

and hence195

J =

f(N1, N2) +N1
∂f(N1,N2)

∂N1
N1

∂f(N1,N2)
∂N2

N2
∂f(N2,N1)

∂N1
f(N2, N1) +N2

∂f(N2,N1)
∂N2

 . (16)

At the nontrivial equilibrium, f(N1, N2) = f(N2, N1) = 0 and thus:196

J =

N1
∂f(N1,N2)

∂N1
N1

∂f(N1,N2)
∂N2

N2
∂f(N2,N1)

∂N1
N2

∂f(N2,N1)
∂N2

 . (17)
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If both eigenvalues of this matrix, evaluated at an equilibrium of interest, have a negative197

real part, the equilibrium is stable. Using the quadratic formula to solve the corresponding198

characteristic equation, we find the two eigenvalues:199

λ± =
N1

∂f1
∂N1

+N2
∂f2
∂N2

2
±1

2

√(
N1

∂f1
∂N1

+N2
∂f2
∂N2

)2

− 4N1N2
∂f1
∂N1

∂f2
∂N2

+ 4N1N2
∂f1
∂N2

∂f2
∂N1

.

(18)

Here, we used the short-hand notation f1 = f(N1, N2) and f2 = f(N2, N1). After rear-200

ranging, we finally obtain201

λ± =
N1

∂f1
∂N1

+N2
∂f2
∂N2

2
± 1

2

√(
N1

∂f1
∂N1

−N2
∂f2
∂N2

)2

+ 4N1N2
∂f1
∂N2

∂f2
∂N1

. (19)

To assess stability, it suffices to check the eigenvalue with the largest real part. Since the202

real part of λ+ is greater or equal to the real part of λ−, the condition for stability thus203

becomes:204

<(λ+) < 0 (20)

A necessary but not sufficient condition for this is:205

N1
∂f1
∂N1

+N2
∂f2
∂N2

< 0, (21)

or:206

N1(c1 + 2c3N1) +N2(c1 + 2c3N2) < 0. (22)

We use equation 20 to evaluate the stability of the equilibria from equation (14) by setting207

N1 = N+ and N2 = N− (or vice versa). As noted above, these values remain the same208

as long as all coefficients keep their relative values and sign. Furthermore, if the fitness209

function is multiplied by a positive, real constant, the eigenvalues of the Jacobian matrix210

also scale with this constant and hence the stability does not change (multiplication by211

a positive number does not affect the sign). Hence a temporally varying environmental212

factor that acts by scaling the coefficients and hence the fitness function uniformly in both213

patches, would not alter the equilibria nor their stability. Such environmental variation214

may however change the basin of attraction of equilibria.215
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2.2.3. Ecological model results216

Fig. 4 (top panels) shows an example system where at equilibrium both patches can have217

different densities. The left panel shows abundance time series, while the corresponding218

phase space trajectories are shown on the right. The colors refer to initial conditions219

(same color means same initial conditions). From the right panel it becomes clear that220

all trajectories end on an intersection between two isoclines. However, the specific equilib-221

rium that the system reaches depends on its initial values for N1 and N2. The coefficients222

in the bottom panels were equal to those in the top panels, but with the effects of ‘own’223

and ‘other’ patch exchanged (c1 ↔ c2 and c3 ↔ c4). In this system, the equilibria where224

the patches contain different nonzero abundances are unstable. Instead, one of the equi-225

libria with equal abundance in both patches is stable. Furthermore, additional equilibria,226

where one of the two patches goes extinct, have become stable.227

The values of the coefficients determine which equilibria exist and which of these are228

stable. With equations 14, 19 and 20, it is possible to calculate the equilibria for any set229

of coefficients and evaluate their stability. The full parameter space is five-dimensional,230

but we evaluated the equilibria and their stability only at two-dimensional cross sections231

of that space (Fig. 5). Each cross section describes the effect of two of the coefficients,232

whilst keeping the remaining three coefficients at their value from the top panels of Fig.233

4. The figure shows that most parameter combinations do not lead to an equilibrium in234

which both patches contain a different number of individuals. However, the region within235

which both patches may settle to different abundances is non-negligible. Small changes236

in the coefficients around the values from Fig. 4 are therefore not expected to lead to237

qualitative differences in the outcomes.238

Above, we remarked that a necessary condition for the existence of meaningful asymmet-239

ric equilibria is that the strength of the response to the other patch is stronger than the240

response to the own patch in both linear and quadratic term, or weaker in both linear241

and quadratic term. Here we have explored the parameter space around a point where242

the other patch has a stronger effect and thus we observe stable variation in abundance243

when c2 > c1 (see 3rd row, 2nd column in Fig. 5) and when |c4| > |c3| (4th row, 4th244

column in Fig. 5). Exploration of the c1-c0 parameter space (4th row, 1st column in Fig.245
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5) reveals that stable spatial density variation should be possible also for cases where246

increasing density in the own patch has a negative effect even at low density (c1 < 0).247

Time series and isoclines for a parameter combination in this region are shown in Fig.248

6. In this example, both c1 and c3 are negative, meaning that there is no Allee effect249

acting directly within the focal patch, although c2 is still positive, leading to positive250

effects of density in the other patch on the fitness in the focal patch at low density in the251

other patch. Furthermore, all trajectories in this example converge to the asymmetric252

equilibria, which turn out to be the only stable equilibria.253

2.3. Eco-evolutionary model254

Long-term differences in population density may lead to diversification in traits under255

density-dependent selection, which may in turn affect the densities. In order to allow for256

such eco-evolutionary feedbacks, we now include a trait, z, that takes values between257

0 and 1. The trait affects the fitness through two additional terms: the first quantifies258

a density-independent effect of the trait value on the fitness (c5z), while the second259

describes a density-dependent effect of the trait value (c6zNi):260

f(z,N1, N2) = c0 + c1N1 + c2N2 + c3N
2
1 + c4N

2
2 + c5z + c6zN1. (23)

Examples of traits whose fitness consequences are affected by density are investment in261

attributes for fighting or pheromone production for mate finding. Note that in this model,262

the selection on z changes with the density in the own patch, but not with the density263

in the other patch.264

Now, not only the population size, but also the trait distribution matters. We track the265

trait distribution by dividing the trait space into 100 discrete bins, with zb the trait value266

of bin b and all the zb evenly spaced between 0 and 1. The total abundance in patch 1 is267

simply the sum of the number of individuals in all size classes b in the patch:268

N1 =
100∑
b=1

n1,b. (24)

The abundances n1,b change through reproduction, as described by the fitness function,269

as well as through mutations. We treat mutations deterministically, such that individuals270
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Figure 4: Example time series (a,c) and corresponding trajectories and isoclines in phase space (c,d).

Different colors correspond to different initial values. The parameter values used for (a,b) were: c0 =

−0.148, c1 = 0.162, c2 = 1.262, c3 = −0.326, and c4 = −1.034. The parameters for (c,d) were c0 =

−0.148, c1 = 1.262, c2 = 0.162, c3 = −1.034, and c4 = −0.326. The bottom panels thus describe a

system in which the effects of the ‘own’ patch and the ‘other’ patch have been exchanged. The ellipses

also exchange identity, although their shape and intersection remain the same. The stability of the

equilibria did change however.
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15

Figure 5: Regions in parameter space where density variation in space can be stable. Only the upper

diagonal graphs are shown. Here, in the white regions, equation 14 returned equilibria with a nonzero

imaginary part. In the ‘No’ region, the obtained equilibria were real, but either unreachable (at least

one of them was negative) or the equilibria for N1 and N2 were the same. Finally, there were cases

where the two equilibria were real, positive, and different. These cases were again subdivided in cases

where the equilibrium was stable (‘Yes’) and where it was not (‘Unstable’). The black dots correspond

to the parameter settings that were used in the top panels of Fig. 4. The white dot in the c0-c1 panel

corresponds to the parameter setting of c0 and c1 in Fig. 6.
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Figure 6: Example time series (a) and corresponding trajectories and isoclines in phase space (b). Dif-

ferent colors correspond to different initial values. The parameter values were: c0 = 0.31, c1 = −0.148,

c2 = 1.262, c3 = −0.326, and c4 = −1.034.

in bin b mutates away to either bin b − 1 or b + 1 at a rate µ. In the first and the last271

bin, the trait value can only move in one direction, and accordingly, the mutation rate in272

this bin is halved (µ2 ). The dynamics of this system are described by a set of differential273

equations:274

w1,b =


dn1,b

dt = f(zb, N1, N2)n1,b − µn1,b + µ
2n1,b−1 +

µ
2n1,b+1 if 1 < b < 100

dn1,1

dt = f(z1, N1, N2)n1,1 − µ
2n1,1 +

µ
2n1,2 if b = 1

dn1,100

dt = f(z100, N1, N2)n1,100 − µ
2n1,100 +

µ
2n1,99 if b = 100

. (25)

The equations for the second patch are analogous. This yields 200 coupled differential275

equations, that we initially solved numerically using the package deSolve in R (R Core276

Team, 2018; Soetaert et al., 2010).277

2.3.1. Equilibria278

The numerically obtained equilibria were then compared to a direct calculation of the279

equilibria when µ → 0. For a given combination of N1, c5, and c6, the fitness function280

is monotonic in z. If c5 + c6N1 > 0, larger trait values will be selected for (smaller trait281
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values if c5 + c6N1 < 0). We therefore hypothesize the average trait value of a patch282

to end up at either boundary (0 or 1). Since population density and thus the direction283

of selection can differ between patches, the two-patch system can potentially have four284

equilibria. We solved for the equilibria by solving the following four sets of two equations:285

f(0, N1, N2) = 0 and f(0, N2, N1) = 0, (26)

f(1, N1, N2) = 0 and f(0, N2, N1) = 0, (27)

f(0, N1, N2) = 0 and f(1, N2, N1) = 0, (28)

f(1, N1, N2) = 0 and f(1, N2, N1) = 0. (29)

This procedure is equivalent to intersecting the two ellipses with z = 0 and z = 1 for the286

first patch with the two analogous ellipses of the other patch in all 2 × 2 combinations.287

The exception occurs when c5 + c6Ni = 0; in this case there is no selection on the trait288

value and hence, the equilibrium has become independent of the trait value, and we289

should still find it when z = 0 or z = 1. We used Mathematica to find the solutions for290

equations (26) – (29).291

2.3.2. Stability292

Furthermore, we evaluated the stability, by calculating the dominant eigenvalue of the293

Jacobian matrix for the system of 200 differential equations. At each equilibrium of the294

system, we compute the Jacobian295

J =

 A1 B1,2

B2,1 A2

 , (30)

with:296

Ai =



∂wi,1

∂ni,1

∂wi,1

∂ni,2
. . .

∂wi,1

∂ni,100

∂wi,2

∂ni,1

∂wi,2

∂ni,2
. . .

∂wi,2

∂ni,100

...
. . .

...
∂wi,100

∂ni,1

∂wi,100

∂ni,2
. . .

∂wi,100

∂ni,100

 , (31)
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and297

Bi,j =



∂wi,1

∂nj,1

∂wi,1

∂nj,2
. . .

∂wi,1

∂nj,100

∂wi,2

∂nj,1

∂wi,2

∂nj,2
. . .

∂wi,2

∂nj,100

...
. . .

...
∂wi,100

∂nj,1

∂wi,100

∂nj,2
. . .

∂wi,100

∂nj,100

 . (32)

When estimating the actual stability of an equilibrium, we set the mutation rate to 0.298

The reason is, that with a nonzero mutation rate, the final trait distribution will not be299

monomorphic at either z = 0 or z = 1, due to the selection-mutation balance. However,300

this slight mismatch may also affect the value of the equilibria. To circumvent this issue,301

we evaluate the stability in the limit µ→ 0, where the mutation-selection balance is also302

expected to be fully favoring selection. Finally, we confirmed the stability metrics using303

numerical solutions to the system of differential equations, as presented in SI S1.304

2.3.3. Eco-evolutionary model results305

Fig. 7 shows time series generated by the model with traits included. Initially, the pop-306

ulations were monomorphic, with all individuals having a trait value of either z = 0 or307

z = 1. When the initial trait value in the population was z = 0, both patches reached very308

similar equilibrium population density, regardless of mutation rate (red and blue lines).309

Hence, the system allows for stable spatial density variation even without variation in310

trait value. In contrast, when starting with a monomorphic population with trait value311

z = 1, the presence of mutations qualitatively affected the population dynamics (orange312

and yellow lines). In the absence of mutations, both patches reached the same density313

(orange line). With mutations, however, the system reached a final equilibrium in which314

both patches contained a different number of individuals, as well as different trait dis-315

tributions (yellow lines). In this case the system was thus governed by eco-evolutionary316

feedbacks.317

In the region of parameter space explored here, simultaneous maintenance of variation318

in abundance and diversification of trait values depends strongly on the values of the319

parameters c0 to c6. In Fig. 8, we again varied two parameters at a time while keeping320

the others constant at the values in Fig. 7. We divided the parameter space into regions321

with at least one stable equilibrium with variation in both z and N , regions with no322
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(a) (b)

(c) (d)

Figure 7: Example time series for the eco-evolutionary model. Different colors represent different model

runs where mutations were either present (µ = 0.01) or not (µ = 0) and that started with a monomor-

phic population with starting trait value z0 either 0 or 1. (a) Abundance time series. The red and blue

trajectories largely overlap for the first 2000 time steps, as do the yellow and orange lines. (b) Corre-

sponding mean trait values and the spread, shown as the regions in trait space that contained 95% of

the individuals of each patch. For the scenarios without mutations (orange and red line), the trait values

in both patches completely overlap. For the scenario with mutations starting at z = 1 (the yellow lines),

initially the lines in both patches overlap, but around time 2500, the trait values in the two patches start

to diverge. (c) Trajectories in phase space. Also drawn are the isoclines at z = 0 (black) and z = 1 (grey).

(d) Equilibrium densities for monomorphic populations with trait value z. On the left side of the graph,

at any given value of z two branches exist, indicating the two different densities that the two patches

will tend to. In the background, the direction of selection at any given density is shown, with red values

referring to selection for smaller trait values and blue colors to selection for larger trait values. The grey

line corresponds to the density at which selection vanishes. Parameter values: c0 = −0.148, c1 = 0.162,

c2 = 1.262, c3 = −0.326, c4 = −1.034, c5 = 0.194 and c6 = −0.3492.
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stable joint variability but with the possibility of stable variation in N . We also looked323

for regions with the possibility of stable variation just in z but did not find any.324

Simultaneous trait diversification and variation in abundance exists and depends critically325

on the ratio between c5 and c6. As noted above, the selection gradient vanishes when326

c5 + c6N1 = 0. This happens at the critical density Ncrit = − c6c5 . Above and below this327

threshold, selection acts in the opposite direction. If one of the two patches of a system is328

below Ncrit and the other above, the trait value will diverge between the patches. In the329

example shown in Fig. 7, Ncrit = 0.56. Given the sign of c5 (positive) and c6 (negative)330

that we used, evolution in patches with a density below 0.56 is towards higher values of331

z, while patches with a density above 0.56 tend towards lower values of z, as indicated by332

the grey line and color gradient in Fig. 7(d). However, if c5 and c6 would have the same333

sign, Ncrit would be negative, and both patches will always have a density higher than334

Ncrit. In this case the direction of evolution is density-independent and only depends on335

the sign of c5 and c6. This is visible in the top right panel in figure 8, where all regions of336

stable trait variation lie in the quadrants where c5 and c6 have the opposite sign. When337

altering only c5 or c6, but not the other, stable coexistence can only occur when the sign338

of the coefficients does not change (the first five columns of the two top rows in Fig. 8).339

The importance of the ratio between c5 and c6 is further stressed in the topright panel340

in Fig. 8. If the regions with stable variation in both trait value and abundance would341

be determined by the effect of c5 and c6 on Ncrit only, we would expect the region to342

be demarcated by two straight lines through the origin in the c5, c6-panel. However, the343

values of c5 and c6 not only affect Ncrit, but simultaneously the values of the equilibria,344

which is why the actual regions for stable variation in trait value and abundance deviate345

somewhat from the area between the imaginary straight lines through the origin.346

Compared to the ecological model, c5 and c6 introduce a linear trait dependence to c0347

and c1 respectively. In Fig. 8, this is visible in terms of a strong negative relation between348

c0 and c5 as well as c1 and c6 for cases where long-term variation in N can be maintained,349

visible as a turquoise diagonal band in the upper left quadrant of the c0, c5 and the c1, c6350

panels. Similarly, also for the region where variation in both z and N can be maintained,351

larger values of c1 allow for more negative values of c6.352
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Figure 8: Regions in parameter space where spatial variation in abundance and diversification of trait

values can occur. The shown regions are based on the properties of the asymmetric, equilibria obtained

by intersecting the ellipses with trait value z = 0 and z = 1 with the mirrored ellipses at both trait

values (following equations 26) – (29). The values and stability of these ellipses were calculated using

Mathematica. Only the upper diagonal graphs are shown. The white regions correspond to areas where

no spatial variation in N or z was predicted in the system or where the predicted equilibrium was

unstable or unreachable (negative N , or a nonzero imaginary part in N). Note that even in regions with

stable density variation and or trait diversification it may depend on the initial conditions whether such

an equilibrium is attained or not. The black dots correspond to the parameter settings that were used

in the top panels of Fig. 7. In SI S2, the same figure, but including the unstable regions is shown, while

in SI S1, a numerical verification of these results is shown.
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As for the lower four rows in the graph, the regions where variation in abundance can353

occur together with trait diversification, are generally a subset of the regions in Fig.354

5 where variation in abundance was long-term stable. The values for c0–c4 that were355

used to produce the parameter space figure of the evolutionary model were identical to356

those used for the parameter space figure of the ecological model. If z were kept to 0 in357

the evolutionary model, we would retain the ecological model. However, visually, from358

Fig. 5 and 8 it seems that the possibility of the trait to evolve to a value of 1, in our359

specific model, seems to largely divide the regions where stable variation in abundance360

can occur into those where this can happen together with trait diversification and those361

without, without changing the general shape of these regions. Furthermore, for our focal362

parameter combination at least, inclusion of trait evolution produced a few novel regions363

where stable variation in N can be maintained.364

2.4. Migration365

To explore the robustness of our results to migration between patches, we included mi-366

gration terms into both the ecological and eco-evolutionary model. We assume that each367

individual migrates to the respective other patch with a rate m, independently of the368

current population density or the individual’s trait value. Detailed methods and results369

are described in SI S4. In brief, we find that our results on the emergence of spatial den-370

sity variation and trait diversification are robust to small amounts of migration between371

patches. With increasing migration rate, spatial heterogeneity decreases and eventually372

breaks down, first for traits and then for densities. In the example in Fig. 9, the smallest373

non-zero migration rate leads to both spatial density variation and trait variation, as374

in the model without migration. An intermediate migration rate still allows for spatial375

density variation, but trait variation disappears. And for the highest migration rate, both376

population densities and traits become homogeneous in space.377

2.5. Individual-based models378

In order to test how the results change in the presence of multi-locus genetics, as well379

as demographic stochasticity, we repeated parts of the analysis with an individual-based380
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Figure 9: Time series from numerical solutions of the eco-evolutionary model with migration (see S4 for

details) and an initial trait value z0 = 0.5. The other parameter values are the same as in Fig. 7. The

shaded regions in panel (b) show the region in trait space that contains 95% of the population of each

patch. For migration rates 0.01 and 0.1, both patches reach the same final average trait value; these lines

completely overlap. When migration is absent, a high average trait value is reached in the low density

patch. For m = 0.001, a high average trait value is still achieved in the low density patch, although

the large shaded region implies that the patch also contains a non-negligible fraction of low-trait value

individuals. With increasing migration rates, first the adaptation disappears (light blue lines and shaded

regions overlapping with the blue line and region in panel b) and when m = 0.1 even the difference in

abundance between the patches disappears.
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model (IBM, see SI S5 for details). With appropriate parameter choices, spatial density381

variation and trait diversification did occur in the individual-based model. An additional382

parameter in the IBM was patch area. With small patch area, patches could accom-383

modate few individuals and demographic stochasticity was strong, leading to frequent384

extinctions. With large patch area, the number of individuals was larger in total, there385

was less demographic stochasticity and the results were more similar compared to the386

deterministic model.387

3. Discussion388

In this study, we have explored the ecological and eco-evolutionary consequences of multi-389

scale density dependence where an individual’s fitness depends not just on population390

density in its own patch but also on the density in another patch in the region. We391

have shown that multi-scale density dependence may lead to the emergence and stable392

maintenance of spatial variation in population densities in an otherwise homogeneous393

environment and to the diversification of traits under density-dependent selection. That394

is, without any extrinsic heterogeneity, different niches emerged in the population, with395

some individuals being better adapted to low-density situations and others to higher396

density. We also observed how spatial density patterns and trait variation influenced397

each other through eco-evolutionary feedbacks. Specifically, we have shown a case where398

spatial density variation arose only when traits were allowed to evolve. Our model thus399

emphasizes how eco-evolutionary feedbacks can qualitatively affect both trait and popu-400

lation dynamics.401

3.1. Formation of density patterns in space402

In nature, spatial variation in population density between patches or subpopulations of403

the same species is ubiquitous. Our study highlights one possible mechanism that can404

produce or contribute to spatial density variation. A variety of other mechanisms exist.405

Firstly, evidence from natural populations suggests, that abiotic or biotic environmental406

conditions, such as temperature, climatic stability, precipitation, or food availability are407

key drivers of variation in density (Santini et al., 2018). Observed spatial variation in408
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density can, however, also simply be caused by stochasticity, although such variation will409

not be stable over longer time scales. Finally, there are explanations that require neither410

extrinsic heterogeneity, nor stochasticity. Our study falls in this last category.411

Many models from this last category (e.g. Bolker and Pacala, 1997; Bolker, 2003; Sasaki,412

1997) focus on the interplay between random, undirected dispersal in some local neigh-413

bourhood, and intraspecific competition with other individuals in some competition414

neighbourhood. If typical dispersal distances are small relative to the spatial scale of415

competition, clusters of high population density can form. Similar to our model, these416

models also require some degree of non-local competition for pattern formation. Sta-417

ble density variation can also emerge as the product of dispersal directed towards high418

population density (see e.g. Ellis et al., 2019), the interplay between small-range facilita-419

tion and long-range resource competition (van de Koppel et al., 2005), interactions with420

other species, such as reproductive interference (Ruokolainen and Hanski, 2016), host-421

parasitoid or -parasite interactions (Boots and Sasaki, 2000; Hassell et al., 1994), and422

interspecific competition acting over a smaller spatial scale than intraspecific competition423

(Murrell and Law, 2003).424

Other studies have considered Allee effects as a key ingredient for the emergence and425

maintenance of spatial heterogeneity. For example, Gyllenberg and Hemminki (1999)426

showed how Allee effects caused by mate-finding difficulties together with non-local com-427

petition can lead to stable density differences between patches, even with nonzero migra-428

tion. Their model is similar to our ecological model, except we did not explicitly model a429

specific Allee effect. Another study has shown how Allee effects can cause a population430

to be completely absent from some areas while being present in others, thereby limiting431

the spread of an invasive species (Keitt et al., 2001). Spatial heterogeneity in the sense of432

presence-absence variation can also be explained by metapopulation models (as first de-433

veloped by Levins, 1969), but since each patch in a metapopulation experiences recurrent434

extinction and recolonization events, density patterns will not be stable over time.435

More generally, all population models with alternative stable states can generate sta-436

ble spatial heterogeneity in population density under appropriate initial conditions and437

with sufficiently small migration between locations. But without feedbacks between the438
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patches, i.e. multi-scale density dependence, symmetric situations would always be as439

stable as asymmetric situations. Our model allows for situations where asymmetric den-440

sities are the only stable equilibria at which the species can exist (see for example Fig. 4441

top, Fig. 6).442

3.2. Maintenance of trait variation and relation to other coexistence mechanisms443

In our eco-evolutionary model, a necessary but not sufficient condition for the mainte-444

nance of trait variation is the simultaneous maintenance of spatial variation in population445

density (see Fig. 8). Under appropriate parameter combinations, stable trait variation446

emerges with a high-density specialist dominating in the high-density patch and a low-447

density specialist dominating in the low-density patch, essentially a case of local adapta-448

tion (see Fig. 7). At equilibrium, there is still a very small amount of within-patch trait449

variation around the optimal trait value due to mutation-selection balance.450

Chesson’s coexistence theory is a powerful framework to understand and classify coexis-451

tence mechanisms under spatio-temporal heterogeneity (Chesson, 2000). Yet, the coex-452

istence between a high-density specialist and a low-density specialist in our model does453

not appear to fit straightforwardly into this framework. Because we have two types and454

two limiting factors, e.g. the densities in the two patches or functions of them, we do455

not seem have one of the cases where invasion growth rates can be cleanly partitioned456

into contributions from fluctuation independent frequency-dependence, storage effects,457

relative nonlinearity etc. (Barabás et al., 2018). Instead, we here provide an intuitive458

reasoning for how mutual invasibility and coexistence are achieved in our model.459

Mutual invasibility and therefore stable coexistence of a high-density specialist and a460

low-density specialist can be achieved in two ways in our eco-evolutionary model. The461

first scenario is that each strategy produces spatial variation in density on its own and the462

high-density specialist can invade the high-density patch of the low-density specialist and463

the low-density specialist can invade the low-density patch of the high-density specialist.464

This scenario is illustrated by the example in Fig. S3.1. The second scenario is that465

the low-density specialist on its own has the same density in both patches, a density466

that allows the high-density specialist to invade, and the high-density specialist produces467
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spatial variation in density such that the low-density specialist can invade the less dense468

patch. This is the scenario in Fig. 7. If neither the high-density specialist nor the low-469

density specialist have spatial variation in density on their own, mutual invasibility does470

not appear possible in our model.471

To our knowledge, the role of multi-scale density-dependent selection in the maintenance472

of polymorphism has not been investigated before. Engen and Sæther (2019), however,473

showed that density-dependent selection can affect spatial trait patterns in a model with474

dispersal and temporal environmental heterogeneity. Also, there is previous work on how475

the spatial scale of density regulation in patchy landscapes affects the maintenance of476

polymorphism (Ravigné et al., 2004). If density regulation happens locally after selection,477

this is called soft selection (Levene model, Levene, 1953). If density regulation happens478

globally, this is called hard selection (Dempster model, Dempster, 1955). In soft-selection479

models, population densities are usually not affected by selection or migration, whereas480

in hard-selection models they may be affected (Lenormand, 2002). It has been shown481

that compared to hard selection, soft selection is more conducive to maintenance of482

polymorphism in response to environmental heterogeneity (e.g. Ravigné et al., 2004).483

More recently, also mixtures of hard and soft selection have received attention (De Meeûs484

and Goudet, 2000; Débarre and Gandon, 2011). The environmental heterogeneity in485

these studies, however, was assumed to be unrelated to population density. In our model,486

selection and density-regulation cannot be clearly separated and thus our model does487

not fit perfectly into the hard-selection/soft-selection framework. It shares more aspects488

with hard-selection models, most importantly that fitness influences absolute number of489

offspring and population densities, but there are also many additional aspects in our490

model like Allee effects and feedbacks between density and selection.491

3.3. Migration and stochasticity492

As described in section 3.1 and SI S4, migration (and dispersal) can have profound493

effects on the maintenance of variation in abundance. Like our ecological model, our494

evolutionary model is also robust against small amounts of migration (Fig. 9 and SI495

S4). However, with increasing migration rates, the accompanying gene flow between the496

patches hampers adaptation through gene swamping (Lenormand, 2002). This effect is497
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expected to be particularly strong when the difference in abundance between the two498

patches is large, and a disproportionately large number of individuals migrate from the499

larger to the smaller patch. In a system where the patches have more similar abundances,500

gene swamping is thus expected to have a smaller effect, although the evolution of density-501

dependent traits would also be slower due to a weaker selection gradient. At higher502

migration rates, migration hampers not only adaptation, but even leads to the system503

reaching an equilibrium in which both patches have the same abundance. We thus only504

see negative effects of migration on long-term differences in abundances and trait values505

between the two patches in the deterministic models.506

Several pathways exist through which migration (or dispersal) can have positive effects507

on local adaptation. Specifically for evolution, trait-dependent migration can lead to508

trait diversification. Homogeneous migration may also aid adaptation, for example by509

resupplying alleles that have been lost to drift (Blanquart et al., 2012), or by preventing a510

patch from going extinct, leading to more time for an adaptation to spread (Gomulkiewicz511

et al., 1999). In our deterministic model, these effects do not play a role because migration512

is unstructured, and alleles can always re-emerge. When demographic stochasticity is513

included, as in our individual based model (SI S5), migration can have positive effects514

on diversification. In those model runs, migration counteracted stochastic extinctions of515

the smaller patch for long enough, such that adaptation to low density could take place,516

similar to the effect described by Gomulkiewicz et al. (1999). This effect disappears when517

the absolute number of individuals increases, thereby weakening the effect of demographic518

stochasticity on population level processes.519

Stochasticity may also promote trait diversification regardless of migration. Due to the520

symmetry in the deterministic model, if the two patches have the exact same initial521

abundance and trait distribution, they cannot diverge over time. In such cases, small522

amounts of (demographic) stochasticity may lead to small differences between the patches523

that are then amplified by the internal model dynamics, leading to variation in abundance524

as well as trait diversification.525
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3.4. Interpretation and applications526

Our model assumes that density dependence plays out on more than one spatial scale.527

Such multi-scale density dependence should be common because an individual’s fitness528

depends on many different processes and factors, such as juvenile survival, protection529

from disturbances, resource competition, mate finding, competition for mating partners,530

reproduction, interactions with other species etc., which will generally occur over different531

spatial scales (see e.g., Cook et al., 2001; Gascoigne et al., 2005; Rietkerk, 2004). However,532

not all forms of multi-scale density dependence will lead to spatial variation in population533

densities and trait diversification. In our model, when there is positive density dependence534

at low density at both scales, spatial density variation can only be stable if the positive535

effects of conspecifics at low density and the negative effects at high density are either536

both strongest for the own patch or both strongest for the other patch. However, even537

then, not all parameter choices lead to stable density variation (compare Fig. 4(a) to (c)).538

Moreover, in almost all our examples with stable variation c1 < c2 with a positive c2 and539

c1 being either negative or positive, suggesting that facilitation from the other patch540

is more important for density and trait variation than facilitation by individuals in the541

same patch. However, we can currently not generalize these claims for all of parameter542

space.543

The requirements for stable density variation and trait diversification could be fulfilled544

for example in plant-pollinator systems where plants grow in two patches but pollinators545

are more mobile and can visit both patches. A focal plant patch may benefit from a546

small nearby patch, by guiding pollinators to the focal patch. However, when density in547

the nearby patch gets too large, pollinators may instead choose to spend most of their548

time at that nearby patch. Simultaneously, within the focal patch, high density may lead549

to higher resource competition, while low densities may make the patch difficult to find550

for pollinators. When these processes lead to asymmetric abundances across the patches,551

this in turn affects the optimal investment that plants should make in competitive ability.552

This long-term difference can then lead to the emergence of trait variation. Evolutionary553

processes can also affect the abundances of the system, and can lead to a shift from a554

symmetric to an asymmetric equilibrium in abundances and subsequently to adaptation555

in density.556
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The patches in our model can also be interpreted in terms of social groups rather than lo-557

cations, such as bark beetles attacking a tree (Raffa et al., 2008), or cooperative breeders.558

Similarly, the two groups can also be interpreted in terms of two competing (identical)559

species in a single patch, as modelled by Gerla and Mooij (2014). Although we had orig-560

inally not thought of this interpretation, it turns out that mathematically, the model561

described by Gerla and Mooij (2014) is nearly equivalent to the ecological version of our562

model without evolution and migration. They find the same equilibria and shapes of the563

isoclines, but do not fully assess the stability of the asymmetric equilibria. Interestingly,564

Gerla and Mooij (2014) also mention plant-pollinator dynamics as a biological example,565

noting specifically the similarities between their system and the plant-pollinator model566

by Lutscher and Iljon (2013). A similar interpretation could be applied to our study567

as noted above. However, our study differs by focusing on spatial dynamics, deriving a568

direct equation for the stability of the unstable equilibrium, and by also evaluating the569

effects of trait evolution, migration and stochasticity.570

The actual occurrence of the here-described eco-evolutionary effects require empirical ev-571

idence. It is currently unclear whether the sets of coefficients that allow for spatial density572

variation and trait diversification occur in natural populations. The fitness coefficients573

could empirically be estimated by evaluating how the fitness in one patch varies when574

its density and the density of a nearby patch are manipulated. Alternatively, one could575

experimentally test predictions of our model. In our model, if an asymmetric equilibrium576

with one patch at high density and one patch at low density is stable, the mirrored sit-577

uation with the respective other patch at high or low density should also be stable. Our578

model thus predicts that if one manipulated a system with asymmetric densities, for ex-579

ample by adding individuals to one patch and removing individuals from the other patch,580

the system should eventually shift from the basin of attraction of one asymmetric equi-581

librium to the other asymmetric equilibrium and stay there. By contrast, if the spatial582

density variation is due to extrinsic environmental differences, the system should return583

to the original equilibrium. Once it has been established that the system is ecologically584

capable of reaching asymmetric abundances, experimental evolution may be attempted.585

Although such experiments are challenging, testing the effects of eco-evolutionary dy-586

namics can and has been done, for example by frequently replacing individuals in an587
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experimental population by wildtype individuals from a stock population, thereby dis-588

abling the evolutionary part of the feedback loop and comparing such a population to a589

population where evolution is allowed to take place (e.g. Hart et al., 2019).590

3.5. Limitations and future work591

We assumed a homogeneous environment, which may be unrealistic for most natural592

populations. Whether the effects described here are of importance when the environment593

is heterogeneous remains to be investigated. This could be evaluated through a model594

that also incorporates environmental heterogeneity for example through an additional595

term in the fitness function. Depending on the spatio-temporal pattern of environmental596

variation, many different model behaviors may be possible. We expect, however, that our597

results will be robust to some degree of environmental heterogeneity. Even if the patches598

are slightly different in their properties, the eco-evolutionary feedbacks described here599

should still act and while it might be more likely for the patch with slightly better en-600

vironmental conditions to become the high density patch, depending on the starting601

conditions it may also be the other way around if the eco-evolutionary feedbacks are602

strong enough. The phenomena described here could also amplify the effects of envi-603

ronmental heterogeneity on spatial density variation. This interplay between intrinsic604

and extrinsic factors for the maintenance of eco-evolutionary variation is a promising605

direction for future research.606

Temporally strongly varying environments may favor plastic rather than evolutionary607

responses: phenotypic plasticity could allow an individual to cope well with the different608

environments that it will experience over its life time. In our model, the environments609

that individuals and their offspring encounter critically depend on the migration rate610

and we would expect phenotypic plasticity to be favorable when the migration rate611

is small enough for spatial density variation to persist, but too large for evolutionary612

trait diversification. Generally, whether plasticity can evolve depends on the costs and613

limits of the plasticity (DeWitt et al., 1998), such as the degree of unpredictability of614

the future environment (Reed et al., 2010), in conjunction with the migration rate and615

the accuracy of the plastic response (Sultan and Spencer, 2002). The precise conditions616

should be explored in future extensions of our model.617
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Another potential key factor that determines the model behaviour is the spatial struc-618

ture. We have investigated a model with a particular, very simple spatial set-up: two619

patches that mutually affect each other. An important direction for future work is to620

investigate how the eco-evolutionary dynamics explored in this study play out in other621

spatial settings, for example landscapes with more than two patches, or continuous space.622

In such scenarios, individuals could respond to spatial density variation in multiple ways,623

e.g. to the density in their own patch or neighborhood and to the density in the rest of624

the landscape, or separately to the densities in each patch, or as defined by a kernel based625

on distance. In continuous-space models, local dispersal is another mechanism that could626

interact with multi-scale density dependence to promote spatial variation in density. We627

speculate that at larger scales too, multi-scale density dependence may promote density628

and trait variation, although this needs to be confirmed with additional models.629

Individuals in our model differ in just one trait and the fitness effects of this trait depend630

on just the population density in the individual’s own patch, even though fitness itself631

is affected by density on multiple scales. Future models could incorporate traits that632

are involved in density-dependent processes at a larger scale and whose fitness effects633

therefore depend on the density in the other patch or on total density. We speculate634

that similar eco-evolutionary feedbacks as we reported here would act in this case, which635

should also allow for the maintenance of trait variation under appropriate conditions.636

Although much remains to be investigated, we argue that multi-scale density dependence637

is a common, potentially very important phenomenon in evolutionary ecology. Based on638

many empirical examples (see e.g., Cook et al., 2001; Gascoigne et al., 2005; Rietkerk,639

2004) and the argument that fitness depends on multiple biological processes that will640

generally not play out at exactly the same spatial scale, we expect that multi-scale density641

dependence will be the rule rather than the exception. More generally, when studying642

natural systems, the outcome may depend on the, sometimes arbitrarily, chosen spatial643

scale over which the study is conducted (Kareiva, 1990; Murphy, 1989; Ray and Hastings,644

1996; Snyder and Chesson, 2004) and multi-scale density dependence could contribute to645

explaining some of these inconsistent results. Finding relevant literature and synthesizing646

information on multi-scale density dependence is, however, made difficult by the lack of647

clear terminology for this phenomenon. Because of its important ecological and eco-648
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evolutionary consequences which we highlighted in this study, we argue that multi-scale649

density dependence should receive more concentrated research attention.650

4. Conclusion651

Our study shows how in two mutually affecting patches, long-term abundance differences652

can emerge, even in the absence of external differences between the patches. Furthermore,653

we have shown how selection can lead to phenotypic diversification in traits. Because of654

eco-evolutionary feedbacks, the inclusion of mutations can lead to both ecologically and655

phenotypically different outcomes. Our study serves as a proof-of-concept, which we656

hope will inspire empirical validation and contribute to our understanding of possible657

mechanisms through which spatial variation in density and traits may emerge.658
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7. Supporting information792

S1. Numerical verification of the parameter space of the evolutionary model793

The results in Fig. 8 were based on the Jacobian and the equilibrium values returned794

by Mathematica. However, these results are subject to the numerical precision of the795

computer, which is why we assumed imaginary parts of the equilibria smaller than 10−16
796

to be equal to zero and hence as reachable equilibria. We therefore numerically verified797

the results from Fig. 8 using the package deSolve (Soetaert et al., 2010).798

S1.1. Methods799

Because the numerical solutions run slower compared to the analytical results, we per-800

formed these at a lower resolution, by dividing the coefficient range (−2 – +2) in 20 steps801

only. Hence every subpanel consists of 20× 20 pixels (and checks). For every parameter802

setting (i.e. pixel), we first calculated the six possible nonzero equilibria that allow for803

variation in at least either trait value or abundance, using the analytical solution. These804

were the four possible mutual intersections of the ellipse corresponding to trait value 0805

and trait value 1, and the asymmetric equilibria for a system where trait values were806

the same in both patches (either both at 1 or both at 0, considering only one of the807

mirrored asymmetric equilibria in each case). Then, we removed the imaginary parts of808

these results. Furthermore, we remove the equilibria with a negative real part, since these809

are not biologically relevant.810

Subsequently, we evaluated whether the remaining equilibria were stable. For each of the811

equilibria (N∗
1 , N

∗
2 ), we pick four possible starting densities, that differ from the expected812

equilibrium by 2.5%. Each patch can be either 2.5% higher or lower, leaving us with the813

four possible starting conditions: (0.975N∗
1 , 0.975N

∗
2 ),(0.975N∗

1 , 1.025N
∗
2 ),(1.025N∗

1 , 0.975N
∗
2 ),814

and (1.025N∗
1 , 1.025N

∗
2 ). We call an equilibrium stable with respect to the density, if for815

each starting condition, after 100 time steps the difference between the abundance in the816

patches and their expected value according to the equilibrium is smaller than 2.5%.817
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In order to make sure that the population goes to the expected equilibrium, we had818

to set µ = 0, because when mutations are present, the trait values will deviate from819

0 or 1 by a small amount, due to the mutation-drift balance and this deviation in z820

may subsequently lead to a small difference in abundances as well. Thereby hindering a821

direct comparison between the numerically predicted density and the expected density.822

However, this means that we have to assess the stability of the equilibrium with respect823

to z separately. We did so, by changing the initial trait distribution. Instead of putting824

the full population in either the bin with z = 0 or z = 1, we put 99% of the population825

in the extreme bin and 1% in the adjacent bin. When z = 0, this corresponds to:826

n1,1(0) = 0.99N1(0) (S1.1)

n1,2(0) = 0.01N1(0) (S1.2)

n2,1(0) = 0.99N2(0) (S1.3)

n2,2(0) = 0.99N2(0), (S1.4)

and zero density in all other bins. When z = 1, bins 100 and 99 take the role of bin 1827

and 2 respectively. If the relative number of individuals in the extreme bin had increased828

at t = 100 compared to the initial value, the system was considered to be stable with829

respect to trait value.830

S1.2. Results831

The resulting figure (Fig. S1.1) confirms the findings from Fig. 8.832
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Figure S1.1: Regions in parameter space where spatial variation abundance and diversification of trait

values can occur. The shown regions are based on numerically evaluating the population dynamics around

the the asymmetric, equilibria that were obtained by intersecting the ellipses with trait value z = 0 and

z = 1 with the mirrored ellipses at both trait values (following equations 26) – (29).The white regions

correspond to areas where no spatial variation in N or z was predicted in the system or where the

predicted equilibrium was unstable or unreachable (negative N , or a nonzero imaginary part in N). The

black dots correspond to the parameter settings that were used in the top panels of Fig. 7. The results

in thsi graph numerically confirm the findings from Fig. 8.
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S2. Parameter space of the eco-evolutionary model including unstable equi-833

libria834
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Figure S2.1: Regions in parameter space where spatial variation abundance and diversification of trait

values can occur, including unstable equilibria. The shown regions are based on the properties of the

asymmetric equilibria obtained by intersecting the ellipses with trait value z = 0 and z = 1 with

the mirrored ellipses at both trait values (following equations 26) – (29). The values and stability of

these ellipses were calculated using Mathematica. Only the upper diagonal graphs are shown. The white

regions correspond to areas where no spatial variation in N or z was predicted in the system or where the

predicted equilibrium contained negative values. The black dots correspond to the parameter settings

that were used in the top panels of Fig. 7. The pixelated regions are due to the floating point precision

in calculating the imaginary part.
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S3. Additional example for the eco-evolutionary model835

Here, we show an additional example time series of the eco-evolutionary model. In this836

example, we have weakened selection by dividing both c5 and c6 by 10. In order to speed837

up selection in this example, we have increased the mutation rate µ to 0.05. All other838

parameters are as in Fig. 7. In this example, at both z = 0 as well as z = 1, the model839

has two equilibria, of which one is above Ncrit and the other below.840
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(a) (b)

(c) (d)

Figure S3.1: Example time series for the eco-evolutionary model. Different colors represent different

model runs where mutations were either present (µ = 0.05) or not (µ = 0) and that started with a

monomorphic population with either trait value 0 (z0 = 0) or 1 (z0 = 1). (a) Abundance time series, the

red and blue trajectories largely overlap for the first 2000 time steps, as do the yellow and orange lines.

(b) Corresponding mean trait values and the spread, shown as the regions in trait space that contained

95% of the individuals of each patch. For the scenarios without mutations (orange and red line), the

trait values in both patches completely overlap. For the scenarios with mutations the trait values in

the two patches diverge over time, regardless of the initial trait distribution. (c) Trajectories in phase

space. Also drawn are the isoclines at z = 0 (black) and z = 1 (grey). (d) Equilibrium densities for

monomorphic populations with trait value z. At any given value of z two branches exist, indicating the

two different densities that the two patches will tend to. In the background, the direction of selection at

any given density is shown, with red values referring to selection for smaller trait values and blue colors

to selection for larger trait values. The grey line corresponds to Ncrit, the density at which selection

vanishes. Parameter values: c0 = −0.148, c1 = 0.162, c2 = 1.262, c3 = −0.326, c4 = −1.034, c5 = 0.0194

and c6 = −0.03492.
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S4. Migration between patches841

Differences in abundance between patches can be evened out through migration. If the842

same proportion of individuals in both patches migrates to the respective other patch,843

the larger population will contribute more individuals to the smaller population and vice844

versa. Hence, the difference in abundance between the patches is expected to decrease and845

the smaller patch should be less likely to go extinct. Furthermore, migration may hamper846

trait diversification through recurrent inflow of genes that have emerged through a se-847

lection pressure elsewhere. It is therefore vital to see whether the diversity in abundance848

and trait values that emerged in our original model can be maintained under migration.849

Ecological model850

First, we adapt the purely ecological model to include migration:851

dN1

dt
= f(N1, N2) ·N1 +m · (N2 −N1), (S4.1)

dN2

dt
= f(N2, N1) ·N2 +m · (N1 −N2), (S4.2)

with m being the fraction of individuals in each patch that migrate to the other patch.852

The fitness function f is the same as the one used in the main text (equation 2).853
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Figure S4.1: Time series of abundance for the ecological model with different migration rates. Otherwise,

the parameter settings are as in the main text (see Fig. 4). The different colors correspond to different

initial conditions, with the saturation indicating the migration rate. The equilibria and ellipses are shown

for the case without migration.

We solved the model with migration numerically and compared the results to those854

without migration (Fig. S4.1). Migration increases the time it takes for the system to855

reach the asymmetric equilibrium (top left panel). Furthermore, migration affects the856

existence/stability and precise value of the equilibria (compare the red trajectories for857

m = 0 and m = 0.07 in the top panels). This becomes apparent when plotting the858

final abundances in both patches as a function of the migration rate (Fig. S4.2). At low859

migration rates, the two separate equilibria remain relevant. However, when the migration860

rate reaches a critical value (close to 0.10 for the depicted parameter combination), the861
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system always tends to a symmetric equilibrium. Note how in this case the density in862

the smaller patches increases faster with the migration rate than it decreases in the863

larger patch. As a consequence, the total population size increases as a function of the864

migration rate. This is a well-known effect that is caused by us not explicitly modelling865

the underlying causes for the density dependence (Wang and DeAngelis, 2019).866
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Figure S4.2: Final densities in the two patches in a numerical solution after the first 105 time steps as a

function of the migration rate. This was enough time for the system to reach the equilibrium. Results

did not vary among the three different starting conditions from Figure S4.1.

Evolutionary model867

In the evolutionary model, migration is included analogously; so for patch 1, the differ-868

ential equations become:869

w1,b =


dn1,b

dt = f(zb, N1, N2)n1,b − µn1,b + µ
2n1,b−1 +

µ
2n1,b+1 +m · (n2,b − n1,b) if 1 < b < 100

dn1,1

dt = f(z1, N1, N2)n1,1 − µ
2n1,1 +

µ
2n1,2 +m · (n2,1 − n1,1) if b = 1

dn1,100

dt = f(z100, N1, N2)n1,100 − µ
2n1,100 +

µ
2n1,99 +m · (n2,100 − n1,100) if b = 100

.

(S4.3)

In our approach, we treat m as a constant, such that migration is trait-independent.870

From numerical solutions of the evolutionary model with migration (Fig. 9), it becomes871

apparent that the difference in average trait value is far more sensitive to migration than872

the difference in abundance at the used parameter values: at m = 0.01, the two patches873
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still reach different abundances, but they no longer obtain different average trait values.874

Therefore, we show the final abundances of time series that were solved numerically875

for up to 104 time steps in two different graphs with different scales (Fig. S4.3). The876

differences in trait value disappear rapidly with increasing migration rates. This seems877

to be caused by the relatively large influx of individuals from the larger patch that are878

adapted to the density in their native patch, combined with a relatively low selection879

gradient. Interestingly, the effect of the migration rate depends on the mutation rate.880

This reflects that an increase in mutation rate affects the mutation-selection balance,881

causing the average trait value to shift away from the boundary values.882
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Figure S4.3: Final abundances in numerical solutions at time t = 105, which was enough time for the

system to reach equilibrium. The top and bottom half differ only in the range of migration rates that they

contain. Mutation rate was varied, but all other parameter values were the same as in the evolutionary

model in the main text.
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In constructing Figure S4.3, we have re-assigned patch identity afterwards based on the883

final density (the patch with the larger final density was assigned to patch 1). Otherwise,884

the lines would move back and forth between the two branches. That does mean however,885

that the branches no longer correspond to a specific patch.886
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S5. Individual-based simulations887

We tested the robustness of the results against demographic stochasticity with an individual-888

based model. This also allowed us to include diploid multi-locus genetics.889

Genetics890

Genetics were diploid and consisted of a 10-locus system with 10 alleles per locus. Alleles891

were inherited independently across loci (no linkage). Every locus, contributed a value892

between 0 to 0.1. When adding all 10 loci together, this led to the total trait value ranging893

between 0 and 1. The value of a locus was determined by averaging the value of its two894

alleles. The alleles themselves had evenly spaced values between 0 and 0.1. There were895

no factors other than genetics that affected the trait value.896

Finally, for every newborn, there was a probability µ that it obtained a mutation at one897

of its loci. If a mutation was determined to occur, the locus and the value of the target898

allele were drawn from a uniform distribution, independently of the original allele value.899

Fitness function900

We assumed non-overlapping generations and the fitness function only affected female901

reproduction. This is one of the deviations from our original model, where males and902

females were not distinguished. For a female in patch 1, with trait value z, the number903

of offspring was drawn from a Poisson distribution with mean:904

λ = 2ec0+c1D1+C2D2+c3D
2
1+c4D

2
2+c5z+c6zD1 , (S5.1)

with Di the density in patch i. If patch i has area Ai,905

Di =
Ni
Ai

(S5.2)

The factor of two in equation (S5.1) serves to compensate for the fact that males do not906

generate offspring. Instead, for every female that obtained offspring, the father of that907

clutch was randomly sampled among all males in the corresponding patch. Offspring908

were also born in the same patch, although in the model runs with migration, they had909
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a small chance to move to the other patch. Although this process actually corresponds910

to dispersal, we use the term migration throughout this supporting information, for911

consistence with the main text.912

Finally, we had to set an area for the patches. For all model runs, the area was equal in913

both patches (A1 = A2 = A). In the original model, the scaling of Ni was arbitrary, and914

Ni could also take non-integer values. In the individual-based model this is not possible.915

Here, Ni can only take integer values. Changing the size of the area allows us to alter916

the relative effect of demographic stochasticity, and thereby also the amount of genetic917

drift in the system. When the area is large, the same equilibrium density corresponds to918

a larger absolute number of individuals. Hence, demographic stochasticity is expected to919

have only a limited effect under these circumstances.920

Initial population921

The number of individuals in each patch was drawn from a normal distribution with922

mean N0 and standard deviation σ = 10. For each of the patches, the fraction of males in923

the initial population was drawn from a uniform distribution between 0.25 and 0.75. The924

number of individuals and the number of males were then rounded to the closest integer925

and applying the absolute value to avoid negative values (which rarely occurred because926

of sufficiently large N0). Next, the allele values at the loci were also randomly sampled927

from a uniform distribution: at every locus alleles were assigned, with equal probability928

for every possible allele.929

Runs and results930

Direct averaging of the replicates proved difficult, due to stochasticity making it im-931

possible to predict which of the two patches would become the high density patch. In-932

stead, we summarize the results qualitatively and show a few time series to illustrate933

the point. Throughout the simulation runs, we varied three parameters: m ∈ [0, 0.005],934

µ ∈ [0.1, 0.05], and A ∈ [100, 1000, 5000]. We tested all combinations of these parameter935

settings and ran 10 replicates for each combination, for a total 2 · 105 time steps. If one936

of the two patches went extinct, the simulation was stopped.937
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Figure S5.1: Summary of the runs from the individual-based model. Shown are boxplots that display

(a) whether a patch in the replicates went extinct (1) or not (0), (b) the time at which this happened,

(c) the difference in density between the patches at that point in time, and (d) the difference in average

trait value between the patches at the end of the simulation (2 · 105 or extinction time). The parameter

values of the fitness function were as in Fig. 7.

First of all, the results show a strong consistency across replicates, despite the presence938

of demographic stochasticity. This stochasticity leads to extinction in all cases where939

A = 100 (Figure S5.1(a)). Furthermore, this panel also show that the mutation rate, and940

hence the potential speed of adaptation, has a direct effect on whether the populations can941

persist. Comparing panel (a) to (b), shows that at lower mutation rate, extinction occurs942

after approximately 10% of the simulation time, indicating that short-term co-existence of943
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two patches with different abundances and trait value might be possible (as illustrated in944

Figure S5.2). Panel (a) also shows that extinction is less likely when migration is allowed.945

Migration has, however, only a very limited effect on the final difference in abundance946

(panel (d)). In agreement with the results from SI S4, migration strongly affects the947

possibility of trait adaptation (panel (d), and Figure S5.3). The situation that is closest948

to the deterministic evolutionary model that we presented in the main text consists of a949

large patch size that reduces the effect of demographic stochasticity, combined with low950

(no) migration and high mutation rates (for rapid adaptation). An example time series951

of this case is shown in Figure S5.4.952

0 500 1500

0
20

00
60

00

Time

N

N1

N2

0 500 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

z

(a) (b)

Figure S5.2: Time series run for one of the replicates with µ = 0.01, m = 0 and A = 5000.
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Figure S5.3: Time series run for one of the replicates with µ = 0.05, m = 0.005 and A = 1000.
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Figure S5.4: Time series run for one of the replicates with µ = 0.05, m = 0, and A = 5000.
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