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s Abstract

Population density affects fitness through various processes, such as mate finding and
competition. The fitness of individuals in a population can in turn affect its density,
making population density a key quantity linking ecological and evolutionary processes.
Density effects are, however, rarely homogeneous. Different life-history processes can be
affected by density over different spatial scales. In birds, for example, competition for
food may depend on the number of birds nesting in the direct vicinity, while competition
for nesting sites may occur over larger areas. Here we investigate how the effects of
local density and of density in nearby patches can jointly affect the emergence of spatial
variation in abundance as well as phenotypic diversification. We study a two-patch model
that is described by coupled ordinary differential equations. The patches have no intrinsic
differences: they both have the same fitness function that describes how an individual’s
fitness depends on density in its own patch as well as the density in the other patch.
We use a phase-space analysis, combined with a mathematical stability analysis to study
the long-term behaviour of the system. Our results reveal that the mutual effect that
the patches have on each other can lead to the emergence and long-term maintenance
of a low and a high density patch. We then add traits and mutations to the model and
show that different selection pressures in the high and low density patch can lead to
diversification between these patches. Via eco-evolutionary feedbacks, this diversification
can in turn lead to changes in the long-term population densities: under some parameter
settings, both patches reach the same equilibrium density when mutations are absent,
but different equilibrium densities when mutations are allowed. We thus show how, even
in the absence of differences between patches, interactions between them can lead to
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differences in long-term population density, and potentially to trait diversification.
s Keywords: eco-evolutionary dynamics, population density, diversity, Allee effect,

7 density-dependent selection

s 1. Introduction

o Population density affects many aspects of an individual’s life, such as resource competi-
10 tion (Nicholson, 1957), parasite prevalence (Patterson and Ruckstuhl, 2013) and various
11 aspects of the mating system, such as mate finding or competition for mating partners
12 (Gascoigne et al., 2009; Kokko and Rankin, 2006). These processes can in turn affect
13 lifetime reproductive success. For an individual it is thus advantageous to be adapted to
1 the density it experiences. For example, at high density, investing in resource competition
15 may pay off, whereas such an investment is futile when density is low. At low density,
16 it may instead pay off more to invest in mate finding (Berec et al., 2018; Gascoigne
1z et al., 2009). Such scenarios where the relative fitness of traits changes with density
1s  are referred to as density-dependent selection, a concept that has a long history (see
10 MacArthur and Wilson, 1967). Although density-dependent selection is challenging to
20 demonstrate (Travis et al., 2013), there are several clear examples. In a field population
21 of great tits, fast exploratory behavior appears to be favored at low density and slow ex-
22 ploratory behavior at high density (Nicolaus et al., 2016). In experiments on Drosophila
23 (Mueller, 1997; Mueller et al., 1991), populations were exposed to different densities, to
22 which they adapted, most likely through evolution. Adaptation to density has also been
2 demonstrated in moths (Plodia interpunctella), where males in an experiment adapted
26 their reproductive strategy to the density experienced as larvae (Gage, 1995). Adapta-
27 tion to density is also supported by observed patterns, such as the observed higher male
2s aggressiveness in fig wasp species that tend to occur at smaller densities where killing

20 another male yields the largest relative benefits (Reinhold, 2003).

0 An individual’s fitness can be affected by population density at more than one spatial

31 scale, a phenomenon we call multi-scale density dependence. Multi-scale density depen-
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32 dence should arise naturally if fitness is the result of multiple processes, e.g. occurring at
33 different points in the life cycle. For example, birds may compete for high-quality nesting
32 sites on a larger scale at the beginning of the breeding season, and then after settling
35 on a nesting site compete for food more locally within their neighborhood (Rodenhouse
s et al., 2003). The effect of density may even be inverted depending on the spatial scale
sz (Courchamp et al., 2008, box 2.7). For example, in arid vegetation, there is long-range
s competition for water, but also short-range faciliation because existing vegetation helps
30 to retain water (Rietkerk, 2004). Similarly, mussels compete for food but may also bene-
2 fit from a high local density, probably because it protects from waves (Gascoigne et al.,
an 2005). In dogwood trees, when a focal patch is exposed to cicadas, the per capita number
a2z of attacks decreases with the tree density in that patch. However, whether cicadas decide
a3 to attack that patch, also depends on whether larger, more preferable, patches of trees
2 are nearby (Cook et al., 2001). Individuals may thus be exposed to density effects at

«s different scales simultaneously.

s Here, we study how multi-scale density dependence affects spatial patterns of popula-
47 tion density and variation in traits under density-dependent selection. We explore the
as possibility of obtaining a stable state with high-density patches that are being inhabited
s mostly by individuals that have a high density niche and low-density patches inhabited
so mostly by individuals adapted to low density. It has formerly been shown that spatial
52 variation in density can emerge in homogeneous deterministic models, for example due
s2 to Allee effects (Gyllenberg and Hemminki, 1999), or due to the interplay of long-range
s3 competition either with small-scale facilitation (van de Koppel et al., 2005) or disper-
sa sal (Bolker and Pacala, 1997; Bolker, 2003; Sasaki, 1997). While these previous models
ss have focused on ecological dynamics, we also include evolution of a trait under density-

se dependent selection.

s The potential for adaptation to density is nontrivial because of the eco-evolutionary
ss  feedback loop (sometimes also referred to as eco-genetic feedback, Kokko and Lopez-
so  Sepulcre, 2007) that it is embedded in: while density may affect lifetime reproductive
so success, simultaneously changes in lifetime reproductive success also affect population
61 density. The study of adaptation to spatial variation in density thus requires taking into

sz account evolutionary and ecological processes simultaneously. So far, however, spatial
3
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es models concerning these feedback loops have mainly focused on dispersal (Govaert et al.,
e 2019). In our study, instead, we focus on the direct effect that patches can have on each

es oOther’s fitness.

es We evaluate the capacity of multi-scale density dependent fitness to generate and main-
ez tain long-term differences in abundances between patches. Specifically, the fitness of an
es individual in our model is affected not only by the local density, but also by the density
eo in a nearby patch. Such effects may emerge for example when a nearby patch attracts
7o predators, that then spill over to the focal patch. Our model also includes the possibility
7n  of positive density dependence, which may occur for example when the nearby patch is
72 attracting pollinators. By including traits into the model, we then study how subpopula-
73 tions can adapt to their local density. For a plant population, for example, the investment
7 into defenses against predators relative to the investment into attracting pollinators may
75 be subject to density-dependent selection. However, simultaneously, the trait affects the
76 density, thereby allowing for eco-evolutionary dynamics. We explore the conditions under
7z which such a model can lead to diversification. Here we focus on allopatric diversification,

ze that is, the evolution of different trait values in each patch.

7o 2. Methods & Results

so 2.1. Model overview

a1 We consider a population living in a habitat with two patches (Fig. 1). The patches may
sz differ in the population density and in the trait distribution of the inhabiting individuals,
s3 but are otherwise identical. In particular, we assume for simplicity that they have the
sa same area such that we can use density and population size or abundance interchangeably,
ss but note that the results do not depend on this assumption. We first consider an ecological
sse model where all individuals have the same trait value and there is no migration. We
sz assume multi-scale density dependence in the sense that fitness in a patch depends not
ss only on population density the patch itself, but also on the density in the other patch.
se Next, we consider an eco-evolutionary model where individuals differ in a trait under

90 density-dependent selection and eco-evolutionary feedbacks between population density
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Figure 1: Overview of the ecological and evolutionary processes in our model. Absolute fitness differs
between trait values and depends on density in the patch itself as well as on density in the other patch.
Because of this density-dependent selection, the relationship between traits and fitness differs between
patch 1 and 2. Absolute fitness then feeds back on population density but it also influences the evolution

of the trait distribution (eco-evolutionary feedback).

o1 and trait distribution emerge. Finally, we evaluate whether the outcomes are robust to

o2 the inclusion of migration, stochasticity, and multi-locus genetics.

o3 2.2. Fcological model

oa The population dynamics in the two patches are described by two coupled differential

os equations:

av,

g = SV, N2) - N, (1)
% = f(N2,N1) - No, (2)

se with N; the density in patch ¢ and f the per-capita growth rate or fitness function. Fitness
oz depends on the abundances in both patches and a set of coefficients ¢, (o € [0,1,2,3,4]):
f(N1,N2) = g+ ¢1 N1 + caNa + e3 N7 + c4 N3, (3)
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oo The coefficient ¢y represents the intrinsic growth rate in an empty habitat. The linear
10 coeflicients ¢; and co characterize the response to increasing density in the own and
101 other patch, respectively, while these densities are still low. The quadratic coefficients
102 c3 and ¢4 for response to the own and the other patch become increasingly important
103 as densities increase and thus determine the high-density behaviour of the system. In-
10 dividuals in this model experience density effects at two spatial scales. Density of their
105 respective own patch influences fitness via the second and fourth term, and density in
106 the respective other patch influences fitness via the third and fifth term. Both patches
10z behave equally and exchanging their labels would not affect the results. Note that our
10 model is mathematically speaking a special case of the model developed by Gerla and
100 Mooij (2014) for the interaction between competing species in a single patch. With this
10 different interpretation, their results are in line with parts of our results for the ecological

11 model, as discussed below in more detail.

112 By choosing the parameters ¢, , our model can represent various scenarios. Here, we focus
113 mainly on negative values for c3 and ¢4 to prevent populations from growing to infinity.

122 When only considering the effect of the ‘own’ density on fitness, e.g. in patch 1, and

0f1 %f1 _
' BNy aN? —

us  keeping the density of the other patch fixed = 0 when NV; = —2%3. Since 2c3,
116 this point is a maximum if ¢3 < 0. If ¢; is negative, the maximum is below zero and fitness
17z decreases with N; everywhere. If ¢; is positive, the fitness maximum will be at a positive
1s  value of N7. Below the abundance at the extremum, per-capita fitness increases with in-
110 creasing abundance. Hence, the system exhibits an Allee effect (Courchamp et al., 2008).
120 At high densities, above the density at the extremum, the relation is inverted and per-
121 capita fitness decreases with increasing abundance, representing for example increasing
122 resource competition or aggression. Depending also on the other parameters, the Allee
123 effect with positive ¢; might be strong with a negative per-capita growth rate at small
124 densities or weak with a reduced but still positive per-capita growth rate at small den-
125 sities (Courchamp et al., 2008). Similarly, when fixing the local density, fitness increases
126 with the density in the other patch below —2%4 and decreases with density in the other
12z patch above this value. Thus we can get either negative density dependence with respect

12s  to density in the other patch, or an analogue of a weak or strong Allee effect with respect

120 to the density in the other patch. Of course all combinations of density-dependence sce-
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130 narios with respect to the own and other patch are possible, thus accommodating many

131 different biological situations.

132 2.2.1. Equilibria

133 To determine the long-term spatial density patterns expected under this model, we com-
13« pute the equilibria of the system (1) and (2) and assess their stability. From equation 1
15 it follows that the density in patch 1 is at equilibrium when Ny = 0 or f(Ny,N2) =0
136 or both, and analogously for patch 2. The overall system is at equilibrium when in each
137 patch at least one of the conditions is met. Here, we focus on the cases where both patches
138 have nonzero density. Hence they must both have a fitness equal to 0 and thus both of

13e  the following conditions need to be fulfilled:

Co + 61N1 + CQNQ + 63N12 + C4N22 == 0, (4)

co + 1Ny + caNy 4 c3N3 + c4 N7 = 0. (5)

10 In the (N7,N2) phase plane, each of these equations corresponds to a conical section.
11 Under our standard assumption that c3 and ¢4 are negative such that populations cannot
142 grow to infinity, the isoclines are ellipses. The ellipse corresponding to the isocline of patch
13 1 is depicted in Fig. 2, including the equations for its center and its axes. Growth rates

14 are positive in the interior of the ellipse and negative outside the ellipse.

—Co 4 < + c3
N c3 4c3 4cycs
2

C2
264 T

Figure 2: Geometric representation of the isocline. Isocline properties depend on ratios between coeffi-
cients only. Due to the isoclines containing no multiplication of N; and N2, the axes of the ellipse are

parallel to the N1- and Na-axis.
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In general, two ellipses can have at most 4 intersections (Richter-Gebert, 2011), each of
which is a possible equilibrium of the system (Fig. 3). Because the population dynamics in
both patches are described by the same fitness function, the two corresponding isoclines
are each other’s mirror image through the line N; = Ns. Hence, if the ellipses do not
cross the diagonal line N7 = N,, they will not intersect and hence, there will be no
overall equilibrium, except for the one in which both patches are empty (Fig. 3 a). If one
ellipse crosses the line N1 = N5 in two points, due to the symmetry of the system, the
other ellipse will also intersect the diagonal and thereby the first ellipse at these points
(Fig. 3 b). On the diagonal there are thus either 0 or 2 intersections. However, whether
these intersections are meaningful depends on whether they lie in the positive quadrant,
since negative values for abundance are not biologically relevant. Hence, in addition to
the origin where both patches are empty, there can be 0, 1 or 2 biologically meaningful
equilibria on the diagonal. These equilibria are all of the type where both patches have
the same abundance. If the ellipses cross the diagonal, they can additionally intersect in
two, and only two, additional points away from the diagonal. Due to the symmetry of the
system, if a single intersection away from the diagonal exists, so must its mirror image
through the line N; = Ny. These cases, with 4 intersections, allow for the system to be
in an equilibrium with both patches having different abundances, even though they are

being governed by the same fitness function (Fig. 3 ¢).

@ y, PN

Figure 3: Possible number of intersections for two mirroring ellipses. This figure only illustrates the
isoclines where f; = 0, the isoclines for N; = 0 correspond to the x and y-axes and the ellipses can also

intersect these.

The values of the equilibria can be obtained by solving equations 4 and 5 simultaneously.
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1es  First, we subtract the two equations from each other and obtain:
(c1 — co)Ny + (c2 — 1) Na + (3 — c4)N12 + (eq — Cg)N22 =0, (6)
166 which can be rewritten as:
(c1 — c2)(N1 — Na) + (e5 — ¢4) (N1 + N3)(Ny — Na) = 0. (7)

1e7  'This can be factorized into a term depending on the difference between the abundances

1es  and a term depending on the total abundance:
(N1 = N2) ((e1 = €2) + (3 — ca) (N1 + N2)) = 0. (8)
160 This condition is fulfilled when either of the two factors is zero, that is if Ny = N5 or

C1 — C2

Ny + Ny =

9)

cs—Cyq
170 In the special case when c3 = ¢4, the second equilibrium does not exist. Here, we are most
11 interested in the second solution because it allows for equilibria where the two patches
172 contain a different density. We can now use this solution to eliminate Ny from equations

173 4 by setting No = — Ny — i;:ci and regrouping;:

C.

2

C1 — C C1 — C C1 — C

Cco — C2 ! 2+C4<1 2) +<Cl—02—|—264 ! 2>N1+(63+C4)N12=O. (10)
C3 — C4 C3 — C4 C3 — C4

172 We will solve this equation using the quadratic formula. Before we do so, we can slightly

€3—¢C4.

17s  simplify the higher order terms in the above equation by multiplying all terms with o

2
C3 — C4 C1 — Co (Cl — 02)
C C

— )N —¢)NE=0. (11
003+C4 203+C4 4(03—64)(03+C4)+(Cl ca)N1 + (3 = c) My (11)

17z This can now be solved using the quadratic equation:

—(c1 =) \/(01 —02)? = 4(cz —ea)(co BTt — T2 + o () )

c3+ca c3+cy cg—cq)(ca3+ca)

2(63 — C4) (712)

Ny =

17s  which can be written as:

_ 2 _ _ _ 2
—(c1 —ca) £ /B + 3 —2c102 — 4cg (CC33+CC“4) 1 dep @ iiﬁgi ) _ 4e, ((C;3+Cj4)) )

2(63 — C4) (13)

Ny =

9
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1o Some rearrangement of these terms allows this expression to be written as:

—(c1 — ¢2) £ /0= (—4co(c3 — ca)? + 3 (s — 3ea) + 2c1¢2(c3 + ca) + B(cq — 3c3))
(c3+ca)

N —
+ 2(cs —cq)

(14)

180 Since N, and N_ represent densities, they should both be positive. A necessary condition

1s1  to achieve this is for — Z; iz to be positive. This means that either ¢; > ¢o and c3 < ¢4
182 Or ¢1 < ¢ and c3 > ¢4. In most systems, c3 and ¢4 will be negative, to prevent explosive
183 population growth. For these systems, this necessary condition can be written as ¢; > ¢
1sa  and |cg| > |ca] or €1 < ¢ and |c3| < |eq]. If €1 and ¢y are both positive, the two equilibria
1ss  can thus only be meaningful when the stronger linear response in the fitness function is
1 coupled to the stronger quadratic response; that is, the positive density dependence at

17 low density and the negative density dependence at high density should both be stronger
1ss for the own patch or both be stronger for the other patch.

18 Note that the equilibria are constant under scaling: when all coefficients are multiplied
190 with the same positive constant, the equilibria are unaltered. This is in agreement with
101 the fact that the ellipses only depend on ratios between coefficients and not on their

102 absolute values (see Fig. 2).

103 2.2.2. Stability analysis

10a The stability of the equilibria can be obtained through the Jacobian matrix

Of(N1,N2)N1  9f(N1,N2)Ny

_ ONy ONo
J= Of(N2,N1)N;  8f(No,N1)Ny |’ (15)
ON, ON2
10s and hence
1) , 9 )
g [N Ny) Ny P Ny L) 16)
- 8f(Na,N 8f(Na,Ny ’
N2 f(oih 1) f(NQaN1)+N2 f(ajfb )

106 At the nontrivial equilibrium, f(Ny, No) = f(Na, N1) = 0 and thus:

Nl('?f(Nl,Ng) N 9f(N1,N3)

J= Ny PN ) (17)
N28f((]9V1\2/1N1) Nzaf(évﬁ,;]vl)

10
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107 If both eigenvalues of this matrix, evaluated at an equilibrium of interest, have a negative
10s real part, the equilibrium is stable. Using the quadratic formula to solve the corresponding
100 characteristic equation, we find the two eigenvalues:

N+ Mgl 1 ofy fs af, 0f, af, of,
As = 2 ) (Nl an, TV aNQ) NN GG AN, AN N g Ny

(18)
200 Here, we used the short-hand notation f; = f(Ny, N2) and fo = f(N2, Np). After rear-

200 ranging, we finally obtain

NS+ N 32 o f afy 0f
Ar = ) j[2 (N18N1 N28N2> NN N, (19

202 T assess stability, it suffices to check the eigenvalue with the largest real part. Since the
203 real part of Ay is greater or equal to the real part of A_, the condition for stability thus
202 becomes:

R(A;) <0 (20)

205 A mnecessary but not sufficient condition for this is:

dfr Af2
Ni—— + No—— <0, 21
N, T aN, 1)
206 OI:
Nl(cl + 263N1) + N2(01 + 203N2) < 0. (22)

207 We use equation 20 to evaluate the stability of the equilibria from equation (14) by setting
208 N7 = Ny and Ny = N_ (or vice versa). As noted above, these values remain the same
200 as long as all coefficients keep their relative values and sign. Furthermore, if the fitness
210 function is multiplied by a positive, real constant, the eigenvalues of the Jacobian matrix
a1 also scale with this constant and hence the stability does not change (multiplication by
212 a positive number does not affect the sign). Hence a temporally varying environmental
213 factor that acts by scaling the coefficients and hence the fitness function uniformly in both
214 patches, would not alter the equilibria nor their stability. Such environmental variation

215 may however change the basin of attraction of equilibria.

11
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216 2.2.3. Ecological model results

217 Fig. 4 (top panels) shows an example system where at equilibrium both patches can have
218 different densities. The left panel shows abundance time series, while the corresponding
210 phase space trajectories are shown on the right. The colors refer to initial conditions
220 (same color means same initial conditions). From the right panel it becomes clear that
221 all trajectories end on an intersection between two isoclines. However, the specific equilib-
222 rium that the system reaches depends on its initial values for V1 and Ns. The coefficients
223 in the bottom panels were equal to those in the top panels, but with the effects of ‘own’
22 and ‘other’ patch exchanged (¢ <> ¢o and ¢z <> ¢4). In this system, the equilibria where
225 the patches contain different nonzero abundances are unstable. Instead, one of the equi-
226 libria with equal abundance in both patches is stable. Furthermore, additional equilibria,

227 'where one of the two patches goes extinct, have become stable.

22s  The values of the coefficients determine which equilibria exist and which of these are
220 stable. With equations 14, 19 and 20, it is possible to calculate the equilibria for any set
230 of coefficients and evaluate their stability. The full parameter space is five-dimensional,
231 but we evaluated the equilibria and their stability only at two-dimensional cross sections
22 of that space (Fig. 5). Each cross section describes the effect of two of the coefficients,
233 whilst keeping the remaining three coefficients at their value from the top panels of Fig.
232 4. The figure shows that most parameter combinations do not lead to an equilibrium in
235 which both patches contain a different number of individuals. However, the region within
23s  which both patches may settle to different abundances is non-negligible. Small changes
237 in the coefficients around the values from Fig. 4 are therefore not expected to lead to

238 qualitative differences in the outcomes.

230 Above, we remarked that a necessary condition for the existence of meaningful asymmet-
220 ric equilibria is that the strength of the response to the other patch is stronger than the
221 response to the own patch in both linear and quadratic term, or weaker in both linear
222 and quadratic term. Here we have explored the parameter space around a point where
2a3  the other patch has a stronger effect and thus we observe stable variation in abundance
2ea when ¢ > ¢l (see 3rd row, 2nd column in Fig. 5) and when |c4| > |cg| (4th row, 4th

2es  column in Fig. 5). Exploration of the ¢1-¢o parameter space (4““ row, 15¢ column in Fig.

12
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2e6 D) reveals that stable spatial density variation should be possible also for cases where
2e7  increasing density in the own patch has a negative effect even at low density (¢; < 0).
2as  Time series and isoclines for a parameter combination in this region are shown in Fig.
200 6. In this example, both ¢; and ¢z are negative, meaning that there is no Allee effect
250 acting directly within the focal patch, although ¢y is still positive, leading to positive
251 effects of density in the other patch on the fitness in the focal patch at low density in the
252 other patch. Furthermore, all trajectories in this example converge to the asymmetric

263 equilibria, which turn out to be the only stable equilibria.

280 2.3. Eco-evolutionary model

265 Long-term differences in population density may lead to diversification in traits under
256 density-dependent selection, which may in turn affect the densities. In order to allow for
257 such eco-evolutionary feedbacks, we now include a trait, z, that takes values between
268 0 and 1. The trait affects the fitness through two additional terms: the first quantifies
250 a density-independent effect of the trait value on the fitness (c5z), while the second

260 describes a density-dependent effect of the trait value (cgzIV;):
f(Z,Nh NQ) =co+c1 Ny + caNy + C3N12 + C4N22 + c52 + cgzN7. (23)

261 Examples of traits whose fitness consequences are affected by density are investment in
262 attributes for fighting or pheromone production for mate finding. Note that in this model,
263 the selection on z changes with the density in the own patch, but not with the density

26a in the other patch.

2es  Now, not only the population size, but also the trait distribution matters. We track the
266 trait distribution by dividing the trait space into 100 discrete bins, with z; the trait value
267 of bin b and all the z, evenly spaced between 0 and 1. The total abundance in patch 1 is
268 simply the sum of the number of individuals in all size classes b in the patch:

100

Ny = Zn1,b~ (24)
b=1

200 The abundances n; change through reproduction, as described by the fitness function,

270 as well as through mutations. We treat mutations deterministically, such that individuals
13
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Figure 4: Example time series (a,c) and corresponding trajectories and isoclines in phase space (c,d).
Different colors correspond to different initial values. The parameter values used for (a,b) were: ¢g =
—0.148, ¢; = 0.162, c2 = 1.262, c3 = —0.326, and ¢4 = —1.034. The parameters for (c,d) were cg =
—0.148, ¢1 = 1.262, co = 0.162, c3 = —1.034, and ¢4 = —0.326. The bottom panels thus describe a

system in which the effects of the ‘own’ patch and the ‘other’ patch have been exchanged. The ellipses

also exchange identity, although their shape and intersection remain the same. The stability of the

equilibria did change however.
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Figure 5: Regions in parameter space where density variation in space can be stable. Only the upper
diagonal graphs are shown. Here, in the white regions, equation 14 returned equilibria with a nonzero
imaginary part. In the ‘No’ region, the obtained equilibria were real, but either unreachable (at least
one of them was negative) or the equilibria for N; and N2 were the same. Finally, there were cases
where the two equilibria were real, positive, and different. These cases were again subdivided in cases
where the equilibrium was stable (‘Yes’) and where it was not (‘Unstable’). The black dots correspond
to the parameter settings that were used in the top panels of Fig. 4. The white dot in the co-c; panel

corresponds to the parameter setting of c¢g and c¢; in Fig. 6.
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Figure 6: Example time series (a) and corresponding trajectories and isoclines in phase space (b). Dif-
ferent colors correspond to different initial values. The parameter values were: co = 0.31, ¢; = —0.148,

co = 1.262, c3 = —0.326, and cq4 = —1.034.

272 in bin b mutates away to either bin b — 1 or b+ 1 at a rate u. In the first and the last
272 bin, the trait value can only move in one direction, and accordingly, the mutation rate in
23 this bin is halved (4). The dynamics of this system are described by a set of differential

274 equations:

dnlwb

prani f(Zb, Ny, Nz)an — pnip + %nl,b_l + %’I’L17b+1 if 1 <b< 100

— dn .
Wi,p = dlt’l = f(Zl, Nl, Ng)nl’l — %nLl + %77,172 ifb=1 . (25)
dn .
=% = f(z100, N1, N2)n1,100 — 571,100 + 571,90 if b= 100

275 The equations for the second patch are analogous. This yields 200 coupled differential
276 equations, that we initially solved numerically using the package deSolve in R (R Core

a7 Team, 2018; Soetaert et al., 2010).

228 2.8.1. Equilibria

270 The numerically obtained equilibria were then compared to a direct calculation of the
280 equilibria when p — 0. For a given combination of Ny, ¢5, and cg, the fitness function

281 18 monotonic in z. If ¢5 + cgN1 > 0, larger trait values will be selected for (smaller trait

16


https://doi.org/10.1101/759415
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/759415; this version posted September 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

22 values if ¢5 + ¢gN1 < 0). We therefore hypothesize the average trait value of a patch
283 to end up at either boundary (0 or 1). Since population density and thus the direction
2sa  Of selection can differ between patches, the two-patch system can potentially have four

2ss  equilibria. We solved for the equilibria by solving the following four sets of two equations:

£(0, N1, N) = 0 and £(0, Ny, Ny) =0, (26)
F(1, N1, N) = 0 and £(0, N, Ny) =0, (27)
£(0, Ny, Ny) =0 and f(1,Na, Ny) =0, (28)
F(1, N1, Na) = 0 and (1, Na, Ny) = 0. (29)

2ss This procedure is equivalent to intersecting the two ellipses with z = 0 and z = 1 for the
287 first patch with the two analogous ellipses of the other patch in all 2 X 2 combinations.
2ss  The exception occurs when c5 + cg/N; = 0; in this case there is no selection on the trait
280 value and hence, the equilibrium has become independent of the trait value, and we
200 should still find it when z = 0 or z = 1. We used Mathematica to find the solutions for
201 equations (26) — (29).

202 2.8.2. Stabzlzty

203 Furthermore, we evaluated the stability, by calculating the dominant eigenvalue of the
20a  Jacobian matrix for the system of 200 differential equations. At each equilibrium of the

205 system, we compute the Jacobian

A; B
J= E (30)
Ba1 As
206  Wwith:
8w,~,,1 87117;’1 8w7~,,1
67117;,1 6714;12 e 67”‘100
Ow; 2 Ow; 2 Ow; 2
A; = 371.1',1 ong 2 T 3"1'.,100 7 (31)
Ow;i 100  Owi, 100 Odw; 100
ong 1 on; 2 T 9N 100

17
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207 and
me (r“)’wriyl me
aan a’njyz e 8nj’100
Ow; 2 Owi 2 Ow;,2
onj1 Onj2 7T 9njio00
B,; = . _ ) : (32)
Ow;i 100 Owi 100 Qw100
B?’Ljﬁl an;‘» e an‘wo

208  When estimating the actual stability of an equilibrium, we set the mutation rate to 0.
200 The reason is, that with a nonzero mutation rate, the final trait distribution will not be
300 monomorphic at either z = 0 or z = 1, due to the selection-mutation balance. However,
so1  this slight mismatch may also affect the value of the equilibria. To circumvent this issue,
302 we evaluate the stability in the limit 4 — 0, where the mutation-selection balance is also
303 expected to be fully favoring selection. Finally, we confirmed the stability metrics using

30 numerical solutions to the system of differential equations, as presented in SI S1.

305 2.3.3. Eco-evolutionary model results

306 Fig. 7 shows time series generated by the model with traits included. Initially, the pop-
307 ulations were monomorphic, with all individuals having a trait value of either z = 0 or
s0s 2z = 1. When the initial trait value in the population was z = 0, both patches reached very
s00  similar equilibrium population density, regardless of mutation rate (red and blue lines).
a0 Hence, the system allows for stable spatial density variation even without variation in
su trait value. In contrast, when starting with a monomorphic population with trait value
a2z = 1, the presence of mutations qualitatively affected the population dynamics (orange
a1z and yellow lines). In the absence of mutations, both patches reached the same density
a1e  (orange line). With mutations, however, the system reached a final equilibrium in which
s1s both patches contained a different number of individuals, as well as different trait dis-
a6 tributions (yellow lines). In this case the system was thus governed by eco-evolutionary

a1z feedbacks.

s1s  In the region of parameter space explored here, simultaneous maintenance of variation
310 in abundance and diversification of trait values depends strongly on the values of the
320 parameters ¢g to cg. In Fig. 8, we again varied two parameters at a time while keeping
321 the others constant at the values in Fig. 7. We divided the parameter space into regions

322 with at least one stable equilibrium with variation in both z and N, regions with no
18
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Figure 7: Example time series for the eco-evolutionary model. Different colors represent different model
runs where mutations were either present (u = 0.01) or not (1 = 0) and that started with a monomor-
phic population with starting trait value zo either 0 or 1. (a) Abundance time series. The red and blue
trajectories largely overlap for the first 2000 time steps, as do the yellow and orange lines. (b) Corre-
sponding mean trait values and the spread, shown as the regions in trait space that contained 95% of
the individuals of each patch. For the scenarios without mutations (orange and red line), the trait values
in both patches completely overlap. For the scenario with mutations starting at z = 1 (the yellow lines),
initially the lines in both patches overlap, but around time 2500, the trait values in the two patches start
to diverge. (c) Trajectories in phase space. Also drawn are the isoclines at z = 0 (black) and z = 1 (grey).
(d) Equilibrium densities for monomorphic populations with trait value z. On the left side of the graph,
at any given value of z two branches exist, indicating the two different densities that the two patches
will tend to. In the background, the direction of selection at any given density is shown, with red values
referring to selection for smaller trait values and blue colors to selection for larger trait values. The grey
line corresponds to the density at which selection vanishes. Parameter values: ¢o = —0.148, ¢; = 0.162,

cg = 1.262, c3 = —0.326, c4 = —1.034, ¢5 = 0.194 and cg = —0.3492.
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323 stable joint variability but with the possibility of stable variation in N. We also looked

324 for regions with the possibility of stable variation just in z but did not find any.

325 Simultaneous trait diversification and variation in abundance exists and depends critically
326 on the ratio between c; and cg. As noted above, the selection gradient vanishes when
327 ¢5 + cgIN1 = 0. This happens at the critical density N = —z—g. Above and below this
328 threshold, selection acts in the opposite direction. If one of the two patches of a system is
320 below N and the other above, the trait value will diverge between the patches. In the
330 example shown in Fig. 7, N = 0.56. Given the sign of ¢5 (positive) and c¢g (negative)
331 that we used, evolution in patches with a density below 0.56 is towards higher values of
332 2, while patches with a density above 0.56 tend towards lower values of z, as indicated by
;33 the grey line and color gradient in Fig. 7(d). However, if ¢5 and ¢g would have the same
s3a sign, Ney would be negative, and both patches will always have a density higher than
335 Neit. In this case the direction of evolution is density-independent and only depends on
336 the sign of ¢5 and ¢g. This is visible in the top right panel in figure 8, where all regions of
337 stable trait variation lie in the quadrants where c; and cg have the opposite sign. When
338  altering only c5 or cg, but not the other, stable coexistence can only occur when the sign
a3 of the coefficients does not change (the first five columns of the two top rows in Fig. 8).
a0 The importance of the ratio between c¢5 and cg is further stressed in the topright panel
sar  in Fig. 8. If the regions with stable variation in both trait value and abundance would
a2 be determined by the effect of ¢5 and cg on Nt only, we would expect the region to
a3 be demarcated by two straight lines through the origin in the cs, cs-panel. However, the
saa values of ¢; and cg not only affect N, but simultaneously the values of the equilibria,
sas  which is why the actual regions for stable variation in trait value and abundance deviate

sas  somewhat from the area between the imaginary straight lines through the origin.

saz  Compared to the ecological model, ¢5 and ¢4 introduce a linear trait dependence to ¢y
sas  and cj respectively. In Fig. 8, this is visible in terms of a strong negative relation between
a0 ¢p and cs as well as ¢; and ¢g for cases where long-term variation in N can be maintained,
0 visible as a turquoise diagonal band in the upper left quadrant of the ¢y, c5 and the ¢, cg
51 panels. Similarly, also for the region where variation in both z and N can be maintained,

2 larger values of ¢; allow for more negative values of cg.

20
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Figure 8: Regions in parameter space where spatial variation in abundance and diversification of trait
values can occur. The shown regions are based on the properties of the asymmetric, equilibria obtained
by intersecting the ellipses with trait value z = 0 and z = 1 with the mirrored ellipses at both trait
values (following equations 26) — (29). The values and stability of these ellipses were calculated using
Mathematica. Only the upper diagonal graphs are shown. The white regions correspond to areas where
no spatial variation in N or z was predicted in the system or where the predicted equilibrium was
unstable or unreachable (negative N, or a nonzero imaginary part in N). Note that even in regions with
stable density variation and or trait diversification it may depend on the initial conditions whether such
an equilibrium is attained or not. The black dots correspond to the parameter settings that were used
in the top panels of Fig. 7. In SI S2, the same figure, but including the unstable regions is shown, while

in SI S1, a numerical verification of these results is shown.


https://doi.org/10.1101/759415
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/759415; this version posted September 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

s As for the lower four rows in the graph, the regions where variation in abundance can
s occur together with trait diversification, are generally a subset of the regions in Fig.
sss b where variation in abundance was long-term stable. The values for cy—c4 that were
s used to produce the parameter space figure of the evolutionary model were identical to
37 those used for the parameter space figure of the ecological model. If z were kept to 0 in
s the evolutionary model, we would retain the ecological model. However, visually, from
30 Fig. 5 and 8 it seems that the possibility of the trait to evolve to a value of 1, in our
30 specific model, seems to largely divide the regions where stable variation in abundance
se1  can occur into those where this can happen together with trait diversification and those
se2  without, without changing the general shape of these regions. Furthermore, for our focal
3e3 parameter combination at least, inclusion of trait evolution produced a few novel regions

sea  where stable variation in /N can be maintained.

ses  2.4. Migration

s3es 10 explore the robustness of our results to migration between patches, we included mi-
se7  gration terms into both the ecological and eco-evolutionary model. We assume that each
ses individual migrates to the respective other patch with a rate m, independently of the
3e0 current population density or the individual’s trait value. Detailed methods and results
s7o  are described in SI S4. In brief, we find that our results on the emergence of spatial den-
s;1 sity variation and trait diversification are robust to small amounts of migration between
372 patches. With increasing migration rate, spatial heterogeneity decreases and eventually
s7s  breaks down, first for traits and then for densities. In the example in Fig. 9, the smallest
74 non-zero migration rate leads to both spatial density variation and trait variation, as
375 in the model without migration. An intermediate migration rate still allows for spatial
376 density variation, but trait variation disappears. And for the highest migration rate, both

377 population densities and traits become homogeneous in space.

sze 2.5, Individual-based models

s7o  In order to test how the results change in the presence of multi-locus genetics, as well

ss0  as demographic stochasticity, we repeated parts of the analysis with an individual-based

22
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Figure 9: Time series from numerical solutions of the eco-evolutionary model with migration (see S4 for
details) and an initial trait value zg = 0.5. The other parameter values are the same as in Fig. 7. The
shaded regions in panel (b) show the region in trait space that contains 95% of the population of each
patch. For migration rates 0.01 and 0.1, both patches reach the same final average trait value; these lines
completely overlap. When migration is absent, a high average trait value is reached in the low density
patch. For m = 0.001, a high average trait value is still achieved in the low density patch, although
the large shaded region implies that the patch also contains a non-negligible fraction of low-trait value
individuals. With increasing migration rates, first the adaptation disappears (light blue lines and shaded
regions overlapping with the blue line and region in panel b) and when m = 0.1 even the difference in

abundance between the patches disappears.
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ssn model (IBM, see SI S5 for details). With appropriate parameter choices, spatial density
ss2  variation and trait diversification did occur in the individual-based model. An additional
ss3  parameter in the IBM was patch area. With small patch area, patches could accom-
s« modate few individuals and demographic stochasticity was strong, leading to frequent
sss  extinctions. With large patch area, the number of individuals was larger in total, there
sss  was less demographic stochasticity and the results were more similar compared to the

sz deterministic model.

sse 3. Discussion

sso  In this study, we have explored the ecological and eco-evolutionary consequences of multi-
30 scale density dependence where an individual’s fitness depends not just on population
se1  density in its own patch but also on the density in another patch in the region. We
302 have shown that multi-scale density dependence may lead to the emergence and stable
ses  maintenance of spatial variation in population densities in an otherwise homogeneous
sea environment and to the diversification of traits under density-dependent selection. That
ses 18, without any extrinsic heterogeneity, different niches emerged in the population, with
ses some individuals being better adapted to low-density situations and others to higher
se7  density. We also observed how spatial density patterns and trait variation influenced
s3es  each other through eco-evolutionary feedbacks. Specifically, we have shown a case where
30 spatial density variation arose only when traits were allowed to evolve. Our model thus
a0 emphasizes how eco-evolutionary feedbacks can qualitatively affect both trait and popu-

w01 lation dynamics.

w02 3.1. Formation of density patterns in space

s03 In nature, spatial variation in population density between patches or subpopulations of
w04 the same species is ubiquitous. Our study highlights one possible mechanism that can
s0s produce or contribute to spatial density variation. A variety of other mechanisms exist.
w0s Firstly, evidence from natural populations suggests, that abiotic or biotic environmental
w07 conditions, such as temperature, climatic stability, precipitation, or food availability are

s0s  key drivers of variation in density (Santini et al., 2018). Observed spatial variation in
24
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w00 density can, however, also simply be caused by stochasticity, although such variation will
a0 N0t be stable over longer time scales. Finally, there are explanations that require neither

a1 extrinsic heterogeneity, nor stochasticity. Our study falls in this last category.

a1z Many models from this last category (e.g. Bolker and Pacala, 1997; Bolker, 2003; Sasaki,
a1z 1997) focus on the interplay between random, undirected dispersal in some local neigh-
a1a bourhood, and intraspecific competition with other individuals in some competition
a5 neighbourhood. If typical dispersal distances are small relative to the spatial scale of
a1 competition, clusters of high population density can form. Similar to our model, these
a7 models also require some degree of non-local competition for pattern formation. Sta-
ais ble density variation can also emerge as the product of dispersal directed towards high
410 population density (see e.g. Ellis et al., 2019), the interplay between small-range facilita-
420 tion and long-range resource competition (van de Koppel et al., 2005), interactions with
421 other species, such as reproductive interference (Ruokolainen and Hanski, 2016), host-
422 parasitoid or -parasite interactions (Boots and Sasaki, 2000; Hassell et al., 1994), and
s23  interspecific competition acting over a smaller spatial scale than intraspecific competition

a2e  (Murrell and Law, 2003).

425 Other studies have considered Allee effects as a key ingredient for the emergence and
«2s maintenance of spatial heterogeneity. For example, Gyllenberg and Hemminki (1999)
a2z showed how Allee effects caused by mate-finding difficulties together with non-local com-
428 petition can lead to stable density differences between patches, even with nonzero migra-
420 tion. Their model is similar to our ecological model, except we did not explicitly model a
a0 specific Allee effect. Another study has shown how Allee effects can cause a population
a1 to be completely absent from some areas while being present in others, thereby limiting
432 the spread of an invasive species (Keitt et al., 2001). Spatial heterogeneity in the sense of
433 presence-absence variation can also be explained by metapopulation models (as first de-
a3 veloped by Levins, 1969), but since each patch in a metapopulation experiences recurrent

435 extinction and recolonization events, density patterns will not be stable over time.

a3 More generally, all population models with alternative stable states can generate sta-
w37 ble spatial heterogeneity in population density under appropriate initial conditions and

w38 with sufficiently small migration between locations. But without feedbacks between the
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a3 patches, i.e. multi-scale density dependence, symmetric situations would always be as
a0 stable as asymmetric situations. Our model allows for situations where asymmetric den-
«a1  sities are the only stable equilibria at which the species can exist (see for example Fig. 4

442 tOp, Flg 6)

w3 3.2. Maintenance of trait variation and relation to other coexistence mechanisms

saa In our eco-evolutionary model, a necessary but not sufficient condition for the mainte-
a5 nance of trait variation is the simultaneous maintenance of spatial variation in population
ae  density (see Fig. 8). Under appropriate parameter combinations, stable trait variation
w7 emerges with a high-density specialist dominating in the high-density patch and a low-
ws  density specialist dominating in the low-density patch, essentially a case of local adapta-
w0 tion (see Fig. 7). At equilibrium, there is still a very small amount of within-patch trait

w0 variation around the optimal trait value due to mutation-selection balance.

w1 Chesson’s coexistence theory is a powerful framework to understand and classify coexis-
a2 tence mechanisms under spatio-temporal heterogeneity (Chesson, 2000). Yet, the coex-
w3 istence between a high-density specialist and a low-density specialist in our model does
ssa N0t appear to fit straightforwardly into this framework. Because we have two types and
s two limiting factors, e.g. the densities in the two patches or functions of them, we do
w6 nNot seem have one of the cases where invasion growth rates can be cleanly partitioned
47 into contributions from fluctuation independent frequency-dependence, storage effects,
ass  relative nonlinearity etc. (Barabas et al., 2018). Instead, we here provide an intuitive

a0 reasoning for how mutual invasibility and coexistence are achieved in our model.

a0 Mutual invasibility and therefore stable coexistence of a high-density specialist and a
w1 low-density specialist can be achieved in two ways in our eco-evolutionary model. The
42 first scenario is that each strategy produces spatial variation in density on its own and the
a3 high-density specialist can invade the high-density patch of the low-density specialist and
s the low-density specialist can invade the low-density patch of the high-density specialist.
a5 This scenario is illustrated by the example in Fig. S3.1. The second scenario is that
w6 the low-density specialist on its own has the same density in both patches, a density
w7 that allows the high-density specialist to invade, and the high-density specialist produces
26
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ss  spatial variation in density such that the low-density specialist can invade the less dense
a0 patch. This is the scenario in Fig. 7. If neither the high-density specialist nor the low-
a70  density specialist have spatial variation in density on their own, mutual invasibility does

471 not appear possible in our model.

a2 To our knowledge, the role of multi-scale density-dependent selection in the maintenance
a3 of polymorphism has not been investigated before. Engen and Seether (2019), however,
s7a  showed that density-dependent selection can affect spatial trait patterns in a model with
475 dispersal and temporal environmental heterogeneity. Also, there is previous work on how
a76 the spatial scale of density regulation in patchy landscapes affects the maintenance of
477 polymorphism (Ravigné et al., 2004). If density regulation happens locally after selection,
a7s  this is called soft selection (Levene model, Levene, 1953). If density regulation happens
a7 globally, this is called hard selection (Dempster model, Dempster, 1955). In soft-selection
a0 models, population densities are usually not affected by selection or migration, whereas
s in hard-selection models they may be affected (Lenormand, 2002). It has been shown
a2 that compared to hard selection, soft selection is more conducive to maintenance of
483 polymorphism in response to environmental heterogeneity (e.g. Ravigné et al., 2004).
asa More recently, also mixtures of hard and soft selection have received attention (De Meetis
s and Goudet, 2000; Débarre and Gandon, 2011). The environmental heterogeneity in
a6 these studies, however, was assumed to be unrelated to population density. In our model,
a7 selection and density-regulation cannot be clearly separated and thus our model does
«ss 1ot fit perfectly into the hard-selection/soft-selection framework. It shares more aspects
as0  with hard-selection models, most importantly that fitness influences absolute number of
a0 offspring and population densities, but there are also many additional aspects in our

w01 model like Allee effects and feedbacks between density and selection.

w02 3.3. Migration and stochasticity

403 As described in section 3.1 and SI S4, migration (and dispersal) can have profound
s0a effects on the maintenance of variation in abundance. Like our ecological model, our
45 evolutionary model is also robust against small amounts of migration (Fig. 9 and SI
ws S4). However, with increasing migration rates, the accompanying gene flow between the

407 patches hampers adaptation through gene swamping (Lenormand, 2002). This effect is
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w8 expected to be particularly strong when the difference in abundance between the two
a0 patches is large, and a disproportionately large number of individuals migrate from the
soo larger to the smaller patch. In a system where the patches have more similar abundances,
so1  gene swamping is thus expected to have a smaller effect, although the evolution of density-
so2 dependent traits would also be slower due to a weaker selection gradient. At higher
so3 Migration rates, migration hampers not only adaptation, but even leads to the system
soa reaching an equilibrium in which both patches have the same abundance. We thus only
sos  see negative effects of migration on long-term differences in abundances and trait values

sos between the two patches in the deterministic models.

sz Several pathways exist through which migration (or dispersal) can have positive effects
ses on local adaptation. Specifically for evolution, trait-dependent migration can lead to
soo  trait diversification. Homogeneous migration may also aid adaptation, for example by
s10 resupplying alleles that have been lost to drift (Blanquart et al., 2012), or by preventing a
s11 patch from going extinct, leading to more time for an adaptation to spread (Gomulkiewicz
sz et al., 1999). In our deterministic model, these effects do not play a role because migration
s13 1S unstructured, and alleles can always re-emerge. When demographic stochasticity is
s1.e included, as in our individual based model (SI S5), migration can have positive effects
s1s  on diversification. In those model runs, migration counteracted stochastic extinctions of
s16  the smaller patch for long enough, such that adaptation to low density could take place,
si7 - similar to the effect described by Gomulkiewicz et al. (1999). This effect disappears when
s1s  the absolute number of individuals increases, thereby weakening the effect of demographic

s10  stochasticity on population level processes.

s20  Stochasticity may also promote trait diversification regardless of migration. Due to the
s22 symmetry in the deterministic model, if the two patches have the exact same initial
s22  abundance and trait distribution, they cannot diverge over time. In such cases, small
s2s  amounts of (demographic) stochasticity may lead to small differences between the patches
s2a  that are then amplified by the internal model dynamics, leading to variation in abundance

s2s  as well as trait diversification.
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s26  3.4. Interpretation and applications

s2z Our model assumes that density dependence plays out on more than one spatial scale.
s2s  Such multi-scale density dependence should be common because an individual’s fitness
s20 depends on many different processes and factors, such as juvenile survival, protection
s30  from disturbances, resource competition, mate finding, competition for mating partners,
ss1 reproduction, interactions with other species etc., which will generally occur over different
s2  spatial scales (see e.g., Cook et al., 2001; Gascoigne et al., 2005; Rietkerk, 2004). However,
533 not all forms of multi-scale density dependence will lead to spatial variation in population
s3a  densities and trait diversification. In our model, when there is positive density dependence
s3s  at low density at both scales, spatial density variation can only be stable if the positive
s36  effects of conspecifics at low density and the negative effects at high density are either
s37  both strongest for the own patch or both strongest for the other patch. However, even
sss  then, not all parameter choices lead to stable density variation (compare Fig. 4(a) to (c)).
s3s  Moreover, in almost all our examples with stable variation ¢; < ¢y with a positive c; and
sa0 1 being either negative or positive, suggesting that facilitation from the other patch
sa1 1S more important for density and trait variation than facilitation by individuals in the
sa2  same patch. However, we can currently not generalize these claims for all of parameter

543 Space.

saa  The requirements for stable density variation and trait diversification could be fulfilled
sas  for example in plant-pollinator systems where plants grow in two patches but pollinators
sas are more mobile and can visit both patches. A focal plant patch may benefit from a
saz small nearby patch, by guiding pollinators to the focal patch. However, when density in
sas  the nearby patch gets too large, pollinators may instead choose to spend most of their
sa0  time at that nearby patch. Simultaneously, within the focal patch, high density may lead
sso  to higher resource competition, while low densities may make the patch difficult to find
ss1 for pollinators. When these processes lead to asymmetric abundances across the patches,
ss2  this in turn affects the optimal investment that plants should make in competitive ability.
ss3 ' L'his long-term difference can then lead to the emergence of trait variation. Evolutionary
ssa  processes can also affect the abundances of the system, and can lead to a shift from a
sss  symmetric to an asymmetric equilibrium in abundances and subsequently to adaptation

sse  in density.
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ss7 ' The patches in our model can also be interpreted in terms of social groups rather than lo-
sss cations, such as bark beetles attacking a tree (Raffa et al., 2008), or cooperative breeders.
sso  Similarly, the two groups can also be interpreted in terms of two competing (identical)
seo  species in a single patch, as modelled by Gerla and Mooij (2014). Although we had orig-
se1 inally not thought of this interpretation, it turns out that mathematically, the model
sz described by Gerla and Mooij (2014) is nearly equivalent to the ecological version of our
ses  model without evolution and migration. They find the same equilibria and shapes of the
sea isoclines, but do not fully assess the stability of the asymmetric equilibria. Interestingly,
ses  Gerla and Mooij (2014) also mention plant-pollinator dynamics as a biological example,
ses noting specifically the similarities between their system and the plant-pollinator model
sez by Lutscher and Iljon (2013). A similar interpretation could be applied to our study
ses as noted above. However, our study differs by focusing on spatial dynamics, deriving a
seo  direct equation for the stability of the unstable equilibrium, and by also evaluating the

s7o  effects of trait evolution, migration and stochasticity.

s71 The actual occurrence of the here-described eco-evolutionary effects require empirical ev-
s72  idence. It is currently unclear whether the sets of coefficients that allow for spatial density
sz variation and trait diversification occur in natural populations. The fitness coefficients
sza could empirically be estimated by evaluating how the fitness in one patch varies when
s75  its density and the density of a nearby patch are manipulated. Alternatively, one could
s76  experimentally test predictions of our model. In our model, if an asymmetric equilibrium
s77  with one patch at high density and one patch at low density is stable, the mirrored sit-
s7s  uation with the respective other patch at high or low density should also be stable. Our
s7o  model thus predicts that if one manipulated a system with asymmetric densities, for ex-
sso ample by adding individuals to one patch and removing individuals from the other patch,
ss1  the system should eventually shift from the basin of attraction of one asymmetric equi-
ss2  librium to the other asymmetric equilibrium and stay there. By contrast, if the spatial
sss  density variation is due to extrinsic environmental differences, the system should return
ssa  to the original equilibrium. Once it has been established that the system is ecologically
sss capable of reaching asymmetric abundances, experimental evolution may be attempted.
sss  Although such experiments are challenging, testing the effects of eco-evolutionary dy-

se7  namics can and has been done, for example by frequently replacing individuals in an
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sss  experimental population by wildtype individuals from a stock population, thereby dis-
sso  abling the evolutionary part of the feedback loop and comparing such a population to a

seo  population where evolution is allowed to take place (e.g. Hart et al., 2019).

se1 3.5, Limitations and future work

se2  We assumed a homogeneous environment, which may be unrealistic for most natural
ses  populations. Whether the effects described here are of importance when the environment
sea 18 heterogeneous remains to be investigated. This could be evaluated through a model
sos that also incorporates environmental heterogeneity for example through an additional
se6 term in the fitness function. Depending on the spatio-temporal pattern of environmental
se7 variation, many different model behaviors may be possible. We expect, however, that our
ses  results will be robust to some degree of environmental heterogeneity. Even if the patches
seo are slightly different in their properties, the eco-evolutionary feedbacks described here
soo should still act and while it might be more likely for the patch with slightly better en-
so1 vironmental conditions to become the high density patch, depending on the starting
s02 conditions it may also be the other way around if the eco-evolutionary feedbacks are
eo3 strong enough. The phenomena described here could also amplify the effects of envi-
s0a ronmental heterogeneity on spatial density variation. This interplay between intrinsic
eos and extrinsic factors for the maintenance of eco-evolutionary variation is a promising

e0s direction for future research.

s Temporally strongly varying environments may favor plastic rather than evolutionary
s0s responses: phenotypic plasticity could allow an individual to cope well with the different
e0o environments that it will experience over its life time. In our model, the environments
e10 that individuals and their offspring encounter critically depend on the migration rate
e11 and we would expect phenotypic plasticity to be favorable when the migration rate
e12 18 small enough for spatial density variation to persist, but too large for evolutionary
e13  trait diversification. Generally, whether plasticity can evolve depends on the costs and
e1e limits of the plasticity (DeWitt et al., 1998), such as the degree of unpredictability of
e1s  the future environment (Reed et al., 2010), in conjunction with the migration rate and
e16 the accuracy of the plastic response (Sultan and Spencer, 2002). The precise conditions

e1z  should be explored in future extensions of our model.
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e1s  Another potential key factor that determines the model behaviour is the spatial struc-
e10 ture. We have investigated a model with a particular, very simple spatial set-up: two
e20 patches that mutually affect each other. An important direction for future work is to
e21 investigate how the eco-evolutionary dynamics explored in this study play out in other
s22 spatial settings, for example landscapes with more than two patches, or continuous space.
e23 In such scenarios, individuals could respond to spatial density variation in multiple ways,
s2a €.g. to the density in their own patch or neighborhood and to the density in the rest of
e2s the landscape, or separately to the densities in each patch, or as defined by a kernel based
s2¢ on distance. In continuous-space models, local dispersal is another mechanism that could
e27 interact with multi-scale density dependence to promote spatial variation in density. We
e2s speculate that at larger scales too, multi-scale density dependence may promote density

s20 and trait variation, although this needs to be confirmed with additional models.

630 Individuals in our model differ in just one trait and the fitness effects of this trait depend
e31  on just the population density in the individual’s own patch, even though fitness itself
e32 is affected by density on multiple scales. Future models could incorporate traits that
633 are involved in density-dependent processes at a larger scale and whose fitness effects
e3a therefore depend on the density in the other patch or on total density. We speculate
e3s that similar eco-evolutionary feedbacks as we reported here would act in this case, which

e3¢ should also allow for the maintenance of trait variation under appropriate conditions.

637 Although much remains to be investigated, we argue that multi-scale density dependence
e3s 1S a common, potentially very important phenomenon in evolutionary ecology. Based on
e3s many empirical examples (see e.g., Cook et al., 2001; Gascoigne et al., 2005; Rietkerk,
es0  2004) and the argument that fitness depends on multiple biological processes that will
sax  generally not play out at exactly the same spatial scale, we expect that multi-scale density
sa2 dependence will be the rule rather than the exception. More generally, when studying
ea3 natural systems, the outcome may depend on the, sometimes arbitrarily, chosen spatial
eas  scale over which the study is conducted (Kareiva, 1990; Murphy, 1989; Ray and Hastings,
ess  1996; Snyder and Chesson, 2004) and multi-scale density dependence could contribute to
sss  explaining some of these inconsistent results. Finding relevant literature and synthesizing
eaz information on multi-scale density dependence is, however, made difficult by the lack of

eas  clear terminology for this phenomenon. Because of its important ecological and eco-
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eas evolutionary consequences which we highlighted in this study, we argue that multi-scale

eso density dependence should receive more concentrated research attention.

1 4. Conclusion

es2  Our study shows how in two mutually affecting patches, long-term abundance differences
es3 can emerge, even in the absence of external differences between the patches. Furthermore,
esa we have shown how selection can lead to phenotypic diversification in traits. Because of
ess eco-evolutionary feedbacks, the inclusion of mutations can lead to both ecologically and
ess phenotypically different outcomes. Our study serves as a proof-of-concept, which we
es7 hope will inspire empirical validation and contribute to our understanding of possible

ess mechanisms through which spatial variation in density and traits may emerge.
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72 7. Supporting information

7es  S1. Numerical verification of the parameter space of the evolutionary model

7ea The results in Fig. 8 were based on the Jacobian and the equilibrium values returned
zes by Mathematica. However, these results are subject to the numerical precision of the
76 computer, which is why we assumed imaginary parts of the equilibria smaller than 10~16
7oz to be equal to zero and hence as reachable equilibria. We therefore numerically verified

708 the results from Fig. 8 using the package deSolve (Soetaert et al., 2010).

700 S1.1. Methods

soo Because the numerical solutions run slower compared to the analytical results, we per-
s formed these at a lower resolution, by dividing the coefficient range (—2 — 42) in 20 steps
sz only. Hence every subpanel consists of 20 x 20 pixels (and checks). For every parameter
so3  setting (i.e. pixel), we first calculated the six possible nonzero equilibria that allow for
sos variation in at least either trait value or abundance, using the analytical solution. These
sos  were the four possible mutual intersections of the ellipse corresponding to trait value 0
sos and trait value 1, and the asymmetric equilibria for a system where trait values were
sz the same in both patches (either both at 1 or both at 0, considering only one of the
sos mirrored asymmetric equilibria in each case). Then, we removed the imaginary parts of
soo  these results. Furthermore, we remove the equilibria with a negative real part, since these

s10 are not biologically relevant.

s11  Subsequently, we evaluated whether the remaining equilibria were stable. For each of the
s12  equilibria (N7, NJ), we pick four possible starting densities, that differ from the expected
s1s  equilibrium by 2.5%. Each patch can be either 2.5% higher or lower, leaving us with the
s1a  four possible starting conditions: (0.975N5,0.975N5),(0.975N7, 1.025N5),(1.025N7, 0.975N5 ),
s1is  and (1.025N7,1.025N5). We call an equilibrium stable with respect to the density, if for
s1e each starting condition, after 100 time steps the difference between the abundance in the

s17  patches and their expected value according to the equilibrium is smaller than 2.5%.
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s1s In order to make sure that the population goes to the expected equilibrium, we had
s1e to set p = 0, because when mutations are present, the trait values will deviate from
s20 0 or 1 by a small amount, due to the mutation-drift balance and this deviation in z
s21  may subsequently lead to a small difference in abundances as well. Thereby hindering a
s22 direct comparison between the numerically predicted density and the expected density.
s2s However, this means that we have to assess the stability of the equilibrium with respect
s2a t0O z separately. We did so, by changing the initial trait distribution. Instead of putting
s2s the full population in either the bin with z = 0 or z = 1, we put 99% of the population

s26 in the extreme bin and 1% in the adjacent bin. When z = 0, this corresponds to:

n1.1(0) = 0.99N; (0) (S1.1)
n1.2(0) = 0.01N; (0) (S1.2)
n2.1(0) = 0.99N,(0) (S1.3)
n2.2(0) = 0.99N,(0), (S1.4)

s2z and zero density in all other bins. When z = 1, bins 100 and 99 take the role of bin 1
s2s and 2 respectively. If the relative number of individuals in the extreme bin had increased
s20 at t = 100 compared to the initial value, the system was considered to be stable with

s30 respect to trait value.

ss1 S51.2. Results

sz The resulting figure (Fig. S1.1) confirms the findings from Fig. 8.
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Figure S1.1: Regions in parameter space where spatial variation abundance and diversification of trait
values can occur. The shown regions are based on numerically evaluating the population dynamics around
the the asymmetric, equilibria that were obtained by intersecting the ellipses with trait value z = 0 and
z = 1 with the mirrored ellipses at both trait values (following equations 26) — (29).The white regions
correspond to areas where no spatial variation in N or z was predicted in the system or where the
predicted equilibrium was unstable or unreachable (negative N, or a nonzero imaginary part in N). The
black dots correspond to the parameter settings that were used in the top panels of Fig. 7. The results

in thsi graph numerically confirm the findings from Fig. 8.
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s33s  S52. Parameter space of the eco-evolutionary model including unstable equi-

834 libria
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Figure S2.1: Regions in parameter space where spatial variation abundance and diversification of trait
values can occur, including unstable equilibria. The shown regions are based on the properties of the
asymmetric equilibria obtained by intersecting the ellipses with trait value z = 0 and z = 1 with
the mirrored ellipses at both trait values (following equations 26) — (29). The values and stability of
these ellipses were calculated using Mathematica. Only the upper diagonal graphs are shown. The white
regions correspond to areas where no spatial variation in NV or z was predicted in the system or where the
predicted equilibrium contained negative values. The black dots correspond to the parameter settings
that were used in the top panels of Fig. 7. The pixelated regions are due to the floating point precision

in calculating the imaginary part.
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S3. Additional example for the eco-evolutionary model

Here, we show an additional example time series of the eco-evolutionary model. In this
example, we have weakened selection by dividing both c¢5 and ¢g by 10. In order to speed
up selection in this example, we have increased the mutation rate p to 0.05. All other
parameters are as in Fig. 7. In this example, at both z = 0 as well as z = 1, the model

has two equilibria, of which one is above N and the other below.
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Figure S3.1: Example time series for the eco-evolutionary model. Different colors represent different
model runs where mutations were either present (u = 0.05) or not (¢ = 0) and that started with a
monomorphic population with either trait value 0 (zg = 0) or 1 (290 = 1). (a) Abundance time series, the
red and blue trajectories largely overlap for the first 2000 time steps, as do the yellow and orange lines.
(b) Corresponding mean trait values and the spread, shown as the regions in trait space that contained
95% of the individuals of each patch. For the scenarios without mutations (orange and red line), the
trait values in both patches completely overlap. For the scenarios with mutations the trait values in
the two patches diverge over time, regardless of the initial trait distribution. (c) Trajectories in phase
space. Also drawn are the isoclines at z = 0 (black) and z = 1 (grey). (d) Equilibrium densities for
monomorphic populations with trait value z. At any given value of z two branches exist, indicating the
two different densities that the two patches will tend to. In the background, the direction of selection at
any given density is shown, with red values referring to selection for smaller trait values and blue colors
to selection for larger trait values. The grey line corresponds to N¢;it, the density at which selection
vanishes. Parameter values: cg = —0.148, ¢1 = 0.162, co = 1.262, c3 = —0.326, c4 = —1.034, ¢5 = 0.0194
and cg = —0.03492.
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sa1  S4. Migration between patches

saz Differences in abundance between patches can be evened out through migration. If the
sas  same proportion of individuals in both patches migrates to the respective other patch,
saa  the larger population will contribute more individuals to the smaller population and vice
sas  versa. Hence, the difference in abundance between the patches is expected to decrease and
sas the smaller patch should be less likely to go extinct. Furthermore, migration may hamper
saz trait diversification through recurrent inflow of genes that have emerged through a se-
sas lection pressure elsewhere. It is therefore vital to see whether the diversity in abundance

sao and trait values that emerged in our original model can be maintained under migration.

sso  Fcological model

ss1  First, we adapt the purely ecological model to include migration:

dN
= SN, No) - Ny s (N2 = Ny, (S4.1)
dN.

de = f(Na, Ny) - Ny +m - (Ny — Na), (S4.2)

ss2  with m being the fraction of individuals in each patch that migrate to the other patch.

sss  The fitness function f is the same as the one used in the main text (equation 2).
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Figure S4.1: Time series of abundance for the ecological model with different migration rates. Otherwise,
the parameter settings are as in the main text (see Fig. 4). The different colors correspond to different
initial conditions, with the saturation indicating the migration rate. The equilibria and ellipses are shown

for the case without migration.

ssa  We solved the model with migration numerically and compared the results to those
sss  without migration (Fig. S4.1). Migration increases the time it takes for the system to
sse reach the asymmetric equilibrium (top left panel). Furthermore, migration affects the
ss7  existence/stability and precise value of the equilibria (compare the red trajectories for
ess m = 0 and m = 0.07 in the top panels). This becomes apparent when plotting the
sso final abundances in both patches as a function of the migration rate (Fig. S4.2). At low
seo migration rates, the two separate equilibria remain relevant. However, when the migration

sex rate reaches a critical value (close to 0.10 for the depicted parameter combination), the
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se2 system always tends to a symmetric equilibrium. Note how in this case the density in
ses the smaller patches increases faster with the migration rate than it decreases in the
sea larger patch. As a consequence, the total population size increases as a function of the
ses migration rate. This is a well-known effect that is caused by us not explicitly modelling

sss the underlying causes for the density dependence (Wang and DeAngelis, 2019).

00 02 04 06 08 10 12 14
\

I I I I
0.00 0.04 0.08 0.12

Figure S4.2: Final densities in the two patches in a numerical solution after the first 10° time steps as a
function of the migration rate. This was enough time for the system to reach the equilibrium. Results

did not vary among the three different starting conditions from Figure S4.1.

ssz  Fvolutionary model

ses In the evolutionary model, migration is included analogously; so for patch 1, the differ-

seo ential equations become:

dny

it = f(26, Ni,No)nyp — pnap + §n1p-1 + S5m0 +m- (nop —nyp)  if 1 < b <100

— dnlyl :
Wi = prai f(zl, Ny, Ng)nl)l - %nm + %77,172 +m- (ng)l - 71171) ifb=1
dni,100 :
> = f(z100, N1, Na)n1,100 — 571,100 + 571,099 + m - (02,100 — 71,100)  if b= 100

(S4.3)

s7o In our approach, we treat m as a constant, such that migration is trait-independent.

srn  From numerical solutions of the evolutionary model with migration (Fig. 9), it becomes
s72 apparent that the difference in average trait value is far more sensitive to migration than

sz the difference in abundance at the used parameter values: at m = 0.01, the two patches
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still reach different abundances, but they no longer obtain different average trait values.
Therefore, we show the final abundances of time series that were solved numerically
for up to 10* time steps in two different graphs with different scales (Fig. S4.3). The
differences in trait value disappear rapidly with increasing migration rates. This seems
to be caused by the relatively large influx of individuals from the larger patch that are
adapted to the density in their native patch, combined with a relatively low selection
gradient. Interestingly, the effect of the migration rate depends on the mutation rate.
This reflects that an increase in mutation rate affects the mutation-selection balance,

causing the average trait value to shift away from the boundary values.
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Figure S4.3: Final abundances in numerical solutions at time ¢t = 105, which was enough time for the
system to reach equilibrium. The top and bottom half differ only in the range of migration rates that they
contain. Mutation rate was varied, but all other parameter values were the same as in the evolutionary

model in the main text.
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In constructing Figure S4.3, we have re-assigned patch identity afterwards based on the
final density (the patch with the larger final density was assigned to patch 1). Otherwise,
the lines would move back and forth between the two branches. That does mean however,

that the branches no longer correspond to a specific patch.
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sz 95. Individual-based simulations

sss  We tested the robustness of the results against demographic stochasticity with an individual-

sso  based model. This also allowed us to include diploid multi-locus genetics.

so0 (Genetics

sex  Genetics were diploid and consisted of a 10-locus system with 10 alleles per locus. Alleles
sz were inherited independently across loci (no linkage). Every locus, contributed a value
sz between 0 to 0.1. When adding all 10 loci together, this led to the total trait value ranging
sea  between 0 and 1. The value of a locus was determined by averaging the value of its two
sos alleles. The alleles themselves had evenly spaced values between 0 and 0.1. There were

ses 10 factors other than genetics that affected the trait value.

sez Finally, for every newborn, there was a probability p that it obtained a mutation at one
ses  Of its loci. If a mutation was determined to occur, the locus and the value of the target

seo allele were drawn from a uniform distribution, independently of the original allele value.

o0 Fitness function

o1 We assumed non-overlapping generations and the fitness function only affected female
s02 reproduction. This is one of the deviations from our original model, where males and
sz females were not distinguished. For a female in patch 1, with trait value z, the number

s0s Of offspring was drawn from a Poisson distribution with mean:

A= 26604-01D1+C2D2+C3D%+C4D§+Csz+CGZD1 , (851)

sos  with D; the density in patch 4. If patch 7 has area A;,
D, =— (S5.2)

s0s The factor of two in equation (S5.1) serves to compensate for the fact that males do not
ooz generate offspring. Instead, for every female that obtained offspring, the father of that
sos clutch was randomly sampled among all males in the corresponding patch. Offspring

900 were also born in the same patch, although in the model runs with migration, they had
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o0 a small chance to move to the other patch. Although this process actually corresponds
o11  to dispersal, we use the term migration throughout this supporting information, for

012 consistence with the main text.

o1z  Finally, we had to set an area for the patches. For all model runs, the area was equal in
s1a  both patches (A; = Ay = A). In the original model, the scaling of N; was arbitrary, and
o1s N, could also take non-integer values. In the individual-based model this is not possible.
o16 Here, N; can only take integer values. Changing the size of the area allows us to alter
o1z the relative effect of demographic stochasticity, and thereby also the amount of genetic
o1s  drift in the system. When the area is large, the same equilibrium density corresponds to
o190 a larger absolute number of individuals. Hence, demographic stochasticity is expected to

s20 have only a limited effect under these circumstances.

021 Initial population

922 The number of individuals in each patch was drawn from a normal distribution with
923 mean Ny and standard deviation o = 10. For each of the patches, the fraction of males in
024 the initial population was drawn from a uniform distribution between 0.25 and 0.75. The
o2s number of individuals and the number of males were then rounded to the closest integer
026 and applying the absolute value to avoid negative values (which rarely occurred because
o027 of sufficiently large Ny). Next, the allele values at the loci were also randomly sampled
o2s from a uniform distribution: at every locus alleles were assigned, with equal probability

920 for every possible allele.

o30  Runs and results

o1 Direct averaging of the replicates proved difficult, due to stochasticity making it im-
032 possible to predict which of the two patches would become the high density patch. In-
033 stead, we summarize the results qualitatively and show a few time series to illustrate
o3a the point. Throughout the simulation runs, we varied three parameters: m € [0,0.005],
o35 € [0.1,0.05], and A € [100, 1000, 5000]. We tested all combinations of these parameter
o36  settings and ran 10 replicates for each combination, for a total 2 - 10° time steps. If one

037 of the two patches went extinct, the simulation was stopped.
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Figure S5.1: Summary of the runs from the individual-based model. Shown are boxplots that display
(a) whether a patch in the replicates went extinct (1) or not (0), (b) the time at which this happened,
(c) the difference in density between the patches at that point in time, and (d) the difference in average
trait value between the patches at the end of the simulation (2 - 10® or extinction time). The parameter

values of the fitness function were as in Fig. 7.

o3s  First of all, the results show a strong consistency across replicates, despite the presence
030 of demographic stochasticity. This stochasticity leads to extinction in all cases where
sa0 A =100 (Figure S5.1(a)). Furthermore, this panel also show that the mutation rate, and
ea1 hence the potential speed of adaptation, has a direct effect on whether the populations can
eaz persist. Comparing panel (a) to (b), shows that at lower mutation rate, extinction occurs

a3 after approximately 10% of the simulation time, indicating that short-term co-existence of
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sas  two patches with different abundances and trait value might be possible (as illustrated in
oes  Figure S5.2). Panel (a) also shows that extinction is less likely when migration is allowed.
sas  Migration has, however, only a very limited effect on the final difference in abundance
sa7  (panel (d)). In agreement with the results from SI S4, migration strongly affects the
sas  possibility of trait adaptation (panel (d), and Figure S5.3). The situation that is closest
sas  tO the deterministic evolutionary model that we presented in the main text consists of a
o0 large patch size that reduces the effect of demographic stochasticity, combined with low
es1  (no) migration and high mutation rates (for rapid adaptation). An example time series

os2  of this case is shown in Figure S5.4.
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Figure S5.2: Time series run for one of the replicates with ¢ = 0.01, m = 0 and A = 5000.
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Figure S5.3: Time series run for one of the replicates with p = 0.05, m = 0.005 and A = 1000.
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Figure S5.4: Time series run for one of the replicates with p = 0.05, m = 0, and A = 5000.
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